JP4038439B2 - Operation method of circulating fluidized bed furnace - Google Patents

Operation method of circulating fluidized bed furnace Download PDF

Info

Publication number
JP4038439B2
JP4038439B2 JP2003038459A JP2003038459A JP4038439B2 JP 4038439 B2 JP4038439 B2 JP 4038439B2 JP 2003038459 A JP2003038459 A JP 2003038459A JP 2003038459 A JP2003038459 A JP 2003038459A JP 4038439 B2 JP4038439 B2 JP 4038439B2
Authority
JP
Japan
Prior art keywords
powder
particle size
furnace body
furnace
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003038459A
Other languages
Japanese (ja)
Other versions
JP2004245551A (en
Inventor
崇 中川
実 手嶋
敬 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2003038459A priority Critical patent/JP4038439B2/en
Publication of JP2004245551A publication Critical patent/JP2004245551A/en
Application granted granted Critical
Publication of JP4038439B2 publication Critical patent/JP4038439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、被処理物を焼却する循環流動床炉の運転方法に関する。
【0002】
【従来の技術】
従来より、下水汚泥等の被処理物を燃焼する燃焼炉として、循環流動床炉が知られている。循環流動床炉は、炉本体内で流動化空気によって流動媒体を流動させあるいは飛散させ、この際に被処理物を攪拌、乾燥、燃焼させると共に、炉出口に接続されるサイクロン等の流動媒体回収装置によって飛散した流動媒体を炉内に戻す。このような循環流動床炉では、一般的に、珪砂六号といわれる平均粒径300μm程度の珪砂や、珪砂七号といわれる平均粒径130μm程度の珪砂が流動媒体として用いられる。このような流動媒体を用いることにより、流動化空気によって流動媒体が効率よく炉本体内で飛散すると共にサイクロン等で好適に回収されて循環され、被処理物の好適な攪拌・乾燥と燃焼が行なわれる。
【特許文献1】
特開2002−147725号公報
【0003】
【発明が解決しようとする課題】
しかしながら、このような循環流動床炉において、より効率よく被処理物の燃焼を行いたいという要望がある。
【0004】
本発明は、上記課題に鑑みてなされたものであり、効率よく被処理物を燃焼可能な循環流動床炉の運転方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明に係る循環流動床炉の運転方法は、炉本体内で流動媒体に対して流動化空気を供給し炉本体から排出される排出ガスから流動媒体を分離して炉本体に戻すと共に、炉本体内に被処理物を導入して当該被処理物を炉本体内で燃焼させる循環流動床炉の運転方法において、第一の平均粒径を有する第一粉体と、第一の平均粒径よりも大きな第二の平均粒径を有する第二粉体とを混合して、流動媒体とし、第一粉体は珪砂であり、第二粉体は珪砂及び石灰石であることを特徴とする。
【0006】
本発明の運転方法によれば、流動化空気の空気量と空気圧を所望の最適値に設定することにより、平均粒径の大きな第二粉体は炉本体の下部で気泡流動化され、濃厚層が形成される。このため、投入される被処理物の攪拌・乾燥や燃焼等が炉本体下部の濃厚層において良好に行われる。これに対して、平均粒径の小さい第一粉体は、炉本体の下部に留まることなく流動化空気により炉本体内を上方に向かって好適に飛散され、炉本体内で濃厚層より上方のフリーボードに、粒子が所定の濃度で存在する希薄層が形成される。このため、フリーボードの温度が十分高温に維持され、濃厚層での乾燥や燃焼により形成される微少固体可燃粒子や可燃ガスが炉本体内のフリーボードにおいて十分燃焼される。このため、循環流動床炉の燃焼効率が高くなる。
【0007】
ここで、各粉体として、珪砂や石灰石を例示できる。
【0008】
また、第一粉体及び第二粉体は珪砂であり、第一粉体の平均粒径は0.05mm以上〜0.6mm以下であり、第二粉体の平均粒径は0.2mm以上〜0.9mm以下であることが好ましい。
【0009】
第二粉体として0.2〜0.9mm程度の珪砂の粉体を用いると、この粉体によって炉本体内に濃厚層が容易に形成できる。また、第一粉体として、0.05〜0.6mm程度の珪砂の粉体を用いると、この粉体を炉本体内を好適に飛散させることができると共に、炉本体から排出されたこの小さい粉体をサイクロン等で好適に回収し、炉本体に循環できる。
【0010】
また、第一粉体の重量を1としたときに、第二粉体の重量を0.5以上〜2.0以下とすることが好ましい。
【0011】
これによれば、濃厚層と希薄層とがバランス良く炉本体内に形成され、燃焼が好適に行われる。
【0012】
【発明の実施の形態】
以下、添付図面を参照しながら、本発明に係る循環流動床炉の運転方法の好適な実施形態について詳細に説明する。なお、図面の説明において、同一または相当要素には同一の符号を付し、重複する説明は省略する。
【0013】
図1は、本実施形態が実施される循環流動床炉100を示す概略構成図である。
【0014】
本実施形態の循環流動床炉100は、下水汚泥等の被処理物を焼却する炉であって、流動媒体24が流動化されると共に被処理物が燃焼される垂直筒状の炉本体1と、炉本体1の上部から排出される燃焼排ガスから流動媒体24等の粒子を回収するサイクロン2と、このサイクロン2によって回収された流動媒体24等の粒子を炉本体1の下部に戻すループシール3と、を主として備えている。
【0015】
炉本体1の底部には、流動化空気ラインL4を介して供給される流動化空気を炉本体1内に導入し、流動媒体24を流動化させると共に被処理物の燃焼を行わせる一次空気ノズル10と、炉本体1の底部から不燃物等を抜き出しラインL7を介して外部に排出させる抜出ノズル15と、助燃燃料ラインL2を介して供給される助燃用燃料を燃焼し被処理物を補助燃焼させる助燃バーナ13と、が設置されている。
【0016】
また、炉本体1の側面の下部には、被処理物ラインL1を介して供給される被処理物を炉本体1に投入するスクリューコンベア14と、二次空気ラインL5から供給される二次空気を炉本体1の中央部に導入して炉内で二次燃焼をおこさせる二次空気ノズル11と、昇温用燃料ラインL3を介して供給される昇温用燃料を燃焼し炉本体1の起動時等に流動媒体24を昇温する昇温バーナ12と、が設置されている。
【0017】
サイクロン2は、炉本体1の上部に形成された出口に接続され、当該出口から流動媒体24等を含む高温のガスを導入して旋回させ、流動媒体24等の固体分とガスとを遠心力で分離する。分離された燃焼排ガスは、排ガスラインL6を介して後段に排出される一方、回収された固体分はサイクロン2の下方に設置されたループシール3に導入され、ループシール3はこの固体分を炉本体1の底部に循環する。
【0018】
次に、本実施形態に係る循環流動床炉100の運転方法について説明する。
【0019】
まず、循環流動床炉100の炉本体1内に硅砂等の流動媒体24を投入する。本実施形態では、特に、大粒径粉体(第二粉体)22と、この大粒径粉体22よりも平均粒径の小さな小粒径粉体(第一粉体)20と、を混合して炉本体1内に導入し、流動媒体24とする。本実施形態において、平均粒径とは、重量基準の粒度分布における50%径である。
【0020】
次に、昇温バーナ12でこの流動媒体24を加熱して所定の温度、例えば、650℃にすると共に、一次空気ノズル10を介して一次空気を導入して流動媒体24を流動化させる。このとき、一次空気の流量を適切に調節することにより、大粒径粉体22が炉本体1の底部に留まって気泡流動化されて濃厚層32が形成される一方、小粒径粉体20は大粒径粉体22よりも粒径が小さいために炉本体1内を上昇するガスに同伴されて飛散し、炉本体1の中央部及び上部のフリーボードにおいて所定の濃度で粒子が存在する希薄層30が形成される。炉本体1内から排出されるガスは、サイクロン2に導入され、遠心力によって小粒径粉体20を主とした流動媒体24が回収されてループシール3を介して炉本体1の底部に回収される一方、小粒径粉体20を主とした流動媒体24が除去されたガスは外部に排出される。
【0021】
次に、スクリューコンベア14を介して炉本体1内に被処理物を投入し、さらに、フリーボードに対して二次空気を供給する。これによって、昇温バーナ12によって650℃程度とされた濃厚層32内に被処理物が保持されて流動化され、被処理物の攪拌・乾燥がなされると共に、さらに、燃焼が行われる。また、このような燃焼により発生したCOやH2等の未燃ガスや、微少可燃粒子等は、フリーボード内を希薄層30を形成する小粒径粉体20と共に上昇し、このフリーボードに対して供給される二次空気によって燃焼される。このとき、フリーボードでは小粒径粉体20によって十分な粒子濃度の希薄層30が形成されているので、希薄層30内の温度が850℃程度に維持され、これによって、フリーボードを上昇する一次燃焼ガスや固体分が十分に燃焼される。
【0022】
なお、上述の燃焼の過程では、必要に応じて、濃厚層32が所定の温度を維持できるように助燃バーナ13によって加熱をおこなうことができる。
【0023】
ここで、大粒径粉体22として、平均粒径が0.2〜0.9mmの範囲内にある珪砂の粉体を用い、小粒径粉体20として平均粒径が0.05〜0.6mmの範囲内にある珪砂の粉体を用いることが好ましい。
【0024】
このような大粒径粉体22を用いると、炉本体1において、十分に気泡流動化された濃厚層32を好適に形成でき、被処理物が十分に保持されて、攪拌、乾燥、燃焼が好適になされる。大粒径粉体22の平均粒径が0.2mmよりも小さくなると濃厚層32の形成が困難になる傾向がある一方、平均粒径が0.9mmよりも大きくなると濃厚層32の十分な気泡流動化が困難となる傾向がある。
【0025】
また、上述のような小粒径粉体20を用いると、濃厚層32の上方のフリーボードにおいて、十分な濃度の希薄層30を容易に形成できる。小粒径粉体20の平均粒径が0.05mmよりも小さい場合は後段のサイクロン2での小粒径粉体20の回収が困難となる傾向がある一方、平均粒径が0.6mmを超える場合は炉本体1内で流動化空気により飛散させることが困難となる傾向がある。
【0026】
また、大粒径粉体22の投入重量をWLとし、小粒径粉体20の投入重量をWSとしたときに、0.5≦(WS/WL)≦2.0を満たすように各々の投入重量決定することが好ましい。
【0027】
このようにすると、大粒径粉体22と小粒径粉体20とが少なくとも1/3以上の重量比で各々存在し、濃厚層32と希薄層30とがバランス良く炉本体1内に形成される。このため、被処理物の攪拌・乾燥と燃焼とがより効率的に行われる。
【0028】
なお、重量比がこの範囲を外れると、大粒径粉体22が少なくなって濃厚層32の高さが十分でなくなったり、小粒径粉体20が少なくなって希薄層30の濃度が十分でなくなったりする傾向がある。
【0029】
ここで、投入する流動媒体の総量(WL+WS)は、運転停止状態で(炉底面積)×(高さ1m)の容量を基準とし、より効率よく燃焼させるべく、被処理物の水分負荷に応じて、設定することが好ましい。
【0030】
また、大粒径粉体22の重量WLについては、濃厚層32の総高さを約1.5m以上確保することを基準とし、被処理物を十分に保持した状態で濃厚層32のバブリングを行わせるべく、被処理物の嵩比重と、大粒径粉体22の嵩比重との関係に基づいて設定することが好ましい。
【0031】
また、大粒径粉体22や小粒径粉体20としては、例えば、珪砂や石灰石が好適に利用できる。なお、石灰石を用いると、燃焼排ガス中の硫黄酸化物ガス、ダイオキシン等の塩素系ガス、シアン系ガス等の酸性ガスの中和等を同時に行うことができる。さらに、大粒径粉体22や小粒径粉体20として、石灰石や珪砂を混合して用いても良い。
【0032】
なお、長時間の運転により、摩耗や高温による劣化等により、大粒径粉体22や小粒径粉体20の粒径が小さくなった場合には、定期的に、各流動媒体を補充すれば、好適な燃焼を継続できる。
【0033】
以上説明したように、本実施形態に係る循環流動床炉の運転方法においては、大粒径粉体22と、これよりも平均粒径の小さな小粒径粉体20と、を混合して流動媒体24としている。このため、大粒径粉体22は炉本体1の下部で気泡流動化し、濃厚層32が形成され、投入される被処理物の攪拌・乾燥や燃焼が炉本体1の下部の濃厚層32において良好に行われる。一方、小粒径粉体20は、流動化空気によって炉本体1内を好適に飛散し、炉本体内で濃厚層32より上方のフリーボードに、粒子が所定の濃度で存在する希薄層30が形成される。このため、フリーボードの温度が十分高温に維持され、微少な固体可燃分や可燃ガスが炉本体1内のフリーボードにおいて十分燃焼される。これらによって循環流動床炉100の燃焼効率が高くなり、空気量の削減や補助燃料の削減が可能となり、さらに、安定運転が可能となる。
【0034】
つぎに、本実施形態に係る実施例について説明する。
【0035】
本実施例においては、大粒径粉体22として珪砂五号の粉体を用い、小粒径粉体20として、珪砂六号の粉体を用いた。
【0036】
珪砂五号の粉体とは、図2の線Bに示すように、0.2〜0.8mmの粒度分布の珪砂であり、図3に示すように、平均粒径580μm、嵩比重は1.32g/cm3、真比重は2.56g/cm3、灼熱減量は0.31%である。ここで、本実施例において、平均粒径とは、重量基準の粒度分布における50%径である。
【0037】
また、珪砂六号の粉体とは、図2の線Cに示すように、0.1〜0.4mmの粒度範囲の珪砂であり、図3に示すように、平均粒径300μm、嵩比重は1.24g/cm3、真比重は2.56g/cm3、灼熱減量は0.31%である。
【0038】
また、大粒径粉体22の投入重量WL及び小粒径粉体20の投入重量WSは、WS/WL=0.5となるように設定した。
【0039】
そして、上述のように運転を行い、被処理物として、下水汚泥を供給して燃焼を行った。ここで、含水率82%の脱水汚泥の嵩比重は0.83であった。
【0040】
この結果、炉本体1の底部に十分な高さの濃厚層32が形成されると共に、フリーボード部に十分な濃度の希薄層30が形成され、下水汚泥が効率よく燃焼されることが確認された。なお、得られたCFB灰の平均粒径と灼熱減量を図2の線F及び図3に示す。
【0041】
また、大粒径粉体として珪砂五号の粉体を用い小粒径粉体として図2の線D及び図3に示す珪砂七号の粉体を用いた場合、大粒径粉体として図2の線A及び図3に示す珪砂四号の粉体を用い小粒径粉体として珪砂五号の粉体を用いた場合、大粒径粉体として珪砂四号の粉体を用い小粒径粉体として珪砂六号の粉体を用いた場合、大粒径粉体として珪砂四号の粉体を用い小粒径粉体として珪砂七号の粉体を用いた場合、大粒径粉体として珪砂六号の粉体を用い小粒径粉体として珪砂七号の粉体を用いた場合についても実験を行ったが、同様の結果が得られた。
【0042】
さらに、流動媒体として石灰石を用い、平均粒径1mmの大粒径の石灰石と、平均粒径0.03mmの小粒径の石灰石を用いた場合でも、同様の結果がえられた。
【0043】
【発明の効果】
本発明に係る循環流動床炉の運転方法によれば、第一の平均粒径の第一粉体と、第一の平均粒径より大きな平均粒径の第二粉体とを混合して流動媒体とする。そして、第二粉体を流動化空気により炉本体の下部で気泡流動化させて濃厚層を形成し、投入される被処理物の攪拌・乾燥や燃焼等を炉本体下部の濃厚層において良好に行わせる。また、第一粉体を、流動化空気により炉本体内を上方に向かって飛散させ、フリーボードの温度を十分高温に維持し、形成された微少固体粒子や可燃ガスをフリーボードにおいて十分燃焼させる。これによって、効率よく被処理物を燃焼可能な循環流動床炉の運転方法を提供する。
【図面の簡単な説明】
【図1】本実施形態に係る循環流動床炉を示す概略構成図である。
【図2】本実施形態で用いられる粉体の粒径分布を示す図である。
【図3】本実施形態で用いられる粉体の特性を示す図である。
【符号の説明】
1…炉本体、24…流動媒体、20…小粒径粉体(第一粉体)、22…大粒径粉体(第二粉体)、2…サイクロン、3…ループシール、100…循環流動床炉。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a circulating fluidized bed furnace for incinerating a workpiece.
[0002]
[Prior art]
Conventionally, a circulating fluidized bed furnace is known as a combustion furnace for burning an object to be treated such as sewage sludge. In a circulating fluidized bed furnace, the fluidized medium is fluidized or scattered by the fluidized air in the furnace body. At this time, the object to be treated is stirred, dried and burned, and the fluidized medium such as a cyclone connected to the furnace outlet is recovered. The fluid medium scattered by the apparatus is returned to the furnace. In such a circulating fluidized bed furnace, silica sand having an average particle size of about 300 μm, which is referred to as silica sand No. 6, and silica sand having an average particle size of about 130 μm, which is referred to as silica sand No. 7, is used as a fluid medium. By using such a fluidized medium, the fluidized medium is efficiently scattered in the furnace body by the fluidized air, and is suitably collected and circulated by a cyclone or the like, so that the object to be treated is suitably stirred, dried and burned. It is.
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-147725
[Problems to be solved by the invention]
However, in such a circulating fluidized bed furnace, there is a desire to burn the workpiece more efficiently.
[0004]
This invention is made | formed in view of the said subject, and it aims at providing the operating method of the circulating fluidized bed furnace which can burn a to-be-processed object efficiently.
[0005]
[Means for Solving the Problems]
The operation method of the circulating fluidized bed furnace according to the present invention is to supply fluidized air to the fluidized medium in the furnace body, separate the fluidized medium from the exhaust gas discharged from the furnace body, and return it to the furnace body. In the operation method of the circulating fluidized bed furnace in which the object to be processed is introduced into the main body and the object to be processed is combusted in the furnace body, the first powder having the first average particle diameter, and the first average particle diameter The second powder having a larger second average particle size is mixed to obtain a fluid medium, wherein the first powder is silica sand and the second powder is silica sand and limestone .
[0006]
According to the operation method of the present invention, by setting the air amount and air pressure of the fluidized air to a desired optimum value, the second powder having a large average particle size is bubble-fluidized at the lower part of the furnace body, and the dense layer Is formed. For this reason, stirring, drying, combustion, etc. of the to-be-processed object put in are performed favorably in the concentrated layer at the bottom of the furnace body. On the other hand, the first powder having a small average particle diameter is suitably scattered upward in the furnace body by the fluidized air without staying at the lower part of the furnace body, and is higher than the dense layer in the furnace body. A dilute layer in which particles are present at a predetermined concentration is formed on the free board. For this reason, the temperature of the free board is maintained at a sufficiently high temperature, and the fine solid combustible particles and the combustible gas formed by drying and combustion in the rich layer are sufficiently burned in the free board in the furnace body. For this reason, the combustion efficiency of a circulating fluidized bed furnace becomes high.
[0007]
Here, quartz sand and limestone can be illustrated as each powder.
[0008]
The first powder and the second powder are silica sand, the average particle diameter of the first powder is 0.05 mm to 0.6 mm, and the average particle diameter of the second powder is 0.2 mm or more. It is preferable that it is -0.9 mm or less.
[0009]
When a silica sand powder of about 0.2 to 0.9 mm is used as the second powder, a thick layer can be easily formed in the furnace body by this powder. Moreover, when the powder of silica sand of about 0.05 to 0.6 mm is used as the first powder, this powder can be suitably scattered in the furnace main body and the small amount discharged from the furnace main body. The powder can be suitably recovered with a cyclone or the like and circulated to the furnace body.
[0010]
Moreover, when the weight of the first powder is 1, it is preferable that the weight of the second powder is 0.5 to 2.0.
[0011]
According to this, the rich layer and the lean layer are formed in the furnace body in a well-balanced manner, and combustion is suitably performed.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a method for operating a circulating fluidized bed furnace according to the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
[0013]
FIG. 1 is a schematic configuration diagram showing a circulating fluidized bed furnace 100 in which the present embodiment is implemented.
[0014]
The circulating fluidized bed furnace 100 of the present embodiment is a furnace that incinerates an object to be treated such as sewage sludge, and a vertical cylindrical furnace body 1 in which the fluidized medium 24 is fluidized and the object to be treated is burned. The cyclone 2 that recovers particles such as the fluid medium 24 from the combustion exhaust gas discharged from the upper part of the furnace body 1 and the loop seal 3 that returns the particles such as the fluid medium 24 recovered by the cyclone 2 to the lower part of the furnace body 1 And mainly.
[0015]
At the bottom of the furnace body 1, fluidized air supplied via the fluidized air line L4 is introduced into the furnace body 1 to fluidize the fluid medium 24 and to burn the workpiece. 10, a non-combustible material or the like is extracted from the bottom of the furnace body 1 and discharged to the outside via a line L 7, and auxiliary fuel supplied via the auxiliary fuel line L 2 is burned to assist the object to be processed. An auxiliary combustion burner 13 for burning is installed.
[0016]
In addition, at the lower part of the side surface of the furnace body 1, a screw conveyor 14 for feeding a workpiece supplied through the workpiece line L1 into the furnace body 1 and secondary air supplied from the secondary air line L5. Is introduced into the center of the furnace body 1 to burn the secondary air nozzle 11 for causing secondary combustion in the furnace and the temperature raising fuel supplied via the temperature raising fuel line L3. A temperature raising burner 12 that raises the temperature of the fluid medium 24 at the time of startup or the like is installed.
[0017]
The cyclone 2 is connected to an outlet formed in the upper part of the furnace body 1, and introduces a high temperature gas containing the fluid medium 24 and the like from the outlet and turns it, so that the solid component and the gas such as the fluid medium 24 are subjected to centrifugal force. Separate with. The separated combustion exhaust gas is discharged to the subsequent stage through the exhaust gas line L6, while the recovered solid content is introduced into the loop seal 3 installed below the cyclone 2, and the loop seal 3 uses the solid content in the furnace. Circulate to the bottom of the body 1.
[0018]
Next, an operation method of the circulating fluidized bed furnace 100 according to the present embodiment will be described.
[0019]
First, a fluid medium 24 such as dredged sand is introduced into the furnace body 1 of the circulating fluidized bed furnace 100. In the present embodiment, in particular, a large particle size powder (second powder) 22 and a small particle size powder (first powder) 20 having an average particle size smaller than that of the large particle size powder 22 are: It mixes and introduce | transduces in the furnace main body 1, and it is set as the fluidized medium 24. FIG. In the present embodiment, the average particle diameter is a 50% diameter in a weight-based particle size distribution.
[0020]
Next, the fluid medium 24 is heated by the temperature raising burner 12 to a predetermined temperature, for example, 650 ° C., and primary air is introduced through the primary air nozzle 10 to fluidize the fluid medium 24. At this time, by appropriately adjusting the flow rate of the primary air, the large particle size powder 22 stays at the bottom of the furnace body 1 and is bubble-fluidized to form the dense layer 32, while the small particle size powder 20. Since the particle size is smaller than that of the large particle size powder 22, it is entrained and scattered by the gas rising in the furnace body 1, and particles are present at a predetermined concentration in the center and upper freeboards of the furnace body 1. A lean layer 30 is formed. The gas discharged from the inside of the furnace body 1 is introduced into the cyclone 2, and the fluid medium 24 mainly composed of the small particle size powder 20 is recovered by centrifugal force and recovered to the bottom of the furnace body 1 via the loop seal 3. On the other hand, the gas from which the fluid medium 24 mainly including the small particle size powder 20 is removed is discharged to the outside.
[0021]
Next, an object to be processed is introduced into the furnace body 1 via the screw conveyor 14 and further secondary air is supplied to the free board. As a result, the object to be processed is held and fluidized in the dense layer 32 which has been heated to about 650 ° C. by the temperature raising burner 12, and the object to be processed is stirred and dried, and further combusted. In addition, unburned gas such as CO and H 2 generated by such combustion, minute combustible particles, and the like rise together with the small particle size powder 20 forming the thin layer 30 in the free board, It is combusted by the secondary air supplied to it. At this time, since the dilute layer 30 having a sufficient particle concentration is formed by the small particle size powder 20 in the free board, the temperature in the dilute layer 30 is maintained at about 850 ° C., thereby raising the free board. Primary combustion gas and solid content are burned sufficiently.
[0022]
In the above-described combustion process, heating can be performed by the auxiliary burner 13 so that the dense layer 32 can maintain a predetermined temperature as necessary.
[0023]
Here, a silica sand powder having an average particle size in the range of 0.2 to 0.9 mm is used as the large particle size powder 22, and an average particle size is 0.05 to 0 as the small particle size powder 20. It is preferable to use silica sand powder within a range of .6 mm.
[0024]
When such a large particle size powder 22 is used, a dense layer 32 that is sufficiently bubble-fluidized can be suitably formed in the furnace body 1, and the object to be treated can be sufficiently retained to be stirred, dried, and burned. Preferably done. When the average particle size of the large particle size powder 22 is smaller than 0.2 mm, the formation of the dense layer 32 tends to be difficult. On the other hand, when the average particle size is larger than 0.9 mm, sufficient bubbles in the dense layer 32 are obtained. It tends to be difficult to fluidize.
[0025]
Further, when the small particle size powder 20 as described above is used, the diluted layer 30 having a sufficient concentration can be easily formed on the free board above the concentrated layer 32. When the average particle size of the small particle size powder 20 is smaller than 0.05 mm, it tends to be difficult to collect the small particle size powder 20 in the latter cyclone 2, while the average particle size is 0.6 mm. When exceeding, it tends to become difficult to disperse by the fluidized air in the furnace body 1.
[0026]
In addition, when the input weight of the large particle size powder 22 is WL and the input weight of the small particle size powder 20 is WS, each of them is set to satisfy 0.5 ≦ (WS / WL) ≦ 2.0. It is preferable to determine the input weight.
[0027]
In this way, the large particle size powder 22 and the small particle size powder 20 are present in a weight ratio of at least 1/3 or more, and the dense layer 32 and the dilute layer 30 are formed in the furnace body 1 in a well-balanced manner. Is done. For this reason, stirring, drying, and combustion of the workpiece are performed more efficiently.
[0028]
When the weight ratio is out of this range, the large particle size powder 22 decreases and the dense layer 32 becomes insufficient in height, or the small particle size powder 20 decreases and the concentration of the diluted layer 30 is sufficient. There is a tendency to disappear.
[0029]
Here, the total amount (WL + WS) of the fluid medium to be input depends on the moisture load of the workpiece to be burned more efficiently based on the capacity of (furnace bottom area) × (height 1 m) in a stopped state. It is preferable to set.
[0030]
The weight WL of the large particle size powder 22 is based on ensuring that the total height of the thick layer 32 is about 1.5 m or more, and the bubbling of the thick layer 32 is performed while the workpiece is sufficiently held. In order to carry out, it is preferable to set based on the relationship between the bulk specific gravity of the workpiece and the bulk specific gravity of the large particle size powder 22.
[0031]
Moreover, as the large particle size powder 22 or the small particle size powder 20, for example, silica sand or limestone can be suitably used. In addition, when limestone is used, neutralization of acidic gases, such as sulfur oxide gas in combustion exhaust gas, chlorine-type gas, such as dioxin, and cyanide-type gas, can be performed simultaneously. Further, limestone or silica sand may be mixed and used as the large particle size powder 22 or the small particle size powder 20.
[0032]
If the particle size of the large particle size powder 22 or the small particle size powder 20 becomes small due to wear, deterioration due to high temperature, or the like due to long-time operation, each fluid medium should be replenished periodically. If this is the case, suitable combustion can be continued.
[0033]
As described above, in the operation method of the circulating fluidized bed furnace according to the present embodiment, the large particle size powder 22 and the small particle size powder 20 having an average particle size smaller than this are mixed and fluidized. The medium 24 is used. For this reason, the large particle size powder 22 is bubble-fluidized in the lower part of the furnace body 1 to form a thick layer 32, and stirring, drying and combustion of the workpiece to be processed are performed in the thick layer 32 at the lower part of the furnace body 1. Done well. On the other hand, the small particle size powder 20 is suitably scattered in the furnace body 1 by the fluidized air, and the diluted layer 30 in which particles are present at a predetermined concentration is present on the free board above the dense layer 32 in the furnace body. It is formed. For this reason, the temperature of the free board is maintained at a sufficiently high temperature, and a minute solid combustible component or combustible gas is sufficiently burned in the free board in the furnace body 1. As a result, the combustion efficiency of the circulating fluidized bed furnace 100 is increased, the amount of air and auxiliary fuel can be reduced, and stable operation is possible.
[0034]
Next, examples according to the present embodiment will be described.
[0035]
In this example, silica sand No. 5 powder was used as the large particle size powder 22, and silica sand No. 6 powder was used as the small particle size powder 20.
[0036]
The powder of silica sand No. 5 is silica sand having a particle size distribution of 0.2 to 0.8 mm as shown by line B in FIG. 2, and as shown in FIG. 3, the average particle size is 580 μm and the bulk specific gravity is 1 .32 g / cm 3 , the true specific gravity is 2.56 g / cm 3 , and the loss on ignition is 0.31%. Here, in this example, the average particle diameter is a 50% diameter in a weight-based particle size distribution.
[0037]
The silica sand No. 6 powder is silica sand having a particle size range of 0.1 to 0.4 mm as shown by line C in FIG. 2, and has an average particle size of 300 μm and a bulk specific gravity as shown in FIG. Is 1.24 g / cm 3 , the true specific gravity is 2.56 g / cm 3 , and the loss on ignition is 0.31%.
[0038]
The input weight WL of the large particle size powder 22 and the input weight WS of the small particle size powder 20 were set to be WS / WL = 0.5.
[0039]
And it operated as mentioned above and supplied the sewage sludge as a to-be-processed object, and combusted. Here, the bulk specific gravity of the dehydrated sludge having a moisture content of 82% was 0.83.
[0040]
As a result, it is confirmed that a thick layer 32 having a sufficient height is formed at the bottom of the furnace body 1 and a diluted layer 30 having a sufficient concentration is formed in the free board portion, so that sewage sludge is efficiently burned. It was. In addition, the average particle diameter and ignition loss of the obtained CFB ash are shown in the line F of FIG. 2 and FIG.
[0041]
In addition, when the powder of silica sand No. 5 is used as the large particle size powder and the powder of silica sand No. 7 shown in FIG. When the silica sand No. 4 powder shown in FIG. 3 is used and the silica sand No. 5 powder is used as the small particle size powder, the silica sand No. 4 powder is used as the large particle size powder. When silica sand No. 6 powder is used as the diameter powder, when silica sand No. 4 powder is used as the large particle diameter powder and silica sand No. 7 powder is used as the small particle diameter powder, large particle diameter powder is used. Experiments were also conducted in the case of using silica sand No. 6 powder as the body and silica sand No. 7 powder as the small particle size powder, and similar results were obtained.
[0042]
Furthermore, the same result was obtained even when limestone was used as the fluid medium, and limestone having a large particle diameter of 1 mm and a small particle diameter having an average particle diameter of 0.03 mm were used.
[0043]
【The invention's effect】
According to the operation method of the circulating fluidized bed furnace according to the present invention, the first powder having the first average particle diameter is mixed with the second powder having the average particle diameter larger than the first average particle diameter. The medium. Then, the second powder is fluidized in the lower part of the furnace body with fluidized air to form a thick layer, and the agitated / dried or burned of the workpiece to be processed can be satisfactorily performed in the thick layer at the bottom of the furnace body. Let it be done. Also, the first powder is scattered upward in the furnace body with fluidized air, the freeboard temperature is maintained at a sufficiently high temperature, and the formed fine solid particles and combustible gas are sufficiently burned in the freeboard. . This provides a method for operating a circulating fluidized bed furnace capable of efficiently burning a workpiece.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a circulating fluidized bed furnace according to the present embodiment.
FIG. 2 is a diagram showing a particle size distribution of powder used in the present embodiment.
FIG. 3 is a diagram showing characteristics of powder used in the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Furnace body, 24 ... Fluid medium, 20 ... Small particle size powder (first powder), 22 ... Large particle size powder (second powder), 2 ... Cyclone, 3 ... Loop seal, 100 ... Circulation Fluidized bed furnace.

Claims (3)

炉本体内で流動媒体に対して流動化空気を供給し前記炉本体から排出される排出ガスから前記流動媒体を分離して前記炉本体に戻すと共に、前記炉本体内に被処理物を導入して当該被処理物を前記炉本体内で燃焼させる循環流動床炉の運転方法において、
第一の平均粒径を有する第一粉体と、前記第一の平均粒径よりも大きな第二の平均粒径を有する第二粉体とを混合して、前記流動媒体とし、
前記第一粉体は珪砂であり、前記第二粉体は珪砂及び石灰石であることを特徴とする、循環流動床炉の運転方法。
In the furnace body, fluidized air is supplied to the fluid medium, the fluid medium is separated from the exhaust gas discharged from the furnace body, returned to the furnace body, and an object to be treated is introduced into the furnace body. In the operation method of the circulating fluidized bed furnace in which the object to be treated is combusted in the furnace body,
Mixing a first powder having a first average particle size and a second powder having a second average particle size larger than the first average particle size, the fluid medium ,
The method of operating a circulating fluidized bed furnace, wherein the first powder is silica sand and the second powder is silica sand and limestone .
前記第一粉体の珪砂の平均粒径は0.05mm以上〜0.6mm以下であり、前記第二粉体の珪砂の平均粒径は0.2mm以上〜0.9mm以下であることを特徴とする、請求項1に記載の循環流動床炉の運転方法。The average particle diameter of the silica sand of the first powder is 0.05 mm to 0.6 mm, and the average particle diameter of the silica sand of the second powder is 0.2 mm to 0.9 mm. The operation method of the circulating fluidized bed furnace according to claim 1. 前記第一粉体の重量を1としたときに、前記第二粉体の重量を0.5以上〜2.0以下とすることを特徴とする、請求項1又は2に記載の循環流動床炉の運転方法。The circulating fluidized bed according to claim 1 or 2 , wherein the weight of the second powder is 0.5 to 2.0 when the weight of the first powder is 1. How to operate the furnace.
JP2003038459A 2003-02-17 2003-02-17 Operation method of circulating fluidized bed furnace Expired - Fee Related JP4038439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038459A JP4038439B2 (en) 2003-02-17 2003-02-17 Operation method of circulating fluidized bed furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038459A JP4038439B2 (en) 2003-02-17 2003-02-17 Operation method of circulating fluidized bed furnace

Publications (2)

Publication Number Publication Date
JP2004245551A JP2004245551A (en) 2004-09-02
JP4038439B2 true JP4038439B2 (en) 2008-01-23

Family

ID=33022987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038459A Expired - Fee Related JP4038439B2 (en) 2003-02-17 2003-02-17 Operation method of circulating fluidized bed furnace

Country Status (1)

Country Link
JP (1) JP4038439B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5139123B2 (en) * 2008-02-29 2013-02-06 三菱重工環境・化学エンジニアリング株式会社 Circulating fluidized bed furnace and operating method thereof

Also Published As

Publication number Publication date
JP2004245551A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP2657896B2 (en) Fluid bed reactor and combustion method
WO1999066264A1 (en) Operating method of fluidized-bed incinerator and the incinerator
CN1142261A (en) Internal circulation fluidized bed (CFB) combustion system
JPH05504190A (en) Circulating fluidized bed combustor using CO combustion promoter and reduced combustion air
US3745940A (en) Fluidised bed apparatus and method
EP0294024B1 (en) Process for removing nitrous oxides from a gas
JP4038439B2 (en) Operation method of circulating fluidized bed furnace
JPH0650510A (en) Method of reducing discharge of nitrous oxide from fluidized bed reactor
JP3100365B2 (en) Fluidized bed incinerator
JP3790418B2 (en) Operating method of external circulating fluidized bed furnace for waste incinerator with high water content and high volatility such as sewage sludge
JP3030017B2 (en) Fluidized bed incinerator
JP2004025152A (en) Treatment method of incineration ash
JP2941785B1 (en) Operating method of fluidized bed incinerator and its incinerator
JPH03153513A (en) Production of activated ash
JP2005121342A (en) Operation method of circulating fluidized bed furnace
JPS63105308A (en) Method of recovery of combustion heat of waste tires and the like
JP2802519B2 (en) Method for reducing nitrogen oxides in fluidized bed combustion
JP2002130637A (en) Circulating fluidized bed furnace
JP2002098313A (en) Circulating fluidized bed combustion apparatus
JPH08226613A (en) Unburnt constituent reducing method of ash of coal and ash of coal fluidized bed combustion furnace
RU2321799C1 (en) Method of burning combustible shale in boiler with circulating fluidized bed
JPH0399106A (en) Fuel supply for fluidized bed burner
JP2004301448A (en) Fluid bed incinerator and its operating method
JP2000002410A (en) Method for operating fluidized-bed incinerator and incinerator
JPH0195208A (en) Burner for use in circulation type fluidized bed boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

R150 Certificate of patent or registration of utility model

Ref document number: 4038439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees