JP4038003B2 - Column-welding method for extra-thick H-section steel - Google Patents

Column-welding method for extra-thick H-section steel Download PDF

Info

Publication number
JP4038003B2
JP4038003B2 JP2000191512A JP2000191512A JP4038003B2 JP 4038003 B2 JP4038003 B2 JP 4038003B2 JP 2000191512 A JP2000191512 A JP 2000191512A JP 2000191512 A JP2000191512 A JP 2000191512A JP 4038003 B2 JP4038003 B2 JP 4038003B2
Authority
JP
Japan
Prior art keywords
welding
groove
angle
flange
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000191512A
Other languages
Japanese (ja)
Other versions
JP2002001529A (en
Inventor
真二 児玉
靖友 一山
慶浩 印牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000191512A priority Critical patent/JP4038003B2/en
Publication of JP2002001529A publication Critical patent/JP2002001529A/en
Application granted granted Critical
Publication of JP4038003B2 publication Critical patent/JP4038003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築構造物の鉄骨柱等で使用されるH形鋼の突き合わせ溶接方法に関するものである。さらに詳しくは、フランジ厚が30mm以上の極厚のH形鋼を対象とした溶接法に関するものである。
【0002】
【従来の技術】
近年、建築構造物の大型化・高層化にともない鋼構造物の鉄骨柱等で使用されるH形鋼の製造技術の開発も進み、現在では、フランジ厚が80mm程度の極厚で溶接性の良好なH形鋼も比較的安価に製造できるようになった。一方、このような極厚H形鋼を柱材等として鋼構造物に適用し、建設現場で接合施工する際に接合部特性や施工性等の観点から極厚H形鋼の接合技術が課題となってきた。
【0003】
従来、比較的肉厚の薄いH形鋼を柱材として使用し、建設現場で接合する方法としては、施工性・信頼性の観点からボルト接合が主流となっていた。しかしながら、フランジ厚が30mm以上の極厚のH形鋼に対しては、ボルト接合ではボルト穴による接合部の断面欠損が問題となるため、図10に示すように2つの被接合材のウェブ(2a、2b)をボルト5により接合し、フランジ(1a、1b、1c、1d)を溶接により接合するハイブリット接合を行うか、2つの被接合材のウェブ、フランジの全てを溶接により接合する場合が多い。
【0004】
従来のH形鋼の柱継ぎ手の溶接においては、横向き溶接姿勢で溶接を行い、その際の溶接金属の垂れや流れ出しを防ぐために比較的低電流・低溶着量での多層盛り溶接30が行われており、例えば板厚80mmの極厚鋼材の溶接には、溶接パス数が70にも及び非常に溶接効率が低下する溶接方法であった。
【0005】
また、従来のH形鋼の柱継ぎ手溶接では、多層盛り溶接のために、各溶接パスの積層間に融合不良欠陥31が発生し易く、極厚鋼材のように非常に多くのパス回数で多層盛り溶接する場合には、溶接部欠陥が生じる可能性が極めて高く、溶接部の品質維持が困難になる。
【0006】
すなわち、従来の溶接方法でフランジ厚が30mm以上の極厚のH形鋼を溶接する場合には、溶接効率(溶接時間)及び接合部品質(融合不良欠陥)の低下が問題であった。
【0007】
従来の横向き姿勢での多層盛り溶接法の溶接効率を向上させる方法としては、例えば特開平08−281428号公報に開示された高炉鉄皮等の厚板の自動溶接方法が知られている。この溶接方法は、レ型開先またはK型開先部の開先深さ方向にトーチ傾斜角度を制御しかつウィービングしながら徐々に溶接進行方向に移動させて、開先下面から1層ずつ仕上げて上方に積層する溶接方法であるが、開先幅による溶接トーチ傾斜角度の制約から特に開先幅が狭い場合には溶接能率の向上に限界があった。また、この溶接方法は、特殊なトーチのウィービングを制御するための高価な装置が必要となり、実用的にほとんど普及していない。
【0008】
一方、上記の横向き姿勢の溶接法に比べて、溶接効率が優れた立向き姿勢での溶接方法として、例えば特開昭61−78577号公報に開示されるエレクトロスラグ溶接法によるボックス柱のダイアフラム溶接が一般的に知られている。
【0009】
このエレクトロスラグ溶接法は、例えば、図11に示すように裏当て金7(または水冷銅板)で開先部を覆い、溶融金属13及び溶融スラグ12の流れ出しを防止しつつ被接合材である鋼板の立て板32の突き合わせ部分(開先部)を立て姿勢で鉛直方向に500アンペア程度の高い溶接電流で1パスで効率的に溶接を行うものであり、また、上側鋼板への対流14や溶融金属及び溶融スラグの保有熱も活用できるため、開先部が狭い場合でも良好な溶け込み深さを確保でき、溶接部の高品質化が達成できる。また、溶接ワイヤー11を電極ノズル16に供給し、板厚方向に電極ノズル16を揺動させたり、電極の本数を増やしたりすることによって板厚100mm程度の極厚鋼板の1パス溶接も可能となる。
【0010】
しかしながら、従来のエレクトロスラグ溶接法は、立て鋼板の立て姿勢で鉛直方向への継ぎ手溶接を対象としており、H形鋼の柱継ぎ手の溶接ような横姿勢での横方向への継ぎ手溶接での適用例は全くない。
【0011】
【発明が解決しようとする課題】
本発明は、フランジ厚が30mm以上の極厚H形鋼の柱継ぎ溶接において、溶接能率を向上でき、かつ溶接部の融合不良等の溶接欠陥が低減できる極厚H形鋼のエレクトロスラグ溶接法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、上記課題を解決するものであり、その要旨とするところは、以下の通りである。
【0013】
(1) 極厚H形鋼の柱継ぎ手の溶接方法において、フランジ幅方向に対する開先線の斜角αが30〜60deg.となるようにフランジ部に開先部を設け、該開先部を囲うようにフランジ内側及び外側に水冷銅板及び鋼製の当て金のいずれか一方または両方を設置することにより、溶接時の溶融金属の流出を防ぎ、かつ電極ノズルの軸心に対して、軸心が開先下側へ傾角をなすように溶接チップを設けることにより、前記開先線に対する溶接ワイヤーの開先下側へ向かう角度βを(20−α/3)〜20deg.に調節し(ただし、β>0)、開先線に沿ってエレクトロスラグ溶接法により連続的に上進溶接することを特徴とする極厚H形鋼の柱継ぎ溶接方法。
【0014】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0015】
エレクトロスラグ溶接法は、能率向上ならびに施工時の欠陥低減の観点から優れた溶接法であるが、立て鋼板の立て姿勢で鉛直方向への継ぎ手溶接を対象としているために、極厚H形鋼の柱継ぎ手の水平方向の開先にその溶接方法をそのまま適用することはできない。
【0016】
そこで、発明者らは、柱継ぎ手の溶接における開先を従来のように水平方向に設けるのではなく、開先斜角に設けることによって、極厚H形鋼のエレクトロスラグ溶接の適用化を鋭意検討した。
【0017】
本発明のエレクトロスラグ溶接法を用いた極厚H形鋼の柱継ぎ溶接方法の概略図を図1及び図5に示す。なお、図1では、2つの被接合材であるH形鋼のウェブ(2a、2b)をスプライスプレート4を用い、ボルト5によりボルト接合しているが、溶接接合とすることも可能である。
【0018】
本発明では、図1に示すように、被接合材であるH形鋼のフランジ(1a、1b、1c、1d)の開先線(3a、3b)を水平線(h,h’)に対して所定の角度(開先線角度)αをもたせ、溶接時に溶融金属が流出しないように開先を覆うようにフランジ内側(ウェブ側)に裏当て金7、フランジ外側に水冷銅板8をそれぞれ設置して、図5に示すように溶接ワイヤー11により開先をその下側から斜角を設けた開先線に沿って上進しながら溶接する。
【0019】
発明者らの実験によれば、開先線角度(開先線の斜角)αや溶接ワイヤーの角度、開先線に対する溶接ワイヤーの相対的角度により溶接部の品質が大きく影響することがわかった。
【0020】
図4には、板厚70mmの極厚鋼板に対して開先線角度αと開先線に対する溶接ワイヤーの角度βを変化させた場合の溶接部の溶接欠陥の発生状況を示す。
【0021】
図4から開先線に対する溶接ワイヤーの角度βが0、つまり溶接ワイヤー軸線が開先線と平行の場合では、溶接部に溶接欠陥は開先線角度αの低下とともに増加する傾向にあり、開先線角度αが60deg.以上では、溶接部に溶接欠陥が発生しないが、開先線角度が60deg.を下回ると、図2に示すように開先下側の溶接金属9の鋼板への溶け込み不良、即ち下側鋼板の融合不良10の溶接欠陥が発生した。
【0022】
開先下側部の溶接金属9に溶け込み不良(融合不良)10の溶接欠陥が発生するメカニズムは次のように考えられる。図3に示すように溶接ワイヤー11を用いるH形鋼のフランジ1a、1cのエレクトロスラグ溶接では、通常のアーク溶接とは異なり、溶融金属13の上部の溶融スラグ12の対流が溶融現象を支配していると考えられる。すなわち、開先に斜角を設けた状態で溶接する場合には、開先上側の鋼板への溶融スラグの対流14が増加し、逆に開先下側の鋼板への溶融スラグの対流15が減少する傾向となり、その結果、開先下側の鋼板への溶け込みが浅くなったと考えられる。この開先上側の鋼板への溶融スラグの対流14が増加し、逆に開先下側の鋼板への溶融スラグの対流15が減少する傾向は、開先線角度αの低下と開先線に対する溶接ワイヤーの角度βの低下にともない大きくなると考えられる。
【0023】
図4等の実験から溶け込み不良の溶接欠陥は、開先線角度αの低下とともに開先線に対する溶接ワイヤーの角度βを増加させることで抑制でき、β≧20−α/3を満足させるように、開先線に対する溶接ワイヤーの角度βを制御することにより溶け込み不良の溶接欠陥を抑制できることがわかった。しかしながら、開先線角度αが30deg.未満では、開先線に対する溶接ワイヤーの角度βを制御しても溶接部の溶け込み不良の欠陥は防止できないことがわかった。また、開先線に対する溶接ワイヤーの角度βを大きくしすぎると、溶接ワイヤーが開先壁面に接触する可能性が高くなり、その角度βが20deg.を超えると、角度調整が不可能であった。
【0024】
また、図4から開先線角度αは、大きいほど溶接欠陥は発生しにくいが、開先線角度αが大きくなるにしたがい、溶接線長さが長くなり、溶接能率が低下する。したがって、実用上、開先線角度αの上限は、60deg.程度とすることが望ましい。
【0025】
以上の理由により、本発明では、溶接作業性及び溶接能率を確保しつつ、溶接部の溶け込み不良の欠陥を防止するために、溶接開先線角度αを30〜60deg.とし、かつ開先線に対する溶接ワイヤーの角度βを(20−α/3)〜20deg.とする(ただし、β>0)必要がある。
【0026】
また、本発明において、開先線に対する溶接ワイヤーの角度βの制御方法としては、例えば、図5に示すように、電極ノズル16内の溶接ワイヤー11の軸心に対して角度β(ただし、β>0)を付けた溶接チップ17を電極ノズル16の先端に取り付けることにより可能となる。
【0027】
但し、この方法では、溶接ワイヤー11の所定の突き出し長さLを保とうとすると、H形鋼のフランジ1cの開先壁面と電極ノズル16の間隔18が狭くなり、電極ノズル16がH形鋼のフランジ1cの開先壁面と接触し易くなるため、開先間隔gを大きく取る必要が生じる。開先間隔を大きくすると溶接能率が低下するとともに溶接入熱の増加による溶接部の靱性の低下が問題となる。したがって、この方法を用いる場合には、板厚等の溶接施工条件を踏まえ、溶接部の品質を劣化させないように突き出し長さL及び開先間隔gを調整することが望ましい。なお、図5中において、13は溶融金属で、1a及び1cはH形鋼のフランジである。
【0028】
また、本発明に類似するその他の溶接ワイヤーの角度βの制御方法の参考例として、図6に示すように、電極ノズル16及び溶接チップ17に供給する溶接ワイヤー11に予め曲げ癖付与ローラー19及びガイドローラー20により、曲げ癖を与える方法がある。曲げ癖付与ローラー19で溶接ワイヤー11に曲げ癖を与える方法は、通常のアーク溶接法においても用いられているが、従来の電極ノズル16内の溶接ワイヤー通過用の溝形状は円形であった。このような円形の溝形状を有する電極ノズル16をエレクトロスラグ溶接で用いた場合、エレクトロスラグ溶接では、電極ノズル16を500〜1000mm程度とアーク溶接に比べて長くする必要があるため、溶接ワイヤーが電極ノズル16を通過する際に捻れ、溶接チップ17通過後の溶接ワイヤーの曲げ癖の方向にばらつきが生じ易い。
【0029】
そこで、本参考例では、電極ノズル16の溶接ワイヤー通過用の溝22の断面21の形状を縦長の形状とし、溶接ワイヤーの曲げ癖の方向と電極ノズル16の溶接ワイヤー通過用溝22の縦長方向とを一致させるように溶接ワイヤー11を電極ノズル16に供給することで、溶接チップ17通過後の溶接ワイヤーの曲げ癖の方向がばらつくことを防止し、かつ電極ノズル16と開先壁面との接触がない状態で、開先線(ここでは、溶接チップ17軸心)に対する溶接ワイヤー11先端部の角度βを制御することができる。
【0030】
【実施例】
本溶接法を用いてH形鋼の柱溶接を行った実施例を、図7〜9を用いて以下に説明する。
【0031】
フランジ厚70mm、フランジ幅500mm、ウェブ厚30mm、ウェブ幅1000mmであり、鋼種がSM490鋼である極厚H形鋼のウェブ同士をボルト接合し、フランジ同士をエレクトロスラグ溶接法による突き合わせ接合を行った。なお、フランジの開先線角度は30deg.とした。
【0032】
以下に、その溶接方法について詳しく説明する。
【0033】
(溶接準備工程)
(1)H形鋼の端面をガス切断により切断する。ウェブはH形鋼長手方向に対して垂直断面方向に切断し、H形鋼のウェブ2a、2b、2cの両フランジ1a、1b、1c、1d、1e、1fのそれぞれの開先線角度が30deg.になるように開先切断した。この際、開先線角度の方向は、以下に示す溶接変形及び溶接部の脆性亀裂による破壊防止の観点から図7に示す開先3a、3b、3c、3dのようにした。
【0034】
溶接後の溶接変形に関しては、エレクトロスラグ溶接では、溶接終端部(開先上部)が収縮することによる回転変形が生じ易くなる。そこで、H形鋼柱を縦継ぎ溶接する際の回転変形が蓄積しないように同一フランジ内の開先線3aと3c、3bと3dの開先線方向が互いに交錯する方向に開先線角度を設けた。また、脆性亀裂の伝搬を防止し、大きな脆性破壊に至らないようにするためには、亀裂の発生起点となる溶接部を同一断面からずらすことが有効な手段となる。そこで、H形鋼柱の継ぎ手部の互いに対向するフランジの開先線3aと3b、開先線3cと3dを互いに交錯させることとした。
【0035】
(2)H形鋼のウェブ2a、2b、2cにボルト接合用の穴あけ加工を行う。
【0036】
(3)図8のフランジ接合部断面図に示すようにフランジ1a内側(ウェブ側)に裏当て金7を取り付ける。なお、裏当て金7の取り付けは、エレクトロスラグ溶接では、溶接時に開先下側の特に、裏当て金7との角部が溶け込み不良となる傾向があるため、予め工場で開先下側のH形鋼のフランジ1aと裏当て金7の角部を内面仮付け溶接23しておき、現場でのH形鋼建て込み時に開先上側のH形鋼のフランジ1cに外面仮付け溶接24した。
【0037】
なお、フランジ表側に水冷銅板8の代わりに鋼製の裏当て金7を設置する場合にも同様に内面仮付けとした。
【0038】
(4)H形鋼を建て込み、ウェブのボルト接合ならびに裏当て金と上側フランジの仮付けを行う。
【0039】
(溶接工程)
(5)図9のフランジ接合部の模式図に示すように、フランジ内側面(ウェブ側面)の開先部の溶接スタート部にタブ板25及びフランジ外側面の開先部の溶接エンド部(終端部)にタブ板26を取り付ける。
【0040】
(6)溶接装置を溶接エンド部側の所定の位置にセットする。溶接装置は、図9に示すように、溶接電源27、溶接ワイヤー送給機28、ワイヤー曲げ癖付与ローラー19、電極ノズル16、溶接チップ17、電極ノズル引き上げ機構29等で構成される。溶接電極(16+17)の角度及び開先幅方向の調整は手動で行い、溶接電極(16+17)の上昇ならびに板厚方向の揺動を自動制御で行った。なお、ワイヤー曲げ癖付与に換えて、図5に示すように、電極ノズルの軸心に対して、軸心が開先下側へ傾角をなすように溶接チップを設け、開先線角度αの開先線に対する溶接ワイヤーの開先下側へ向かう角度βを(20−α/3)〜20deg.に調節してワイヤーを送給しても同様に溶接が可能である。
【0041】
(7)フランジ表側の開先部に水冷銅板を設置する。
【0042】
(8)フラックスを投入し、溶接を開始する。溶接条件は、溶接電流450アンペア、溶接電圧52ボルト、スラグ浴深さ25mm程度とした。溶接ワイヤー傾斜角度は開先線の角度に対して15deg.鉛直方向側に傾斜させて実施した。
【0043】
(9)溶接終了時は溶接電圧をやや低めに制御してクレータ割れが生じないように注意した。
【0044】
(10)(4)から(9)の作業を繰り返し他方のフランジ溶接を行う。
【0045】
表1に、従来型の横向き多層盛り溶接法を用いた比較例と本発明の斜角開先のエレクトロスラグ溶接法を用いた発明例を示す。表中の溶接時間については、片側フランジの溶接時間を示すが、比較例の従来の多層盛り溶接法に比べて、発明例のエレククトロスラグ溶接法を用いた場合は、大幅な溶接時間短縮が可能となった。また、発明例で開先幅(開先間隔)の低減による溶接時間の短縮効果も確認できた。
【0046】
溶接品質に関しては、溶接部の放射線透過試験や超音波探傷試験を行った結果、比較例の従来法では融合不良が発生したのに対して、本発明例では無欠陥化を達成できた。
【0047】
溶接部のシャルピー試験によって求めた衝撃吸収エネルギー(0℃)については、比較例の多層盛り溶接に比べて、発明例のエレクトロスラグ溶接では吸収エネルギーが低下する傾向にあり、また開先間隔が広いほどさらに吸収エネルギーが低下する傾向にあるものの、いずれも建築構造物の基準である27J以上を満足した。
【0048】
表2は、斜角開先のエレクトロスラグ溶接法を用いて溶接した場合に、開先線角度α及び開先線に対する溶接ワイヤー角度βが、本発明の範囲内にある発明例とその範囲外にある比較例の溶接時間、溶接品質等の結果を示す。使用した試験片や溶接電流値、電圧値等の溶接条件は上記の実施例の場合と同様にした。また、開先間隔は20mmとした。
【0049】
比較例1は、開先線角度αが60deg.より大きいため溶接時間が極めて長くなり、比較例5は、開先線角度αが30deg.より小さいために溶接部に溶け込み不良欠陥か発生した。比較例4は、開先線に対する溶接ワイヤーの角度βが25deg.と高いために、溶接チップが開先壁面に接触し溶接を中断した。
【0050】
比較例2、3は、開先線に対する溶接ワイヤーの角度βが(20−α/3)deg.よりも低いために、溶接部に溶け込み不良欠陥か発生した。
【0051】
一方、開先線角度α及び開先線に対する溶接ワイヤーの角度βともに本発明範囲である発明例1〜4は、溶接部に溶け込み不良欠陥がなく良好な溶接部品質が得られるとともに、溶接作業性及び効率ともに良好であった。
【0052】
【表1】

Figure 0004038003
【0053】
【表2】
Figure 0004038003
【0054】
【発明の効果】
以上で説明したように本発明は、フランジ厚が30mm以上の極厚H形鋼の柱継ぎ溶接において、狭い開先でも良好な溶接作業性及び効率で、かつ溶接欠陥のない溶接部の品質に優れた1パスのエレクトロガスアーク溶接を従来の多層盛りアーク溶接に比べて極めて高能率な溶接を達成することが可能となる。
【0055】
したがって、本発明の実施により建築鉄骨等の現地溶接の工期短縮、コスト縮減に大きく寄与するものである。
【図面の簡単な説明】
【図1】 本発明の極厚H形鋼柱継ぎ溶接部の概略図である。
【図2】 エレクトロスラグ溶接法で斜角開先を溶接した場合の溶け込み不良時の溶接金属の断面形状を示す図である。
【図3】 エレクトロスラグ溶接法で斜角開先を溶接した場合の溶接部の溶接スラグ対流現象のイメージを示す図である。
【図4】 開先線角度αと開先線に対する溶接ワイヤーの角度βを変化させた時の溶接部の溶接欠陥の発生状況を示す図である。
【図5】 本発明の溶接ワイヤー角度を調整するための実施形態を示すものであり、開先部と溶接チップの配置を示す断面図である。
【図6】 本発明に類似の参考例の溶接ワイヤー角度を調整するための実施形態を示すものであり、溶接ワイヤー曲げ癖付与機構の概略を示す図である。
【図7】 本発明の実施例を説明するための極厚H形鋼柱の継ぎ手部の開先位置を示す図である。
【図8】 本発明の実施例を説明するための裏当て金の仮付け状況を示すフランジ断面図である。
【図9】 極厚H形鋼の柱継ぎ手の溶接状況を示す図である。
【図10】 従来の横向き多層盛り溶接による極厚H形鋼の柱継ぎ溶接方法を示す図である。
【図11】 従来のエレクトロスラグ溶接による立て鋼板の立て姿勢継ぎ手溶接方法を示す図である。
【符号の説明】
1a、1b、1c、1d、1e、1f H形鋼のフランジ
2a、2b、2c H形鋼のウェブ
3a、3b、3c、3d フランジの開先線
4 スプライスプレート
5 ボルト
6 スカラップ
7 裏当て金
8 水冷銅板
9 溶接金属
10 下側鋼板の融合不良
11 溶接ワイヤー
12 溶融スラグ
13 溶融金属
14 上側鋼板への対流
15 下側鋼板への対流
16 電極ノズル
17 溶接チップ
18 電極ノズルと開先壁面の間隔
19 溶接ワイヤー曲げ癖付与ローラー
20 ローラーガイド
21 電極ノズルの断面
22 溶接ワイヤー通過用溝
23 開先内面仮付け溶接
24 開先外面仮付け溶接
25 溶接スタート部のタブ板
26 溶接終端部のタブ板
27 溶接電源
28 溶接ワイヤー送給機
29 電極ノズル引き上げ機構
30 多層盛り溶接
31 積層部の融合不良欠陥
32 立て板
A 溶接部断面
L 溶接ワイヤーの突き出し長さ
a,a’ 溶接部断面観察位置
b,b’ 電極ノズルの断面観察位置
g 開先間隔
h,h’ 水平線
α 水平線に対する開先の角度
β 開先線角度と溶接ワイヤーの角度の差[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a butt welding method for H-section steel used in steel columns and the like of building structures. More specifically, the present invention relates to a welding method for an extremely thick H-section steel having a flange thickness of 30 mm or more.
[0002]
[Prior art]
In recent years, with the increase in size and height of building structures, the development of manufacturing technology for H-section steel used in steel columns and the like of steel structures has also progressed. Good H-section steel can be manufactured at a relatively low cost. On the other hand, when such an extremely thick H-section steel is applied to a steel structure as a column material, etc., and joining is performed at the construction site, joining technology of the extra-thick H-section steel is a problem from the viewpoint of joint properties and workability. It has become.
[0003]
Conventionally, as a method of using a relatively thin H-shaped steel as a column material and joining at a construction site, bolt joining has been mainstream from the viewpoint of workability and reliability. However, for the extremely thick H-section steel with a flange thickness of 30 mm or more, the cross-sectional defect of the joint portion due to the bolt hole becomes a problem in the bolt joining, and therefore, as shown in FIG. 2a, 2b) may be joined by bolt 5 and the flanges (1a, 1b, 1c, 1d) may be joined by welding, or the webs and flanges of the two materials to be joined may be joined by welding. Many.
[0004]
In the welding of conventional H-shaped steel column joints, welding is performed in a sideways orientation, and multi-layer welding 30 is performed with a relatively low current and a low welding amount in order to prevent the weld metal from dripping or flowing out. For example, for welding of an extremely thick steel material having a plate thickness of 80 mm, the number of welding passes is 70, and the welding efficiency is very low.
[0005]
In addition, in the conventional H-shaped steel column joint welding, due to the multi-layer welding, poor fusion defects 31 are likely to occur between the laminations of the respective welding passes, and the multi-pass can be made with a very large number of passes as in the case of extra-thick steel. In the case of prime welding, there is a very high possibility that a weld defect will occur, and it becomes difficult to maintain the quality of the weld.
[0006]
That is, when an extremely thick H-section steel having a flange thickness of 30 mm or more is welded by a conventional welding method, there has been a problem of a decrease in welding efficiency (welding time) and joint quality (incomplete fusion defect).
[0007]
As a method for improving the welding efficiency of the conventional multi-layer welding method in the horizontal orientation, for example, an automatic welding method for a thick plate such as a blast furnace iron skin disclosed in Japanese Patent Application Laid-Open No. 08-281428 is known. This welding method controls the torch inclination angle in the groove depth direction of the lave groove or the K-shaped groove portion and gradually moves in the welding progress direction while weaving, and finishes one layer at a time from the bottom surface of the groove. However, there is a limit to the improvement of the welding efficiency when the groove width is narrow due to the restriction of the tilt angle of the welding torch due to the groove width. In addition, this welding method requires an expensive device for controlling the weaving of a special torch, and is hardly practically used.
[0008]
On the other hand, as a welding method in an upright posture with excellent welding efficiency compared to the above-mentioned welding method in a horizontal posture, for example, diaphragm welding of a box column by an electroslag welding method disclosed in Japanese Patent Application Laid-Open No. 61-78577 is disclosed. Is generally known.
[0009]
In this electroslag welding method, for example, as shown in FIG. 11, a groove is covered with a backing metal 7 (or a water-cooled copper plate), and a steel plate which is a material to be joined while preventing the molten metal 13 and the molten slag 12 from flowing out. The butt portion (groove portion) of the vertical plate 32 is efficiently welded in a single pass with a high welding current of about 500 amperes in the vertical direction in a standing posture, and the convection 14 and melting to the upper steel plate Since the retained heat of the metal and the molten slag can be utilized, even when the groove portion is narrow, a good penetration depth can be secured, and high quality of the welded portion can be achieved. Further, by supplying the welding wire 11 to the electrode nozzle 16 and swinging the electrode nozzle 16 in the plate thickness direction or increasing the number of electrodes, it is possible to perform one-pass welding of a very thick steel plate having a thickness of about 100 mm. Become.
[0010]
However, the conventional electroslag welding method is intended for vertical joint welding in a standing posture of a vertical steel plate, and in horizontal joint welding in a horizontal posture such as welding of a H-shaped steel column joint. There are no application examples.
[0011]
[Problems to be solved by the invention]
The present invention provides an electroslag welding method for extra-thick H-shaped steel that can improve welding efficiency and reduce welding defects such as poor fusion of welds in column-joint welding of extra-thick H-shaped steel having a flange thickness of 30 mm or more. The purpose is to provide.
[0012]
[Means for Solving the Problems]
The present invention solves the above-mentioned problems, and the gist thereof is as follows.
[0013]
(1) In the welding method for column joints of extra-thick H-shaped steel, the bevel line angle α with respect to the flange width direction is 30 to 60 deg. A groove portion is provided in the flange portion so as to be, and either or both of a water-cooled copper plate and a steel metal brace are installed inside and outside the flange so as to surround the groove portion, thereby melting during welding. By providing the welding tip so that the metal core is prevented from flowing out and the axis is inclined to the groove lower side with respect to the axis of the electrode nozzle, the welding wire moves toward the groove lower side of the groove line. The angle β is set to (20−α / 3) to 20 deg. (However, β> 0) , and continuous welding by electroslag welding along the groove line.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0015]
The electroslag welding method is an excellent welding method from the viewpoint of improving efficiency and reducing defects during construction, but because it is intended for joint welding in the vertical direction in the standing posture of the vertical steel plate, The welding method cannot be applied as it is to the horizontal groove of the column joint.
[0016]
Therefore, the inventors have applied the application of electroslag welding of ultra-thick H-section steel by providing a groove at an oblique angle instead of providing a groove in welding of a column joint in the horizontal direction as in the prior art. We studied diligently.
[0017]
1 and 5 are schematic views of a method for column-welding a very thick H-section steel using the electroslag welding method of the present invention. In FIG. 1, two H-shaped steel webs (2a, 2b), which are to-be-joined materials, are bolted with bolts 5 using splice plates 4, but may be welded.
[0018]
In the present invention, as shown in FIG. 1, the groove lines (3a, 3b) of the flanges (1a, 1b, 1c, 1d) of the H-shaped steel, which is the material to be joined, with respect to the horizontal lines (h, h ′) A predetermined angle (groove line angle) α is provided, and a backing metal 7 is installed on the inner side of the flange (web side) and a water-cooled copper plate 8 is installed on the outer side of the flange so as to cover the groove so that molten metal does not flow out during welding. Then, as shown in FIG. 5, the groove is welded by the welding wire 11 while moving upward along a groove line provided with an oblique angle from below.
[0019]
According to the experiments by the inventors, it has been found that the groove line angle (bevel line bevel angle) α, the angle of the welding wire, and the relative angle of the welding wire to the groove line greatly affect the quality of the weld. It was.
[0020]
FIG. 4 shows the state of occurrence of weld defects in the weld when the groove line angle α and the welding wire angle β with respect to the groove line are changed for a very thick steel plate having a thickness of 70 mm.
[0021]
As shown in FIG. 4, when the angle β of the welding wire with respect to the groove line is 0, that is, when the welding wire axis is parallel to the groove line, the weld defect tends to increase as the groove line angle α decreases. The leading line angle α is 60 deg. Above, no weld defect occurs in the weld, but the groove line angle is 60 deg. 2, a poor weld penetration of the weld metal 9 on the lower side of the groove into the steel sheet, that is, a weld defect of the fusion failure 10 of the lower steel sheet occurred as shown in FIG.
[0022]
The mechanism by which the weld defect of poor penetration (unsatisfactory fusion) 10 occurs in the weld metal 9 on the lower side of the groove is considered as follows. In electroslag welding of H-shaped steel flanges 1a and 1c using a welding wire 11 as shown in FIG. 3, unlike normal arc welding, convection of the molten slag 12 above the molten metal 13 dominates the melting phenomenon. It is thought that. That is , when welding with a bevel at the groove, the convection 14 of the molten slag to the upper steel plate of the groove increases, and conversely, the convection 15 of the molten slag to the lower steel plate of the groove As a result, it is considered that the penetration into the steel plate under the groove became shallower. The groove upper convection 14 of molten slag on the steel sheet is increased, tends to convection 15 is reduced of the molten slag into the groove lower side of the steel plate Conversely, for lowering the groove lines of the groove line angle α It is thought that it increases as the angle β of the welding wire decreases.
[0023]
From the experiment of FIG. 4 and the like, the welding defect with poor penetration can be suppressed by increasing the angle β of the welding wire with respect to the groove line as the groove line angle α decreases , so that β ≧ 20−α / 3 is satisfied. It was found that the welding defect with poor penetration can be suppressed by controlling the angle β of the welding wire with respect to the groove line. However, the groove line angles α is 30deg. If it is less than this , it has been found that even if the angle β of the welding wire with respect to the groove line is controlled, a defect of poor penetration of the weld cannot be prevented. Further, if the angle β of the welding wire with respect to the groove line is too large, the possibility that the welding wire comes into contact with the groove wall surface increases, and the angle β becomes 20 deg. Exceeding the angle makes it impossible to adjust the angle.
[0024]
Further, from FIG. 4, as the groove line angle α is larger, welding defects are less likely to occur. However, as the groove line angle α is increased, the weld line length is increased and the welding efficiency is lowered. Therefore, practically, the upper limit of the groove line angle α is 60 deg. It is desirable to set the degree.
[0025]
For the above reasons, in the present invention, the welding groove line angle α is set to 30 to 60 deg. In order to prevent defects of poor penetration of the welded portion while ensuring welding workability and welding efficiency. And the angle β of the welding wire with respect to the groove line is (20−α / 3) to 20 deg. (Where β> 0) .
[0026]
In the present invention, as a method for controlling the angle β of the welding wire with respect to the groove line, for example, as shown in FIG. 5, the angle β (where β is the angle with respect to the axis of the welding wire 11 in the electrode nozzle 16. It becomes possible by attaching the welding tip 17 marked with > 0) to the tip of the electrode nozzle 16.
[0027]
However, in this method, when a predetermined protruding length L of the welding wire 11 to the coercive shaking, spacing 18 of the groove wall surface and the electrode nozzle 16 of flange 1c of H-shaped steel is narrowed, the electrode nozzle 16 is H-shaped steel Since it becomes easy to contact with the groove wall surface of the flange 1c, it is necessary to increase the groove interval g. If the groove interval is increased, the welding efficiency is lowered and the toughness of the welded portion is lowered due to an increase in welding heat input. Therefore, when using this method, light of welding conditions of the plate thickness and the like, the quality of the weld may be desirable to adjust the length L and the root gap g protrude so as not to deterioration. In FIG. 5, 13 is a molten metal, and 1a and 1c are H-shaped steel flanges.
[0028]
In addition, as a reference example of another method for controlling the angle β of the welding wire similar to the present invention, as shown in FIG. 6, the bending wire applying roller 19 and the welding wire 11 supplied to the electrode nozzle 16 and the welding tip 17 are provided in advance. There is a method of giving bending wrinkles with the guide roller 20. The method of giving a bending flaw to the welding wire 11 with the bending flaw applying roller 19 is also used in a normal arc welding method, but the groove shape for passing the welding wire in the conventional electrode nozzle 16 is circular. When using the electrode nozzle 16 having such a circular groove shape electroslag welding, since the electro-slag welding, it is necessary to longer than the electrode nozzle 16 to 500~1000mm about the arc welding, welding wire Is twisted when passing through the electrode nozzle 16, and the direction of the bending flaw of the welding wire after passing through the welding tip 17 tends to vary.
[0029]
Therefore, in this reference example, the shape of the cross-section 21 of the groove 22 for passing the welding wire of the electrode nozzle 16 is a vertically long shape, and the direction of the bending line of the welding wire and the lengthwise direction of the groove 22 for passing the welding wire of the electrode nozzle 16 are set. By supplying the welding wire 11 to the electrode nozzle 16 so as to coincide with each other, it is possible to prevent the bending wire direction of the welding wire from passing through the welding tip 17 from varying and to contact the electrode nozzle 16 with the groove wall surface. in the absence, groove lines (here, the welding tip 17 axis) can be controlled angle β of the welding wire 11 tip against the.
[0030]
【Example】
The Example which performed the column welding of the H-section steel using this welding method is demonstrated below using FIGS.
[0031]
A web of extremely thick H-shaped steels having a flange thickness of 70 mm, a flange width of 500 mm, a web thickness of 30 mm, and a web width of 1000 mm and a steel type of SM490 steel were bolted together, and the flanges were butt joined by electroslag welding. . The groove line angle of the flange is 30 deg. It was.
[0032]
The welding method will be described in detail below.
[0033]
(Welding preparation process)
(1) The end face of the H-shaped steel is cut by gas cutting. The web is cut in a direction perpendicular to the longitudinal direction of the H-shaped steel, and the groove line angles of the flanges 1a, 1b, 1c, 1d, 1e, and 1f of the H-shaped steel webs 2a , 2b, and 2c are 30 degrees. . The groove was cut so that At this time, the direction of the groove line angle was set to be the grooves 3a, 3b, 3c, and 3d shown in FIG. 7 from the viewpoint of the following welding deformation and prevention of breakage due to brittle cracks in the welded portion.
[0034]
Regarding the welding deformation after welding, in electroslag welding, rotational deformation due to shrinkage of the welding end portion (groove upper portion) is likely to occur. Therefore, the groove line angle in the direction of groove lines 3a and 3c, the groove line direction 3b and 3d intermingled with one another within the same flange as rotational deformation does not accumulate when jointed welded H-shaped steel column Provided. Further, in order to prevent the propagation of the brittle crack and prevent the brittle fracture from occurring, it is an effective means to shift the welded portion from which the crack is generated from the same cross section. Accordingly, the groove lines 3a and 3b and the groove lines 3c and 3d of the flanges facing each other in the joint portion of the H-shaped steel column are made to intersect each other.
[0035]
(2) Drilling holes for bolt joining are performed on the H-shaped steel webs 2a, 2b, and 2c.
[0036]
(3) A backing metal 7 is attached to the inside (web side) of the flange 1a as shown in the flange joint cross-sectional view of FIG. In addition, in the electroslag welding, the attachment of the backing metal 7 has a tendency that the corner portion with the backing metal 7 is likely to be poorly melted especially at the time of welding. The corners of the H-shaped steel flange 1a and the backing metal 7 are preliminarily tacked on the inner surface 23, and when the H-shaped steel is built in the field, the outer-surface tack welding 24 is performed on the H-shaped steel flange 1c on the upper side of the groove. .
[0037]
In addition, also when installing the steel backing metal 7 instead of the water-cooled copper plate 8 on the flange front side, the inner surface was also temporarily attached.
[0038]
(4) H-shaped steel is built in, and web bolting and backing metal and upper flange are temporarily attached.
[0039]
(Welding process)
(5) As shown in the schematic diagram of the flange joint in FIG. 9, the welding end portion (terminal) of the tab plate 25 and the groove portion on the outer surface of the flange is connected to the weld start portion of the groove portion on the flange inner surface (web side surface). The tab plate 26 is attached to the part).
[0040]
(6) The welding device is set at a predetermined position on the welding end portion side. As shown in FIG. 9, the welding apparatus includes a welding power source 27, a welding wire feeder 28, a wire bending rod applying roller 19, an electrode nozzle 16, a welding tip 17, an electrode nozzle pulling mechanism 29, and the like. Adjustment of the angle and groove width direction of the welding electrode (16 + 17) was performed manually, and the welding electrode (16 + 17) was raised and swinged in the plate thickness direction by automatic control. In place of applying the wire bending rod, as shown in FIG. 5, a welding tip is provided so that the axis is inclined to the groove lower side with respect to the axis of the electrode nozzle, and the groove line angle α is set. The angle β toward the groove lower side of the welding wire with respect to the groove line is set to (20−α / 3) to 20 deg. Even if the wire is fed after adjusting to, welding is possible.
[0041]
(7) Install a water-cooled copper plate on the groove on the flange front side.
[0042]
(8) Flux is charged and welding is started. The welding conditions were a welding current of 450 amps, a welding voltage of 52 volts, and a slag bath depth of about 25 mm. The welding wire inclination angle is 15 deg. With respect to the angle of the groove line. It was carried out by inclining in the vertical direction.
[0043]
(9) At the end of welding, the welding voltage was controlled slightly lower so as not to cause crater cracks.
[0044]
(10) Repeat the steps (4) to (9) to perform the other flange welding.
[0045]
Table 1 shows the invention examples using electroslag welding method of the comparative example and bevel groove of the present invention using the conventional horizontal multi-layer welding method. Regarding the welding time in the table, the welding time of one side flange is shown, but when the electros lag welding method of the invention example is used as compared with the conventional multi-layer welding method of the comparative example, the welding time is greatly reduced. It has become possible. Moreover, the shortening effect of the welding time by reduction of a groove width (groove space | interval) was also confirmed by the invention example.
[0046]
Concerning the welding quality, as a result of conducting a radiation transmission test and an ultrasonic flaw detection test of the welded portion, poor fusion occurred in the conventional method of the comparative example, whereas no defect was achieved in the example of the present invention.
[0047]
As for the impact absorption energy (0 ° C.) obtained by the Charpy test of the welded portion, the absorbed energy tends to decrease in the electroslag welding of the invention example and the groove interval is wide as compared with the multi-layer welding of the comparative example. Although the absorbed energy tended to further decrease, all satisfied the building structure standards of 27J or higher.
[0048]
Table 2 shows examples of the invention in which the groove line angle α and the welding wire angle β with respect to the groove line are within the scope of the present invention when welding is performed using the bevel groove electroslag welding method, and out of the range. The results of welding time, welding quality, etc. of the comparative example shown in FIG. Welding conditions such as the test piece used, the welding current value, and the voltage value were the same as those in the above examples. The groove interval was 20 mm.
[0049]
In Comparative Example 1, the groove line angle α is 60 deg. Since it is larger, the welding time becomes extremely long. In Comparative Example 5, the groove line angle α is 30 deg. Since it was smaller, it was found that the weld had poor defects. In Comparative Example 4, the angle β of the welding wire with respect to the groove line is 25 deg. Therefore, the welding tip contacted the groove wall surface and the welding was interrupted.
[0050]
In Comparative Examples 2 and 3, the angle β of the welding wire with respect to the groove line is (20−α / 3) deg. Therefore, it was found that the weld had poor penetration defects.
[0051]
On the other hand, invention examples 1 to 4 which are both the groove line angle α and the angle β of the welding wire with respect to the groove line are within the scope of the present invention. Both efficiency and efficiency were good.
[0052]
[Table 1]
Figure 0004038003
[0053]
[Table 2]
Figure 0004038003
[0054]
【The invention's effect】
As described above, the present invention provides excellent welding workability and efficiency even in a narrow groove, and the quality of a welded portion having no welding defect in column joint welding of an extremely thick H-shaped steel having a flange thickness of 30 mm or more. It is possible to achieve an extremely high-efficiency welding by an excellent one-pass electrogas arc welding as compared with the conventional multi-layered arc welding.
[0055]
Therefore, the implementation of the present invention greatly contributes to shortening the construction period and cost reduction of field welding of construction steel frames and the like.
[Brief description of the drawings]
FIG. 1 is a schematic view of a very thick H-shaped steel column joint weld of the present invention.
FIG. 2 is a view showing a cross-sectional shape of a weld metal at the time of poor penetration when an oblique groove is welded by an electroslag welding method.
FIG. 3 is a diagram showing an image of a weld slag convection phenomenon in a welded portion when an oblique groove is welded by an electroslag welding method.
FIG. 4 is a diagram showing a state of occurrence of a weld defect in a weld when a groove line angle α and a welding wire angle β with respect to the groove line are changed.
FIG. 5 shows an embodiment for adjusting the welding wire angle of the present invention, and is a cross-sectional view showing the arrangement of a groove portion and a welding tip.
FIG. 6 is a diagram showing an embodiment for adjusting the welding wire angle of a reference example similar to the present invention , and is a diagram showing an outline of a welding wire bending rod applying mechanism.
FIG. 7 is a view showing a groove position of a joint portion of an extremely thick H-shaped steel column for explaining an example of the present invention.
FIG. 8 is a flange cross-sectional view showing a temporary attachment state of a backing metal for explaining an example of the present invention.
FIG. 9 is a view showing a welding situation of a column joint of an extremely thick H-section steel.
FIG. 10 is a view showing a conventional method of column welding of extra-thick H-section steel by horizontal multi-layer welding.
FIG. 11 is a view showing a conventional method for welding a vertical posture joint of a vertical steel sheet by electroslag welding.
[Explanation of symbols]
1a, 1b, 1c, 1d, 1e, 1f H-shaped steel flange 2a, 2b, 2c H-shaped steel web 3a, 3b, 3c, 3d Flange groove line 4 Splice plate 5 Bolt 6 Scallop 7 Backing metal 8 Water-cooled copper plate 9 Weld metal 10 Poor fusion of lower steel plate 11 Weld wire 12 Molten slag 13 Molten metal 14 Convection to upper steel plate 15 Convection to lower steel plate 16 Electrode nozzle 17 Welding tip 18 Spacing 19 between electrode nozzle and groove wall surface 19 Welding wire bending wrinkle imparting roller 20 Roller guide 21 Electrode nozzle cross section 22 Welding wire passage groove 23 Groove inner surface tack welding 24 Groove outer surface tack welding 25 Tab plate 26 at welding start portion Tab plate 27 at welding end portion Welding Power supply 28 Welding wire feeder 29 Electrode nozzle pulling mechanism 30 Multilayer weld 31 Lamination failure 32 Plate A Welding section L Length of welding wire a, a ′ Welding section observation position b, b ′ Electrode nozzle section observation position g Groove interval h, h ′ Horizontal line α Angle of groove relative to horizontal line β Groove Difference between wire angle and welding wire angle

Claims (1)

極厚H形鋼の柱継ぎ手の溶接方法において、フランジ幅方向に対する開先線の斜角αが30〜60deg.となるようにフランジ部に開先部を設け、該開先部を囲うようにフランジ内側及び外側に水冷銅板及び鋼製の当て金のいずれか一方または両方を設置することにより、溶接時の溶融金属の流出を防ぎ、かつ電極ノズルの軸心に対して、軸心が開先下側へ傾角をなすように溶接チップを設けることにより、前記開先線に対する溶接ワイヤーの開先下側へ向かう角度βを(20−α/3)〜20deg.に調節し(ただし、β>0)、開先線に沿ってエレクトロスラグ溶接法により連続的に上進溶接することを特徴とする極厚H形鋼の柱継ぎ溶接方法。In the welding method for extra thick H-section steel column joints, the bevel line angle α with respect to the flange width direction is 30 to 60 deg. A groove portion is provided in the flange portion so as to be, and either or both of a water-cooled copper plate and a steel metal brace are installed inside and outside the flange so as to surround the groove portion, thereby melting during welding. By providing the welding tip so that the metal core is prevented from flowing out and the axis is inclined to the groove lower side with respect to the axis of the electrode nozzle, the welding wire moves toward the groove lower side of the groove line. The angle β is set to (20−α / 3) to 20 deg. (However, β> 0) , and continuous welding by electroslag welding along the groove line.
JP2000191512A 2000-06-26 2000-06-26 Column-welding method for extra-thick H-section steel Expired - Fee Related JP4038003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000191512A JP4038003B2 (en) 2000-06-26 2000-06-26 Column-welding method for extra-thick H-section steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000191512A JP4038003B2 (en) 2000-06-26 2000-06-26 Column-welding method for extra-thick H-section steel

Publications (2)

Publication Number Publication Date
JP2002001529A JP2002001529A (en) 2002-01-08
JP4038003B2 true JP4038003B2 (en) 2008-01-23

Family

ID=18690802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000191512A Expired - Fee Related JP4038003B2 (en) 2000-06-26 2000-06-26 Column-welding method for extra-thick H-section steel

Country Status (1)

Country Link
JP (1) JP4038003B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4988780B2 (en) * 2009-02-05 2012-08-01 川田工業株式会社 Electroslag welding apparatus and welding method
DE102011075276B4 (en) * 2011-05-04 2015-10-08 Ident Technology Ag Capacitive sensor device and method for operating an input device
CN118305522B (en) * 2024-06-07 2024-08-20 湖南华韧钢结构工程有限公司 Integrated steel structure correcting and welding device

Also Published As

Publication number Publication date
JP2002001529A (en) 2002-01-08

Similar Documents

Publication Publication Date Title
CN107598340B (en) Method for welding T-shaped joint of large thick plate
KR101888780B1 (en) Vertical narrow gap gas shielded arc welding method
JP2004306084A (en) Composite welding method of laser welding and arc welding
RU2486996C2 (en) Method of hidden arc welding of steel material using multiple electrodes
DK2954969T3 (en) MULTI-ELECTRODE ELECTROGAS ELECTROGAS WELDING PROCEDURE FOR THICK STEEL PLATES AND MULTI-ELECTRODE ELECTROGAS PERFERENCE ARC WELDING PROCEDURE FOR STEEL
JP4952892B2 (en) Welding method for extra heavy steel plates
EP2695694A1 (en) Method of welding of elements for the power industry, particulary of sealed wall panels of power boilers using MIG/MAG and laser welding
WO2019182081A1 (en) Gas-shielded arc welding method for steel sheets
JP5088920B2 (en) Manufacturing method for building components
JP4415863B2 (en) Multilayer prime welding method and multilayer prime welded structure
JP3701862B2 (en) High strength joint construction method for steel structures
KR20190039755A (en) Vertical narrowing improvement Gas shield arc welding method
JP4038003B2 (en) Column-welding method for extra-thick H-section steel
CN108367376B (en) Vertical narrow groove gas shielded arc welding method
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
US8110772B1 (en) System and method for multi-pass computer controlled narrow-gap electroslag welding applications
JP2011189363A (en) Horizontal gas shield arc welding method
JP4788094B2 (en) Automatic welding equipment
JP2001030091A (en) Structure of t-shaped joint with narrow groove, its welding method, and welded structure
KR101091425B1 (en) Hybrid welding method for fillet joint
CN111683780B (en) Single-side submerged arc welding method and single-side submerged arc welding device
Vollertsen et al. Defects and process tolerances in welding of thick plates
JP3810646B2 (en) Upward welding method
KR20210061206A (en) Electro gas welding apparatus and heat input control method thereof
KR102594726B1 (en) Link Device for Automatic Welding Machine with Curved Surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees