JP2011189363A - Horizontal gas shield arc welding method - Google Patents

Horizontal gas shield arc welding method Download PDF

Info

Publication number
JP2011189363A
JP2011189363A JP2010056913A JP2010056913A JP2011189363A JP 2011189363 A JP2011189363 A JP 2011189363A JP 2010056913 A JP2010056913 A JP 2010056913A JP 2010056913 A JP2010056913 A JP 2010056913A JP 2011189363 A JP2011189363 A JP 2011189363A
Authority
JP
Japan
Prior art keywords
welding
groove
arc welding
welding method
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010056913A
Other languages
Japanese (ja)
Inventor
Yoshiaki Murata
義明 村田
Keiji Ando
慶治 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel Corp
Priority to JP2010056913A priority Critical patent/JP2011189363A/en
Publication of JP2011189363A publication Critical patent/JP2011189363A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a horizontal gas shield arc welding method capable of carrying out butt welding of box pillars used for construction of a building or the like and horizontal multi-layer welding of an end of a column and a diaphragm efficiently in a good working environment and capable of obtaining a high quality welding part. <P>SOLUTION: The gas shield arc welding method is directed for carrying out multi-layer welding of a beveling part of a square pillar-shaped construction in a horizontal posture. The beveling part of the square pillar-shaped construction is a bevel groove with a backing metal, has a root gap of 2-5 mm, and is made to be a chevron type or a V type bevel groove with a bevel angle of 25-35&deg;. A steel tab with a plate thickness of 2-6 mm is mounted in a bevel groove of each corner part. A copper cooling member is arranged so as to contact with the back surface side of the beveling part to which the steel tab is welded and then the gas shield arc welding is carried out in a horizontal posture. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、ビルの建築等に使用されるボックス柱同士の突合せやコラムの端部にダイアフラムを横向姿勢で高能率に溶接する横向ガスシールドアーク溶接方法に関する。   The present invention relates to a lateral gas shielded arc welding method in which diaphragms are welded in a lateral posture with high efficiency in abutting between box columns used for building construction or the like and in an end portion of a column.

ボックス柱同士の突合せ溶接やコラムを倒してダイアフラムを溶接できない場合は、ソリッドワイヤを用いて横向姿勢で溶接施工が行われている。通常、その溶接継手は裏当金付きレ形開先とし、開先角度が35°、ルート間隔を7mm前後に設定されている。本横向溶接においては、過度に開先断面積を小さくしたり、あるいは1パス当りの溶着量を増やすと融合不良やスラグ巻込み欠陥を発生する確立が高くなることから、上記の通りやや大きめの開先断面積にて、小入熱条件によるマルチパスによる施工が行われているのが現状である。本来、横向溶接は下向や立向の姿勢と比べて溶接能率が低く、かつ施工面でも難易度が高い溶接施工といえる。   If the diaphragm cannot be welded by butt welding the box columns or tilting the column, welding is performed in a horizontal orientation using solid wires. Usually, the welded joint is a grooved groove with a backing metal, the groove angle is set to 35 °, and the root interval is set to around 7 mm. In this horizontal welding, if the groove cross-sectional area is excessively reduced, or if the amount of welding per pass is increased, the probability of occurrence of poor fusion and slag entrainment defects increases. The current situation is that multi-pass construction under small heat input conditions is performed in the groove cross-sectional area. Originally, transverse welding has a lower welding efficiency than the downward and vertical postures, and it can be said that the welding is highly difficult in terms of construction.

図1にボックス柱同士を突合せた斜視図、図2は図1の開先断面から下方を見た状態を示す断面図である。ボックス柱の上部材1と下部材2の外側に開先部a、b、c、dを設け、該開先部の裏側に鋼製の裏当金3を取付け、エレクションピース等によりルート間隙を設けて上部材1を下部材2に固定する。溶接は、ソリッドワイヤを用いて横向姿勢のガスシールドアーク溶接で開先部aまたは開先部aと開先部bを同時に行う。開先部aおよび開先部bを多層盛溶接して最終パスまで溶接が終わると、溶接欠陥の発生を防止することを目的として、開先部aおよび開先部bの多層盛溶接された溶接部両端面をガウジングによって所定の形状に削る。次いで、開先部cおよび開先部dを多層盛溶接を行って溶接が完了する。   FIG. 1 is a perspective view in which box columns are butted against each other, and FIG. Grooves a, b, c and d are provided outside the upper member 1 and the lower member 2 of the box column, and a steel backing metal 3 is attached to the back side of the groove, and a root gap is formed by an erection piece or the like. The upper member 1 is provided and fixed to the lower member 2. Welding is performed simultaneously with groove part a or groove part a and groove part b by gas shield arc welding in a horizontal posture using a solid wire. When the groove portion a and the groove portion b are multilayered and welded up to the final pass, the welding of the groove portion a and the groove portion b was multilayered for the purpose of preventing the occurrence of welding defects. Both ends of the welded part are cut into a predetermined shape by gouging. Next, multilayer welding is performed on the groove portion c and the groove portion d to complete the welding.

しかし、前記従来の溶接施工方法で溶接する場合、溶接が終了した開先部aおよび開先部bの多層盛溶接された溶接部両端面をガウジングによって所定の形状に削る必要があり、溶接能率が悪く、さらにガウジング作業は騒音や粉末の飛散が多く作業環境が非常に悪いものであった。   However, when welding is performed by the conventional welding method, it is necessary to cut both end faces of the welded portion of the groove portion a and the groove portion b, which have been welded, into a predetermined shape by gouging. In addition, the gouging work has a very bad working environment because of many noises and powder scattering.

上記の課題を解決する技術として、例えば特開平6−297144号公報(特許文献1)に、開先部の始終端にセラミックス製のタブを取付け、両方のタブ間で横向姿勢による多層盛ガスシールドアーク溶接を行いタブによる溶接金属の堰止めを行うという技術の記載がある。   As a technique for solving the above-mentioned problem, for example, in Japanese Patent Application Laid-Open No. 6-297144 (Patent Document 1), a ceramic tab is attached to the start and end of a groove portion, and a multi-layered gas shield with a lateral orientation between both tabs. There is a description of a technique of performing arc welding and damming the weld metal with a tab.

特許文献1に記載の技術で多層盛溶接を行った場合、開先部の多層盛溶接された溶接部両端面をガウジングにより削る必要はないが、溶接部端面の凹凸部にセラミックが残存するためにグラインダーなどで仕上げをする必要がある。また、最終層においてはビードが垂れやすく、ビードの垂れを防止するために低電流で高速度の溶接速度の施工条件で行われるが、スラグ巻き込み欠陥などの溶接欠陥が生じやすいという問題もある。さらに、自動溶接を行う場合には、セラミック上にはアークを発生させることができないために、バックステップ法等の複雑な動作をさせる必要がある。   When multi-layer welding is performed by the technique described in Patent Document 1, it is not necessary to scrape both end surfaces of the welded portion of the groove portion that are multi-layer welded by gouging, but ceramic remains on the uneven portion of the end surface of the welded portion. It is necessary to finish with a grinder. Further, in the final layer, the beads are likely to sag, and in order to prevent the sag of the beads, the welding is performed at a low current and a high welding speed, but there is a problem that welding defects such as slag entrainment defects are likely to occur. Furthermore, when performing automatic welding, since an arc cannot be generated on the ceramic, it is necessary to perform a complicated operation such as a backstep method.

一方、横向多層盛ガスシールドアーク溶接方法で、ビードの垂れのないきれいな表ビードを得る技術として、例えば特開平8−267235号公報(特許文献2)には、フラックス入りワイヤを適用した技術の開示、特開平6−640号公報(特許文献3)には、高速回転アークを適用した技術の開示および特開平10−314985号公報(特許文献4)には、表当材を配置した技術の開示がある。   On the other hand, as a technique for obtaining a clean front bead with no bead sag by the horizontal multi-layer gas shielded arc welding method, for example, Japanese Patent Laid-Open No. 8-267235 (Patent Document 2) discloses a technique in which a flux-cored wire is applied. JP-A-6-640 (Patent Document 3) discloses a technique to which a high-speed rotating arc is applied, and JP-A-10-314985 (Patent Document 4) discloses a technique in which a front cover material is arranged. There is.

しかし、前記特許文献2に記載の技術では、フラックス入りワイヤを用いて横向姿勢で多層盛溶接すると溶け込みが浅くなりがちであり、かつスラグ巻き込み欠陥が生じやすいという問題がある。また、特許文献3に記載の技術は、特別な溶接装置が必要になりコスト高となる。さらに、特許文献4に記載の技術では、最終層初層のビード垂れは防止できるが次層以降の溶接ビードが垂れやすいという問題がある。   However, the technique described in Patent Document 2 has a problem that when multi-layer welding is performed in a lateral orientation using a flux-cored wire, the penetration tends to become shallow and slag entrainment defects are likely to occur. In addition, the technique described in Patent Document 3 requires a special welding device and is expensive. Furthermore, the technique described in Patent Document 4 can prevent the bead sagging in the first layer of the final layer, but there is a problem that the weld bead in the subsequent layers tends to sag.

特開平6−297144号公報JP-A-6-297144 特開平8−267235号公報JP-A-8-267235 特開平6−640号公報JP-A-6-640 特開平10−314985号公報JP-A-10-314985

本発明は、ビルの建築等に使用されるボックス柱同士の突合せやコラムの端部とダイアフラムの横向多層盛溶接を、良好な作業環境下で高能率に、かつ高品質な溶接部を得ることができる横向ガスシールドアーク溶接方法を提供することを目的とする。   The present invention obtains a high-quality and high-quality welded part in a favorable working environment by butt-matching box columns used in building construction, etc., and column-by-side multi-layer welding of a diaphragm and a diaphragm. An object of the present invention is to provide a lateral gas shielded arc welding method capable of performing the following.

本発明の要旨は、四角柱状構造物の開先部を横向姿勢で多層盛溶接するガスシールドアーク溶接方法において、四角柱状構造物の開先部は裏当金付き開先で、ルート間隔が2〜5mm、開先角度が25〜35°のレ型またはV型開先とし、各角部開先内に板厚2〜6mmの鋼製タブを取付け、該鋼製タブの溶接する開先部の裏面側に接するように銅製の冷却部材を設けて溶接することを特徴とする。   The gist of the present invention is a gas shielded arc welding method in which a groove portion of a quadrangular columnar structure is multi-layer welded in a lateral orientation, wherein the groove portion of the quadrangular columnar structure is a groove with a backing metal, and a route interval is 2 -5 mm, groove angle of 25-35 ° lave or V-shaped groove, and a steel tab with a plate thickness of 2-6 mm is mounted in each corner groove, and the groove portion where the steel tab is welded A copper cooling member is provided so as to be in contact with the back surface side of the steel plate and welded.

また、C:0.02〜0.08質量%、Si:1.0〜1.7質量%、Mn:1.8〜2.8質量%で、Si+Mn:3.2〜4.1質量%を含有し、その他はFeおよび不可避不純物であるソリッドワイヤを用いて溶接することも特徴とする横向ガスシールドアーク溶接方法にある。   C: 0.02-0.08 mass%, Si: 1.0-1.7 mass%, Mn: 1.8-2.8 mass%, Si + Mn: 3.2-4.1 mass% The other is a lateral gas shielded arc welding method characterized by welding using solid wire which is Fe and inevitable impurities.

本発明の横向ガスシールドアーク溶接方法によれば、四角柱状構造物の各角部開先内に鋼製タブを取付けて多層盛溶接したので、溶接部端面の加工をする必要がなく、作業環境が良好になるとともに溶接能率が向上する。   According to the horizontal gas shielded arc welding method of the present invention, since steel tabs are attached in each corner groove of a quadrangular columnar structure and multilayer build-up welding is performed, there is no need to process the end face of the welded portion, and the working environment Improves welding efficiency.

また、ルート間隔および開先角度を狭くしたので、溶接時間が短縮でき、さらに溶接能率が向上する。   Further, since the route interval and the groove angle are narrowed, the welding time can be shortened and the welding efficiency is further improved.

さらに、用いるソリッドワイヤの成分を限定したので、溶接欠陥や溶接ビードが垂れることがなく、高品質な溶接部を得ることができる。   Furthermore, since the components of the solid wire to be used are limited, welding defects and weld beads are not drooped, and a high-quality weld can be obtained.

ボックス柱同士を突合せた斜視図である。It is the perspective view which matched the box pillars. 図1の開先断面から下方を見た状態を示す断面図である。It is sectional drawing which shows the state which looked downward from the groove | channel cross section of FIG. 本発明の横向ガスシールドアーク溶接方法の実施態様を図1の開先断面から下方を見た状態を示す断面図である。It is sectional drawing which shows the state which looked at the embodiment of the horizontal gas shield arc welding method of this invention from the groove | channel cross section of FIG. ボックス柱同士を突合せた開先形状を示す断面図である。It is sectional drawing which shows the groove shape which faced box columns. コラムの端部にダイアフラムを当接した開先形状を示す断面図である。It is sectional drawing which shows the groove shape which contact | abutted the diaphragm to the edge part of the column. 本発明の実施例における多層盛溶接の積層例を示す。The lamination example of the multilayer build-up welding in the Example of this invention is shown.

本発明者らは、前記課題を解決するために、ビルの建築等に使用されるボックス柱同士の突合せやコラムの端部とダイアフラムの溶接を横向姿勢で多層盛のガスシールドアーク溶接によって、作業環境を害することなく高能率に、かつ溶接欠陥のない溶接部が得られる溶接施工方法について詳細に検討した。   In order to solve the above-mentioned problems, the present inventors have worked by multi-layer gas shield arc welding in a lateral orientation to butt the box columns used for building construction or the like and to weld the column end and the diaphragm. We investigated in detail the welding method that can obtain a welded part with high efficiency and no weld defects without harming the environment.

その結果、各開先の角部開先内に銅製の冷却部材を当接した溶接後取除く必要のない鋼製タブを取付け、開先断面積を少なくするとともに用いるソリッドワイヤの成分を限定することによって、作業環境を害することなく、高能率な溶接欠陥のない多層盛の横向ガスシールドアーク溶接方法を見出した。   As a result, a steel tab that does not need to be removed after welding with a copper cooling member in contact with the corner groove of each groove is attached, reducing the groove cross-sectional area and limiting the components of the solid wire used Thus, the present inventors have found a multi-layered horizontal gas shielded arc welding method that does not harm the work environment and has no welding defects.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

図1はボックス柱同士を突合せた斜視図、図3は本発明の横向ガスシールドアーク溶接方法の実施態様を図1の開先断面から下方を見た状態を示す断面図である。   FIG. 1 is a perspective view in which box columns are butted together, and FIG. 3 is a cross-sectional view showing a state in which the embodiment of the horizontal gas shield arc welding method of the present invention is viewed from the groove cross section of FIG.

本発明においては、ボックス柱の上部材1と下部材2の外側にレ型またはV型の開先部a、b、c、dを設け、該開先部の裏側に鋼製の裏当金3を取付け、エレクションピース等によりルート間隙を設けて上部材1を下部材2に固定する。次に、開先部a、b、c、dの各角部開先内に板厚tおよび開先形状に合わせた鋼製タブ4a、4b、4c、4dを取付け、鋼製タブ4a、4b、4c、4dの溶接する開先部の裏面側に接するように銅製の冷却部材5a、5b、5c、5dを設ける。溶接は、ソリッドワイヤを用いて横向姿勢のガスシールドアーク溶接で開先部aまたは開先部aと開先部bを同時に行う。同時に溶接を行へば、能率面のほかに片側方向のみの溶接収縮による未溶接開先部のルート間隔変形を防止することができる。開先部aおよび開先部bを多層盛溶接して最終パスまで溶接が終わると、銅製の冷却部材5a、5b、5c、5dを除いて開先部cおよび開先部dを多層盛溶接を行って溶接が完了する。   In the present invention, a lave or V-shaped groove portion a, b, c, d is provided outside the upper member 1 and the lower member 2 of the box column, and a steel backing metal is provided on the back side of the groove portion. 3 is attached, and a root gap is provided by an erection piece or the like to fix the upper member 1 to the lower member 2. Next, steel tabs 4a, 4b, 4c, and 4d that are matched to the plate thickness t and the groove shape are mounted in the corner grooves of the groove portions a, b, c, and d, and the steel tabs 4a and 4b are attached. Copper cooling members 5a, 5b, 5c, and 5d are provided so as to be in contact with the back surface side of the groove portions 4c and 4d to be welded. Welding is performed simultaneously with groove part a or groove part a and groove part b by gas shield arc welding in a horizontal posture using a solid wire. If welding is performed at the same time, in addition to the efficiency surface, it is possible to prevent the root interval deformation of the unwelded groove due to welding shrinkage only in one direction. When the groove part a and the groove part b are multilayered and welded to the final pass, the groove part c and the groove part d are multilayered and welded except for the copper cooling members 5a, 5b, 5c and 5d. To complete the welding.

開先部は図4に示すように鋼製の裏当金3付き開先で、ルート間隔6が2〜5mm、開先角度は上部材1側開先角度θ1と下部材側開先角度θ2の合計が25〜35°のレ型またはV型の狭開先とする。   As shown in FIG. 4, the groove portion is a groove with a steel backing metal 3, the root interval 6 is 2 to 5 mm, and the groove angles are the upper member 1 side groove angle θ1 and the lower member side groove angle θ2. A total of 25 to 35 ° is a lave or V-shaped narrow groove.

開先部のルート間隔6が2mm未満であると、初層の溶接で鋼製の裏当金3を十分に溶かすことができない。一方、ルート間隔6が5mmを超えると、開先断面積が大きくなって、溶接能率が低下する。   When the root interval 6 of the groove portion is less than 2 mm, the steel backing metal 3 cannot be sufficiently melted by the first layer welding. On the other hand, when the route interval 6 exceeds 5 mm, the groove cross-sectional area becomes large and the welding efficiency decreases.

上部材1側開先角度θ1と下部材側開先角度θ2の合計が25°未満であると、溶接トーチのノズル部(図示せず)を扁平にしても開先内にノズルが入らないので、板厚tが厚い場合はワイヤの突き出し長さが長くなりシールド不足でブローホールが生じやすくなる。また、上部材1側を十分に溶かすことができず、スラグ巻き込み欠陥が生じる場合がある。一方、上部材1側開先角度θ1と下部材側開先角度θ2の合計が35°を超えると、開先断面積が大きくなって、溶接能率が低下する。   If the sum of the upper member 1 side groove angle θ1 and the lower member side groove angle θ2 is less than 25 °, the nozzle does not enter the groove even if the nozzle portion (not shown) of the welding torch is flattened. When the plate thickness t is thick, the protruding length of the wire becomes long, and blow holes are likely to occur due to insufficient shielding. Moreover, the upper member 1 side cannot be melt | dissolved enough and a slag entrainment defect may arise. On the other hand, when the total of the upper member 1 side groove angle θ1 and the lower member side groove angle θ2 exceeds 35 °, the groove cross-sectional area increases and the welding efficiency decreases.

なお、上部材1側開先角度θ1は、耐欠陥性から10°以上であることが好ましい。
また、図5にコラム7の端部にダイアフラム8を当接した場合の開先断面図を示す。コラム7の端部にダイアフラム8を当接した場合は、鋼製の裏当金3付き開先で、ルート間隔6が2〜5mm、コラム7側開先角度θ1が25〜35°のレ型の狭開先とする。
In addition, it is preferable that upper member 1 side groove angle (theta) 1 is 10 degrees or more from defect resistance.
FIG. 5 shows a groove sectional view when the diaphragm 8 is brought into contact with the end of the column 7. When the diaphragm 8 is brought into contact with the end of the column 7, a groove with a steel backing metal 3 having a root interval 6 of 2 to 5 mm and a column 7 side groove angle θ1 of 25 to 35 ° The narrow gap.

開先部a、b、c、dの各角部開先内に取付ける鋼製タブ4a、4b、4c、4dの板厚は2〜5mmとする。鋼製タブ4a、4b、4c、4dの板厚が2mm未満であると、裏面側に接して設けてある銅製の冷却部材5a、5b、5c、5dまで溶接アークが貫通して溶接ビードが垂れ落ちたり、銅製の冷却部材5a、5b、5c、5dを溶かして溶接金属に割れが生じる。一方、板厚が6mmを超えると、鋼製タブ4a、4b、4c、4dの開先面に接している面を両側からのアークによって完全に溶かすことができず、溶接後に鋼製タブ4a、4b、4c、4dをガウジング等で取除くか、あるいは鋼製タブを完全溶け込み溶接で取付ける必要が生じて能率が悪くなる。   The plate thickness of the steel tabs 4a, 4b, 4c, and 4d to be installed in each corner groove of the groove portions a, b, c, and d is 2 to 5 mm. If the plate thickness of the steel tabs 4a, 4b, 4c, and 4d is less than 2 mm, the welding arc penetrates to the copper cooling members 5a, 5b, 5c, and 5d provided in contact with the back side, and the weld bead hangs down. The copper cooling members 5a, 5b, 5c, and 5d are melted and cracks occur in the weld metal. On the other hand, if the plate thickness exceeds 6 mm, the surfaces in contact with the groove surfaces of the steel tabs 4a, 4b, 4c, and 4d cannot be completely melted by the arc from both sides, and the steel tabs 4a, 4b, 4c and 4d need to be removed by gouging or the like, or a steel tab needs to be completely welded and attached, resulting in poor efficiency.

鋼製タブ4a、4b、4c、4dの溶接する開先部の裏面側に接する銅製の冷却部材5a、5b、5c、5dは、アークによる鋼製タブ4a、4b、4c、4cの過熱を防止して、溶接金属の溶け落ちを防止する。
次に、本発明の横向ガスシールドアーク溶接方法に用いるソリッドワイヤの成分限定理由を説明する。
The copper cooling members 5a, 5b, 5c, and 5d in contact with the back side of the welded groove portion of the steel tabs 4a, 4b, 4c, and 4d prevent overheating of the steel tabs 4a, 4b, 4c, and 4c due to arcing. Thus, the weld metal is prevented from being melted down.
Next, the reasons for limiting the components of the solid wire used in the horizontal gas shield arc welding method of the present invention will be described.

ソリッドワイヤのCは、スパッタ発生量の低減から0.02質量%以上で耐高温割れ性から0.08質量%以下とする。   The C of the solid wire is 0.02% by mass or more from the reduction of spatter generation amount and 0.08% by mass or less from the hot cracking resistance.

SiおよびMnは、溶融金属の酸素を低下させの粘性を高くして横向姿勢溶接におけるビードの垂れを防止する。   Si and Mn increase the viscosity of the molten metal to reduce oxygen and prevent bead sag in lateral orientation welding.

Siが1.0質量%未満であると、溶融金属の粘性が低くなってビードが垂れて中間層でスラグ巻き込み欠陥が生じやすく、最終層ではビード外観が不良になる。一方、1.7質量%を超えると、アークが不安定になりスパッタ発生量が多くなる。また、スラグ生成量が多くなるのでスラグ除去作業に時間を要し溶接能率が悪くなる。したがって、Siは1.0〜1.7質量%とする。   When the Si content is less than 1.0% by mass, the viscosity of the molten metal is lowered, the beads are dripped, and slag entrainment defects are likely to occur in the intermediate layer, and the bead appearance is poor in the final layer. On the other hand, if it exceeds 1.7 mass%, the arc becomes unstable and the amount of spatter generated increases. Moreover, since the amount of slag generation increases, it takes time to remove the slag and the welding efficiency is deteriorated. Therefore, Si is 1.0 to 1.7 mass%.

狭開先の溶接においては、特に下層部ではワイヤの突き出し長さが長く設定され、シールド不足によるブローホールが生じやすくなるので、Mnを比較的多く含有させてブローホールの発生を防止する。Mnが1.8質量%未満であると、ブローホールの発生を防止する効果が得られない。一方、Mnが2.8質量%を超えると、アークが不安定になりスパッタ発生量が多くなる。また、スラグ生成量が多くなるのでスラグ除去作業に時間を要し溶接能率が悪くなる。したがって、Mnは1.8〜2.8質量%とする。   In narrow groove welding, the protruding length of the wire is set to be particularly long in the lower layer portion, and blow holes are likely to occur due to insufficient shielding, so that a relatively large amount of Mn is contained to prevent the occurrence of blow holes. If Mn is less than 1.8% by mass, the effect of preventing the generation of blowholes cannot be obtained. On the other hand, if Mn exceeds 2.8% by mass, the arc becomes unstable and the amount of spatter generated increases. Moreover, since the amount of slag generation increases, it takes time to remove the slag and the welding efficiency is deteriorated. Therefore, Mn is set to 1.8 to 2.8% by mass.

さらに、SiとMnの合計が3.2質量%未満であると、溶融金属の粘性が低くなってビードが垂れて中間層でスラグ巻き込み欠陥が生じやすく、最終層ではビード外観が不良になる。一方、SiとMnの合計が4.1質量%を超えると、ビード止端部のなじみが不良になってスラグ巻き込み欠陥が生じやすくなる。また、スラグ生成量が多くなるのでスラグ除去作業に時間を要し溶接能率が悪くなる。したがって、Si+Mnは3.2〜4.1質量%とする。   Further, when the total amount of Si and Mn is less than 3.2% by mass, the viscosity of the molten metal is lowered, the beads are dripped, and slag entrainment defects are easily generated in the intermediate layer, and the bead appearance is poor in the final layer. On the other hand, if the total of Si and Mn exceeds 4.1% by mass, the familiarity of the bead toe portion becomes poor and slag entrainment defects are likely to occur. Moreover, since the amount of slag generation increases, it takes time to remove the slag and the welding efficiency is deteriorated. Therefore, Si + Mn is set to 3.2 to 4.1% by mass.

その他不可避不純物のPおよびSは、耐割れ性からそれぞれ0.02質量%以下とすることが好ましい。また、ワイヤ径は1.2mmまたは1.4mmとし、溶接条件は、作業能率を考慮して溶接電流:250〜400A,溶接速度:25〜50cm/minとすることが好ましい。   Other inevitable impurities P and S are each preferably 0.02% by mass or less in view of crack resistance. The wire diameter is preferably 1.2 mm or 1.4 mm, and the welding conditions are preferably a welding current of 250 to 400 A and a welding speed of 25 to 50 cm / min in consideration of work efficiency.

なお、本発明の横向ガスシールドアーク溶接方法におけるトーチ角度は10〜15°とすることによって、ワイヤ狙い位置が安定して耐溶接欠陥性から好ましい。また、シールドガスは炭酸ガスまたはアルゴンガスに10〜50容積%の炭酸ガスを混合したガスを用いることができるが、スラグ生成量を考慮してアルゴンガスに10〜30容積%の炭酸ガスを混合したガスを用いることが好ましい。   In addition, by setting the torch angle in the lateral gas shielded arc welding method of the present invention to 10 to 15 °, the wire aiming position is stable and preferable from the viewpoint of welding defect resistance. The shielding gas can be carbon dioxide or argon gas mixed with 10 to 50% by volume carbon dioxide. In consideration of the amount of slag generated, argon gas is mixed with 10 to 30% by volume carbon dioxide. It is preferable to use the prepared gas.

また、屋外や風の吹く屋内で溶接する場合は、溶接作業場をカーテンで囲ったり、溶接箇所の一辺の開先部全体を覆った防風治具を用いることがブローホール発生の防止上好ましい。   In addition, when welding is performed outdoors or indoors where the wind blows, it is preferable to use a windproof jig that covers the welding work place with a curtain or covers the entire groove portion on one side of the welded portion in order to prevent the occurrence of blowholes.

さらに、溶接電源としてはサイリスタやインバータ制御による定電圧特性を有するタイプを使用することができるが、さらに上記の混合ガスを用いる場合には、溶け込み量を考慮してパルス電源を併用してもよい。   Furthermore, as a welding power source, a type having a constant voltage characteristic by thyristor or inverter control can be used. However, when the above mixed gas is used, a pulse power source may be used in consideration of the amount of penetration. .

以下、本発明の効果を実施例により具体的に説明する。JIS G3136 SN490B鋼、板厚45mmの図1に示す一辺が1100mmのボックス柱同士を突合せて、板厚12mmの裏当金付きの表1に示す各種開先形状部を、表2に示す各種成分のワイヤ径1.2mmのソリッドワイヤを用いて溶接した。溶接条件は表3に示す基準溶接条件とした。なお、図6に本発明の実施例における多層盛溶接の積層例を示す。   Hereinafter, the effect of the present invention will be described in detail with reference to examples. JIS G3136 SN490B steel, 45 mm thick plate columns shown in FIG. 1, each side of which is 1100 mm butting each other, the various groove-shaped portions shown in Table 1 with a 12 mm thick backing metal are shown in Table 2. Welding was performed using a solid wire having a wire diameter of 1.2 mm. The welding conditions were the standard welding conditions shown in Table 3. In addition, the lamination example of the multilayer build-up welding in the Example of this invention is shown in FIG.

Figure 2011189363
Figure 2011189363

Figure 2011189363
Figure 2011189363

Figure 2011189363
また、各角部開先内に表1に示す板厚の鋼製タブを開先形状に合わせて加工して取付け、鋼製タブの溶接する開先部の裏面側に接するように銅製の冷却部材を設けて、開先部aと開先部bを同時に多層盛溶接して最終パスまで溶接し、銅製の冷却部材を除いて開先部cおよび開先部dを同時に多層盛溶接を行った。なお、溶接はボックス柱の上部材にレールを取付けて台車に溶接トーチを搭載した溶接機で行った。
Figure 2011189363
In addition, a steel tab having the thickness shown in Table 1 is processed and attached in each corner groove according to the groove shape, and is cooled by copper so as to be in contact with the back side of the groove portion to be welded of the steel tab. A member is provided, and the groove portion a and the groove portion b are simultaneously multilayer welded and welded to the final pass, and the groove portion c and the groove portion d are simultaneously multilayer welded except for the copper cooling member. It was. The welding was performed with a welding machine in which a rail was attached to the upper member of the box column and a welding torch was mounted on the carriage.

調査項目は、溶接時の溶接作業性およびビード外観の観察、溶接開始から終了までの時間、溶接後の超音波探傷による溶接欠陥の有無を調査した。それらの結果も表1にまとめて示す。   The survey items were observation of welding workability and bead appearance during welding, time from the start to the end of welding, and the presence or absence of welding defects due to ultrasonic flaw detection after welding. The results are also summarized in Table 1.

なお、溶接時間は開先部aとbおよび開先部cとdの溶接時間の長い方の時間とした。また、ボックス柱の上部材へのレールおよび溶接機のセット時間は除外し、溶接のスタートから最終パスの溶接が終了するまでの時間とした。溶接時間は4時間以内を良好とした。   The welding time was the longer of the welding times of the groove portions a and b and the groove portions c and d. The set time of the rail to the upper member of the box column and the welding machine was excluded, and the time from the start of welding to the end of the final pass welding was used. The welding time was good within 4 hours.

表1中試験No.1〜試験No.5が本発明例、試験No.6〜試験No.12は比較例である。本発明例である試験No.1〜試験No.5は、ルート間隔、開先角度、鋼製タブの板厚が適正で、鋼製タブの溶接する開先部の裏面側銅製の冷却部材を設け、さらに用いたソリッドワイヤの成分が適正であるので、溶接作業性が良好で、溶接時間が短く、さらに溶接部に欠陥が生じることなく、極めて満足な結果であった。   In Table 1, Test No. 1 to Test No. 5 are examples of the present invention, and Test No. 6 to Test No. 12 are comparative examples. Test No.1 to Test No.5, which are examples of the present invention, have a route interval, a groove angle, a steel tab plate thickness is appropriate, and a copper-side cooling member on the back surface side of the groove portion where the steel tab is welded. Furthermore, since the components of the solid wire used were appropriate, the welding workability was good, the welding time was short, and there were no defects in the welded part, which was a very satisfactory result.

比較例中試験No.6は、ルート間隔が狭いので、初層に溶け込み不良が生じた。また、用いたソリッドワイヤのMnが少ないので、初層と2パス目にブローホールが生じた。   In comparative example test No. 6, the root interval was narrow, so that poor penetration occurred in the first layer. Also, since the Mn of the solid wire used was small, blow holes were generated in the first layer and the second pass.

試験No.7は、ルート間隔が広いので、溶接の時間が長くなった。また、用いたソリッドワイヤのSiが少ないので、ビードが垂れてスラグ巻き込み欠陥も生じた。   In Test No. 7, the root interval was wide, so the welding time was long. Further, since the solid wire used had less Si, the bead dripped and a slag entrainment defect occurred.

試験No.8は、開先角度が狭いので、初層から下層部で扁平ノズルを使用してもワイヤ突き出し長さが長くなり下層部にブローホールが生じた。また、用いたソリッドワイヤのSiが多いので、アークが不安定でスパッタ発生量が多く、スラグ生成量も多かった。   In Test No. 8, since the groove angle was narrow, even when a flat nozzle was used from the first layer to the lower layer, the wire protrusion length became longer and a blow hole was generated in the lower layer. In addition, since the solid wire used had a large amount of Si, the arc was unstable, the amount of spatter generation was large, and the amount of slag generation was also large.

試験No.9は、開先角度θ1とθ2の合計が広いので、溶接の時間が長くなった。また、用いたソリッドワイヤのSi+Mnが少ないので、ビードが垂れてスラグ巻き込み欠陥も生じた。   In Test No. 9, since the total of the groove angles θ1 and θ2 was wide, the welding time was increased. Further, since the solid wire used had a small amount of Si + Mn, the bead dripped and a slag entrainment defect occurred.

試験No.10は、鋼製タブの板厚が薄いので、銅製の冷却部材までアークが貫通したので、その補修溶接に時間を要し、溶接の時間が長くなった。また、用いたソリッドワイヤのCが少ないので、スパッタ発生量が多かった。さらに、Si+Mnが多いので、スラグ生成量が多くなりその除去に時間を要してビード止端部のなじみも不良でスラグ巻き込み欠陥も生じた。   In Test No. 10, since the steel tab was thin, the arc penetrated to the copper cooling member. Therefore, it took time for repair welding, and the welding time became longer. In addition, the amount of spatter generated was large because C of the solid wire used was small. Further, since the amount of Si + Mn is large, the amount of slag generated is increased, and it takes time to remove the slag.

試験No.11は、鋼製タブの板厚が厚いので開先面に接した部分に未溶融部が生じた。また、用いたソリッドワイヤのMnが多いので、アークが不安定でスパッタ発生量が多く、スラグ生成量も多く、スラグ除去に時間を要したので溶接の時間が長くなった。   In Test No. 11, since the steel tab was thick, an unmelted portion was formed in the portion in contact with the groove surface. Further, since the solid wire used had a large amount of Mn, the arc was unstable, the amount of spatter generation was large, the amount of slag generation was also large, and it took time to remove the slag, so the welding time was long.

試験No.12は、銅製の冷却部材を鋼製タブに当接していないので鋼製タブが溶け落ち、その補修溶接に時間を要して溶接の時間が長くなった。また、用いたソリッドワイヤのCが多いので、初層に高温割れが生じた。   In Test No. 12, since the copper cooling member was not in contact with the steel tab, the steel tab was melted down, and it took time for repair welding, and the welding time became longer. Moreover, since there was much C of the solid wire used, the hot crack occurred in the first layer.

1 上部材
2 下部材
a、b、c、d 開先部
3 鋼製の裏当金
4a、4b、4c、4d 鋼製タブ
5a、5b、5c、5d 銅製の冷却部材
6 ルート間隔
θ1 上部材側開先角度(コラム側開先角度)
θ2 下部材側開先角度
7 コラム
8 ダイアフラム
DESCRIPTION OF SYMBOLS 1 Upper member 2 Lower member a, b, c, d Groove part 3 Steel backing metal 4a, 4b, 4c, 4d Steel tab 5a, 5b, 5c, 5d Copper cooling member 6 Route space | interval (theta) 1 Upper member Side groove angle (column side groove angle)
θ2 Lower member side groove angle 7 Column 8 Diaphragm

Claims (2)

四角柱状構造物の開先部を横向姿勢で多層盛溶接するガスシールドアーク溶接方法において、四角柱状構造物の開先部は裏当金付き開先で、ルート間隔が2〜5mm、開先角度が25〜35°のレ型またはV型開先とし、各角部開先内に板厚2〜6mmの鋼製タブを取付け、該鋼製タブの溶接する開先部の裏面側に接するように銅製の冷却部材を設けて溶接することを特徴とする横向ガスシールドアーク溶接方法。 In the gas shielded arc welding method in which the groove portion of the square columnar structure is multi-layered in a horizontal orientation, the groove portion of the square columnar structure is a groove with a backing metal, the root interval is 2 to 5 mm, and the groove angle Is a 25-35 ° ladle or V-shaped groove, and a steel tab having a thickness of 2 to 6 mm is attached to each corner groove so that the steel tab contacts the back side of the groove portion to be welded. A horizontal gas shielded arc welding method, wherein a copper cooling member is provided for welding. C:0.02〜0.08質量%、Si:1.0〜1.7質量%、Mn:1.8〜2.8質量%で、Si+Mn:3.2〜4.1質量%を含有し、その他はFeおよび不可避不純物であるソリッドワイヤを用いて溶接することを特徴とする請求項1に記載の横向ガスシールドアーク溶接方法。
C: 0.02-0.08 mass%, Si: 1.0-1.7 mass%, Mn: 1.8-2.8 mass%, Si + Mn: 3.2-4.1 mass% contained The transverse gas shielded arc welding method according to claim 1, wherein welding is performed using Fe and a solid wire that is an inevitable impurity.
JP2010056913A 2010-03-15 2010-03-15 Horizontal gas shield arc welding method Pending JP2011189363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010056913A JP2011189363A (en) 2010-03-15 2010-03-15 Horizontal gas shield arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010056913A JP2011189363A (en) 2010-03-15 2010-03-15 Horizontal gas shield arc welding method

Publications (1)

Publication Number Publication Date
JP2011189363A true JP2011189363A (en) 2011-09-29

Family

ID=44794837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010056913A Pending JP2011189363A (en) 2010-03-15 2010-03-15 Horizontal gas shield arc welding method

Country Status (1)

Country Link
JP (1) JP2011189363A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081996A (en) * 2011-10-12 2013-05-09 Nippon Steel & Sumitomo Metal Corp Welding method of steel pipe pile
CN103962690A (en) * 2014-05-20 2014-08-06 中国海洋石油总公司 Argon arc welding back shielding gas device for vertical welding seam
CN106270967A (en) * 2016-08-31 2017-01-04 中车四方车辆有限公司 The section of executing welds box framework assembly welding method in advance
JP2019155409A (en) * 2018-03-12 2019-09-19 鹿島建設株式会社 Steel pipe welding method and column construction method
CN114473155A (en) * 2022-03-07 2022-05-13 深圳市雅鑫智能房屋有限公司 Welding process of assembly type building assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159275A (en) * 1984-12-28 1986-07-18 Sumikin Kokan Koji Kk Automatic welding method
JPH03297557A (en) * 1990-04-17 1991-12-27 Nippon Steel Corp Field welding and connecting method for square steel tube pillars by thick plate assembly
JP2000288734A (en) * 1999-04-12 2000-10-17 Nippon Steel Weld Prod & Eng Co Ltd Transverse type multi-layer carbon dioxide gas shield arc welding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159275A (en) * 1984-12-28 1986-07-18 Sumikin Kokan Koji Kk Automatic welding method
JPH03297557A (en) * 1990-04-17 1991-12-27 Nippon Steel Corp Field welding and connecting method for square steel tube pillars by thick plate assembly
JP2000288734A (en) * 1999-04-12 2000-10-17 Nippon Steel Weld Prod & Eng Co Ltd Transverse type multi-layer carbon dioxide gas shield arc welding method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081996A (en) * 2011-10-12 2013-05-09 Nippon Steel & Sumitomo Metal Corp Welding method of steel pipe pile
CN103962690A (en) * 2014-05-20 2014-08-06 中国海洋石油总公司 Argon arc welding back shielding gas device for vertical welding seam
CN106270967A (en) * 2016-08-31 2017-01-04 中车四方车辆有限公司 The section of executing welds box framework assembly welding method in advance
JP2019155409A (en) * 2018-03-12 2019-09-19 鹿島建設株式会社 Steel pipe welding method and column construction method
CN114473155A (en) * 2022-03-07 2022-05-13 深圳市雅鑫智能房屋有限公司 Welding process of assembly type building assembly

Similar Documents

Publication Publication Date Title
US8546720B2 (en) Hybrid welding apparatus and system and method of welding
KR101888780B1 (en) Vertical narrow gap gas shielded arc welding method
JP5869972B2 (en) Laser-arc combined welding method
WO2010098499A1 (en) Complex method of welding incombination of gas-shield ark welding with submerged ark welding
CN107598340B (en) Method for welding T-shaped joint of large thick plate
CN112296494B (en) Welding flux copper gasket method submerged-arc welding method for jointed boards with different thicknesses
CN104625351B (en) Subway carriage aluminium alloy side wall welding method
WO2019182081A1 (en) Gas-shielded arc welding method for steel sheets
JP2011189363A (en) Horizontal gas shield arc welding method
JP6354941B2 (en) Method for suppressing groove shrinkage in automatic TIG back wave welding
WO2013179614A1 (en) Laser-arc hybrid welding method
JP2015526298A (en) Laser welding method and laser welding member using the same
CN109641306B (en) Vertical narrow groove gas shielded arc welding method
US20080206586A1 (en) Penetration welding method of t-type joint and penetration welding structure of t-type joint
JP5416422B2 (en) Laser-arc combined welding method
JP4978121B2 (en) Butt joining method of metal plates
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
WO2017098692A1 (en) Vertical narrow gap gas shielded arc welding method
JP3300187B2 (en) Narrow groove TIG arc welding method for 9% Ni steel material to be welded
CN108290239B (en) Vertical narrow groove gas shielded arc welding method
JP6787800B2 (en) Single-sided submerged arc welding method
Spina et al. T-joints of Ti alloys with hybrid laser-MIG welding: macro-graphic and micro-hardness analyses
JP3539828B2 (en) Electrogas arc welding method for steel sheet
JP5483553B2 (en) Laser-arc combined welding method
JP7258110B1 (en) Welding method and groove structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210