JP4037275B2 - Surface shape measuring device - Google Patents

Surface shape measuring device Download PDF

Info

Publication number
JP4037275B2
JP4037275B2 JP2003004830A JP2003004830A JP4037275B2 JP 4037275 B2 JP4037275 B2 JP 4037275B2 JP 2003004830 A JP2003004830 A JP 2003004830A JP 2003004830 A JP2003004830 A JP 2003004830A JP 4037275 B2 JP4037275 B2 JP 4037275B2
Authority
JP
Japan
Prior art keywords
sample
probe
shape
angle
correction mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003004830A
Other languages
Japanese (ja)
Other versions
JP2004219170A (en
Inventor
茂 脇山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2003004830A priority Critical patent/JP4037275B2/en
Publication of JP2004219170A publication Critical patent/JP2004219170A/en
Application granted granted Critical
Publication of JP4037275B2 publication Critical patent/JP4037275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はプローブ(探針)を用いて、穴または溝形状を測定するプローブ顕微鏡等の表面形状測定装置に関する。
【0002】
【従来の技術】
近年、半導体においてより微細化がすすみ、微細形状の評価としての形状測定として、原子分解能を有する、プローブ顕微鏡の一種である原子間力顕微鏡が期待されている。原子間力顕微鏡(AFM)はSTMの発明者であるG.Binnigらによって考案されて以来、新規な絶縁性物質の表面形状観察手段として期待され、研究が進められている。その原理は先端を充分に鋭くした検出チップと試料間に働く原子間力を前記検出チップが取り付けられているばね要素の変位として測定し、前記ばね要素の変位量を一定に保ちながら前記試料表面を走査し、前記ばね要素の変位量を一定に保つための制御信号を形状情報として、前記試料表面の形状を測定するものである。
【0003】
ばね要素の変位検出手段としては光学的方式及び、バネ要素の変形ひずみを電気信号として検出する自己検出方式がある。
【0004】
光学的方式にはいわゆる干渉法そのものを使った例としてJournal of Vacuum Science Technology A6(2)p266 Mar/Apr 1988(非特許文献1)で、レーザー光をばね要素に照射しその反射光の位置ずれを光検出素子で検出して変位信号とする光てこ方式と呼ばれる例としてJournal of Applied Physics 65(1),1 p164 January 1989(非特許文献2)が報告されている。現在では、プローブ顕微鏡の検出方式として、光てこ方式が主に用いられている。また、カンチレバーのたわみ量を抵抗値の変化としてとらえ、電気的出力をするタイプ、いわゆる、自己検出型としては特開2000−111563号公報(特許文献1)や特開2001−337025号公報(特許文献2)に記載のものがある。
【0005】
プローブ顕微鏡は試料に相対する位置に配置されたプローブが試料から原子間力を受けるものならば原子間力顕微鏡と称され、磁気力ならば磁気力顕微鏡と称される様に試料から生じる様々な力を検出して試料の状態を観察できるものである。プローブ顕微鏡の構成として、観察試料が小さいものでは、電圧を印可することで変形する圧電素子を組み込んだ三次元に動作する微動機構側に試料を配置するものが主であるが、一方ではハードデイスクや半導体関連のウェハ試料を小片にせずに観察したいというニーズがある。そこで、微動機構側に変位検出系を設けた構成のプローブ顕微鏡がある。プローブ顕微鏡は基本動作として微動機構を面内に動作させバネ要素に構成された探針を試料面に対し面内に移動させる、それにより、試料と探針間に働く物理力によるバネ要素の変形をモニタし微動機構を鉛直方向に動作させた結果により試料表面形状及び状態を視覚化するものである。
【0006】
プローブ顕微鏡に用いられるプローブは、図2に示す様なカンチレバーと称される片持ち梁状の部材の先端部に形成されており、主に図3に示す様な四角垂状をしている。材質はシリコンであり、異方性エッチング技術を用いて加工される。通常、カンチレバーは、先端に形成されるプローブの高さは1〜2μm程度と低いため、カンチレバーベース部が試料面にあたらないように、プローブ顕微鏡に傾けて取り付けられる。一方、前記形状のプローブでは半導体等で形成される穴や溝、特にアスペクト比(高さ/幅)が大きい、深い形状の時、また、試料角度がプローブの形状角度より大きい角度を有した場合、適切な形状測定ができない(図4)。一方、プローブ形状をさらに加工して、棒状にしたものやタングステンやカーボン等の他の物質をプローブ先端に形成させたものが考案されている(図5)。前記棒状プローブにより、アスペクト比が大きい形状が測定可能であるが、試料及びZ方向追従に対する前記棒状プローブと試料傾きの角度関係によっては、図6に示すような、測定対象の形状側壁にプローブがあたり、形状の底まで到達せず、正しい測定が出来ないことになる。棒状プローブを製作する時に、角度を管理することは考えられるが、装置に取り付けた時は少なからず、角度変化は生じてしまう。また、試料においても、試料を搭載する試料台や試料面の平坦度や表面の角度によって角度変化が生じてしまう。試料の角度を調整する機構をつけたものやプローブ側を調整する機構をつけたものはある(特許文献3,4,5参照)。しかし、試料表面に対して角度調整しただけでは、棒状プローブがZ方向動作に対して傾いても、試料表面は測定できるが、アスペクト比が大きい形状の場合、底面に到達する前に、棒状プローブが側面に接触してしまい、正確な形状測定ができない。
【0007】
【特許文献1】
特開2000−111563号公報
【0008】
【特許文献2】
特開2001−337025号公報
【0009】
【特許文献3】
特開2002−31589号公報(第6図)
【0010】
【特許文献4】
特開平5−28545号公報(第1図、第13図)
【0011】
【特許文献5】
特開平4−359105号公報(第1図)
【0012】
【特許文献6】
特開平10−288618
【0013】
【非特許文献1】
Journal of Vacuum Science Technology A6(2)p266 Mar/Apr 1988
【0014】
【非特許文献2】
Journal of Applied Physics 65(1),1 p164 January 1989
【0015】
【発明が解決しようとする課題】
本発明は、アスペクト比(高さ/幅又は高さ)が大きい測定対象に対し、適切な測定ができる表面形状測定装置を提供するもので、特に、高分解能な表面形状測定装置である原子間力顕微鏡や磁気力顕微鏡といったプローブ顕微鏡の提供を目的とするものである。
【0016】
【課題を解決するための手段】
本発明は、試料側及びプローブ側に角度補正機構を設け、角度が既知の試料の測定結果と、実際に測定する試料の傾き度合いとにより、試料側及びプローブ側の少なくとも一方に設けた角度補正機構により、プローブ及び試料間の角度を修正して、形状を測定することにした。
【0017】
(作用)
本発明は、上記の手段を講じることにより、アスペクト比(高さ/幅又は高さ)が大きい測定対象に対し、棒状のプローブが測定対象の側壁にあたることを減少させ、底面まで到達できるように補正して測定するため、アスペクト比も大きい試料形状においても、プローブの長さが許される範囲で適切な測定が可能となる。
【0018】
【発明の実施の形態】
本発明はプローブを用いて試料形状を測定する形状測定装置において、試料側及びプーブ側の両方に角度補正機構を設け、角度が既知の試料の測定結果と、実際に測定する試料の傾き度合いとにより、角度補正機構により角度を修正して、形状を測定することにした。なお、試料の傾き補正機構としてはX , Y 二方向対応の傾斜ステージを用いても良い。また、角度補正機構としては電圧印加により変形を生じる圧電素子を用いた機構であってもよいし、熱印加により変形を生じる材料を用いた機構、磁気印加により変形を生じる材料を用いた機構、磁気的力の印加により変形を生じる機構、気体印加により変形を生じる機構のいずれを用いたものあってもよい。表面形状測定装置が、高感度、高分解能を有する試料表面の形状及び物理状態を観察するプローブ顕微鏡ならば、尚良い。
また、プローブ側に設けられる角度補正機構は、プローブとして試料表面の形状及び物理状態から受ける力により変形したひずみ量を電気信号として検出する自己検知型のカンチレバーを用い、前記自己検知型カンチレバーに、電圧印加によりカンチレバー部の角度を補正できる機構を付加した構成にしてもよい。
角度が既知の試料としてシリコン基板を異方性エッチングによりで作製した試料であってもよい。
角度を補正する手順は以下である。角度が既知の試料は、測定対象の試料を搭載する試料台の所定の位置に、設置されている。試料台は面内移動可能な機構(電動または手動ステージ) 上に構成された2 方向の角度補正機構を介して取り付けられている。本実施例では試料台の端に市販の角度既知の試料を設置できる様にした。(角度54.7度±度) 以下、本発明の補正手順を概略図である図1 を用いて説明をする。
【0019】
図1において、プローブを三次元に微細位置決めする圧電素子からなる微動機構1の先端に、プローブの傾きを変えるプローブ傾き補正機構部2及びカンチレバー固定台3を介してカンチレバー4が固定されている。補正機構部2は、X,Y二方向の傾き補正が可能である。カンチレバーの固定は、図示しない接着、ネジなどに機械的固定、磁石を用いた固定、真空吸着などにより行なう。微動機構の他端は筐体に固定されている。カンチレバー4の先端には棒状のプローブ5が形成されている。そして、棒状プローブ5と相対する位置に試料6が配置される。簡単な構造にできるため、本実施例では自己検知型のカンチレバーに棒状プローブ5を形成したものを用いた。光てこ機構を用いた場合、小型の光てこ機構を微動機構の先端に形成し、微動機構と小型光てこ機構との間にプローブ傾き補正機構部が構成されることになる。また、光てこ機構のレーザー光源と反射光検出のフォトディテクタ部が分離している場合、プローブを傾けた分、フォトディテクタ部の位置または反射用ミラーを補正することになる。
【0020】
まず、プローブが追従するZ方向に対して、プローブの傾きを補正する。
1.角度が既知の試料6の角度形状がない上面の平面部を測定する。(図1a)2.試料台側の角度補正機構により、角度補正試料の傾きを補正し、角度形状がない上面の平面部が水平に測定できるようにする。(図1b)
3.既知角度形状部7を測定する。(図1c)
4.プローブ側の角度補正機構2により、角度が適切に測定できるようにプローブ側の角度を補正する。(図1d)
以上の作業によりプローブが追従するZ方向に対してプローブの傾きが補正されたことになる。
次に、測定対象試料の傾き補正をおこなう。
5.測定対象の形状がない上面の平面部を測定する。(図1e)
6.試料台側の角度補正機構により、測定対象試料8の傾きを補正し、形状がない上面の平面部が水平に測定できるようにしたのち、測定対象の溝形状9を測定する。(図1f)
以上の作業により、試料とプローブの傾き補正ができたことになり、測定対象の試料形状に対し、プローブが適切に試料形状を追従することになる。
【0021】
次に、本実施例の装置構成を説明する。本実施例では、プローブ側が試料に対してX,Y,Z三次元に走査する構造にした。もちろん、本発明は、試料側でX,Y,Z三次元に走査してもよいし、試料側でX,YまたはZ方向走査し、プローブ側でZまたはX,Y走査する組み合わせでも可能なことは容易に言えることである。半導体分野における観察対象の試料はウェハ形状していることが大半で、大きさも、直径で100、200、300mmと大きいものがほとんどである。その点から試料側をX,Yステージ等の移動手段で走査させて試料を広範囲に測定することも考えられるが、微細形状の測定には、プローブ側をX,Y,Z三次元に走査させるタイプが有効と考えられる。
【0022】
試料を搭載する試料台はX,Y、Zステージ、試料側角度補正ステージを介して構成されている。X,Yステージはプローブに対して、試料上の観察対象位置への試料移動に用いられる。Zステージは試料表面に対し、プローブを測定可能位置まで接近させるのに用いる。原子間力顕微鏡ではフォースエリアへプローブを接近させることを意味する。また、装置構成上、Zステージがプローブを走査させる、微動機構側に構成されてもよい。試料と相対する位置にプローブが構成されており、プローブはプローブ固定機構、プローブ角度補正機構を介して、プローブを試料表面に対して三次元に走査する微動機構に固定されている。本実施例では、電圧を印加すると変形する圧電素子材を用いた中空円筒形状の微動機構を使用いている。また、微動機構は中空円筒形状のものを用いたが、プローブ先端の円弧エラーを考慮すると、三軸独立型の微動機構が有効である。しかし、微細部測定の場合、走査領域が小さく、円弧エラーが無視できる。円弧エラーが小さい場合、比較的剛性が上げられる中空円筒形状を本実施例では使用した。また、寸法精度を高めるには、微動機構を他の変位検出手段(静電容量型の変位センサ等)と組み合わせて変位をモニタしたり、フィードバック制御(クローズドループ制御)したりすることは有効であることは良く知られている。一方、微動機構は筐体を介し、本体アームに固定用のネジにて、機械的に固定されている。本実施例の構造は、試料位置決め用機構(X、Yステージ)及び試料の位置を特定する為の光学顕微鏡、光学顕微鏡の焦点調整及び試料をプローブ測定可能な位置に位置合わせする機構(Zステージ)が前記X,Yステージ上に構成されている。前記光学顕微鏡及びプローブを3次元(X、Y,Z)に走査する微動機構はアームを介して試料に相対する位置に配置される。そして、前記部材はプレートを介して床からの振動を防ぐための除振機構上に構成されている。そして、全体的には外部音響ノイズが入らない様にするための防音カバーで覆われているといった構造である、例えば、特開平10−288618(特許文献6)に記載のプローブ顕微鏡装置に本特許の特徴となる機構を付加した。
【0023】
また、プローブ作製時に角度管理をするため、プローブ取り付け時に大きな角度差が出ないこと、及び剛性の面を考慮して、プローブ角度補正機構は圧電素子を用いた機構とした。圧電素子は電圧印加によりクリープ現象で変位が変わることがある。厳密に変位を管理するには、容量制御をする必要がる。また、変位センサと組み合わせて制御(クローズドループ制御)することが必要である。本実施例では圧電素子は積層状のものを用いた。プローブの角度調整機構として、調整量が少なくなるように装置構成を追い込めれば、変位量が少ないが、クリープも少なく、線形性の良い圧電素子を用いることができる。変位量が必要な場合は圧電素子に拡大機構を組み合わせることで可能であるが、剛性の低下を生じないように注意が必要である。
【0024】
【発明の効果】
本発明は試料傾き及びプローブ傾きを補正することでアスペクト比(高さ/幅又は高さ)が大きい測定対象に対し、プローブ先端を測定対象の底面まで到達させ、深さ、高さを主とする形状測定ができる様になる有効な表面形状測定装置を提供でき、これにより、より微細化が進む半導体デバイス構造の形状評価が断面を切って顕微鏡で観察することなく、比較的に容易に測定が可能になる効果がある。また、その結果を用いて、半導体等の加工上の条件だしや仕上がり具合の評価が正確にできる様になるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の概要を示した図である。
【図2】代表的なカンチレバーを示した図である。
【図3】代表的なカンチレバーのプローブを示した図である。
【図4】代表的なプローブによる形状測定を示した図である。
【図5】代表的なカンチレバー棒状プローブを示した図である。
【図6】棒状プローブ先端が形状測定対象の側壁にあたっている状態を示した図である。
【符号の説明】
1・・・微動素子
2・・・プローブ傾き補正機構部
3・・・カンチレバー固定台
4、10・・・カンチレバー
5・・・棒状プローブ
6・・・角度既知試料
7・・・既知の角度形状
8・・・試料
9、12、13・・・溝及び穴形状
11・・・プローブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface shape measuring apparatus such as a probe microscope that measures a hole or groove shape using a probe (probe).
[0002]
[Prior art]
In recent years, semiconductors have been further miniaturized, and an atomic force microscope which is a kind of probe microscope having atomic resolution is expected as a shape measurement as an evaluation of a fine shape. Atomic Force Microscope (AFM) is the inventor of STM G. Since it was devised by Binnig et al., It is expected to be a means for observing the surface shape of a novel insulating material, and research has been conducted. The principle is that the atomic force acting between the detection tip having a sufficiently sharp tip and the sample is measured as the displacement of the spring element to which the detection tip is attached, and the displacement of the spring element is kept constant while the sample surface is kept constant. , And the shape of the sample surface is measured using a control signal for keeping the amount of displacement of the spring element constant as shape information.
[0003]
As the displacement detection means of the spring element, there are an optical system and a self-detection system that detects a deformation strain of the spring element as an electric signal.
[0004]
As an example of using the so-called interferometry itself as an optical method, Journal of Vacuum Science Technology A6 (2) p266 Mar / Apr 1988 (Non-patent Document 1) irradiates a spring element with a laser beam and shifts the position of the reflected light. Journal of Applied Physics 65 (1), 1 p164 January 1989 (Non-Patent Document 2) has been reported as an example of an optical lever method in which a light detection element detects a displacement signal. At present, the optical lever method is mainly used as a detection method of the probe microscope. Also, as a type of so-called self-detecting type that captures the amount of deflection of the cantilever as a change in resistance value, so-called self-detecting type, Japanese Patent Application Laid-Open No. 2000-111563 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2001-337025 (Patent) There are those described in Document 2).
[0005]
A probe microscope is called an atomic force microscope if a probe placed at a position opposite to the sample receives an atomic force from the sample, and various probes generated from the sample are called a magnetic force microscope if it is a magnetic force. The force can be detected and the state of the sample can be observed. As the structure of the probe microscope, when the observation sample is small, the sample is mainly arranged on the side of the fine movement mechanism that moves in three dimensions, which incorporates a piezoelectric element that deforms when a voltage is applied. There is a need to observe semiconductor-related wafer samples without making them small. Therefore, there is a probe microscope having a configuration in which a displacement detection system is provided on the fine movement mechanism side. As a basic operation, the probe microscope operates the fine movement mechanism in the plane and moves the probe configured in the spring element in the plane with respect to the sample surface, thereby deforming the spring element by the physical force acting between the sample and the probe. The surface shape and state of the sample are visualized based on the result of moving the fine movement mechanism in the vertical direction.
[0006]
A probe used in a probe microscope is formed at the tip of a cantilever member called a cantilever as shown in FIG. 2, and has a quadrangular shape mainly as shown in FIG. The material is silicon and is processed using anisotropic etching techniques. Usually, since the height of the probe formed at the tip is as low as about 1 to 2 μm, the cantilever is attached to the probe microscope so that the cantilever base does not hit the sample surface. On the other hand, in the probe having the above shape, when a hole or groove formed of a semiconductor or the like, particularly when the aspect ratio (height / width) is large or deep, or when the sample angle is larger than the probe's shape angle, An appropriate shape measurement cannot be performed (FIG. 4). On the other hand, there have been devised ones in which the probe shape is further processed into a rod shape, or another material such as tungsten or carbon is formed on the probe tip (FIG. 5). A shape having a large aspect ratio can be measured by the rod-shaped probe, but depending on the angle relationship between the rod-shaped probe and the sample tilt with respect to the sample and Z-direction tracking, the probe is placed on the shape-shaped side wall as shown in FIG. In the meantime, the bottom of the shape is not reached and correct measurement cannot be performed. Although it is conceivable to manage the angle when manufacturing the rod-shaped probe, it is not a little when attached to the apparatus, and an angle change occurs. Also in the sample, an angle change occurs depending on the sample stage on which the sample is mounted, the flatness of the sample surface, and the angle of the surface. There are those with a mechanism for adjusting the angle of the sample and those with a mechanism for adjusting the probe side (see Patent Documents 3, 4 and 5). However, just adjusting the angle with respect to the sample surface can measure the sample surface even if the rod-shaped probe is tilted with respect to the Z-direction movement. Will come into contact with the side surface and accurate shape measurement will not be possible.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-111563
[Patent Document 2]
Japanese Patent Laid-Open No. 2001-337025
[Patent Document 3]
Japanese Patent Laid-Open No. 2002-31589 (FIG. 6)
[0010]
[Patent Document 4]
Japanese Patent Laid-Open No. 5-28545 (FIGS. 1 and 13)
[0011]
[Patent Document 5]
JP-A-4-359105 (FIG. 1)
[0012]
[Patent Document 6]
JP-A-10-288618
[0013]
[Non-Patent Document 1]
Journal of Vacuum Science Technology A6 (2) p266 Mar / Apr 1988
[0014]
[Non-Patent Document 2]
Journal of Applied Physics 65 (1), 1 p164 January 1989
[0015]
[Problems to be solved by the invention]
The present invention provides a surface shape measuring apparatus capable of performing appropriate measurement on a measurement object having a large aspect ratio (height / width or height), and in particular, an interatomic device that is a high-resolution surface shape measuring apparatus. The purpose is to provide a probe microscope such as a force microscope or a magnetic force microscope.
[0016]
[Means for Solving the Problems]
The present invention provides an angle correction mechanism on the sample side and the probe side, and angle correction provided on at least one of the sample side and the probe side according to the measurement result of the sample with a known angle and the degree of inclination of the sample to be actually measured. It was decided to measure the shape by correcting the angle between the probe and the sample by the mechanism.
[0017]
(Function)
In the present invention, by taking the above-mentioned means, it is possible to reduce the contact of the rod-shaped probe against the side wall of the measurement object and reach the bottom surface with respect to the measurement object having a large aspect ratio (height / width or height). Since the measurement is performed with correction, it is possible to perform an appropriate measurement within a range in which the length of the probe is allowed even for a sample shape having a large aspect ratio.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a shape measuring apparatus for measuring a sample shape using a probe, provided with an angle correction mechanism on both the sample side and the probe side , the measurement result of a sample with a known angle, and the degree of inclination of the sample actually measured. Therefore, the angle was corrected by the angle correction mechanism and the shape was measured. Note that a tilt stage corresponding to two directions of X and Y may be used as the tilt correction mechanism of the sample. The angle correction mechanism may be a mechanism using a piezoelectric element that deforms when voltage is applied, a mechanism that uses a material that deforms when heat is applied, a mechanism that uses a material that deforms when magnetized, mechanism deformed by application of magnetic force, or may be using any of the mechanisms caused the deformation by the gas applied. It is even better if the surface shape measuring device is a probe microscope that observes the shape and physical state of the sample surface having high sensitivity and high resolution.
In addition, the angle correction mechanism provided on the probe side uses a self-detecting cantilever that detects, as an electrical signal, the amount of strain deformed by the force received from the shape and physical state of the sample surface as a probe. A configuration in which a mechanism capable of correcting the angle of the cantilever portion by applying a voltage may be added.
A sample in which a silicon substrate is manufactured by anisotropic etching may be used as a sample having a known angle.
The procedure for correcting the angle is as follows. A sample with a known angle is placed at a predetermined position on a sample stage on which the sample to be measured is mounted. The sample stage is mounted via a two-direction angle correction mechanism configured on a mechanism (electrical or manual stage) that can move in the plane. In this embodiment, a commercially available sample having a known angle can be installed at the end of the sample stage. (Angle 54.7 ° ± °) Hereinafter, the correction procedure of the present invention will be described with reference to FIG.
[0019]
In FIG. 1, a cantilever 4 is fixed to the tip of a fine movement mechanism 1 made of a piezoelectric element that finely positions a probe in three dimensions through a probe inclination correction mechanism 2 that changes the inclination of the probe and a cantilever fixing base 3. The correction mechanism unit 2 can correct the inclination in the X and Y directions. The cantilever is fixed by bonding (not shown), mechanical fixing to a screw, fixing using a magnet, vacuum suction, or the like. The other end of the fine movement mechanism is fixed to the housing. A rod-like probe 5 is formed at the tip of the cantilever 4. Then, the sample 6 is arranged at a position facing the rod-shaped probe 5. Since a simple structure can be obtained, a self-detecting cantilever in which a rod-like probe 5 is formed is used in this embodiment. When the optical lever mechanism is used, a small optical lever mechanism is formed at the tip of the fine movement mechanism, and a probe tilt correction mechanism section is configured between the fine movement mechanism and the small optical lever mechanism. Further, when the laser light source of the optical lever mechanism and the photo detector part for detecting reflected light are separated, the position of the photo detector part or the reflection mirror is corrected by the tilt of the probe.
[0020]
First, the inclination of the probe is corrected with respect to the Z direction that the probe follows.
1. The flat part of the upper surface where the angle shape of the sample 6 having a known angle is not present is measured. (FIG. 1a) The inclination of the angle correction sample is corrected by the angle correction mechanism on the sample stage side so that the flat portion on the upper surface having no angle shape can be measured horizontally. (Fig. 1b)
3. The known angle shape portion 7 is measured. (Fig. 1c)
4). The probe side angle correction mechanism 2 corrects the probe side angle so that the angle can be measured appropriately. (Fig. 1d)
With the above operation, the tilt of the probe is corrected with respect to the Z direction that the probe follows.
Next, the tilt correction of the sample to be measured is performed.
5. Measure the flat part of the upper surface without the shape of the object to be measured. (Fig. 1e)
6). The inclination of the sample 8 to be measured is corrected by the angle correction mechanism on the sample stage side so that the flat portion of the upper surface having no shape can be measured horizontally, and then the groove shape 9 to be measured is measured. (Fig. 1f)
Through the above operation, the inclination of the sample and the probe can be corrected, and the probe appropriately follows the sample shape with respect to the sample shape to be measured.
[0021]
Next, the apparatus configuration of the present embodiment will be described. In this embodiment, the probe side is configured to scan in three dimensions in the X, Y, and Z directions with respect to the sample. Of course, in the present invention, X, Y, Z three-dimensional scanning may be performed on the sample side, or a combination of scanning in the X, Y, or Z direction on the sample side and Z, X, Y scanning on the probe side is possible. That is easy to say. Most of the samples to be observed in the semiconductor field have a wafer shape, and most of them have a large diameter of 100, 200, or 300 mm. From this point, it is conceivable to scan the sample side with a moving means such as an X, Y stage to measure the sample over a wide range, but for measuring a fine shape, the probe side is scanned in three dimensions X, Y, Z. The type is considered valid.
[0022]
The sample stage on which the sample is mounted is configured via an X, Y, Z stage, and a sample side angle correction stage. The X and Y stages are used for moving the sample to the observation target position on the sample with respect to the probe. The Z stage is used to bring the probe close to the measurable position with respect to the sample surface. In the atomic force microscope, this means that the probe is brought close to the force area. Further, in terms of the device configuration, the Z stage may be configured on the fine movement mechanism side that scans the probe. A probe is formed at a position facing the sample, and the probe is fixed to a fine movement mechanism that scans the probe in three dimensions with respect to the sample surface via a probe fixing mechanism and a probe angle correction mechanism. In the present embodiment, a hollow cylindrical fine movement mechanism using a piezoelectric element material that deforms when a voltage is applied is used. Further, although the fine movement mechanism has a hollow cylindrical shape, a triaxial independent fine movement mechanism is effective in consideration of an arc error at the probe tip. However, in the case of fine part measurement, the scanning area is small and the arc error can be ignored. In this embodiment, a hollow cylindrical shape whose rigidity is relatively increased when the arc error is small is used. In order to improve the dimensional accuracy, it is effective to monitor the displacement by combining the fine movement mechanism with other displacement detection means (capacitance type displacement sensor, etc.) or perform feedback control (closed loop control). It is well known that there is. On the other hand, the fine movement mechanism is mechanically fixed to the main body arm with a fixing screw via the housing. The structure of the present embodiment includes a sample positioning mechanism (X, Y stage), an optical microscope for specifying the position of the sample, a focus adjustment of the optical microscope, and a mechanism for positioning the sample at a position where the probe can be measured (Z stage). ) Is configured on the X and Y stages. A fine movement mechanism that scans the optical microscope and the probe in three dimensions (X, Y, Z) is disposed at a position facing the sample via an arm. And the said member is comprised on the anti-vibration mechanism for preventing the vibration from a floor via a plate. The probe microscope apparatus described in, for example, Japanese Patent Laid-Open No. 10-288618 (Patent Document 6) has a structure that is entirely covered with a soundproof cover for preventing external acoustic noise from entering. The mechanism that is characteristic of was added.
[0023]
In addition, in order to manage the angle when the probe is manufactured, the probe angle correction mechanism is a mechanism using a piezoelectric element in consideration of the fact that a large angle difference does not occur when the probe is attached and a rigid surface. The displacement of the piezoelectric element may change due to a creep phenomenon when a voltage is applied. In order to strictly manage the displacement, it is necessary to control the capacity. Moreover, it is necessary to perform control (closed loop control) in combination with a displacement sensor. In this embodiment, the piezoelectric element is a laminated one. As the probe angle adjustment mechanism, if the device configuration can be driven to reduce the adjustment amount, a piezoelectric element having a small amount of displacement but less creep and a good linearity can be used. When the amount of displacement is required, it can be achieved by combining a magnifying mechanism with the piezoelectric element, but care must be taken not to cause a decrease in rigidity.
[0024]
【The invention's effect】
In the present invention, the tip of the probe reaches the bottom surface of the measurement object with respect to the measurement object having a large aspect ratio (height / width or height) by correcting the sample inclination and the probe inclination, and the depth and height are mainly used. It is possible to provide an effective surface shape measuring device that enables shape measurement to be performed, which makes it possible to relatively easily measure the shape of semiconductor device structures that are becoming more miniaturized without cutting the cross section and observing with a microscope. There is an effect that becomes possible. In addition, using the result, it is possible to obtain an effect that the processing condition of the semiconductor or the like and the evaluation of the finish can be accurately evaluated.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of the present invention.
FIG. 2 is a diagram showing a typical cantilever.
FIG. 3 shows a typical cantilever probe.
FIG. 4 is a diagram showing shape measurement by a typical probe.
FIG. 5 shows a typical cantilever bar probe.
FIG. 6 is a view showing a state in which the tip of a rod-shaped probe is in contact with a side wall of a shape measurement target.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Fine moving element 2 ... Probe inclination correction mechanism part 3 ... Cantilever fixed base 4, 10 ... Cantilever 5 ... Rod-shaped probe 6 ... Sample with known angle 7 ... Known angle shape 8 ... Samples 9, 12, 13 ... Groove and hole shape 11 ... Probe

Claims (3)

アスペクト比が大きい測定対象部を有する測定対象試料の形状を測定する表面形状測定装置において、
カンチレバーの先端に設けられた棒状プローブと、
試料側に設けた該試料の水平位の調整を行う第一の角度補正機構と、
プローブ側に設けた前記棒状プローブの Z 軸に対する角度を調整する第二の角度補正機構と、
平面部と既知角度形状部を有した参照試料と、
を備え、
前記第一の角度補正機構が前記参照試料の平面部の測定結果に基づいて該参照試料の水平位を補正し、
前記第二の角度補正機構が水平位を補正した前記参照試料の既知角度形状部の測定結果に基づいて前記棒状プローブの Z 軸に対する角度を補正し、
再度前記第一の角度補正機構が測定対象試料の平面部の測定結果に基づいて該測定対象試料の水平位を補正することを特徴とする表面形状測定装置。
In a surface shape measuring apparatus for measuring the shape of a measurement target sample having a measurement target portion having a large aspect ratio,
A rod-shaped probe provided at the tip of the cantilever;
A first angle correction mechanism for adjusting the horizontal position of the sample provided on the sample side;
A second angle correction mechanism for adjusting an angle with respect to the Z axis of the rod-shaped probe provided on the probe side ;
A reference sample having a planar portion and a known angle shape portion;
With
The first angle correction mechanism corrects the horizontal position of the reference sample based on the measurement result of the flat portion of the reference sample,
Correcting the angle of the rod-shaped probe with respect to the Z- axis based on the measurement result of the known angle shape portion of the reference sample whose horizontal position is corrected by the second angle correction mechanism ;
The surface shape measurement apparatus, wherein the first angle correction mechanism corrects the horizontal position of the measurement target sample again based on the measurement result of the flat portion of the measurement target sample .
前記試料から受ける原子間力等の物理量を検出する検出機構と、
前記試料と該検出機構を3次元的に相対運動させ粗い位置決めを行なう粗動機構及び微細な位置決めを行なう微動機構と、を備え、試料表面の形状あるいは物理状態を観察することを特徴とする請求項1に記載の表面形状測定装置。
A detection mechanism for detecting a physical quantity of an atomic force or the like received from the sample,
A coarse movement mechanism for performing rough positioning by relatively moving the sample and the detection mechanism three-dimensionally and a fine movement mechanism for performing fine positioning, and observing the shape or physical state of the sample surface. Item 2. The surface shape measuring apparatus according to Item 1.
前記プローブの形状が円柱または多角形の棒状形状からなることを特徴とする請求項1または2に記載の表面形状測定装置。  The surface shape measuring apparatus according to claim 1, wherein the probe has a cylindrical or polygonal bar shape.
JP2003004830A 2003-01-10 2003-01-10 Surface shape measuring device Expired - Fee Related JP4037275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003004830A JP4037275B2 (en) 2003-01-10 2003-01-10 Surface shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003004830A JP4037275B2 (en) 2003-01-10 2003-01-10 Surface shape measuring device

Publications (2)

Publication Number Publication Date
JP2004219170A JP2004219170A (en) 2004-08-05
JP4037275B2 true JP4037275B2 (en) 2008-01-23

Family

ID=32895685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004830A Expired - Fee Related JP4037275B2 (en) 2003-01-10 2003-01-10 Surface shape measuring device

Country Status (1)

Country Link
JP (1) JP4037275B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112394199A (en) * 2019-08-16 2021-02-23 长鑫存储技术有限公司 Atomic force microscope and measuring method thereof

Also Published As

Publication number Publication date
JP2004219170A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
US7685869B2 (en) Nanoindenter
US7478552B2 (en) Optical detection alignment/tracking method and apparatus
US5507179A (en) Synchronous sampling scanning force microscope
US9970851B2 (en) Measuring head for nanoindentation instrument and measuring method
JP5000076B2 (en) Force scanning probe microscope
KR20100019415A (en) Fast scanning spm scanner and method of operating same
US10197595B2 (en) Dual-probe scanning probe microscope
US7041963B2 (en) Height calibration of scanning probe microscope actuators
US5641897A (en) Scanning apparatus linearization and calibration system
US9134340B2 (en) Method of investigating a sample surface
Stahl et al. Atomic force microscope using piezoresistive cantilevers and combined with a scanning electron microscope
US7945964B2 (en) Apparatus structure and scanning probe microscope including apparatus structure
EP3111239A1 (en) Method and apparatus to compensate for deflection artifacts in an atomic force microscope
JP4037275B2 (en) Surface shape measuring device
JP4344850B2 (en) Micro material testing equipment
JP2006220597A (en) Surface information measurement device
JP2008051690A (en) Optical displacement detecting mechanism, and surface information measuring device using the same
JPH06258072A (en) Piezoelectric element thin film evaluating apparatus, interatomic force microscope
JP2007273617A (en) Device and method for evaluating piezoelectric thin-film
US20070012095A1 (en) Scanning probe microscope
JP5226837B2 (en) Spot light alignment method of optical displacement detection mechanism for scanning probe microscope
Dal Savio et al. 3D metrology with a compact scanning probe microscope based on self-sensing cantilever probes
JP3892184B2 (en) Scanning probe microscope
KR20240004958A (en) AFM imaging with creep compensation
EP3818380A1 (en) Probe chip, scan head, scanning probe microscopy device and use of a probe chip

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071031

R150 Certificate of patent or registration of utility model

Ref document number: 4037275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees