JP4036325B2 - Aluminum alloy extruded material excellent in impact fracture resistance and vehicle member using the same - Google Patents

Aluminum alloy extruded material excellent in impact fracture resistance and vehicle member using the same Download PDF

Info

Publication number
JP4036325B2
JP4036325B2 JP2002199307A JP2002199307A JP4036325B2 JP 4036325 B2 JP4036325 B2 JP 4036325B2 JP 2002199307 A JP2002199307 A JP 2002199307A JP 2002199307 A JP2002199307 A JP 2002199307A JP 4036325 B2 JP4036325 B2 JP 4036325B2
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
extruded material
component
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002199307A
Other languages
Japanese (ja)
Other versions
JP2004043834A (en
Inventor
伸治 牧野
一浩 西川
清人 刑部
哲 村上
利昌 萩中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Keikinzoku Co Ltd
Original Assignee
Aisin Keikinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Keikinzoku Co Ltd filed Critical Aisin Keikinzoku Co Ltd
Priority to JP2002199307A priority Critical patent/JP4036325B2/en
Publication of JP2004043834A publication Critical patent/JP2004043834A/en
Application granted granted Critical
Publication of JP4036325B2 publication Critical patent/JP4036325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、車両のサスペンション部品等、高い耐衝撃破壊性が要求される部品のアルミ化を図るのに有効なアルミニウム合金押出材及び、それを用いた高い耐衝撃破壊性部材に関する。
【0002】
【従来の技術】
車両の軽量化を図る目的でサスペンション部品等もアルミ化が検討され、例えば、図4に示す車両のサスペンション部品の構成例にて説明すると、ロアーアーム8やアッパーアーム6等においては、中実部品であり、アルミニウム合金の鋳造材や鍛造材を用いるものである(特開2001−73056号公報、特開2001−162318号公報)。なお、7はナックルである。
それに対してブラケット類1の部品は、中空部品であり、アルミニウム合金押出材にて部材が得られれば中空部加工や取り付け面の平面度を確保するための機械加工が少なくて済み、軽量化、低コストが期待される。
しかし、車両のサスペンション部品は、走行時の衝撃を直接受け、それを吸収する部品であるから高強度のみならず、高い耐衝撃破壊性が要求される。
従来、このような高強度及び高耐衝撃破壊性の要求品質を満足できるアルミニウム合金押出材が得られなかったために、鋳鉄部材が一般に採用されていた。
【0003】
【発明が解決しようとする課題】
本発明は上記実状に鑑みて、強度及び耐衝撃破壊性に優れたアルミニウム合金押出材及びそれを用いた車両部品等の提供を目的とする。
【0004】
【課題を解決するための手段】
請求項1記載の発明における技術的要旨は、Si:0.5〜0.9質量%好ましくは0.6〜0.8質量%、Mg:0.75〜1.15質量%好ましくは0.85〜1.05質量%、Cu:0.10〜0.35質量%好ましくは0.15〜0.30質量%、Mn:0.02〜0.20質量%好ましくは0.02〜0.10質量%、Cr:0.1〜0.3質量%好ましくは0.1〜0.2質量%、Ti:0.02質量%を含むとともに、Fe:0.30〜0.45質量%(0.30を除く)好ましくは0.30〜0.40質量%(0.30を除く)の範囲になるように成分調整し、残部がAlと不可避的不純物であることを特徴とする耐衝撃破壊性に優れたアルミニウム合金押出材とした。
【0005】
従来のアルミニウム合金押出材においては、押出加工性を考慮しつつ、高強度を得るために、Mg及びSiの成分割合を調整し、局部腐食、耐応力腐食割れ等の耐食性を考慮しつつ、Cu成分を調整し、さらには再結晶粒の微細化による強度向上を目的に、Ti成分等が微量添加調整されていた。
しかし、このような合金組成では、球状の結晶組織となり、衝撃力が負荷されると、この球状の粒界に沿って破壊伝幡し、靭性及びシャルピー特性等が充分に得られなかったのに対して、請求項1記載の発明においては、Mn及びCr成分でアルミニウム合金の押出加工時の再結晶化を抑制しつつ、Fe成分を0.30〜0.45質量%(0.30を除く)、好ましくは0.30〜0.40質量%(0.30を除く)の範囲に調整することで安定した繊維状組織(ファイバー組織)が得られたものである。
即ち、従来はFe成分が不純物として取り扱われ、押出加工用ビレットの鋳造時等において、巨大な金属間化合物を晶出し、アルミニウム合金としての機械的性質を損なう恐れがあることから、極力、不純物としてのFe成分の混入をおさえるようにしていた。
それに対して本願出願人は、Fe成分範囲を適切に調整することで、Mn、Cr成分等の組み合わせにて、安定した繊維状組織が得られることを見い出したものである。
【0006】
Si成分を0.5〜0.9質量%、好ましくは0.6〜0.8質量%にし、Mg成分を0.75〜1.15質量%、好ましくは0.85〜1.05質量%の範囲に調整したのは、押出加工性を考慮しつつ、MgSi粒子の析出による引張強度及び耐力の向上を図ったものである。
なお、MgSiの理論比率に対して、わずかにSiリッチに成分調整するのが好ましい。
【0007】
Cu成分は、過剰に添加すると局部腐食を発生し、耐応力腐食割れを生じる原因となるのでこれらを考慮しつつ、マトリックス強度向上を図るべく、0.10〜0.35質量%、好ましくは0.15〜0.30質量%の範囲に調整した。
【0008】
Mn、Cr成分は、過剰になると押出性を低下させるだけでなく、かえって靭性を低下させるので、Fe成分が0.30〜0.45質量%(0.30を除く)、好ましくは0.30〜0.40質量%(0.30を除く)の範囲にて最も効果的に繊維状組織を安定化させる範囲として、Mn成分0.02〜0.20質量%、好ましくは0.02〜0.10質量%、Cr成分0.1〜0.3質量%、好ましくは0.1〜0.2質量%の範囲に設定した。
【0009】
請求項2記載の発明の技術的要旨は、上記のような合金組成からなる押出材の物性を生産性良く、効果的に発現させるための押出加工方法の提供がねらいである。
Si:0.5〜0.9質量%好ましくは0.6〜0.8質量%、Mg:0.75〜1.15質量%好ましくは0.85〜1.05質量%、Cu:0.10〜0.35質量%好ましくは0.15〜0.30質量%、Mn:0.02〜0.20質量%好ましくは0.02〜0.10質量%、Cr:0.1〜0.3質量%好ましくは0.1〜0.2質量%、Ti:0.02質量%を含むとともに、Fe:0.30〜0.45質量%(0.30を除く)好ましくは0.30〜0.40質量%(0.30を除く)の範囲になるように成分調整し、残部がAlと不可避的不純物からなるアルミニウム合金を用いて押出加工し、その直後に平均冷却速度500℃/分以上で冷却し、その後に人工時効処理を施すことを技術的要旨とする。
ここで、押出加工直後とは、押出加工後に押出材温度が約500℃以下にならない範囲にての意味である。
また、冷却速度は、押出材が約200℃以下になるまでの速度をいう。
このように、押出加工直後に急冷するとアルミニウム合金の再結晶化の進行を抑え、安定した繊維状組織を形成する効果がある。
【0010】
このようにして得られたアルミニウム合金押出材の金属組織について説明する。
従来のアルミニウム合金を用いた押出材の押出方向の組織が図5(イ)に示すように金属組織が粒状組織であり、粒界に沿って割れが伝幡しやすいが、上記のようにして得られたアルミニウム合金押出材の押出方向の断面金属組織は図5(ロ)に示すような繊維状組織になった。
これにより、前述したように高強度で、高い耐衝撃破壊性に優れたアルミニウム合金押出材が得られた。
【0011】
請求項1又は請求項2記載に係る新規アルミニウム合金押出材は靭性に優れ、特にシャルピー衝撃値が高く、耐衝撃破壊性が要求される各種部材、部品等に適用できる。
その中でも、車両のサスペンション部品等においては、大きな走行衝撃に耐えられるだけの耐衝撃破壊性が要求されるので、本発明に係る新規アルミニウム合金押出材を適用して初めて押出材によるアルミ化が可能になる。
【0012】
【発明の実施の形態】
図1(表1)に示す実施例1〜3の本発明に係る成分組成及び比較例1(JISA6N01相当)、比較例2(JISA6061相当)の成分組成になる用に、アルミニウム合金ビレット(直径204mm)を常法にて鋳造し、約560℃、6時間均質化処理した。
このビレットを約520℃に予熱し、約5m/分の押出速度で押出加工し、連続的に500〜600℃/分の速度で水冷した。
その後、所定の長さに切断後に185℃、約6時間人工時効してブラケット部材を得た。
【0013】
上記のそれぞれの供試材から試験片を切り出し、以下の試験及び評価を実施した。
引張強度、0.2%耐力値、伸びはJISZ2201、14A号試験片を切り出し、JISZ2241に準じて測定した。
シャルピー衝撃値は、JISZ2202、Vノッチ4号試験片を切り出し、常温にてJISZ2242に準じて測定した。
繊維状組織の評価は、押出方向の断面を研磨し、25倍光学顕微鏡観察により、繊維状組織の面積比率として測定した。
【0014】
その結果を図2(表2)に示す。
項目の欄の「押出方向」とは試験片を押出方向に切り出して評価したもので、「垂直方向」とは押出方向とは直角方向に試験片を切り出し評価したことを意味する。
JISA6N01合金相当の比較例1は、ほぼ全面的に粒状組織で、引張強度、耐力等も低いが、シャルピー衝撃値も低かった。
JISA6061合金相当の比較例2は引張強度、耐力は本発明に係る実施例1〜3のものに近い値を示したが、繊維状組織の比率が37%と低く、シャルピー衝撃値が低い。
これに対して、実施例に示したアルミニウム合金押出材においては、いずれも繊維状組織の比率が高く、シャルピー衝撃値が高かった。
【0015】
例えば、図4に示すサスペンション部品であるブラケット1は、その中空部内側にブッシュが挿入され、ブッシュは外側からゴム部材2、スチール円筒部材3、ゴムのマウント部材4、シャフトが挿入連結されるスチール円筒部材5から構成されている。
なお、1bはブラケット取り付け面で、1aが取り付け孔である。
製品の機能上、引張強度300MPa以上、耐力270MPa以上、伸び13%以上、シャルピー衝撃値押出方向25J/cm及び垂直方向17J/cm以上要求されるが、実施例の値はいずれも満足している。
また、耐食性についてはJISA6061合金(比較例2)と塩水噴霧試験にて比較した結果、差はなく、実施例3のサンプルを用いて車両塩害走行テストした結果、有害な腐食や、応力腐食割れは認められなかった。
【0016】
【発明の効果】
本発明においては、Si成分とMg成分の組み合わせ、及び、Cu成分を調整することで、引張強度、耐力値を確保しつつ、従来不純物と言われていたFe成分を所定の範囲に調整することで、Mn成分及び、Cr成分で再結晶化を抑え、耐衝撃破壊性に優れたアルミニウム合金押出材が得られる。
この場合に、押出直後に急冷することにより、再結晶化を抑え、より、安定した繊維状組織になる。
また、この押出材を適用することで、例えば、図4に示すような、取り付け面1bの平面度が確保しやすく、中空形状の精度が高く機械加工がほとんど不要のブラケット等の耐衝撃破壊性部材が得られる。
【図面の簡単な説明】
【図1】本発明に係るアルミニウム合金の合金組成(材料成分)例を示す。
【図2】押出材の試験評価結果を示す。
【図3】サスペンション部品の構成例を示す。
【図4】ブラケットの構造例を示す。
【図5】金属組織の模式図を示す。
【符号の説明】
1 ブラケット
1a ブラケット取り付け孔
1b ブラケット取り付け面
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to an aluminum alloy extruded material effective for achieving aluminum in parts that require high impact fracture resistance, such as vehicle suspension parts, and a high impact fracture resistant member using the same.
[0002]
[Prior art]
For the purpose of reducing the weight of the vehicle, the use of aluminum as a suspension component has been studied. For example, in the configuration example of the vehicle suspension component shown in FIG. 4, the lower arm 8 and the upper arm 6 are solid components. There are used aluminum alloy castings and forgings (JP 2001-73056 A, JP 2001-162318 A). In addition, 7 is a knuckle.
On the other hand, the parts of the brackets 1 are hollow parts, and if a member is obtained with an aluminum alloy extruded material, the machining of the hollow part processing and the flatness of the mounting surface can be reduced, and the weight can be reduced. Low cost is expected.
However, since vehicle suspension parts are parts that directly receive and absorb impact during travel, they are required to have not only high strength but also high impact fracture resistance.
Conventionally, cast iron members have been generally employed because an aluminum alloy extruded material that can satisfy the required quality of such high strength and high impact fracture resistance has not been obtained.
[0003]
[Problems to be solved by the invention]
In view of the above circumstances, an object of the present invention is to provide an aluminum alloy extruded material excellent in strength and impact fracture resistance, a vehicle component using the aluminum alloy extruded material, and the like.
[0004]
[Means for Solving the Problems]
The technical gist of the invention of claim 1 is that Si: 0.5 to 0.9 mass%, preferably 0.6 to 0.8 mass%, Mg: 0.75 to 1.15 mass%, preferably 0.00. 85 to 1.05 mass%, Cu: 0.10 to 0.35 mass%, preferably 0.15 to 0.30 mass%, Mn: 0.02 to 0.20 mass%, preferably 0.02 to 0.02. 10% by mass, Cr: 0.1 to 0.3% by mass, preferably 0.1 to 0.2 % by mass , Ti: 0.02% by mass and Fe: 0.30 to 0.45% by mass ( The component is adjusted so that it is preferably in the range of 0.30 to 0.40% by mass (excluding 0.30) except for 0.30, and the balance is Al and inevitable impurities. An aluminum alloy extruded material excellent in destructibility was obtained.
[0005]
In a conventional aluminum alloy extruded material, in order to obtain high strength while considering extrusion processability, the component ratio of Mg and Si is adjusted, and while considering corrosion resistance such as local corrosion and stress corrosion cracking, Cu For the purpose of adjusting the components and further improving the strength by refining the recrystallized grains, a small amount of Ti component or the like was adjusted.
However, with such an alloy composition, a spherical crystal structure is formed, and when an impact force is applied, fracture propagation propagates along this spherical grain boundary, and sufficient toughness, Charpy characteristics, etc. are not obtained. On the other hand, in the invention of claim 1, the Fe component is 0.30 to 0.45 mass% (excluding 0.30) while suppressing recrystallization during extrusion of the aluminum alloy with the Mn and Cr components. ) , Preferably a stable fibrous structure (fiber structure) is obtained by adjusting the amount in the range of 0.30 to 0.40 mass% (excluding 0.30) .
That is, conventionally, the Fe component is treated as an impurity, and when casting a billet for extrusion processing, a huge intermetallic compound may be crystallized, which may impair the mechanical properties as an aluminum alloy. In order to suppress the mixing of Fe components.
On the other hand, the applicant of the present application has found that a stable fibrous structure can be obtained by appropriately adjusting the Fe component range by a combination of Mn, Cr components and the like.
[0006]
Si component is 0.5 to 0.9% by mass, preferably 0.6 to 0.8% by mass, and Mg component is 0.75 to 1.15% by mass, preferably 0.85 to 1.05% by mass. The adjustment to the range is intended to improve the tensile strength and the yield strength by precipitation of Mg 2 Si particles while considering the extrusion processability.
Note that it is preferable to adjust the component slightly Si-rich with respect to the theoretical ratio of Mg 2 Si.
[0007]
If Cu component is added excessively, it causes local corrosion and causes stress corrosion cracking resistance. Therefore, considering these, 0.10 to 0.35% by mass, preferably 0 Adjusted to the range of .15 to 0.30 mass%.
[0008]
When Mn and Cr components are excessive, not only the extrudability is lowered, but also the toughness is lowered. Therefore, the Fe component is 0.30 to 0.45% by mass (except 0.30) , preferably 0.30. In the range of ~ 0.40% by mass (excluding 0.30) , the Mn component is 0.02 to 0.20% by mass, preferably 0.02 to 0% as the range for stabilizing the fibrous structure most effectively. .10 mass%, Cr component 0.1 to 0.3 mass%, preferably 0.1 to 0.2 mass%.
[0009]
The technical gist of the invention according to claim 2 is to provide an extrusion method for effectively expressing the physical properties of the extruded material having the above alloy composition with high productivity.
Si: 0.5 to 0.9% by mass, preferably 0.6 to 0.8% by mass, Mg: 0.75 to 1.15% by mass, preferably 0.85 to 1.05% by mass, Cu: 0.0. 10 to 0.35% by mass, preferably 0.15 to 0.30% by mass, Mn: 0.02 to 0.20% by mass, preferably 0.02 to 0.10% by mass, Cr: 0.1 to 0. 3% by mass, preferably 0.1 to 0.2 % by mass , Ti: 0.02% by mass and Fe: 0.30 to 0.45% by mass (excluding 0.30), preferably 0.30 The components were adjusted so as to be in the range of 0.40% by mass (excluding 0.30), and the balance was extruded using an aluminum alloy composed of Al and inevitable impurities. Immediately thereafter, the average cooling rate was 500 ° C./min. The technical point of view is to cool it as described above and then perform artificial aging treatment.
Here, “immediately after extrusion” means in a range where the temperature of the extruded material does not become about 500 ° C. or less after extrusion.
The cooling rate refers to the rate until the extruded material reaches about 200 ° C. or less.
Thus, rapid cooling immediately after extrusion has the effect of suppressing the progress of recrystallization of the aluminum alloy and forming a stable fibrous structure.
[0010]
The metal structure of the aluminum alloy extruded material thus obtained will be described.
As shown in FIG. 5 (a), the structure in the extrusion direction of the extruded material using a conventional aluminum alloy is a granular structure, and cracks are easy to propagate along the grain boundary. The cross-sectional metal structure in the extrusion direction of the obtained aluminum alloy extruded material was a fibrous structure as shown in FIG.
As a result, an aluminum alloy extruded material having high strength and high impact fracture resistance was obtained as described above.
[0011]
The novel aluminum alloy extruded material according to claim 1 or claim 2 is excellent in toughness, particularly has a high Charpy impact value, and can be applied to various members, parts and the like that require impact fracture resistance.
Among them, vehicle suspension parts and the like are required to have an impact fracture resistance that can withstand a large running impact. Therefore, it is only possible to apply a new aluminum alloy extruded material according to the present invention to aluminize with an extruded material. become.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In order to obtain the component composition of Examples 1 to 3 shown in FIG. 1 (Table 1) and the composition of Comparative Example 1 (corresponding to JIS A6N01) and Comparative Example 2 (corresponding to JIS A6061), an aluminum alloy billet (diameter 204 mm) ) Was cast by a conventional method and homogenized at about 560 ° C. for 6 hours.
This billet was preheated to about 520 ° C., extruded at an extrusion speed of about 5 m / min, and continuously water-cooled at a speed of 500 to 600 ° C./min.
Then, after cutting to a predetermined length, the bracket member was obtained by artificial aging at 185 ° C. for about 6 hours.
[0013]
A test piece was cut out from each of the above test materials, and the following tests and evaluations were performed.
Tensile strength, 0.2% proof stress, and elongation were measured in accordance with JISZ2241 after cutting out JISZ2201 and 14A test pieces.
The Charpy impact value was measured in accordance with JISZ2242 by cutting out a JISZ2202 and V-notch No. 4 test piece.
The evaluation of the fibrous structure was performed by polishing the cross section in the extrusion direction and measuring the area ratio of the fibrous structure by observation with a 25 × optical microscope.
[0014]
The results are shown in FIG. 2 (Table 2).
The “extrusion direction” in the item column means that the test piece was cut out and evaluated in the extrusion direction, and “vertical direction” means that the test piece was cut out and evaluated in a direction perpendicular to the extrusion direction.
Comparative Example 1 corresponding to the JIS A6N01 alloy had a grain structure almost entirely and had low tensile strength, proof stress, etc., but also had a low Charpy impact value.
Comparative Example 2 corresponding to JIS A6061 alloy showed values close to those of Examples 1 to 3 according to the present invention, but the ratio of the fibrous structure was as low as 37% and the Charpy impact value was low.
On the other hand, in the aluminum alloy extruded materials shown in Examples, the ratio of the fibrous structure was high and the Charpy impact value was high.
[0015]
For example, the bracket 1 which is a suspension part shown in FIG. 4 has a bush inserted inside the hollow portion, and the bush is steel from which the rubber member 2, the steel cylindrical member 3, the rubber mount member 4 and the shaft are inserted and connected from the outside. It is composed of a cylindrical member 5.
In addition, 1b is a bracket attachment surface and 1a is an attachment hole.
In terms of the function of the product, tensile strength of 300 MPa or more, proof stress of 270 MPa or more, elongation of 13% or more, Charpy impact value, extrusion direction of 25 J / cm 2 and vertical direction of 17 J / cm 2 or more are required. ing.
Moreover, as a result of comparing the corrosion resistance with the JIS A6061 alloy (Comparative Example 2) and the salt spray test, there is no difference. As a result of the vehicle salt damage running test using the sample of Example 3, harmful corrosion and stress corrosion cracking are I was not able to admit.
[0016]
【The invention's effect】
In the present invention, by adjusting the combination of the Si component and the Mg component and the Cu component, the Fe component, which has been conventionally referred to as an impurity, is adjusted to a predetermined range while ensuring the tensile strength and the proof stress value. Thus, an aluminum alloy extruded material having excellent impact fracture resistance can be obtained by suppressing recrystallization with the Mn component and the Cr component.
In this case, by rapidly cooling immediately after extrusion, recrystallization is suppressed and a more stable fibrous structure is obtained.
In addition, by applying this extruded material, for example, as shown in FIG. 4, it is easy to ensure the flatness of the mounting surface 1b, and the impact fracture resistance of a bracket or the like with high accuracy of the hollow shape and almost no machining is required. A member is obtained.
[Brief description of the drawings]
FIG. 1 shows an example of an alloy composition (material component) of an aluminum alloy according to the present invention.
FIG. 2 shows a test evaluation result of the extruded material.
FIG. 3 shows a configuration example of a suspension component.
FIG. 4 shows a structural example of a bracket.
FIG. 5 shows a schematic diagram of a metal structure.
[Explanation of symbols]
1 Bracket 1a Bracket mounting hole 1b Bracket mounting surface

Claims (2)

Si:0.5〜0.9質量%、Mg:0.75〜1.15質量%、Cu:0.10〜0.35質量%、Mn:0.02〜0.20質量%、Cr:0.1〜0.3質量%、Ti:0.02質量%を含むとともに、Fe:0.30〜0.45質量%(0.30を除く)の範囲になるように成分調整し、残部がAlと不可避的不純物であることを特徴とする耐衝撃破壊性に優れたアルミニウム合金押出材。Si: 0.5 to 0.9% by mass, Mg: 0.75 to 1.15% by mass, Cu: 0.10 to 0.35% by mass, Mn: 0.02 to 0.20% by mass, Cr: 0.1 to 0.3% by mass, Ti: 0.02% by mass , Fe: 0.30 to 0.45% by mass (excluding 0.30) Is an aluminum alloy extrudate excellent in impact fracture resistance, characterized in that is an inevitable impurity with Al. Si:0.5〜0.9質量%、Mg:0.75〜1.15質量%、Cu:0.10〜0.35質量%、Mn:0.02〜0.20質量%、Cr:0.1〜0.3質量%、Ti:0.02質量%を含むとともに、Fe:0.30〜0.45質量%(0.30を除く)の範囲になるように成分調整し、残部がAlと不可避的不純物からなるアルミニウム合金を用いて押出加工し、その直後に平均冷却速度500℃/分以上で冷却し、その後に人工時効処理を施すことにより得られることを特徴とする耐衝撃破壊性に優れたアルミニウム合金押出材。Si: 0.5 to 0.9 mass%, Mg: 0.75 to 1.15 mass%, Cu: 0.10 to 0.35 mass%, Mn: 0.02 to 0.20 mass%, Cr: 0.1 to 0.3% by mass, Ti: 0.02% by mass , Fe: 0.30 to 0.45% by mass (excluding 0.30) Is obtained by extruding using an aluminum alloy consisting of Al and inevitable impurities, immediately after cooling at an average cooling rate of 500 ° C./min or more, and then performing an artificial aging treatment. Aluminum alloy extruded material with excellent destructibility.
JP2002199307A 2002-07-08 2002-07-08 Aluminum alloy extruded material excellent in impact fracture resistance and vehicle member using the same Expired - Fee Related JP4036325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002199307A JP4036325B2 (en) 2002-07-08 2002-07-08 Aluminum alloy extruded material excellent in impact fracture resistance and vehicle member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002199307A JP4036325B2 (en) 2002-07-08 2002-07-08 Aluminum alloy extruded material excellent in impact fracture resistance and vehicle member using the same

Publications (2)

Publication Number Publication Date
JP2004043834A JP2004043834A (en) 2004-02-12
JP4036325B2 true JP4036325B2 (en) 2008-01-23

Family

ID=31706486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199307A Expired - Fee Related JP4036325B2 (en) 2002-07-08 2002-07-08 Aluminum alloy extruded material excellent in impact fracture resistance and vehicle member using the same

Country Status (1)

Country Link
JP (1) JP4036325B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4775935B2 (en) * 2005-01-31 2011-09-21 アイシン軽金属株式会社 Aluminum alloy extruded material with excellent impact fracture resistance

Also Published As

Publication number Publication date
JP2004043834A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
JP4977281B2 (en) High-strength aluminum alloy extruded material excellent in shock absorption and stress corrosion cracking resistance and method for producing the same
JP2697400B2 (en) Aluminum alloy for forging
US6059902A (en) Aluminum alloy of excellent machinability and manufacturing method thereof
KR102639009B1 (en) Improved 3XX aluminum casting alloy, and method of making the same
JP6057855B2 (en) Aluminum alloy extruded material for cutting
AU2017367371B2 (en) Aluminum alloy for extruded material, extruded material using the same, and method for producing extruded material
JP2008274441A (en) Aluminum alloy extruded material excellent in crushing characteristics
JP4775935B2 (en) Aluminum alloy extruded material with excellent impact fracture resistance
JP7182435B2 (en) Al-Mg-Si based aluminum alloy extruded material
CA2564078A1 (en) Heat treatable al-zn-mg alloy for aerospace and automotive castings
JP2003221636A (en) Al-Mg-Si ALUMINUM ALLOY EXTRUSION MOLDED MATERIAL SHOWING EXCELLENT RESISTANCE TO IMPACT FRACTURE
JP3681822B2 (en) Al-Zn-Mg alloy extruded material and method for producing the same
GB2065516A (en) A cast bar of an aluminum alloy for wrought products, having improved mechanical properties and workability
US20230357902A1 (en) Method For Manufacturing Aluminum Alloy Extruded Material With High Strength And Excellent In SCC Resistance And Hardenability
JP2001107168A (en) High strength and high toughness aluminum alloy forged material excellent in corrosion resistance
JP2001011559A (en) High strength aluminum alloy extruded material excellent in corrosion resistance and its production
JP4036325B2 (en) Aluminum alloy extruded material excellent in impact fracture resistance and vehicle member using the same
JPH07145440A (en) Aluminum alloy forging stock
JP3853021B2 (en) Method for producing Al-Cu-Mg-Si alloy hollow extruded material excellent in strength and corrosion resistance
GB2130941A (en) A cast bar of an aluminum alloy for wrought products, having improved mechanical properties and workability
JP2001240930A (en) Al-Mg-Si BASED ALUMINUM ALLOY EXTRUDED MATERIAL FOR DOOR BEAM, AND DOOR BEAM
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JPH0941064A (en) Production of aluminum alloy for casting and aluminum alloy casting material
JPH09241785A (en) High toughness aluminum alloy
JP2003155535A (en) Aluminum alloy extruded material for automobile bracket, and production method therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20030616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20030617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070530

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071025

R150 Certificate of patent or registration of utility model

Ref document number: 4036325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees