JP4036305B2 - How to line underground pipes - Google Patents

How to line underground pipes Download PDF

Info

Publication number
JP4036305B2
JP4036305B2 JP23021897A JP23021897A JP4036305B2 JP 4036305 B2 JP4036305 B2 JP 4036305B2 JP 23021897 A JP23021897 A JP 23021897A JP 23021897 A JP23021897 A JP 23021897A JP 4036305 B2 JP4036305 B2 JP 4036305B2
Authority
JP
Japan
Prior art keywords
pipe
lining
pipeline
pipe line
lining material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23021897A
Other languages
Japanese (ja)
Other versions
JPH1163366A (en
Inventor
正一 飯村
柳二 逆井
肇 寺田
斉藤  均
太司 槇本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ashimori Industry Co Ltd
Ashimori Engineering Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Ashimori Industry Co Ltd
Ashimori Engineering Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ashimori Industry Co Ltd, Ashimori Engineering Co Ltd, Tokyo Gas Co Ltd filed Critical Ashimori Industry Co Ltd
Priority to JP23021897A priority Critical patent/JP4036305B2/en
Publication of JPH1163366A publication Critical patent/JPH1163366A/en
Application granted granted Critical
Publication of JP4036305B2 publication Critical patent/JP4036305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pipe Accessories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地中に埋設された管路に対して補修又は補強の目的で内張りを施すための方法に関するものである。
【0002】
【従来の技術】
従来から、地中に埋設された管路に対して、損傷部の補修や補強の目的で内張りすることが行われている。管路に内張りを施すには、内張りしようとする管路部分の両端部を掘り起こして管路を切断し、その端末から管路部分内に内張り材を挿通し、内圧をかけて内張り材を管路内面に圧接している。
【0003】
内張り材の構造やその内張り材を管路部分に挿通する手段としては種々のものが提案されているが、多くの場合内張り作業において、内張り材を加熱する工程が必要とされる。
【0004】
例えば筒状の織物などの繊維層の内面に気密層を形成して内張り材とし、その内張り材の前記繊維層に反応硬化型樹脂液を含浸させて管路部分内に挿通し、その内張り材内に加熱加圧流体を送入して、内張り材を管路内面に圧接すると共に樹脂液を加熱硬化させ、内張りする方法がある。
【0005】
また熱可塑性樹脂やそれを筒状繊維層で補強したパイプを内張り材とし、これを管路内に挿通して加熱加圧流体を送入し、その加熱加圧流体の熱によって熱可塑性樹脂を軟化させて内圧により膨らませ、管路内面に圧接して内張りする方法も知られている。
【0006】
【発明が解決しようとする課題】
しかしながらこれらの方法においては、内張りした直後又はある程度時間が経過した後に、突然管路が破断することがある。特に鋼管を非裏波溶接により溶接した管路系においては、30mを超える長尺の管路の場合に、溶接箇所において破断することが少なくなく、一回の作業で内張りすることができる長さに限界があり、作業効率が悪かったのである。
【0007】
かかる現象について検討した結果が、土木学会第39回年次学術講演会講演集(1984)「熱膨張、収縮履歴により埋設管に生じる応力について:飯村正一、西尾宣明」に詳細に述べられている。
【0008】
この学術論文の内容を簡単に説明すると、次の通りである。すなわち、図3に示すように地下1mに埋設された約80mの鋼管の管路1に、(1)〜(13)のほゞ等間隔の13箇所に温度計及び歪み計を取り付け、a〜gのほゞ等間隔の7箇所に変位計を設置した。そして管路の一端からスチームを送入して管体温度が約60℃上昇するまで(約69分間)加熱し、然る後スチームの送入を停止して12日間に亙って自然に冷却し、各測定点における温度、歪み及び変位を測定している。
【0009】
その試験の結果における、a〜gの各点における温度と変位量との関係を示すグラフを図4に、(2)、(4)、(6)及び(7)の点における温度と歪み量との関係を示すグラフを図5に示す。なお前記学術論文においては、さらに多くのデーターが示されているが、ここでは省略する。
【0010】
而して図4によれば、管路1の中央のd点においては、温度の変化に拘らず殆ど変位を生じていない。そして左半部のa、b、c点においては前記試験の実施により左方への変位が、右半部のe、f、g点においては右方への変位が生じており、d点からの距離が大きくなるに従って変位の量もほゞ距離に比例して大きくなっており、管路1はその中央を起点として、前記試験の実施に伴って伸長していることが理解できる。
【0011】
各測定点における変位の量を見ると、温度が上昇し始めると変位が生じ、温度が上昇するに従ってその変位の量も大きくなっている。そして約80℃まで昇温した後管路1が冷却すると、変位の量は小さくなり管路1は収縮しているが、その収縮の速度は昇温による伸長の速度より遅れている。
【0012】
そして管路1が十分に冷却されて常温に戻った状態においても、変位の量はゼロに戻ることはなく、管路1は若干伸長したままである。
【0013】
また図5によれば、加熱の開始に伴って管路1に圧縮歪みが生じ、温度の上昇に伴って歪みの量は大きくなる。そして各測定点における歪みの大きさは、中央の(7)点において最も大きく、端末に近い(2)点において最も小さいものとなっている。
【0014】
そして約80℃にまで昇温した後管路1が冷却すると、圧縮歪みは急速に小さくなり、ゼロを超えて引っ張り歪みが生じる。そして温度の低下と共に引っ張り歪みの大きさは大きくなり、一定の値に落ち着く。温度が常温に戻っても引っ張り歪みは残ったままであり、その大きさは加熱時に生じた圧縮歪みの最大値とほゞ同程度である。
【0015】
これらの結果から、次のようなことが推測される。すなわち、管路1が加熱されるに伴って当該管路1は鋼材の線膨脹係数に従って伸長しようとするが、地中に埋設された管路1はその周囲の土砂により拘束されており、自由な伸長が制限されているので、管路1には圧縮歪みが生じつつ、その拘束力に抗して周囲の土砂との間で滑りが生じ、伸長を生じる。
【0016】
管路1の中央部においては、そこから両端までに至る管路部分が拘束されているので変位が生じにくく、かつ拘束力が大きいので滑りによる歪みが開放されることがなく大きい圧縮歪みが生じる。
【0017】
それに対し管路1の端末に近い箇所では、そこから端末までの管路部分が短いので拘束力が小さく、管路1と土砂との間に滑りが生じて管路1にはその端末の方向に向って大きな変位が生じ、それによって圧縮歪みは開放されるのでその値は小さくなる。
【0018】
而して最高温度まで昇温した後管路1が冷却すると、当該管路1が収縮することにより蓄積されていた圧縮歪みは急速に減少する。そして圧縮歪みがゼロになってもさらに管路1はそれまでに伸長していた分が収縮しようとし、それを周囲の土砂により拘束されているので自由な収縮が制限され、管路1には引っ張り歪みが生じることとなる。そして拘束力に抗して周囲の土砂との間で滑りが生じ、管路1には収縮を生じる。
【0019】
このとき管路1の中央部においては、そこから両端までに至る管路部分が拘束されているので変位が生じにくく、かつ拘束力が大きいので滑りによる歪みが開放されることがなく大きい引っ張りが生じる。
【0020】
一方管路1の端末に近い箇所では、そこから端末までの管路部分が短いので拘束力が小さく、比較的小さい力で管路1と土砂との間に滑りが生じて、管路1にはその中央の方向に向って大きな変位が生じ、それによって圧縮歪みは開放されるのでその値は大きくなることがない。
【0021】
そして最終的には、管路1の中央部においては大きい、端末付近においては小さい引っ張り歪みが残留し、その残留歪みにより管路1が常温に戻っても伸びが解消されることがなく、変位が残るのである。
【0022】
而してかかる状態において、管路1の中央付近においては大きな引っ張り歪みが残留しており、時間が経過してもそれが解消されることがないので、鋼管の溶接部などの強度が弱い部分に前記大きな引っ張り歪みが集中し、管路1が破断するに至るものであると考えられる。
【0023】
鋳鉄管などでは短管をフランジで接続しているため、そのフランジが地盤内において変位することができないので、管路1が加熱しても伸長することがなく、そこに生じた圧縮歪みは管路1が冷えることにより解消され、引っ張り歪みが残留することはない。またヒューム管などでは接続部が比較的自由に動き得るので、歪みが生じることは少ない。
【0024】
これに対し鋼管を溶接した管路系においては、鋼管の溶接部は伸縮不能であり、かつ熱による伸縮に対しては地盤が圧迫することによる摩擦抵抗により拘束されるだけであるので、内張り作業のために限られた管路部分を管路系から切り離すと、大きな圧縮歪みがかかったときに伸長を止めることができず、さらに冷却により生じた引っ張り歪みに対しては地盤の拘束力により収縮が抑制され、最終的に大きな引っ張り歪みが残留する。
【0025】
そして残留する引っ張り歪みの大きさは、切り離された管路部分の端末からの距離が長くなるに従って大きくなるので、長い管路部分について内張りを施すと、その内張り作業における熱により大きな引っ張り歪みが残留し、その歪みにより管路が破断する。従って上述のような鋼管を溶接した管路系においては、一回の作業で内張りできる長さに限界が生じるのである。
【0026】
本発明はかかる事情に鑑みなされたものであって、前述の鋼管を溶接した管路系においても、十分に長い管路部分について一回の作業で内張りすることのできる方法を提供することを目的とするものである。
【0027】
【課題を解決するための手段】
而して第一の発明は、地中に埋設された管路における内張りすべき管路部分の両端末部の管壁に、当該管路部分内に内張り材を導入するに足りる窓を開削し、当該窓の両側の管路間に補強材を介在せしめ、当該窓から前記管路部分内に内張り材を導入すると共に加熱して内張りを施し、内張りした管路部分が冷却した後、前記窓付近の管路を切除して内張り材の端末処理を行い、切除した部分の管路を復旧することを特徴とするものである。
【0029】
また第二の発明は、地中に埋設された管路における内張りすべき管路部分の両端末部を切断し、当該管路部分の端末部を、支持部材を介して当該管路部分に対向する管路部分に対して支持し、その端末から前記管路部分内に内張り材を導入すると共に加熱して内張りを施し、内張りした管路部分が冷却した後、前記支持部材を除去し、前記管路部分の端末において内張り材の端末処理を行い、管路を復旧することを特徴とするものである。
【0030】
【発明の実施の形態】
以下本発明の実施の形態を図面に基づいて説明する。図1は第一の発明の実施の一形態を示すものであって、1は管路であり、管路系における今回内張りしようとする管路部分1aの両端に作業孔2を開削して、作業部分1bを露出せしめている。
【0031】
そして作業孔2内の作業部分1bに、窓3が開削されている。この窓3は管路部分1a内に内張り材4を導入するに足りる程度の大きさとし、できるだけ小さいものであることが好ましい。
【0032】
この作業部分1bは、窓3が開削されるために強度が低下し、後の加熱工程において圧縮歪みがかかったときに座屈する恐れがあるので、図面に示すように窓3の両側に固定具5を取り付け、その固定具5間に補強材6を介装し、加熱時の圧縮応力により管路が座屈するのを防止するのが好ましい。
【0033】
図2は第二の発明の実施の形態を示すものであって、作業孔2内に露出している管路1の作業部分1bを切断し、内張りすべき管路部分1aの端末部を、支持部材7を介して対向する管路部分1cに対して支持している。なお管路部分1aの端末部は、適宜の支持手段でそれに対向する作業孔2の壁面の地盤に支持することもできる。
【0034】
而して図1又は図2の状態において、窓3又は切断された管路部分1aの端末から、内張りすべき管路部分1a内に内張り材4を導入する。導入の方法としては、従来知られた方法を採ることができ、例えば管路部分1aに挿通した紐などで引き込んでも良く、また柔軟な内張り材4を流体圧力で裏返しながら管路部分1aに挿通することもできる。
【0035】
そして管路部分1aに挿通された内張り材4内に、加圧水蒸気、加熱加圧空気、温水などの加熱加圧流体を送入し、内張り材4を加熱すると共に加圧し、内張り材4の形態に応じて熱と圧力の作用により、当該内張り材4を管路部分1aの内面に圧接して内張りを施す。
【0036】
内張りした管路部分1aを冷却した後、第一の発明においては作業孔2内の作業部分1bを切断し、第二の発明においては支持部材7を除去して、管路部分1aの端末において内張り材4の端末処理を行い、作業孔2内の管路の切除部分を接続して、管路系を復旧して内張りを終了する。
【0037】
【作用】
本発明においては、第一の発明においては内張りすべき管路部分1aとそれに対向する管路部分1cとが連続しており、また第二の発明では管路部分1aがそれに対向する管路部分1c又は地盤に対して支持されているので、内張り作業において管路部分1aが加熱されて圧縮歪みがかかっても、その管路部分1aの端末部が伸長方向に変位することができない。
【0038】
従って管路部分1aの全ての箇所において同程度の圧縮歪みがかかるが、管路1が伸長することがなく、全ての箇所において地盤による拘束力の大小に拘らず変位が生じることがない。
【0039】
而して加熱工程が終了して管路部分1aが冷却されるときには、圧縮歪みが解消されて減少するが、先の加熱時において伸長していないため、常温に戻ったときに圧縮歪みがゼロとなるだけであって、それを超えて引っ張り歪みが作用することがない。
【0040】
図5における破線による曲線Aは、本発明における温度と歪みとの関係を示すものである。すなわち加熱時には温度の上昇に伴って圧縮歪みが増大し、従来例における圧縮歪みよりも大きい値にまで増大する。そして温度の低下に伴って圧縮歪みは減少し、最終的には歪みはほゞゼロとなり、大きな引っ張り歪みが残留することがない。
【0041】
また管路部分1aの伸縮が生じないので、図4においては、全ての位置において曲線は変位ゼロの基準線に一致して描かれることとなる。従って管路部分1aの端末部においても中央部においても歪みの大きさが変ることがなく、図5における曲線Aは全ての位置でほゞ同様の曲線を描く。また管路部分1aの長さによって歪みの大きさが左右されることもない。
【0042】
【発明の効果】
従って本発明によれば、内張り工程において加熱したときに、管路部分1aの変位を阻止されているので熱により管路部分1aが伸長することがない。そして加熱に続いて冷却されたときには、加熱により生じていた圧縮応力が解消されるだけであって、管路部分1aが収縮することがなく、管路部分1aに引っ張り応力が残留することがない。
【0043】
また加熱冷却による圧縮応力の増減は、温度のみによって影響を受け、管路部分1aにおける位置や地盤による拘束力の大小によって左右されることがないので、管路部分1aの長さによって歪みの大きさや伸縮の有無が影響されることがない。
【0044】
従って長尺の管路部分について内張りを行っても、その管路部分に大きな引っ張り歪みが残留することがなく、内張り作業の後になって管路の溶接部や弱い部分が破断することがない。
【図面の簡単な説明】
【図1】 第一の発明の実施の状態を示す側面図
【図2】 第二の発明の実施の状態を示す側面図
【図3】 従来の方法における管路への影響を試験する状態を示す側面図
【図4】 管路の温度変化に伴う伸縮の状態を示すグラフ
【図5】 管路の温度変化に伴う歪みの状態を示すグラフ
1 管路
1a 内張りすべき管路部分
1c 対向する管路部分
3 窓
4 内張り材
6 補強材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for lining a pipeline buried in the ground for the purpose of repair or reinforcement.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, lining is carried out for the purpose of repairing or reinforcing a damaged portion of a pipeline buried in the ground. In order to apply a lining to the pipe line, both ends of the pipe part to be lined are dug up, the pipe line is cut, and the lining material is inserted into the pipe part from the end, and the inner pressure is applied to the lining material. It is in pressure contact with the road surface.
[0003]
Various methods have been proposed for the structure of the lining material and the means for inserting the lining material into the pipe line portion, but in many cases, a step of heating the lining material is required in the lining work.
[0004]
For example, an airtight layer is formed on the inner surface of a fiber layer such as a tubular woven fabric to form a lining material, and the fiber layer of the lining material is impregnated with a reaction-curable resin liquid and inserted into a pipe portion, and the lining material There is a method in which a heated and pressurized fluid is fed into the inner surface so that the lining material is pressed against the inner surface of the pipe and the resin liquid is heated and cured to be lining.
[0005]
Also, a thermoplastic resin or a pipe reinforced with a cylindrical fiber layer is used as a lining material, and this is inserted into a pipe line to feed a heated pressurized fluid, and the thermoplastic resin is removed by the heat of the heated pressurized fluid. There is also known a method of softening and inflating with an internal pressure, and lining by pressing against the inner surface of the pipeline.
[0006]
[Problems to be solved by the invention]
However, in these methods, the pipe line may suddenly break immediately after the lining or after a certain time has passed. In particular, in a pipe line system in which steel pipes are welded by non-back welding, in the case of a long pipe line exceeding 30 m, the length that can be lined by a single operation is often not broken at the welding point. The work efficiency was poor.
[0007]
The results of the study of this phenomenon are described in detail in the 39th Annual Conference of the Japan Society of Civil Engineers (1984) “Stresses in buried pipes due to thermal expansion and contraction history: Shoichi Iimura, Nobuaki Nishio” Yes.
[0008]
The contents of this academic paper can be briefly explained as follows. That is, as shown in FIG. 3, thermometers and strain gauges are attached to 13 approximately equidistant intervals of (1) to (13) on a pipe 1 of about 80 m of steel pipe embedded in 1 m underground, and a to Displacement gauges were installed at approximately seven regular intervals. Then, steam is fed from one end of the pipe and heated until the tube temperature rises by about 60 ° C (about 69 minutes), after which the steam is stopped and cooled naturally over 12 days. The temperature, strain and displacement at each measurement point are measured.
[0009]
FIG. 4 is a graph showing the relationship between the temperature at each point a to g and the amount of displacement in the test results. FIG. 4 shows the temperature and strain at the points (2), (4), (6) and (7). FIG. 5 shows a graph showing the relationship between the In the academic paper, more data is shown, but it is omitted here.
[0010]
Thus, according to FIG. 4, at the center point d of the pipe line 1, almost no displacement occurs regardless of the temperature change. Further, at the points a, b, and c in the left half, a displacement to the left occurs due to the execution of the test, and at the points e, f, and g in the right half, a displacement to the right occurs. As the distance increases, the amount of displacement increases in proportion to the distance, and it can be understood that the pipe line 1 extends from the center as the test is performed.
[0011]
Looking at the amount of displacement at each measurement point, displacement occurs when the temperature begins to rise, and the amount of displacement increases as the temperature rises. When the temperature of the pipe line 1 is cooled after the temperature is raised to about 80 ° C., the amount of displacement is reduced and the pipe line 1 is contracted, but the contraction speed is delayed from the extension speed due to the temperature increase.
[0012]
Even when the pipe line 1 is sufficiently cooled and returned to room temperature, the amount of displacement does not return to zero, and the pipe line 1 remains slightly expanded.
[0013]
Further, according to FIG. 5, compressive strain is generated in the pipe line 1 as the heating starts, and the amount of strain increases as the temperature rises. The magnitude of distortion at each measurement point is the largest at the center (7) and the smallest at the (2) point close to the terminal.
[0014]
When the temperature of the pipe line 1 is cooled after the temperature is raised to about 80 ° C., the compressive strain rapidly decreases, and tensile strain is generated beyond zero. As the temperature decreases, the tensile strain increases and settles to a constant value. Even when the temperature returns to room temperature, the tensile strain remains, and the magnitude thereof is approximately the same as the maximum value of the compressive strain generated during heating.
[0015]
From these results, the following can be inferred. That is, as the pipe line 1 is heated, the pipe line 1 tends to expand according to the linear expansion coefficient of the steel material, but the pipe line 1 buried in the ground is restrained by the surrounding earth and sand, and is free. Since the stretch is restricted, the pipe 1 is compressed and strained, and slips between the surrounding earth and sand against the restraining force to cause stretching.
[0016]
In the central part of the pipe line 1, since the pipe part extending from there to the both ends is restrained, displacement is difficult to occur, and since the restraining force is large, distortion due to slip is not released and a large compressive strain is produced. .
[0017]
On the other hand, in the part close to the terminal of the pipe line 1, since the pipe part from the terminal to the terminal is short, the binding force is small, and slip occurs between the pipe line 1 and the earth and sand, and the pipe line 1 has a direction of the terminal. A large displacement is generated in the direction of, so that the compression strain is released and the value becomes small.
[0018]
Thus, when the pipeline 1 is cooled after the temperature is raised to the maximum temperature, the compressive strain accumulated by the shrinkage of the pipeline 1 is rapidly reduced. Even if the compressive strain becomes zero, the pipeline 1 further tries to shrink the portion that has been stretched so far, and since it is restrained by the surrounding earth and sand, free shrinkage is restricted, Tensile distortion will occur. Then, slip occurs between the surrounding earth and sand against the restraint force, and the conduit 1 contracts.
[0019]
At this time, in the central part of the pipe line 1, the pipe part extending from there to both ends is restrained, so that the displacement is difficult to occur, and since the restraining force is large, distortion due to slipping is not released and a large pull is generated. Arise.
[0020]
On the other hand, in the part close to the terminal of the pipe line 1, since the pipe part from the terminal to the terminal is short, the restraining force is small, and a slip occurs between the pipe line 1 and the earth and sand with a relatively small force. A large displacement is generated in the direction of its center, thereby releasing the compressive strain, so that its value does not increase.
[0021]
Finally, a large tensile strain remains in the central portion of the pipeline 1 and a small tensile strain remains in the vicinity of the terminal, and the elongation does not disappear even if the pipeline 1 returns to room temperature due to the residual strain. Remains.
[0022]
Thus, in such a state, a large tensile strain remains in the vicinity of the center of the pipe line 1 and does not disappear even after a lapse of time. It is considered that the large tensile strain is concentrated on the pipe 1 and the pipe line 1 is broken.
[0023]
In cast iron pipes and the like, short pipes are connected by flanges, and the flanges cannot be displaced in the ground. Therefore, the pipes 1 do not expand even when heated, and the compressive strain generated there is When the path 1 is cooled, it is eliminated, and tensile strain does not remain. Further, in the case of a fume tube or the like, since the connecting portion can move relatively freely, distortion is rarely generated.
[0024]
On the other hand, in a pipe line system welded with steel pipe, the welded part of the steel pipe cannot be expanded and contracted, and it is only restrained by the frictional resistance caused by the ground pressing against expansion and contraction due to heat. If the pipe part limited for the purpose is separated from the pipe system, the extension cannot be stopped when a large compression strain is applied, and the tensile strain caused by cooling contracts due to the restraining force of the ground. Is suppressed, and finally a large tensile strain remains.
[0025]
And since the magnitude of the remaining tensile strain increases as the distance from the terminal of the separated pipe section becomes longer, if a lining is applied to a long pipe section, a large tensile strain remains due to heat in the lining work. However, the pipeline breaks due to the distortion. Therefore, in the pipe line system in which the steel pipe is welded as described above, there is a limit to the length that can be lined in one operation.
[0026]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method capable of lining a sufficiently long pipeline portion in a single operation even in a pipeline system in which the aforementioned steel pipe is welded. It is what.
[0027]
[Means for Solving the Problems]
Thus, in the first invention, a window sufficient to introduce the lining material into the pipe portion is cut out on the pipe walls of both end portions of the pipe portion to be lined in the pipe line buried in the ground. The reinforcing material is interposed between the pipe lines on both sides of the window, the lining material is introduced into the pipe part from the window and heated, and the lining pipe part is cooled. It is characterized in that the pipe line in the excised part is restored by excising a nearby pipe line and performing a terminal treatment of the lining material.
[0029]
Moreover, 2nd invention cut | disconnects both the terminal parts of the pipe line part which should be lined in the pipe line embed | buried in the ground, and opposes the said pipe line part terminal part to the said pipe line part via a support member. Supporting the pipe part, introducing a lining material into the pipe part from the terminal and applying the lining by heating, cooling the lining pipe part, removing the support member, The terminal of the lining material is processed at the terminal of the pipe line portion, and the pipe line is restored.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the first invention, wherein 1 is a pipeline, and work holes 2 are cut at both ends of a pipeline portion 1a to be lined in the pipeline system this time, The working part 1b is exposed.
[0031]
A window 3 is cut out in the work portion 1 b in the work hole 2. The window 3 is preferably large enough to introduce the lining material 4 into the pipe line portion 1a and is preferably as small as possible.
[0032]
Since the working portion 1b has a reduced strength due to the opening of the window 3, and there is a risk of buckling when a compressive strain is applied in the subsequent heating process, a fixing tool is provided on both sides of the window 3 as shown in the drawing. It is preferable to attach a reinforcing member 6 between the fixtures 5 and prevent the pipe from buckling due to compressive stress during heating.
[0033]
FIG. 2 shows an embodiment of the second invention, in which the working portion 1b of the pipeline 1 exposed in the working hole 2 is cut, and the terminal portion of the pipeline portion 1a to be lined is It supports with respect to the pipe line part 1c which opposes via the supporting member 7. FIG. In addition, the terminal part of the pipe line part 1a can also be supported by the ground of the wall surface of the work hole 2 which opposes it with a suitable support means.
[0034]
Thus, in the state of FIG. 1 or FIG. 2, the lining material 4 is introduced into the pipeline portion 1a to be lined from the window 3 or the end of the cut pipeline portion 1a. As a method of introduction, a conventionally known method can be adopted. For example, it may be pulled in with a string inserted through the pipe line portion 1a, or the flexible lining material 4 is inserted into the pipe line portion 1a while being turned over by fluid pressure. You can also
[0035]
Then, a heating / pressurizing fluid such as pressurized water vapor, heating / pressurizing air, or hot water is fed into the lining material 4 inserted through the pipe line portion 1a, and the lining material 4 is heated and pressurized to form the lining material 4 Accordingly, the lining material 4 is pressed against the inner surface of the pipe line portion 1a by the action of heat and pressure to apply the lining.
[0036]
After cooling the lined pipe part 1a, in the first invention, the work part 1b in the work hole 2 is cut, and in the second invention, the support member 7 is removed, and at the end of the pipe part 1a. Terminal processing of the lining material 4 is performed, the excision part of the pipeline in the working hole 2 is connected, the pipeline system is restored, and the lining is completed.
[0037]
[Action]
In the present invention, in the first invention, the pipeline portion 1a to be lined and the pipeline portion 1c facing it are continuous, and in the second invention, the pipeline portion 1a faces the pipeline portion. Since it is supported with respect to 1c or the ground, even if the pipeline part 1a is heated and compressive strain is applied in the lining operation, the terminal part of the pipeline part 1a cannot be displaced in the extending direction.
[0038]
Accordingly, the compressive strain of the same degree is applied to all the portions of the pipeline portion 1a, but the pipeline 1 is not extended, and no displacement occurs in all locations regardless of the magnitude of the restraining force by the ground.
[0039]
Thus, when the heating process is completed and the pipe portion 1a is cooled, the compressive strain is eliminated and reduced. However, the compressive strain is zero when the temperature returns to room temperature because the compressive strain is not expanded during the previous heating. The tensile strain does not act beyond that.
[0040]
A curve A indicated by a broken line in FIG. 5 shows a relationship between temperature and strain in the present invention. That is, during heating, the compressive strain increases as the temperature rises, and increases to a value larger than the compressive strain in the conventional example. As the temperature decreases, the compressive strain decreases and finally the strain becomes almost zero, so that a large tensile strain does not remain.
[0041]
Further, since the pipe portion 1a does not expand and contract, the curve is drawn in conformity with the zero-displacement reference line at all positions in FIG. Accordingly, the magnitude of the distortion does not change in the terminal portion and the central portion of the pipe portion 1a, and the curve A in FIG. 5 draws a similar curve at all positions. Further, the magnitude of the distortion is not affected by the length of the pipeline portion 1a.
[0042]
【The invention's effect】
Therefore, according to the present invention, when the heating is performed in the lining process, the displacement of the pipeline portion 1a is prevented, so that the pipeline portion 1a does not extend due to heat. When the cooling is performed subsequent to the heating, only the compressive stress generated by the heating is eliminated, the pipeline portion 1a does not contract, and no tensile stress remains in the pipeline portion 1a. .
[0043]
In addition, the increase or decrease in compressive stress due to heating and cooling is affected only by temperature, and is not affected by the position in the pipeline portion 1a or the size of the restraining force due to the ground, so that the strain increases depending on the length of the pipeline portion 1a. The presence or absence of sheath expansion and contraction is not affected.
[0044]
Therefore, even if the lining is performed on the long pipe portion, a large tensile strain does not remain in the pipe portion, and the welded portion or the weak portion of the pipe does not break after the lining operation.
[Brief description of the drawings]
FIG. 1 is a side view showing the state of implementation of the first invention. FIG. 2 is a side view showing the state of implementation of the second invention. FIG. 3 is a state of testing the influence on the pipeline in the conventional method. FIG. 4 is a graph showing the state of expansion and contraction accompanying the temperature change of the pipe line. FIG. 5 is a graph showing the state of distortion accompanying the temperature change of the pipe line. 1 Pipe line 1a Pipe line part 1c to be lined Pipe part 3 Window 4 Liner 6 Reinforcing material

Claims (2)

地中に埋設された管路(1)における内張りすべき管路部分(1a)の両端末部の管壁に、当該管路部分(1a)内に内張り材(4)を導入するに足りる窓(3)を開削し、当該窓(3)の両側の管路間に補強材(6)を介在せしめ、当該窓(3)から前記管路部分(1a)内に内張り材(4)を導入すると共に加熱して内張りを施し、内張りした管路部分(1a)が冷却した後、前記窓(3)付近の管路(1)を切除して内張り材(4)の端末処理を行い、切除した部分の管路(1)を復旧することを特徴とする、地中埋設管路の内張り方法A window sufficient to introduce the lining material (4) into the pipe part (1a) on the pipe walls of both ends of the pipe part (1a) to be lined in the pipe (1) buried in the ground (3) is cut and a reinforcing material (6) is interposed between pipes on both sides of the window (3), and a lining material (4) is introduced into the pipe part (1a) from the window (3). After heating and applying the lining and cooling the lined part (1a), the pipe (1) in the vicinity of the window (3) is excised, and the end treatment of the lining material (4) is performed. Lining method for underground buried pipelines, characterized in that the pipeline (1) of the damaged part is restored 地中に埋設された管路(1)における内張りすべき管路部分(1a)の両端末部を切断し、当該管路部分(1a)の端末部を、支持部材(7)を介して当該管路部分(1a)に対向する管路部分(1c)に対して支持し、その端末から前記管路部分(1a)内に内張り材(4)を導入すると共に加熱して内張りを施し、内張りした管路部分(1a)が冷却した後、前記支持部材(7)を除去し、前記管路部分(1a)の端末において内張り材(4)の端末処理を行い、管路(1)を復旧することを特徴とする、地中埋設管路の内張り方法Cut both terminal portions of the pipeline portion (1a) to be lined in the pipeline (1) buried in the ground, and connect the terminal portion of the pipeline portion (1a) via the support member (7) supported against the pipe portion facing the pipe part (1a) (1c), heated to applying the lining is introduced lining material (4) from the terminal to the conduit portion (1a) within the lining After the pipe portion (1a) is cooled, the support member (7) is removed, and the end treatment of the lining material (4) is performed at the end of the pipe portion (1a) to restore the pipe (1). A lining method for underground conduits, characterized by
JP23021897A 1997-08-11 1997-08-11 How to line underground pipes Expired - Fee Related JP4036305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23021897A JP4036305B2 (en) 1997-08-11 1997-08-11 How to line underground pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23021897A JP4036305B2 (en) 1997-08-11 1997-08-11 How to line underground pipes

Publications (2)

Publication Number Publication Date
JPH1163366A JPH1163366A (en) 1999-03-05
JP4036305B2 true JP4036305B2 (en) 2008-01-23

Family

ID=16904417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23021897A Expired - Fee Related JP4036305B2 (en) 1997-08-11 1997-08-11 How to line underground pipes

Country Status (1)

Country Link
JP (1) JP4036305B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100926947B1 (en) 2009-04-17 2009-11-17 유한회사 태양건설 Water pipeline repairing method of not-digging type

Also Published As

Publication number Publication date
JPH1163366A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
US6691741B2 (en) Installation assemblies for pipeline liners, pipeline liners and methods for installing the same
AU2002328732A1 (en) Installation assemblies for pipeline liners, pipeline liners and methods for installing the same
WO2012084793A1 (en) Pipe repair method and repaired pipe
JP4036305B2 (en) How to line underground pipes
US10386006B2 (en) Method and apparatus for rehabilitation of water conduit with lateral openings
JP4908246B2 (en) Pipeline rehabilitation method
JP4855323B2 (en) Pipeline rehabilitation method
Mantovano et al. The influence of the UOE-SAWL forming process on the collapse resistance of deepwater linepipe
WO1995029052A1 (en) Lined conduit structure, end processed structure and method of lining end processed structure
PL185715B1 (en) Self-adjusting clamp made of at least bidirectionally oriented polymer for use on hoses and pipes
Tan et al. Finite element modeling of buried glass-reinforced composite pipe
EP0101712B1 (en) A lining hose for restoring or making a conveyor channel
Tianfeng et al. New tool for internal pressure during fabrication and installation of mechanically lined pipelines using reel-lay method
Kashani et al. Effect of UOE forming process on the buckling strains of steel pipes
JP2008238738A (en) Pipeline bridge regeneration method
Singh et al. Experimental Study of the Behavior of Wrinkled Energy Pipelines Subjected to Cyclic Pressure Loading
JP3418259B2 (en) Pipe line lining method
JP6450259B2 (en) Pipeline rehabilitation method
EP0632874A4 (en) Pipeline repair apparatus including expandable forms.
JPH11170367A (en) Method for lining inside of pipe
JP2002018955A (en) Interpolation pipe and method for inserting the same
JP3400955B2 (en) Existing pipe rehabilitation pipe and existing pipe rehabilitation repair method
JPH0641174B2 (en) Non-metallic pipeline lining method
Shou et al. On the mechanical behavior of underground pipeline with separated joints rehabilitated by cured in place pipe
JP6523835B2 (en) Renewal method of existing pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071025

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees