JP4035451B2 - 製鉄所設備を用いた二酸化炭素分離回収システム運用方法 - Google Patents

製鉄所設備を用いた二酸化炭素分離回収システム運用方法 Download PDF

Info

Publication number
JP4035451B2
JP4035451B2 JP2003027193A JP2003027193A JP4035451B2 JP 4035451 B2 JP4035451 B2 JP 4035451B2 JP 2003027193 A JP2003027193 A JP 2003027193A JP 2003027193 A JP2003027193 A JP 2003027193A JP 4035451 B2 JP4035451 B2 JP 4035451B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
separation
recovery
gas
supply amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003027193A
Other languages
English (en)
Other versions
JP2004237167A (ja
Inventor
巧 河野
幹洋 林
伸吾 風間
透 小野
勝彦 小谷
照夫 岡崎
信彦 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2003027193A priority Critical patent/JP4035451B2/ja
Publication of JP2004237167A publication Critical patent/JP2004237167A/ja
Application granted granted Critical
Publication of JP4035451B2 publication Critical patent/JP4035451B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、製鉄所設備を用いた二酸化炭素分離回収システム運用方法に関し、地球温暖化に対して最も影響が大きいとされる二酸化炭素の大気中への放出量を抑えるための二酸化炭素分離回収システムの運用方法に関する。
【0002】
【従来の技術】
1997年12月に京都において、大気中の二酸化炭素等の温暖化ガスを国際的に削減することを目的とする地球温暖化防止京都会議が開催され、京都議定書が採択された。
【0003】
近い将来、この京都議定書が批准されると、我国を含む先進国は、二酸化炭素削減目標を達成する義務が負うこととなる。しかしながら、経済の持続的な発展を維持しつつ地球温暖化の防止に寄与することは容易ではない。したがって、先進国は、その国内でのCO2排出削減以外にも、国際的なCO2排出権取引市場を利用して、特定の国内外からCO2排出権を購入することによって、上記の義務を果たすという方法も模索している。
【0004】
しかしながら、このように国内外からCO2排出権を購入する方法は、CO2排出権の取得のために多額の費用が発生するおそれがある。また、国内でCO2の排出を削減するといった根本的な問題を解決することができない。したがって、政府やその他の事業者は、特定の国内外からCO2排出権を購入するよりも安価に国内でCO2の排出量を削減する事業の運用を必要としている。
【0005】
このような情勢の中、京都議定書で約束した二酸化炭素削減(1990年度比で−6%)を達成するために、火力発電所や工場などの大規模な二酸化炭素発生源から排出される二酸化炭素を効率的に回収し、これを地中や海洋中へ隔離し、あるいは化学品等の有用物質に変換して利用する事業が計画されている。
【0006】
そして、従来から火力発電所のボイラー排ガスからCO2を回収するための技術が提案されており(たとえば、非特許文献1参照)、二酸化炭素排出源から二酸化炭素を分離回収するシステムを運用するために、火力発電所を拠点(サイト)として用いることが提案されている。また、火力発電所のボイラー排ガスからCO2を回収するための安価な方法として、化学吸収法とよばれる技術が提案されている。
【0007】
しかしながら、火力発電所に付随する設備を国などが設けて二酸化炭素を分離回収するシステムを運用する場合には、以下のような問題がある。
【0008】
火力発電所のボイラー排ガスはCO2を含む比率(二酸化炭素比率)が低いため、化学吸収法に用いる設備が巨大化してしまい、その維持管理にも多大な費用がかかる。
【0009】
また、化学吸収法を用いて二酸化炭素を分離回収する際には、熱エネルギーが必要となり、この熱エネルギーがランニングコストの支配要因となる。しかしながら、発電という単一プロセスのために最適化された火力発電所では、化学吸収法に活用できるような排熱はない。したがって、新たに熱エネルギー発生設備を設けるか、もしくは発電用に用いている蒸気を活用して化学吸収法を実行する必要が生じる。しかしながら、新たな熱エネルギー発生設備を設けたり、発電用に用いている蒸気を用いて発電効率を下げたりするのでは、経済的損失が多大になり、ランニングコストを低減することができない。
【0010】
以上のとおり、国などの事業者が火力発電所を拠点として二酸化炭素を分離回収するシステムを運用するのでは、国内外からCO2排出権を購入するための費用と場合と比べて、安価にCO2を分離回収することでCO2の排出量を削減することができないおそれがあり、このようなシステムを国内で継続的に運用する事業を成立させることが実際上困難となる。
【0011】
また、国などの事業者が火力発電所以外の工場などを拠点として二酸化炭素を分離回収するシステムを運用する場合であっても、この拠点を提供する私企業がCO2を分離回収するためのランニングコストを自動的に算出して上記の事業者へ請求することができる技術は提案されていない。この点からもシステムを継続的に運用する事業を成立させることが困難となる。
【0012】
【非特許文献1】
清原正高,「発電用ボイラー排ガスからのCO2回収試験」,エネルギー・資源,エネルギー・資源学会,1993年,第14巻,第1号,p.91−97
【0013】
【発明が解決しようとする課題】
本発明は、以上のような問題を解決するためになされたものである。そこで、本発明は、国などの事業者に対して、二酸化炭素を分離回収するシステムの拠点として製鉄所を利用することを提案するものである。
【0014】
そして、本発明の目的は、国などの事業者が製鉄所設備を用いた二酸化炭素の分離回収システムを継続的に運用していくことを可能とする技術を提供することであり、より具体的には、CO2を分離回収するために必要なコストを下げるとともに、CO2を分離回収するために必要となるランニングコストを自動的に算出して課金することができる技術を提供することにより、二酸化炭素の分離回収システムを継続的に運用する事業を成立させることを目的とする。
【0015】
【課題を解決するための手段】
本発明の上記目的は、下記の手段によって達成される。
【0018】
本発明の二酸化炭素分離回収システム運用方法は、製鉄所設備を用いた二酸化炭素分離回収システム運用方法であって、前記製鉄所設備が、製鉄の過程で発生する副生ガスと、前記副生ガスから水素を製造する改質プロセスの中で産生されるプロセスガスとからなる群から選ばれる少なくとも一つの所内ガスを当該製鉄所設備に付随して設けられた分離回収設備へ第1パイプラインを通じて供給するガス供給段階と、前記製鉄所設備が、製鉄の過程で発生する焼結成品クーラーからの熱と、熱風炉排ガスの熱と、焼結主排気ガスの熱と、スラグの水砕に用いた排水の熱とからなる群から選ばれる少なくとも一つの排熱を前記分離回収設備へ熱輸送部を通じて供給する排熱供給段階と、前記分離回収設備が、前記排熱供給段階で供給された前記排熱を利用して、前記ガス供給段階で供給された前記所内ガスから二酸化炭素を分離回収する分離回収段階と、前記分離回収設備が前記分離回収段階で二酸化炭素を分離回収して得られた残りの前記所内ガスを前記製鉄所設備へ第2パイプラインを通じて帰還させて燃料として製鉄所設備で再利用する帰還段階と、を有する、を有する二酸化炭素分離回収システム運用方法であって、さらに、前記製鉄所設備から前記分離回収設備へ供給された前記所内ガスの供給量を第1供給量計測器が計測する第1供給量計測段階と、前記製鉄所設備から前記分離回収設備へ供給された前記排熱の供給量を第2供給量計測器が計測する第2供給量計測段階と、コンピュータが、前記第1供給量計測段階および第2供給量計測段階で計測された前記所内ガスの供給量データおよび前記排熱の供給量データを前記第1供給量計測器および第2供給量計測器から取得する段階と、コンピュータが、取得された前記所内ガスの供給量データおよび前記排熱の供給量データに、それぞれ予め設定されている前記所内ガスの単位供給量あたりのランニングコストおよび前記排熱の単位供給量あたりのランニングコストを乗じることによって、前記分離回収設備への前記所内ガスの供給および前記排熱の供給に必要なランニングコストを算出する段階と、を有することを特徴とする
本発明の二酸化炭素分離回収システム運用方法は、製鉄所設備を用いた二酸化炭素分離回収システム運用方法であって、前記製鉄所設備が、製鉄の過程で発生する副生ガスと、前記副生ガスから水素を製造する改質プロセスの中で産生されるプロセスガスとからなる群から選ばれる少なくとも一つの所内ガスを当該製鉄所設備に付随して設けられた分離回収設備へ第1パイプラインを通じて供給するガス供給段階と、前記製鉄所設備が、製鉄の過程で発生する焼結成品クーラーからの熱と、熱風炉排ガスの熱と、焼結主排気ガスの熱と、スラグの水砕に用いた排水の熱とからなる群から選ばれる少なくとも一つの排熱を前記分離回収設備へ熱輸送部を通じて供給する排熱供給段階と、前記分離回収設備が、前記排熱供給段階で供給された前記排熱を利用して、前記ガス供給段階で供給された前記所内ガスから二酸化炭素を分離回収する分離回収段階と、前記分離回収設備が前記分離回収段階で二酸化炭素を分離回収して得られた残りの前記所内ガスを前記製鉄所設備へ第2パイプラインを通じて帰還させて燃料として製鉄所設備で再利用する帰還段階と、を有する、を有する二酸化炭素分離回収システム運用方法であって、上記の二酸化炭素分離回収システム運用方法は、さらに、前記製鉄所設備から前記分離回収設備へ供給された前記所内ガスの供給量を第1供給量計測器が計測する第1供給量計測段階と、前記製鉄所設備から前記分離回収設備へ供給された前記排熱の供給量を第2供給量計測器が計測する第2供給量計測段階と、コンピュータが、前記第1供給量計測段階および第2供給量計測段階で計測された前記所内ガスの供給量データおよび前記排熱の供給量データを前記第1供給量計測器および第2供給量計測器から取得する段階と、コンピュータが、前記所内ガスの供給量と第1ランニングコストとの関係を示す第1のルックアップテーブル、および前記排熱の供給量と第2ランニングコストとの関係を示す第2のルックアップテーブルを予め記憶しておく段階と、コンピュータが、取得された前記所内ガスの供給量データおよび前記排熱の供給量データに基づいて前記第1および第2のルックアップテーブルを参照して得られた所望の第1ランニングコストと第2ランニングコストとを合算することによって、前記分離回収設備への前記所内ガスの供給および前記排熱の供給に必要なランニングコストを算出する段階と、を有する。
【0019】
)上記の二酸化炭素分離回収システム運用方法は、さらに、前記分離回収設備が、前記分離回収段階で分離回収された二酸化炭素の一部を前記製鉄所設備へ第3パイプラインを通じて供給する製鉄所用二酸化炭素供給段階と、前記分離回収設備から前記製鉄所設備へ供給された前記二酸化炭素の供給量を二酸化炭素供給量計測器が計測する第3供給量計測段階と、前記コンピュータが、前記第3供給量計測段階で計測された前記二酸化炭素の供給量データを二酸化炭素供給量計測器から取得する段階と、コンピュータが、取得された前記二酸化炭素の供給量データに、予め設定されている前記二酸化炭素の単位供給量あたりの価格を乗じることによって割引料を計算する段階と、前記コンピュータが、前記算出されたランニングコストから前記割引量を差し引く段階と、を有する。
【0022】
)上記の二酸化炭素分離回収システム運用方法は、さらに、前記分離回収設備における前記分離回収段階で分離回収された二酸化炭素の少なくとも一部を輸送手段を通じて固定化設備へ供給する段階と、前記固定化設備が、地中帯水層への注入、枯渇ガス田へ注入、または海洋貯留することによって前記二酸化炭素を固定化する固定化段階を有する。
【0023】
)上記の輸送手段は、前記分離回収設備と前記固定化設備とを結ぶ第4パイプラインであって、前記分離回収段階で分離回収された二酸化炭素は、前記第4パイプラインを通じて前記固定化設備へ供給される。
【0029】
)上記の二酸化炭素分離回収システム運用方法は、さらに、前記分離回収設備における前記分離回収段階で分離回収された二酸化炭素の少なくとも一部を輸送手段を用いて天然資源強制回収設備へ供給する段階と、前記天然資源強制回収設備が、前記輸送手段を通じて供給された二酸化炭素を石油強制回収または石炭埋蔵メタンガスの強制回収に用いる段階と、を有する。
【0030】
)上記の二酸化炭素分離回収システム運用方法は、さらに、前記分離回収設備における前記分離回収段階で分離回収された二酸化炭素の少なくとも一部を輸送手段を用いて天然資源強制回収設備へ供給する段階と、前記天然資源強制回収設備が、前記輸送手段を通じて供給された二酸化炭素を水溶性天然ガスでの天然ガスの強制回収に用いる段階と、を有する。
【0031】
)上記の輸送手段は、前記分離回収設備と前記天然資源強制回収設備とを結ぶ第4パイプラインであって、前記分離回収段階で分離回収された二酸化炭素は、前記第4パイプラインを通じて前記天然資源強制回収設備へ供給される。
【0032】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態を説明する。
【0033】
(第1の実施の形態)
図1は、本実施の形態における二酸化炭素分離回収システムを模式的に説明するための機能ブロック図である。
【0034】
本システムは、製鉄所設備100と、製鉄所設備に付随する第1事業者側の設備(以下「第1事業者側設備」という)200とを備える。ここで、第1事業者は、二酸化炭素分離回収事業を行う者であり、国、国に委託された業者、および二酸化炭素排出権を受けるための民間業者などが含まれる。
【0035】
製鉄所設備100は、高炉ガス(BFG)、コークス炉ガス(COG)、および転炉ガス(LDG)といった副生ガスを発生するガス発生源101と、所定温度以下の排熱を生じる低品位排熱発生源102と、副生ガスを利用する副生ガス利用設備103とを有している。なお、本実施の形態の製鉄所は、高炉一貫製鉄所であることが望ましい。
【0036】
ガス発生源101は、高炉、コークス炉、および転炉などである。副生ガスは、化石燃料を空気燃焼した火力発電所での燃焼排ガスの二酸化炭素比率(一般に、天然ガス火力発電所で約8%、石炭火力発電所で約12%)と比べて高い二酸化炭素比率を有する。
【0037】
また、低品位排熱発生源102で発生する排熱とは、製鉄の過程には再利用が困難な低品位の熱エネルギーを有する排熱であり、具体的には、焼結成品クーラーからの排熱(約350℃)、熱風炉排ガス(約230℃)、焼結主排気ガス(約180℃)、スラグの水砕に用いた排水(約90℃)である。これらの排熱の詳細は省略する。副生ガス利用設備103は、たとえば高炉、ガスタービン、および/または半還元銅製造プロセスである。
【0038】
上記のガス発生源101には、上記の副生ガスと、副生ガスの燃焼排ガスと、前記副生ガスから水素を製造する改質プロセスの中で産生されるプロセスガスとのからなる群から選ばれた少なくとも一つの所内ガス(以下副生ガス等という)を第1事業者側設備200へ供給するための第1パイプライン301が接続されており、上記低品位排熱発生源102には、上記の排熱を第1事業者側設備200へ提供するための熱輸送用パイプライン(熱輸送部)302が接続されている。また、後述するように第1事業者側設備200において前記副生ガス等を分離回収した残りの副生ガス等を第1事業者側設備200から製鉄所設備(特に高炉やガスタービン)へ帰還させるための第2パイプライン303が設けられている。
【0039】
一方、第1事業者設備200には、第1パイプライン301によって供給された副生ガス等から二酸化炭素を分離回収する分離回収部210を有している。
【0040】
分離回収部210は、化学吸収法を用いて副生ガス等から二酸化炭素を分離回収するものである。図2に分離回収手段の概要を示す。
【0041】
分離回収部210は、副生ガス等の中の二酸化炭素を化学吸収液(以下、「吸収液」という)に吸収させるための反応塔211と、二酸化炭素を吸収した吸収液を加熱して二酸化炭素を分離するための再生塔212と、反応塔211において二酸化炭素を吸収させた吸収液を再生塔212へ送るとともに再生塔212で二酸化炭素を分離した後の再生吸収液を反応塔211に戻すように循環させる循環系213と、を含んでいる。吸収液としては、たとえば、アルカノールアミン水溶液が適しているが、この場合に限られない。
【0042】
具体的には、反応塔211には、第1パイプライン301、および第2パイプライン303が接続されており、再生塔212には、熱輸送用パイプライン(熱輸送部)302が熱接触されている。反応塔211では、第1パイプライン301で供給された副生ガス等を吸収液と常温前後、たとえば50℃前後で接触させて二酸化炭素が吸収液中に吸収させる。そして、吸収液に二酸化炭素を吸収させた残りの副生ガス等は、第2パイプライン301を通じて製鉄所設備100へ帰還させる。一方、再生塔211では、二酸化炭素を吸収した吸収液を熱輸送用パイプライン302によって輸送された排熱を用いて120℃前後に加熱し、二酸化炭素を分離回収する。
【0043】
また、第1事業者設備200は、この分離回収部200以外の設備を有していてもよい。たとえば、図1に示されるとおり、第1事業者設備200で分離回収された二酸化炭素の一部を製鉄所設備100へ供給するための第3パイプライン304が設けられていてもよい。具体的には、たとえば、第3パイプライン304は、製鉄所設備100のうち転炉へ接続される。この第3パイプライン304を通じて受け取った二酸化炭素は、製鉄所の転炉における底吹き羽口用の二酸化炭素として使用される。したがって、現在市場から購入している二酸化炭素を新たに投入する必要がなくなり、結果的には二酸化炭素の排出量の削減にもつながる。
【0044】
ただし、分離回収された二酸化炭素の多くは、後述するように固定化されるか、天然資源の強制回収に使用される。
【0045】
また、上記の図1に示されるように、第1パイプライン301には、製鉄所設備100から第1事業者設備200へ供給された副生ガス等の供給量を計測する第1供給量計測器501が設けられている。また、熱輸送用パイプライン302には、製鉄所設備100から第1事業者設備200へ供給された排熱の供給量を計測する第2供給量計測器502が設けられている。
【0046】
これらの第1供給量計測器501および第2供給量計測器502は、たとえば製鉄所設備100に設けられたコンピュータ510に通信回線(不図示)を通じて接続されている。コンピュータ510は、前第1供給量計測器501で計測された副生ガス等の供給量データと第2供給量計測器502で計測された排熱の供給量データを取得し、これらのデータに基づいて、副生ガス等の供給および排熱の供給に必要なランニングコストを自動的に算出して、第1事業者側に対して課金するものである。また、コンピュータ510は、単独で、または他のコンピュータと連動して、二酸化炭素排出量削減量に対応する二酸化炭素排出権を取引するための取引サイトを介して前記二酸化炭素排出権の取引価格についての取引データを自動取得する機能を有していてもよい。これらの機能は、後述する。
【0047】
次に、以上のように構成される二酸化炭素分離回収システムの運用方法について図1を参照しつつ説明する。
【0048】
(ガス供給段階)
まず、ガス供給段階では、製鉄所設備100は、ガス発生源101で発生した、高炉ガス(BFG)、コークス炉ガス(COG)、および転炉ガス(LDG)などの副生ガスと、その燃焼ガスと、副生ガスから水素を製造するための改質プロセスの中で算生されるプロセスガスとからなる群から選択される少なくとも一つの所内ガスを第1事業者設備200へ供給する。
【0049】
このうち高炉ガスは、二酸化炭素比率が20数%と高く、その他として燃料成分である水素が数%、一酸化炭素が20数%含まれている。またコークス炉ガスは、燃料ガスとして適した水素とメタンを豊富に含んでおり、燃焼後の排ガスにおける二酸化炭素濃度は20数%となる。一方、転炉ガスは、10数%の二酸化炭素と共に70%前後の一酸化炭素を含んでおり、燃焼後の排ガスの二酸化炭素濃度は30数%と非常に高いものとなる。また、副生ガスから水素を製造するための改質プロセスの中で算生されるプロセスガスも、十分な二酸化炭素濃度を有する。
【0050】
このように二酸化炭素比率が高いガスを原料ガスとして第1事業者側設備200へ供給することができるので、火力発電所に第1事業者側設備を設ける場合のように二酸化炭素低濃度燃焼排ガスを原料ガスとして使用せざるを得ない場合と比べて、二酸化炭素分離回収システムに必要な設備の規模を大幅に小さくすることができる。
【0051】
なお、副生ガス、その燃焼ガス、または副生ガスから水素を製造するための改質プロセスの中で算生されるプロセスガスなどの所内ガスとしては、上述のように複数種類のガスが存在する。したがって、供給するガスによって費用が異なる。本実施の形態では、後述するように、複数種類のガスの中から選択したガスを第1事業者側設備200へ供給することができる。この場合は、ガスの種類別に第1パイプライン301を設け、各熱輸送用パイプ毎に供給量の計測部を設けることができる。
【0052】
(排熱供給段階)
排熱供給段階では、製鉄所設備100は、製鉄の過程で低品位排熱発生源1092から発生する所定温度以下の排熱を第1事業者側設備200へ熱輸送用パイプライン302を通じて供給する。なお、ここで、所定温度以下の排熱とは、500℃以下の排熱を意味し、より好適には、400℃以下の排熱を意味する。具体的には、焼結成品クーラーからの排熱(約350℃)、熱風炉排ガス(約230℃)、焼結主排気ガス(約180℃)、スラグの水砕に用いた排水(約90℃)である。なお、吸収液の特性に応じて、吸収液の再生のために適当な排熱を多段階に活用することもできる。この場合は、排熱の種類別に熱輸送用パイプライン302を設け、各熱輸送用パイプ毎に供給量の計測部を設けることができる。
【0053】
(二酸化炭素の分離回収段階)
本実施の形態では、第1事業者設備200が、熱輸送用パイプライン302を通じて供給された低品位の排熱を利用して、二酸化炭素比率が高い上記の副生ガス等から二酸化炭素を分離回収する。分離回収には、図2に示したような化学吸収法を利用した分離回収部210を用いることができる。このように、製鉄の過程に利用が困難な低品位の熱エネルギーを用いることで、本来の製鉄事業へ大きな影響を与えることなく、化学吸収法による二酸化炭素分離回収コストを大幅に低減することができる。また、上述したように原料ガスとして二酸化炭素濃度が高い副生ガス等を用いることができるため、第1事業者設備200を小型化できるばかりでなく、第1事業者設備200に必要なユーティリティー(電力や用水)の使用量も削減することができる。ここで、用水には、冷却水や化学吸収液(水溶液)の補給水が含まれる。
【0054】
なお、図3に示されるとおり、複数種類の排熱を適宜に選択して、吸収液の特性に応じて、吸収液の再生のために適当な排熱を多段階に活用することもできる。この場合は、排熱の種類別に熱輸送用パイプライン302a〜302cを設け、各熱輸送用パイプ毎に供給量の計測部(不図示)を設けることができる。
【0055】
(固定化段階)
次に、固定化段階では、第1事業者側設備200において分離回収された二酸化炭素の少なくとも一部が輸送手段を通じて固定化設備へ供給される。そして、固定化設備では、地中帯水層への注入、枯渇ガス田への注入、または海中貯留することによって、二酸化炭素を固定化する。第1事業者側設備200と固定化設備との距離が近い場合は、第1事業者設備200と固定化設備とを第4パイプライン(不図示)で結ぶことによって、二酸化炭素をガスの状態で供給することができる。この場合は、第4パイプラインが輸送手段となる。また、第1事業者側設備200と固定化設備との距離が比較的遠い場合には、二酸化炭素を液化した後、液化状態に二酸化炭素を船舶や車両などの海上または陸上輸送設備を用いて二酸化炭素を供給してもよい。この場合は、海上または陸上輸送設備が輸送手段となる。
【0056】
また、第1事業者側設備200が、分離回収段階で分離回収された二酸化炭素の少なくとも一部を輸送手段(不図示)を通じて結ばれた他の事業者の設備(以下、「第2事業者側設備」)へ供給してもよい。この場合も、輸送手段は、第4パイプラインであってもよく、その他の海上または陸上輸送設備であってもよい。
【0057】
この場合、第2事業者側設備(不図示)は、上述した固定化設備として、地中帯水層への注入、枯渇ガス田への注入、または海中貯留することによって、二酸化炭素を固定化してもよい。また、第2事業者側設備は、たとえば、この二酸化炭素をEOR(石油強制回収法)やECBM(石炭埋蔵メタンガスの強制回収法)へ利用することができる。また、水溶性天然ガス田でも天然ガスの強制回収用として二酸化炭素を注入し固定化することも可能である。このような技術によれば、二酸化炭素の注入および固定化と天然資源の強制回収とを同時に行うこができる。特に、EORやECBMは、海外を中心に利用が進み始めている。また、水溶性天然ガス田での天然ガスの強制回収は、日本国内でも実行することが可能であり、たとえば、製鉄所設備、第1事業者設備、および第2事業者設備である水溶性天然ガス田の設備とをパイプラインで連結するシステムを構成することで、第1事業者は、二酸化炭素を第2事業者に対して有価に提供することができるので、この二酸化炭素の対価によって二酸化炭素分離回収事業の運営費に充当していくことができ得る。
【0058】
(固定化量計測段階、排出権取引サイトを介した排出権販売段階、および排出権の取引価格に基づく排熱種類選択段階およびガス種類選択段階)
本発明の二酸化炭素分離回収システム運用方法は、さらに、コンピュータシステムを用いて、二酸化炭素排出権のリアルタイムな取引や、取引価格に基づく排熱種類選択段階およびガス種類選択段階を有していてもよい。
【0059】
図4は、固定化量計測段階、排出権取引サイトを介した排出権販売段階、および排出権の取引価格に基づく排熱種類選択段階およびガス種類選択段階を説明するための模式図である。
【0060】
固定化設備700は、第1事業者によって運営されていてもよく、第2事業者によって運営されてもよい。固定化設備700には、二酸化炭素の固定化量を自動的に計測するための固定化量計測器701が設けられている。この固定化量計測器701は、たとえば、固定化設備700に設けられたコンピュータ702および通信回線703(たとえば、インターネット)を介して、サーバ704に接続されている。
【0061】
このサーバ704は、たとえば、WWW(ワールドワイドウェブ)サーバである。サーバ704では、通常の電子商取引のための技術を用いて、クライアントコンピュータ705a〜705cを有する国内外の需要者との間で二酸化炭素排出権の取引をするための取引サイトを提供している。なお、取引サイトに関する技術には、従来から特許出願されている種々の電子商取引技術を用いることができるので、その詳しい説明は省略する。
【0062】
固定化量計測器701で計測された固定化量に対応する二酸化炭素排出権は、コンピュータ702によってリアルタイムで計算されて、たとえば所定の固定化量毎にサーバ704を介して販売される。この場合、固定化によって得られた代金は、たとえば、第1事業者または第2事業者が受け取り、この代金を製鉄所への支払いにまわしたり、その他の事業に使用したりすることができ、二酸化炭素分離回収システムの運用を資金面からサポートすることができる。
【0063】
また、上述した製鉄所側のコンピュータ510も、インターネット等の通信回線を介して、このサーバ704が提供する取引サイトにアクセスすることができる。このコンピュータ510は、取引サイトを介して二酸化炭素排出権の取引価格についての取引価格データを自動的に取得する(取引価格取得段階)。そして、コンピュータ510は、取得された取引価格データに応じて、相互に温度が異なる複数種類の排熱の中から前記排熱供給段階で前記第1事業者側の設備へ供給する排熱を自動的に選択する(排熱種類選択段階)。具体的には、上記の排熱には、焼結成品クーラーからの排熱(約350℃)、熱風炉排ガス(約230℃)、焼結主排気ガス(約180℃)、およびスラグの水砕に用いた排水(約90℃)があるが、回収利用が困難な排熱を利用するにつれて、二酸化炭素の分離回収にかかるコストも上昇する。したがって、二酸化炭素の取引価格が低い場合は、比較的コストが安い排熱を順次利用するようにして、二酸化炭素の取引価格が高くなるにつれて、比較的コストが高い排熱までを利用するように、切り換えることができる。
【0064】
たとえば、コンピュータ510は、そのメモリ内部に、第1閾値、第2閾値、および第3閾値(ただし、第1閾値>第2閾値>第3閾値とする)の値を予め記憶しておき、これらの第1〜第3閾値と取引価格データの値とを比較する。比較の結果、第3閾値>取引価格データの状態の場合には、最もコストが安い排熱を利用し、第2閾値≧取引価格データの値>第3閾値の状態、第1閾値≧取引価格データの値>第2閾値の状態、および取引価格データの値>第1閾値の状態となるにつれて、比較的コストが高い排熱までを利用するように、排熱の供給内容を切り換える。具体的には、コンピュータ510は、夫々の排熱毎に設けられた熱輸送用パイプライン302a〜302dのバルブを開閉するようにアクチュエータ(不図示)を制御することできる。なお、コンピュータ510による制御は、この場合に限られず、各排熱の供給比率を変えることによって、より細かい取引価格の値動きにリアルタイムで対応して、排熱の供給を行うこともできる。
【0065】
また、同様に、コンピュータ510は、取得された取引価格データに応じて、相互に温度が異なる複数種類の副生ガス等の中から前記ガス供給段階で第1事業者側の設備へ供給するガスを自動的に選択する(ガス類選択段階)。具体的には、上記のガスには、高炉ガス(BFG)、コークス炉ガス(COG)、および転炉ガス(LDG)などの副生ガス、その燃焼ガス、および副生ガスから水素を製造するための改質プロセスの中で産生されるプロセスガスがあるが、二酸化炭素濃度が低いガスを利用するにつれて、二酸化炭素の分離回収にかかるコストも上昇する。したがって、二酸化炭素の取引価格が低い場合には、比較的二酸化炭素濃度が高いガスを利用する一方、二酸化炭素の取引価格が高くなるにつれて、比較的二酸化炭素濃度が低いガスまでも順次利用するように切り換えることができる。具体的には、上述の排熱の選択の場合と同様に、複数の閾値を設定しておき、この複数の閾値と取引価格データとを比較することによって、夫々のガス毎に設けられた第1パイプライン301a〜301dのバルブを開閉するようにアクチュエータ(不図示)を制御することできる。なお、コンピュータ510による制御は、この場合に限られず、各ガスの供給比率を変えることによって、より細かい取引価格の値動きにリアルタイムで対応して、ガスの供給を行うこともできる。
【0066】
以上のガス供給段階、排熱供給段階、固定化段階、および二酸化炭素の分離回収段階などで説明されたように、設備の小型化、ユーティリティーの使用量の削減、および低品位排熱の利用を行うことによって、安価に二酸化炭素を分離回収することができる点は、CO2を分離回収するために必要なコストを下げることにつながる。したがって、国などの第1事業者が、製鉄所設備を活用して二酸化炭素の分離回収システムを継続的に運用していくことを可能とする。換言すれば、この点が、二酸化炭素排出源から二酸化炭素を分離回収するトータルシステムを運用するために、製鉄所を拠点(サイト)として用いる有利な点である。したがって、国やその他の事業者等の第1事業者は、特定の国内外からCO2排出権を購入するよりも安価に国内でのCO2を分離回収し、CO2の排出量を削減する事業を運営することができるようになる。
【0067】
(二酸化炭素分離回収後の副生ガス等の帰還段階)
図1に示されるように、帰還段階では、前記第1事業者設備200が、分離回収段階で二酸化炭素を分離回収して得られた残りの副生ガス等を製鉄所設備100へ第2パイプライン303を通じて帰還させる。副生ガス等は、種類によって熱量に違いがあるものの、いずれも燃料として製鉄所設備100内で再利用できる。たとえば、高炉ガス(BFG)から二酸化炭素を分離回収した残りのガスをプロセスガスとして製鉄所設備100内で再利用することができる。
【0068】
このように二酸化炭素を分離回収した残りの高炉ガスは、二酸化炭素を分離回収する前の高炉ガスに比べて熱量が750kcal/Nm3から1000kcal/Nm3へと高くなる。したがって、第2パイプライン303を通じて帰還された高炉ガス(二酸化炭素の分離回収後)をガスタービンの燃料として使用する際に、軽油などの補助燃料を加える必要がなくなる。
【0069】
また、高炉ガス(二酸化炭素の分離回収後)を高炉に再度注入することで、二酸化炭素が無くなった分化学的に平衡に達するまで鉄の還元反応に寄与することが出来る。すなわち、還元剤であるコークスの使用量が減る。また、従来の天然ガスや石炭を用いて高炉の前段で鉄鉱石の予備還元を行うプロセスに当ガスを用いることもできる。
【0070】
また、コークス炉ガス(COG)や転炉ガス(LDG)を改質して、水素製造を行う場合、その途中で不要となる二酸化炭素を抽出すると、水素製造コストを低減することが可能となる。このように分離回収段階で二酸化炭素を分離回収して得られた残りの副生ガスを製鉄所設備100へ第2パイプライン303を通じて帰還させることによって、二酸化炭素が取り除かれた副生ガスをエネルギー密度が高いガスとして有効利用を図り、二酸化炭素分離回収のためのランニングコストを低くするために寄与している。
【0071】
(供給量計測段階)
第1供給量計測段階では、製鉄所設備から第1事業者設備200へ供給された副生ガス等の供給量が計測される。また、第2供給量計測段階では、製鉄所設備100から第1事業者設備200へ供給された排熱の供給量が計測される。なお、計測は、リアルタイムで行うことができる。
【0072】
(課金段階)
課金段階では、第1供給量計測器501で計測された副生ガス等の供給量データと第2供給量計測器502で計測された排熱の供給量データを通信回線を通じてコンピュータ510が取得する。そして、コンピュータ510は、これらの取得された副生ガス等の供給量データおよび排熱の供給量データに基づいて、副生ガス等の供給および排熱の供給に必要なランニングコストを算出して、第1事業者側に対して課金する。具体的には、副生ガス等の供給量や排熱の供給量が多くなるのにしたがって、副生ガス等や排熱の輸送に必要なコストなどが高くなる。したがって、副生ガス等や排熱の供給量が多くなるにしたがってランニングコストの算出に反映させる。算出は、副生ガス等の単位供給量あたりのランニングコスト、排熱の単位供給量あたりのランニングコストを予め設定しておき、それぞれに各供給量を乗じておこなってもよく、副生ガス等の供給量と第1ランニングコストとの関係を第1のルックアップテーブルとして記憶しておき、排熱の供給量と第2ランニングコストとの関係を第2のルックアップテーブルとして記憶しておき、これら第1および第2のルックアップテーブルを参照して得られた所望の第1ランニングコストと第2ランニングコストの合算を最終的なランニングコストとして算出してもよい。
【0073】
焼結成品クーラーからの排熱(約350℃)、熱風炉排ガス(約230℃)、焼結主排気ガス(約180℃)、およびスラグの水砕に用いた排水(約90℃)などの複数種類の排熱を多段階に活用する場合には、排熱の種類に応じて単位供給量あたりのランニングコストを設定しておき、供給した排熱の種類と供給量とに応じて、ランニングコストを算出して課金してもよい。なお、本実施の形態は、副生ガス等の供給量データおよび排熱の供給量データに応じたランニングコストとは別の費用を第1事業者側に請求することを排除する意味ではないことはもちろんである。
【0074】
また、さらに、第1事業者側設備200から製鉄所設備100へ供給された二酸化炭素の供給量を計測する第3供給量計測段階を有していてもよい。この場合、課金段階では、コンピュータ510は、第3供給量計測段階で計測された二酸化炭素の供給量データを取得し、取得された二酸化炭素の供給量データに基づいて、割引料(二酸化炭素の購入代金)を計算し、上述した必要なランニングコストから割引料を差し引いた額を、前記第1事業者側へ課金してもよい。
【0075】
このように、二酸化炭素を分離回収するシステムの拠点として製鉄所を利用して事業を運営する第1事業者に対して、必要なランニングコストを自動的に算出し課金することができるので、二酸化炭素を分離回収回収するシステムを継続的に運用する事業を成立させることが可能となる。また、上記のガス供給段階、排熱供給段階、二酸化炭素の分離回収段階、および二酸化炭素分離回収後の副生ガス等の帰還段階で説明したように、必要なランニングコストは低く保たれているため、課金される第1事業者にとっても、特定の国内外などからCO2排出権を購入するよりも安価に国内でCO2を分離回収し、CO2排出量を削減する事業を運営することができる。さらに、副生ガス等の供給量や排熱の供給量が時間によって変動する場合や、時間に応じて副生ガス等の供給や排熱の供給が休止する場合であっても、自動的にランニングコストが計算されて課金されるので、ランニングコストを計算する作業負担が軽減される。
【0076】
さらに、場合に応じて、固定化量に対応する二酸化炭素排出権を取引サイトで販売することができ、この結果、資金の回収を図ることができる。また、国内外の二酸化炭素排出権取引価格にリンクした最適運転を実行することができる。すなわちコストと相場を自動的にリアルタイムで取り込み、運転(分離回収)内容を決めることができる。したがって、国内外の二酸化炭素排出権取引価格にリアルタイムで対応した事業を展開することができ、この面からも、二酸化炭素の分離回収システムを継続的に運用していくことを可能とすることができる。
【0077】
(第2の実施の形態)
図5は、本実施の形態における二酸化炭素分離回収システムを模式的に説明するための機能ブロック図である。
【0078】
図5に示されるように、本実施の形態の二酸化炭素分離回収システムでは、第1の実施の形態の場合と異なり、二酸化炭素の分離回収段階までを製鉄所設備100で実行し、分離回収されて得られた二酸化炭素を第1事業者側設備200へ供給する。
【0079】
すなわち、製鉄所が第1事業者から委託事業として二酸化炭素の分離回収処理を実行する。分離回収部210などの建設費は、第1事業者が負担し、二酸化炭素の分離回収処理に伴うランニングコストは、二酸化炭素の購入費として第1事業者から製鉄所側へ支払われる。
【0080】
本実施の形態でのシステム運用方法は、以下のようになる。
【0081】
(分離回収段階)
製鉄所設備100が、製鉄の過程で発生する所定温度以下の排熱を利用して、製鉄の過程で発生する副生ガス等から二酸化炭素を分離回収する。この際に、二酸化炭素比率が火力発電所の排ガスに比べて高い副生ガス等を用いるともに、製鉄の過程には再利用が困難な低品位の熱エネルギーを有する排熱を有効利用することで、二酸化炭素の分離回収に必要なランニングコストを下げている点は、上記第1の実施の形態と同様である。
【0082】
(二酸化炭素供給段階)
製鉄所設備100が、分離回収段階で分離回収された二酸化炭素を製鉄所設備100に付随して設けられた第1事業者設備200へ供給パイプライン600を通じて供給する。
【0083】
(供給量計測段階)
供給量計測段階では、前記製鉄所設備100から第1事業者設備200へ供給された二酸化炭素の供給量を計測する。計測は、供給パイプライン600に設けられた二酸化酸化炭素供給量計測器601によりリアルタイムで行うことができる。
【0084】
(課金段階)
供給量計測段階で計測された二酸化炭素の供給量データを製鉄所設備100に設けられた通信回線を通じてコンピュータが取得し、取得された二酸化炭素の供給量データに基づいて、第1事業者側に対して課金する。たとえば、二酸化炭素供給量計測器601で計測された二酸化炭素の供給量に、予め設定された単位量あたりの価格を乗じることによって、リアルタイムで課金する。
【0085】
このように、本実施の形態によっても、製鉄所の特性を生かして、二酸化炭素比率の高い副生ガス等を原料ガスに用いること、および製鉄の過程には再利用が困難な低品位の熱エネルギーを有する排熱を利用して、原料ガスから二酸化炭素を分離回収することができる。また、ランニングコストを自動的に課金する手段も設けられている。したがって、本実施の形態の二酸化炭素分離回収システム運用方法によっても、国などの第1事業者が製鉄所設備を用いた二酸化炭素の分離回収システムを継続的に運用していくことを可能とすることができる。
【0086】
以上のように、本発明の好適な実施の形態を説明したが、本発明は、発明の思想の範囲内で種々の変形、省略、および付加が可能である。
【0087】
【発明の効果】
本発明によれば、製鉄所設備が、製鉄の過程で発生する副生ガス、または副生ガスから水素を製造するための改質プロセスの中で産生されるプロセスガスである所内ガスを当該製鉄所側設備に付随して設けられた分離回収設備へ第1パイプラインを通じて供給し、製鉄所設備が、製鉄の過程で発生する焼結成品クーラーからの熱と、熱風炉排ガスの熱と、焼結主排気ガスの熱と、スラグの水砕に用いた排水の熱とからなる群から選ばれる少なくとも一つの排熱を前記分離回収設備へ熱輸送部を通じて供給し、前記分離回収設備が前記分離回収段階で二酸化炭素を分離回収して得られた残りの前記所内ガスを前記製鉄所設備へ第2パイプラインを通じて帰還させて燃料として製鉄所設備で再利用するので、設備の小型化、ユーティリティーの使用量の削減、および低品位排熱の利用を行うことにより、二酸化炭素分離回収システムを継続的に運用する事業を成立させることが可能となるとともに、以下のような効果を奏する。
すなわち、二酸化炭素を分離回収した残りの高炉ガスは、種類にもよるが、二酸化炭素を分離回収する前の高炉ガスに比べて熱量が高くなる。したがって、第2パイプラインを通じて帰還された高炉ガス(二酸化炭素の分離回収後)をガスタービンの燃料として使用する際に、軽油などの補助燃料を加える必要がなくなる。
また、高炉ガス(二酸化炭素の分離回収後)を高炉に再度注入することで、二酸化炭素が無くなった分化学的に平衡に達するまで鉄の還元反応に寄与することが出来る。すなわち、還元剤であるコークスの使用量が減る。また、従来の天然ガスや石炭を用いて高炉の前段で鉄鉱石の予備還元を行うプロセスに当ガスを用いることもできる。
このように分離回収段階で二酸化炭素を分離回収して得られた残りの副生ガスを製鉄所設備へ第2パイプラインを通じて帰還させることによって、二酸化炭素が取り除かれた副生ガスをエネルギー密度が高いガスとして有効利用を図り、二酸化炭素分離回収のためのランニングコストを低くするために寄与することができる。
【0088】
また、本発明によれば、コンピュータが、前記第1供給量計測段階および第2供給量計測段階で計測された前記所内ガスの供給量データおよび前記排熱の供給量データを前記第1供給量計測器および第2供給量計測器ら取得し、コンピュータ、取得された前記所内ガスの供給量データおよび前記排熱の供給量データに、それぞれ予め設定されている前記所内ガスの単位供給量あたりのランニングコストおよび前記排熱の単位供給量あたりのランニングコストを乗じることなどによって、前記分離回収設備への前記所内ガスの供給および前記排熱の供給に必要なランニングコストを算出するので、二酸化炭素分離回収システムの拠点である製鉄所設備を提供する私企業がCOを分離回収するためのランニングコストを自動的に算出して事業者へ請求することができ、二酸化炭素分離回収システムを継続的に運用する事業を成立させることができる。
【0089】
さらに、本発明によれば、固定化された二酸化炭素の固定化量を固定化量計測器が計測する固定化量計測段階と、コンピュータが、前記固定化量計測段階で計測された固定化量データを前記固定化量計測器から取得する段階と、ンピュータが、二酸化炭素排出量削減量に対応する二酸化炭素排出権を取引するための取引サイトを介して前記固定化量に対応する二酸化炭素排出権を取引するために、前記取引サイトを提供しているサーバに通信回線を介してアクセスする段階とを有するので、各事業者は、二酸化炭素排出権を販売することができ資金を得ることができる。この面からも、二酸化炭素分離回収システムを継続的に運用する事業を成立させることが可能となる。
【0090】
さらに、本発明によれば、コンピュータが、二酸化炭素排出権の取引価格データと前記複数の閾値との比較結果に応じてアクチュエータを制御することによって、相互に温度が異なる複数種類の排熱毎に設けられた複数の熱輸送部のバルブを開閉して、それぞれの種類の排熱の供給比率を変える排熱種類選択段階や、前記取引価格データと前記複数の閾値との比較結果に応じてアクチュエータを制御することによって、相互に温度が異なる複数種類の前記所内ガス毎に設けられた複数の第1パイプラインのバルブを開閉して、それぞれの種類の所内ガスの供給比率を変えるガス種類選択段階を有するので、二酸化炭素排出権の値動きにリアルタイムで対応した操業を行うことができ、この面からも二酸化炭素分離回収システムを継続的に運用する事業を成立させることが可能となる。
【図面の簡単な説明】
【図1】 第1の実施の形態における二酸化炭素分離回収システムを模式的に説明するための機能ブロック図である。
【図2】 図1に示される分離回収部の一例を示す図である
【図3】 図1に示される分離回収部の他の例を示す図である。
【図4】 本発明の二酸化炭素分離回収システム運用方法における、固定化量計測段階、排出権取引サイトを介した排出権販売段階、および排出権の取引価格に基づく排熱種類選択段階ならびにガス種類選択段階を説明するための模式図である。
【図5】 第2の実施の形態における二酸化炭素分離回収システムを模式的に説明するための機能ブロック図である。
【符号の説明】
100…製鉄所設備(製鉄所側設備)、
101…ガス発生源、
102…低品位排熱発生源、
103…副生ガス利用設備、
200…第1事業所側設備(第1事業所側の設備)、
210…分離回収部、
301…第1パイプライン、
302…熱輸送用パイプライン(熱輸送部)、
303…第2パイプライン、
304…第3パイプライン、
501…第1供給量計測器、
502…第2供給量計測器、
510…コンピュータ、
600…供給パイプライン。
700…固定化設備、
701…固定化量計測器、
702…コンピュータ、
703…通信回線、
704…サーバ(取引サイト)、
705…クライアントコンピュータ。

Claims (8)

  1. 製鉄所設備を用いた二酸化炭素分離回収システム運用方法であって、
    前記製鉄所設備が、製鉄の過程で発生する副生ガスと、前記副生ガスから水素を製造する改質プロセスの中で産生されるプロセスガスとからなる群から選ばれる少なくとも一つの所内ガスを当該製鉄所設備に付随して設けられた分離回収設備へ第1パイプラインを通じて供給するガス供給段階と、
    前記製鉄所設備が、製鉄の過程で発生する焼結成品クーラーからの熱と、熱風炉排ガスの熱と、焼結主排気ガスの熱と、スラグの水砕に用いた排水の熱とからなる群から選ばれる少なくとも一つの排熱を前記分離回収設備へ熱輸送部を通じて供給する排熱供給段階と、
    前記分離回収設備が、前記排熱供給段階で供給された前記排熱を利用して、前記ガス供給段階で供給された前記所内ガスから二酸化炭素を分離回収する分離回収段階と、
    前記分離回収設備が前記分離回収段階で二酸化炭素を分離回収して得られた残りの前記所内ガスを前記製鉄所設備へ第2パイプラインを通じて帰還させて燃料として製鉄所設備で再利用する帰還段階と、を有する二酸化炭素分離回収システム運用方法であって、
    さらに、前記製鉄所設備から前記分離回収設備へ供給された前記所内ガスの供給量を第1供給量計測器が計測する第1供給量計測段階と、
    前記製鉄所設備から前記分離回収設備へ供給された前記排熱の供給量を第2供給量計測器が計測する第2供給量計測段階と、
    コンピュータが、前記第1供給量計測段階および第2供給量計測段階で計測された前記所内ガスの供給量データおよび前記排熱の供給量データを前記第1供給量計測器および第2供給量計測器から取得する段階と、
    コンピュータが、取得された前記所内ガスの供給量データおよび前記排熱の供給量データに、それぞれ予め設定されている前記所内ガスの単位供給量あたりのランニングコストおよび前記排熱の単位供給量あたりのランニングコストを乗じることによって、前記分離回収設備への前記所内ガスの供給および前記排熱の供給に必要なランニングコストを算出する段階と、を有することを特徴とする二酸化炭素分離回収システム運用方法。
  2. 製鉄所設備を用いた二酸化炭素分離回収システム運用方法であって、
    前記製鉄所設備が、製鉄の過程で発生する副生ガスと、前記副生ガスから水素を製造する改質プロセスの中で産生されるプロセスガスとからなる群から選ばれる少なくとも一つの所内ガスを当該製鉄所設備に付随して設けられた分離回収設備へ第1パイプラインを通じて供給するガス供給段階と、
    前記製鉄所設備が、製鉄の過程で発生する焼結成品クーラーからの熱と、熱風炉排ガスの熱と、焼結主排気ガスの熱と、スラグの水砕に用いた排水の熱とからなる群から選ばれる少なくとも一つの排熱を前記分離回収設備へ熱輸送部を通じて供給する排熱供給段階と、
    前記分離回収設備が、前記排熱供給段階で供給された前記排熱を利用して、前記ガス供給段階で供給された前記所内ガスから二酸化炭素を分離回収する分離回収段階と、
    前記分離回収設備が前記分離回収段階で二酸化炭素を分離回収して得られた残りの前記所内ガスを前記製鉄所設備へ第2パイプラインを通じて帰還させて燃料として製鉄所設備で再利用する帰還段階と、を有する二酸化炭素分離回収システム運用方法であって、
    さらに、前記製鉄所設備から前記分離回収設備へ供給された前記所内ガスの供給量を第1供給量計測器が計測する第1供給量計測段階と、
    前記製鉄所設備から前記分離回収設備へ供給された前記排熱の供給量を第2供給量計測器が計測する第2供給量計測段階と、
    コンピュータが、前記第1供給量計測段階および第2供給量計測段階で計測された前記所内ガスの供給量データおよび前記排熱の供給量データを前記第1供給量計測器および第2供給量計測器から取得する段階と、
    コンピュータが、前記所内ガスの供給量と第1ランニングコストとの関係を示す第1のルックアップテーブル、および前記排熱の供給量と第2ランニングコストとの関係を示す 第2のルックアップテーブルを予め記憶しておく段階と、
    コンピュータが、取得された前記所内ガスの供給量データおよび前記排熱の供給量データに基づいて前記第1および第2のルックアップテーブルを参照して得られた所望の第1ランニングコストと第2ランニングコストとを合算することによって、前記分離回収設備への前記所内ガスの供給および前記排熱の供給に必要なランニングコストを算出する段階と、を有することを特徴とする二酸化炭素分離回収システム運用方法。
  3. さらに、前記分離回収設備が、前記分離回収段階で分離回収された二酸化炭素の一部を前記製鉄所設備へ第3パイプラインを通じて供給する製鉄所用二酸化炭素供給段階と、
    前記分離回収設備から前記製鉄所設備へ供給された前記二酸化炭素の供給量を二酸化炭素供給量計測器が計測する第3供給量計測段階と、
    前記コンピュータが、前記第3供給量計測段階で計測された前記二酸化炭素の供給量データを二酸化炭素供給量計測器から取得する段階と、
    コンピュータが、取得された前記二酸化炭素の供給量データに、予め設定されている前記二酸化炭素の単位供給量あたりの価格を乗じることによって割引料を計算する段階と、
    前記コンピュータが、前記算出されたランニングコストから前記割引量を差し引く段階と、を有することを特徴とする請求項または請求項2に記載の二酸化炭素分離回収システム運用方法。
  4. さらに、前記分離回収設備における前記分離回収段階で分離回収された二酸化炭素の少なくとも一部を輸送手段を通じて固定化設備へ供給する段階と、
    前記固定化設備が、地中帯水層への注入、枯渇ガス田へ注入、または海洋貯留することによって前記二酸化炭素を固定化する固定化段階を有することを特徴とする請求項1または請求項2に記載の二酸化炭素分離回収システム運用方法。
  5. 前記輸送手段は、前記分離回収設備と前記固定化設備とを結ぶ第4パイプラインであって、前記分離回収段階で分離回収された二酸化炭素は、前記第4パイプラインを通じて前記固定化設備へ供給されることを特徴とする請求項に記載の二酸化炭素分離回収システム運用方法。
  6. さらに、前記分離回収設備における前記分離回収段階で分離回収された二酸化炭素の少なくとも一部を輸送手段を用いて天然資源強制回収設備へ供給する段階と、
    前記天然資源強制回収設備が、前記輸送手段を通じて供給された二酸化炭素を石油強制回収または石炭埋蔵メタンガスの強制回収に用いる段階と、を有することを特徴とする請求項1または請求項2に記載の二酸化炭素分離回収システム運用方法。
  7. さらに、前記分離回収設備における前記分離回収段階で分離回収された二酸化炭素の少なくとも一部を輸送手段を用いて天然資源強制回収設備へ供給する段階と、
    前記天然資源強制回収設備が、前記輸送手段を通じて供給された二酸化炭素を水溶性天然ガスでの天然ガスの強制回収に用いる段階と、を有することを特徴とする請求項1または請求項2に記載の二酸化炭素分離回収システム運用方法。
  8. 前記輸送手段は、前記分離回収設備と前記天然資源強制回収設備とを結ぶ第4パイプラインであって、前記分離回収段階で分離回収された二酸化炭素は、前記第4パイプラインを通じて前記天然資源強制回収設備へ供給されることを特徴とする請求項または請求項に記載の二酸化炭素分離回収システム運用方法。
JP2003027193A 2003-02-04 2003-02-04 製鉄所設備を用いた二酸化炭素分離回収システム運用方法 Expired - Fee Related JP4035451B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003027193A JP4035451B2 (ja) 2003-02-04 2003-02-04 製鉄所設備を用いた二酸化炭素分離回収システム運用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003027193A JP4035451B2 (ja) 2003-02-04 2003-02-04 製鉄所設備を用いた二酸化炭素分離回収システム運用方法

Publications (2)

Publication Number Publication Date
JP2004237167A JP2004237167A (ja) 2004-08-26
JP4035451B2 true JP4035451B2 (ja) 2008-01-23

Family

ID=32955002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003027193A Expired - Fee Related JP4035451B2 (ja) 2003-02-04 2003-02-04 製鉄所設備を用いた二酸化炭素分離回収システム運用方法

Country Status (1)

Country Link
JP (1) JP4035451B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9202187B2 (en) 2010-03-18 2015-12-01 Kabushiki Kaisha Toshiba Plant operation support system, plant operation support program, and plant operation support method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240966A (ja) * 2005-03-07 2006-09-14 Research Institute Of Innovative Technology For The Earth 排ガス中の二酸化炭素を吸収及び脱離して回収する方法
JP5347154B2 (ja) 2006-06-28 2013-11-20 小出 仁 二酸化炭素地中貯留の処理方法及びその処理システム
KR101036651B1 (ko) * 2008-12-23 2011-05-24 재단법인 포항산업과학연구원 이산화탄소의 회수 방법
JP5248342B2 (ja) * 2009-01-20 2013-07-31 株式会社日立製作所 発電システムとその運転方法
JP2012036029A (ja) * 2010-08-04 2012-02-23 Mitsui Mining & Smelting Co Ltd 製鉄所における二酸化炭素からの一酸化炭素への変換システム
CN109269311B (zh) * 2018-09-03 2019-12-17 河海大学常州校区 一种蒸汽朗肯-有机朗肯联合循环焦炉废热回收发电系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9202187B2 (en) 2010-03-18 2015-12-01 Kabushiki Kaisha Toshiba Plant operation support system, plant operation support program, and plant operation support method

Also Published As

Publication number Publication date
JP2004237167A (ja) 2004-08-26

Similar Documents

Publication Publication Date Title
Chowdhury et al. Reducing industrial energy demand in the UK: A review of energy efficiency technologies and energy saving potential in selected sectors
Bhaskar et al. Decarbonizing primary steel production: Techno-economic assessment of a hydrogen based green steel production plant in Norway
Gielen CO2 removal in the iron and steel industry
Hammond et al. The prospects for coal-fired power plants with carbon capture and storage: A UK perspective
Ho et al. Comparison of MEA capture cost for low CO2 emissions sources in Australia
Meijer et al. ULCOS: ultra-low CO2 steelmaking
Fan et al. Life cycle global warming impact of CO2 capture by in-situ gasification chemical looping combustion using ilmenite oxygen carriers
He et al. Life cycle assessment of CO2 emission reduction potential of carbon capture and utilization for liquid fuel and power cogeneration
Dickinson et al. Alternative carriers for remote renewable energy sources using existing CNG infrastructure
JP4035451B2 (ja) 製鉄所設備を用いた二酸化炭素分離回収システム運用方法
Forsberg Is hydrogen the future of nuclear energy?
Qadir et al. Analysis of the integration of a steel plant in Australia with a carbon capture system powered by renewable energy and NG-CHP
Ashrafi et al. Impact of carbon capture technologies on GHG emissions from oil sands in-situ facilities: A system prospective
Senior et al. Carbon capture and storage in China—main findings from China-UK Near Zero Emissions Coal (NZEC) initiative
Feng et al. Life cycle cost analysis of power generation from underground coal gasification with carbon capture and storage (CCS) to measure the economic feasibility
Moosazadeh et al. Flare-to-hydrogen in oil and gas industries: Techno-economic feasibility of a net-negative alternative
Bataille et al. The Role of Hydrogen in Canada's Transition to Net-Zero Emissions
Jacobs et al. Carbon capture and sequestration
Yu et al. Optimal design and scheduling of carbon capture power plant based on uncertainty decision-making methods
Mills Prospects for coal, CCTs and CCS in the European Union
Michener CCS challenges and opportunities for China
Perpiñán et al. Full oxygen blast furnace steelmaking: From direct hydrogen injection to methanized BFG injection
Sloss Technology readiness of advanced coal-based power generation systems
Esposito et al. Improving the Business Case for CCS in the Electric Power Generation Industry
Losowska Embodied energy counting of sustainable heat, power and steel processes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061004

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4035451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees