JP4035243B2 - Method for producing multilayer bonding sheet for copper-clad laminate - Google Patents

Method for producing multilayer bonding sheet for copper-clad laminate Download PDF

Info

Publication number
JP4035243B2
JP4035243B2 JP34367298A JP34367298A JP4035243B2 JP 4035243 B2 JP4035243 B2 JP 4035243B2 JP 34367298 A JP34367298 A JP 34367298A JP 34367298 A JP34367298 A JP 34367298A JP 4035243 B2 JP4035243 B2 JP 4035243B2
Authority
JP
Japan
Prior art keywords
linear expansion
expansion coefficient
bonding sheet
layer
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34367298A
Other languages
Japanese (ja)
Other versions
JP2000174154A (en
Inventor
正一 田嶋
浩行 古谷
孝介 片岡
宏之 辻
直樹 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP34367298A priority Critical patent/JP4035243B2/en
Publication of JP2000174154A publication Critical patent/JP2000174154A/en
Application granted granted Critical
Publication of JP4035243B2 publication Critical patent/JP4035243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、多層ボンディングシートの製造方法に関する。
【0002】
【従来の技術】
近年、電子機器の高性能化、高機能化、小型化が急速に進んでおり、電子機器に用いられる電子部品の小型化、軽量化の要請が高まっている。これに伴い、電子部品の素材についても、耐熱性、機械的強度、電気特性等の諸物性が求められ、半導体素子パッケージ方法やそれらを実装する配線板にも、より高密度、高機能、かつ高性能なものが求められるようになってきた。特に、半導体パッケージ、COL(チップオンリード)及びLOC(リードオンチップ)パッケージやMCM(マルチチップモジュール)等の高密度実装材料、多層FPC(フレキシブルプリント回路)等のプリント配線板材料、さらには航空宇宙材料として好適に用いることのできる良好なボンディングシートが求められている。
【0003】
このようなボンディングシートは、典型的には例えば銅箔などの金属との積層体、すなわちフレキシブル銅張積層板として使用される。しかし、例えばフレキシブル銅張積層板の銅箔エッチングを行う前後において、ボンディングシートの寸法の変化が、銅箔の寸法変化に比べて大きいと、加工中に反りが生じたり、プリント基板としての使用に耐えなかったりする問題が生じる。
【0004】
従来は多層ボンディングシートを設計する有効な方法がなかった為、多層ボンディングシートを構成する各層のそれぞれの物性値を金属箔のそれに近い値にして調整したりしていたが、事前に問題を回避する有効な方法はなかった。
【0005】
【発明が解決しようとする問題点】
そこで、本発明者らは、上記問題を解決し、寸法安定性に優れた多層ボンディングシートの製造を容易に行えるようにすることを目的とし、鋭意研究を行った結果、本発明を完成するに至った。
【0006】
【課題を解決するための手段】
【0007】
本発明の銅張積層板用の多層ボンディングシートの製造方法の要旨とするところは、少なくとも1つのベースフィルムおよび少なくとも1つの接着剤層を積層してなる銅張積層板用の多層ボンディングシートの製造方法であって、
多層ボンディングシートを構成し得る候補のベースフィルムあるいは接着剤層のそれぞれの線膨張係数、弾性率、および厚みを測定する工程と;該測定値から、任意のベースフィルムあるいは接着剤層を組み合わせて、算出平均線膨張係数Sαを導出する工程と;
MD方向またはTD方向の少なくとも一方の算出平均線膨張係数Sαが、13ppm≦Sα≦19ppmを満たすようなベースフィルムと接着剤層との組み合わせを選択する工程と;選択されたベースフィルムと選択された接着剤層とを交互に組み合わせて多層ボンディングシートを作成する工程と;から成り、
前記算出平均線膨張係数を導出する工程が、任意のベースフィルムあるいは接着剤層のそれぞれの線膨張係数と弾性率と厚みとの乗算値を算出し、各層の該乗算値を加算して積算値1を算出する工程と;各層のそれぞれの弾性率と厚みとの乗算値を算出し、各層の該乗算値を加算して積算値2を算出する工程と;該積算値1を積算値2で除する工程と;からなることにある。ここで、各層のそれぞれの線膨張係数と弾性率とは、フィルムのTD方向あるいはMD方向におけるそれぞれの値である。
【0009】
【発明の実施の形態】
本発明の用語「ボンディングシート」とは、主に、電子機器、特に半導体パッケ−ジ、COL、LOC、MCM、FPC、航空宇宙機器部品等の結合に好適に用いられ得る、ベースフィルムと接着剤層とを有するシートをいう。「多層ボンディングシート」とは、少なくとも1つ以上のベースフィルムと1つ以上の接着剤層とが重層されてなるボンディングシートをいい、本明細書においては、2層ボンディングシートも多層ボンディングシートに包含される。
【0010】
本発明に用いられるベースフィルムは、FPC等のベースフィルムとして使用可能なものであればいかなるフィルムでもよい。特には耐熱性に優れた特性を有するポリイミドフィルムが好ましく用いられる。具体的には、ベースフィルムとして用いるポリイミドフィルムは、例えば、「アピカル(登録商標;鐘淵化学工業株式会社製)」のようなポリイミドフィルムであり得るが、これに限定されない。ポリイミドフィルムは、前駆体のポリアミド酸溶液を熱的又は化学的に脱水閉環する方法により得られる。本発明においては、その他いかなる構造の高分子フィルムでも用いられ得る。
【0011】
本発明の多層ボンディングシートの接着剤層を構成し得る接着剤の種類は、特に限定されず、エポキシ系樹脂やアクリル系樹脂等公知のいずれの接着剤でも用い得る。特に耐熱性の高いボンディングシートを得る為には、ポリイミド系接着剤が好ましく用いられ得る。ポリイミドは、固体または溶液の状態であるポリアミド酸を加熱重縮合して得られる。しかし、一般にポリイミドは、閉環状態ではほとんど不溶、不融で流動性を示さなくなる為、ポリイミド系接着剤は、十分な流動性を有する種類を選ぶことが必要である。
【0012】
好ましい接着剤は、350℃以下のガラス転移温度を持つポリアミド酸溶液またはそれを前駆体とするポリイミドである。
【0013】
本発明の多層ボンディングシートの最も簡単なものは、接着剤をベースフィルムの片面または両面上に流延または塗布した後、加熱乾燥して得られる。さらに、接着剤を介して同種あるいは異種のベースフィルムを重ねて、3層より多い層を含む多層ボンディングシートを得ることも可能である。同様にこの同種あるいは異種のベースフィルムにさらに接着剤層を設けて、ベースフィルムと接着剤層とを交互に配して層を増やすことも可能である。エポキシ系、アクリル系、およびポリイミド系をはじめ、いずれの接着剤を用いる場合でも、接着剤溶液から得られるフィルム状にした接着剤層を、ボンディングシート用のベースフィルムに重層して用いることも可能である。
【0014】
接着剤をベースフィルムに付与する方法は、特に限定されず、公知のいずれの方法でも用いられる。例えば、ポリアミド酸溶液は、ロータリーコーター、ナイフコーター、ドクターブレード、フローコーターを用いて、ベースフィルム上に流延または塗布され得る。あるいはすでにフィルム状に成形した接着剤フィルムをベースフィルム上に重ねて熱圧着する。
【0015】
このようにして得られた多層ボンディングシートの接着面に、さらに金属箔を貼って、積層板を製造し得る。金属箔は、代表的には銅箔であるが、これに限定されず、鉄、アルミ、ステンレス等のあらゆる金属を箔状にして使用し、金属張積層板を得る。
【0016】
本発明においては、貼り合わせる金属箔の種類に応じて、多層ボンディングシートをあらかじめ設計することができる。具体的には、まず、貼り合わせる金属箔の線膨張係数を求め、多層ボンディングシートの算出平均線膨張係数がその金属箔の線膨張係数に近い値になるように設定する。設定は、多層ボンディングシートを構成する接着剤層およびベースフィルムの種類を選択するか、各層の厚みを調整することによってなされる。その具体的な手法を以下に述べる。
【0017】
まず、多層ボンディングシートを構成する各層の材料のそれぞれの線膨張係数、弾性率および厚みを求め、その乗算値を算出し、各層の該乗算値を加算して積算値1を算出する。次に、各層のそれぞれの弾性率および厚みの乗算値を算出し、各層の該乗算値を加算して積算値2を算出し、該積算値1を積算値2で除する。ここで、各層の線膨張係数および弾性率は、TD方向かMD方向かのいずれかの値である。この積算値1を積算値2で除した値を算出平均線膨張係数といい、以下の第1式で表す。
【0018】
【数1】

Figure 0004035243
【0019】
ここで、Sαは算出平均線膨張係数、αiは第i層の線膨張係数、Eiは第i層の弾性率、およびTiは第i層の厚みを示す。nは、多層ボンディングシートの層数を表す。
【0020】
このような多層ボンディングシートの算出平均線膨張係数を求めるシステムを構築することもできる。具体的には、各層のそれぞれの線膨張係数、弾性率および厚みを入力する入力部;該入力値を処理して、算出平均線膨張係数を算出する処理部;および処理された算出値を出力する出力部、とからなる多層ボンディングシートの算出平均線膨張係数の算出システムが構築できる。ここで、上記処理部は、上記第1式を用いて、算出平均線膨張係数を計算する箇所である。
【0021】
より具体的には、このシステムは、パーソナルコンピュータあるいは処理システムの専用機として構成し得る。図1において、符号10は、専用機として構成した処理システムの一例である。この処理システム10は、CPU12、メモリ14、I/Oポート16、CRT18、キーボード20、LED22等から構成されている。
【0022】
次に、本発明の算出平均線膨張係数を用いた多層ボンディングシートの製造方法を例示する。まず、多層ボンディングシートを構成し得る候補のベースフィルムあるいはフィルム状の接着剤を用意し、それぞれのMD方向および/またはTD方向の線膨張係数、弾性率、および厚みを測定する。該測定値から、任意のベースフィルムあるいは接着剤層を組み合わせて、MD方向および/またはTD方向の算出平均線膨張係数を導出し、多層ボンディングシートと張り合わされるべき金属箔の線膨張係数値と比較して、一定範囲内におさまるようなベースフィルムと接着剤層の組み合わせを選択する。具体的には、MD方向およびTD方向共、ボンディングシートの算出平均線膨張係数Sαが、13ppm≦Sα≦19ppmを満たすことが好ましいが、いずれか一方がこの値の範囲内であれば、使用し得る。このような式を満たす算出平均線膨張係数を持つボンディングシートの寸法変化率は0.05%〜0.06%以下と非常に小さく、積層板を作成するのに好ましい。このような調整をしさえすれば、各層の厚みあるいは物性値をそれぞれ特定の範囲内に納めなくてもよい。
【0023】
あるいは、特に接着剤については、フィルムに成形する前に線膨張係数と弾性率のみを測定しておき、理想的な算出平均線膨張係数を先に第1式に代入しておく。このようにすれば、式中、接着剤層の厚みのみを未知数とすることができ、実際の接着剤層の厚みのみを調整することで、その理想的な算出平均線膨張係数を有する多層ボンディングシートを製造することが可能となる。
【0024】
特に貼り合わされる金属箔が銅である場合、銅箔の線膨張係数は16ppmである為、材料の温度変化が、平均的な200℃の場合、多層ボンディングシートのMD方向あるいはTD方向のいずれにおける算出平均線膨張係数が、13ppm以上19ppm以下であることが好ましく、MD方向およびTD方向の両方の算出平均線膨張係数が、いずれもが13ppm以上19ppm以下であることがより好ましい。
【0025】
以下に、本発明に係る多層ボンディングシートの製造方法について、実施例によってより具体的に説明するが、本発明はその趣旨を逸脱しない範囲で当業者の知識に基づき、種々なる改良、変更、修正を加えた様態で実施しうるものである。従って、本発明はこれらの実施例によって限定されない。
【0026】
【実施例】
(実施例1〜4)
アピカルHPフィルム(鐘淵化学工業株式会社製)(実施例2〜4)あるいはユーピレックスS(宇部興産株式会社製)(実施例1)をベースフィルムとした。このフィルムの両面上に、バーコーターを用いて接着剤を塗布し、乾燥炉中で、100℃で6分間加熱した後、ベースフィルムごと金属支持体に端部を固定した後、150℃、200℃、および300℃で各6分間加熱し、3層構造のボンディングシートを得た。接着剤は、ポリアミド酸溶液からなる。各層のTD方向およびMD方向の弾性率(記号E、単位kgf/mm2 )、線膨張係数(記号α、単位ppm)、および厚み(記号t、単位mm)を求め、算出平均線膨張係数(記号Sα)を、式1により計算機で計算した。
【0027】
(比較例1〜3)
アピカルNPIフィルム(鐘淵化学工業株式会社製)(比較例2、3)あるいはユーピレックスS(比較例1)をベースフィルムとして、実施例1〜4と同様に、フィルムの両面にポリアミド酸溶液からなる接着剤の層を付与して、3層構造のボンディングシートを作成した。各層のTD方向およびMD方向の弾性率、線膨張係数、および厚みを求め、算出平均線膨張係数を式1により計算機で計算した。
【0028】
(実施例5)
アピカルHPとポリアミド酸溶液からなる接着剤とを交互に積層して、実施例1〜4と同様に、7層構造のボンディングシートを作成した。各層のTD方向およびMD方向の弾性率、線膨張係数、および厚みを求め、算出平均線膨張係数を式1により計算機で計算した。
【0029】
(比較例4および5)
アピカルNPI(比較例5)またはユーピレックスS(比較例4)とポリアミド酸溶液からなる接着剤とを用いて、7層構造のボンディングシートを作成した。各層のTD方向およびMD方向の弾性率、線膨張係数、および厚みを求め、算出平均線膨張係数を式1により計算機で計算した。
【0030】
このようにして得られた実施例1〜5および比較例1〜5の多層ボンディングシートの算出平均線膨張係数(Sα)および寸法変化率と、多層ボンディングシートを構成するそれぞれの層の弾性率、厚み、および線膨張係数とを表1および表2に示す。表1はTD方向を表し、表2は、MD方向を表す。
【0031】
【表1】
Figure 0004035243
【0032】
【表2】
Figure 0004035243
【0033】
ここで、各層の線膨張係数は、ベースフィルムあるいは所定の厚みのフィルム状にした接着剤層を窒素気流下において、理学電気製TMA8140により測定した100℃〜200℃の間の平均値である。
【0034】
各層の弾性率は、ASTM D882に基づいて測定した。
【0035】
また、寸法変化率は、多層ボンディングシートを銅箔とラミネートし、280℃にて、7分間加熱圧着して銅張積層板を作成した後に測定した。まず、寸法変化率測定用に、積層板を21cm(MD方向)×21cm(TD方向)に切り出し、図2のA、B、C、およびDのそれぞれの位置に直径1mmの孔を開けて、試験片とした。この試験片を、20℃±2℃、60±5%RHに調整された恒温恒湿室に24時間放置した後、図2のAB間、CD間、AC間、およびBD間の距離を測定し、これを初期値とした。
【0036】
次に43±5℃に保たれた塩化第二銅エッチング液を用い、試験片の銅箔を全面エッチング除去した。これを充分に水洗いし、水分を軽く拭き取った後、40±5℃に保たれた熱循環式オーブン中で、30分間乾燥した。この試験片を、20℃±2℃、60±5%RHに調整された恒温恒湿室に24時間放置した後、図2のAB間、CD間、AC間、およびBD間を測定し、これをエッチング処理後の値とした。
【0037】
MD方向及びTD方向の寸法変化率は、それぞれ以下の式で求められる。
【0038】
【数2】
Figure 0004035243
【0039】
【数3】
Figure 0004035243
【0040】
ここで、ABは、穴Aと穴Bとの距離(cm、以下同じ)、CDは、穴Cと穴Dとの距離(cm、以下同じ)、ACは、穴Aと穴Cとの距離、BDは、穴Bと穴Dとの距離、添え字Iは初期値、添え字Fは、エッチング処理後の値を示す。
【0041】
以上の実施例および比較例から、特定の値の算出平均線膨張係数を有するボンディングシートは、金属箔との貼り合わせ、その後の加工において、寸法安定性に優れていることがわかった。
【0042】
より詳しくは、MD方向あるいはTD方向のいずれかの算出平均線膨張係数が、銅箔の線膨張係数である16ppmと比較して、±3ppmの範囲内にあれば、MD方向およびTD方向のいずれの寸法変化率も小さい。一方、MD方向およびTD方向の双方の算出平均線膨張係数が、16ppmと比較して、±4ppm以上である場合は、いずれもMD方向およびTD方向の双方の寸法変化率が大きい。
【0043】
【発明の効果】
本発明の多層ボンディングシートの製造方法によれば、多層ボンディングシートを構成し得る候補のベースフィルムあるいは接着剤層のそれぞれの線膨張係数、弾性率、および厚みの測定値から、多層ボンディングシートの算出平均線膨張係数を導出し、この算出平均線膨張係数が特定の範囲内となるようなベースフィルムと接着剤層との組み合わせを選択することによって、寸法変化率が小さくプリント基板としての使用に耐え得る優れた特性の多層ボンディングシートを容易に製造することができる。
【図面の簡単な説明】
【図1】 多層ボンディングシートの算出平均線膨張係数の算出処理システムの実施形態を示す構成図である。
【図2】 多層ボンディングシートの寸法変化率を測定する方法を示した図である。[0001]
[Industrial application fields]
The present invention relates to a method for manufacturing a multilayer bonding sheet.
[0002]
[Prior art]
2. Description of the Related Art In recent years, electronic devices with high performance, high functionality, and miniaturization are rapidly progressing, and there is an increasing demand for miniaturization and weight reduction of electronic components used in electronic devices. Along with this, various physical properties such as heat resistance, mechanical strength, and electrical characteristics are also required for the materials of electronic components, and the semiconductor element packaging method and the wiring board for mounting them have higher density, higher functionality, and High performance has come to be demanded. In particular, semiconductor packages, high-density mounting materials such as COL (chip-on-lead) and LOC (lead-on-chip) packages and MCM (multi-chip modules), printed wiring board materials such as multilayer FPC (flexible printed circuit), and aerospace There is a need for a good bonding sheet that can be suitably used as a material.
[0003]
Such a bonding sheet is typically used as a laminate with a metal such as a copper foil, that is, a flexible copper-clad laminate. However, for example, before and after performing copper foil etching of a flexible copper-clad laminate, if the change in the dimensions of the bonding sheet is larger than the change in the dimensions of the copper foil, warping may occur during processing, or it may be used as a printed board. The problem of being unbearable arises.
[0004]
Previously, there was no effective method for designing a multilayer bonding sheet, so the physical property values of each layer constituting the multilayer bonding sheet were adjusted to values close to those of the metal foil, but the problem was avoided in advance. There was no effective way to do it.
[0005]
[Problems to be solved by the invention]
Therefore, the present inventors have intensively studied to solve the above problems and to facilitate the production of a multilayer bonding sheet having excellent dimensional stability. As a result, the present invention is completed. It came.
[0006]
[Means for Solving the Problems]
[0007]
The gist of the method for producing a multilayer bonding sheet for a copper clad laminate of the present invention is to produce a multilayer bonding sheet for a copper clad laminate obtained by laminating at least one base film and at least one adhesive layer. A method,
Measuring a linear expansion coefficient, an elastic modulus, and a thickness of each of the candidate base films or adhesive layers that can constitute the multilayer bonding sheet; from the measured values, combining arbitrary base films or adhesive layers; Deriving a calculated average linear expansion coefficient Sα;
Selecting a combination of a base film and an adhesive layer so that a calculated average linear expansion coefficient Sα in at least one of the MD direction or the TD direction satisfies 13 ppm ≦ Sα ≦ 19 ppm ; Forming a multilayer bonding sheet by alternately combining adhesive layers;
The step of deriving the calculated average linear expansion coefficient calculates a multiplication value of each linear expansion coefficient, elastic modulus, and thickness of an arbitrary base film or adhesive layer, and adds the multiplication values of each layer to obtain an integrated value. Calculating a multiplication value of each elastic modulus and thickness of each layer and adding the multiplication value of each layer to calculate an integrated value 2; calculating the integrated value 1 by the integrated value 2; And a step of removing. Here, the respective linear expansion coefficients and elastic moduli of the respective layers are values in the TD direction or MD direction of the film.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The term “bonding sheet” in the present invention mainly refers to a base film and an adhesive that can be suitably used for bonding electronic equipment, particularly semiconductor packages, COL, LOC, MCM, FPC, aerospace equipment components, etc. A sheet having a layer. “Multilayer bonding sheet” refers to a bonding sheet in which at least one base film and one or more adhesive layers are laminated. In this specification, a two-layer bonding sheet is also included in the multilayer bonding sheet. Is done.
[0010]
The base film used in the present invention may be any film as long as it can be used as a base film such as FPC. In particular, a polyimide film having characteristics excellent in heat resistance is preferably used. Specifically, the polyimide film used as the base film may be, for example, a polyimide film such as “Apical (registered trademark; manufactured by Kaneka Chemical Co., Ltd.)”, but is not limited thereto. The polyimide film is obtained by a method of thermally or chemically dehydrating and ring-closing the precursor polyamic acid solution. In the present invention, a polymer film having any other structure can be used.
[0011]
The kind of adhesive that can constitute the adhesive layer of the multilayer bonding sheet of the present invention is not particularly limited, and any known adhesive such as an epoxy resin or an acrylic resin can be used. In order to obtain a bonding sheet having particularly high heat resistance, a polyimide-based adhesive can be preferably used. The polyimide is obtained by heating polycondensation of polyamic acid that is in a solid or solution state. However, in general, polyimide is almost insoluble and infusible in a closed ring state and does not exhibit fluidity. Therefore, it is necessary to select a type of polyimide adhesive that has sufficient fluidity.
[0012]
A preferred adhesive is a polyamic acid solution having a glass transition temperature of 350 ° C. or less or a polyimide using the same as a precursor.
[0013]
The simplest of the multilayer bonding sheets of the present invention is obtained by casting or applying an adhesive on one or both sides of a base film, followed by heat drying. Furthermore, it is also possible to obtain a multilayer bonding sheet including more than three layers by stacking the same or different base films via an adhesive. Similarly, an adhesive layer may be further provided on the same or different base film, and the base film and the adhesive layer may be alternately arranged to increase the number of layers. Regardless of the type of adhesive, including epoxy, acrylic, and polyimide, it is also possible to use the adhesive layer in the form of a film obtained from the adhesive solution as an overlay on the base film for bonding sheets. It is.
[0014]
The method for applying the adhesive to the base film is not particularly limited, and any known method can be used. For example, the polyamic acid solution can be cast or applied onto the base film using a rotary coater, knife coater, doctor blade, flow coater. Alternatively, an adhesive film that has already been formed into a film is overlaid on the base film and thermocompression bonded.
[0015]
A laminated sheet can be produced by further attaching a metal foil to the adhesive surface of the multilayer bonding sheet thus obtained. The metal foil is typically a copper foil, but is not limited thereto, and any metal such as iron, aluminum, and stainless steel is used in the form of a foil to obtain a metal-clad laminate.
[0016]
In the present invention, a multilayer bonding sheet can be designed in advance according to the type of metal foil to be bonded. Specifically, first, the linear expansion coefficient of the metal foil to be bonded is obtained, and the calculated average linear expansion coefficient of the multilayer bonding sheet is set to be a value close to the linear expansion coefficient of the metal foil. The setting is made by selecting the type of adhesive layer and base film constituting the multilayer bonding sheet or by adjusting the thickness of each layer. The specific method is described below.
[0017]
First, the linear expansion coefficient, elastic modulus, and thickness of each layer material constituting the multilayer bonding sheet are obtained, a multiplication value thereof is calculated, and the multiplication value of each layer is added to calculate an integrated value 1. Next, a multiplication value of each elastic modulus and thickness of each layer is calculated, and the integration value 2 is calculated by adding the multiplication values of each layer, and the integration value 1 is divided by the integration value 2. Here, the linear expansion coefficient and the elastic modulus of each layer are values in either the TD direction or the MD direction. A value obtained by dividing the integrated value 1 by the integrated value 2 is referred to as a calculated average linear expansion coefficient, and is expressed by the following first formula.
[0018]
[Expression 1]
Figure 0004035243
[0019]
Here, Sα is the calculated average linear expansion coefficient, αi is the linear expansion coefficient of the i-th layer, Ei is the elastic modulus of the i-th layer, and Ti is the thickness of the i-th layer. n represents the number of layers of the multilayer bonding sheet.
[0020]
A system for obtaining the calculated average linear expansion coefficient of such a multilayer bonding sheet can also be constructed. Specifically, an input unit that inputs the linear expansion coefficient, elastic modulus, and thickness of each layer; a processing unit that processes the input values to calculate a calculated average linear expansion coefficient; and outputs the processed calculated values A calculation average linear expansion coefficient calculation system for a multi-layer bonding sheet can be constructed. Here, the processing unit is a place where the calculated average linear expansion coefficient is calculated using the first equation.
[0021]
More specifically, this system can be configured as a personal computer or a dedicated machine for a processing system. In FIG. 1, reference numeral 10 is an example of a processing system configured as a dedicated machine. The processing system 10 includes a CPU 12, a memory 14, an I / O port 16, a CRT 18, a keyboard 20, an LED 22, and the like.
[0022]
Next, the manufacturing method of the multilayer bonding sheet using the calculated average linear expansion coefficient of this invention is illustrated. First, a candidate base film or film-like adhesive that can form a multilayer bonding sheet is prepared, and the linear expansion coefficient, elastic modulus, and thickness in each MD direction and / or TD direction are measured. From the measured value, an arbitrary base film or adhesive layer is combined to derive a calculated average linear expansion coefficient in the MD direction and / or TD direction, and the linear expansion coefficient value of the metal foil to be bonded to the multilayer bonding sheet; In comparison, a combination of a base film and an adhesive layer that is within a certain range is selected. Specifically, in the MD direction and the TD direction, the calculated average linear expansion coefficient Sα of the bonding sheet preferably satisfies 13 ppm ≦ Sα ≦ 19 ppm , but if either one is within this value range, it is used. obtain. A dimensional change rate of a bonding sheet having a calculated average linear expansion coefficient satisfying such an expression is as small as 0.05% to 0.06% or less, which is preferable for producing a laminate. As long as such adjustments are made, the thickness or physical property value of each layer need not fall within a specific range.
[0023]
Alternatively, particularly for the adhesive, only the linear expansion coefficient and the elastic modulus are measured before being formed into a film, and an ideal calculated average linear expansion coefficient is first substituted into the first equation. In this way, in the formula, only the thickness of the adhesive layer can be an unknown, and by adjusting only the thickness of the actual adhesive layer, multilayer bonding having its ideal calculated average linear expansion coefficient A sheet can be manufactured.
[0024]
In particular, when the metal foil to be bonded is copper, the linear expansion coefficient of the copper foil is 16 ppm. Therefore, when the temperature change of the material is an average of 200 ° C., in either the MD direction or the TD direction of the multilayer bonding sheet. The calculated average linear expansion coefficient is preferably 13 ppm or more and 19 ppm or less, and the calculated average linear expansion coefficient in both the MD direction and the TD direction is more preferably 13 ppm or more and 19 ppm or less.
[0025]
Hereinafter, the method for producing a multilayer bonding sheet according to the present invention will be described more specifically with reference to examples. However, the present invention is variously improved, changed, and modified based on the knowledge of those skilled in the art without departing from the spirit of the present invention. It can be implemented in a mode with the added. Accordingly, the present invention is not limited by these examples.
[0026]
【Example】
(Examples 1-4)
An apical HP film (manufactured by Kaneka Chemical Co., Ltd.) (Examples 2 to 4) or Upilex S (manufactured by Ube Industries, Ltd.) (Example 1) was used as a base film. An adhesive was applied on both sides of this film using a bar coater, heated in a drying oven at 100 ° C. for 6 minutes, and then fixed to the metal support with the base film, and then at 150 ° C. and 200 ° C. Each was heated for 6 minutes at 300 ° C. and 300 ° C. to obtain a bonding sheet having a three-layer structure. The adhesive consists of a polyamic acid solution. The elastic modulus (symbol E, unit kgf / mm 2), linear expansion coefficient (symbol α, unit ppm), and thickness (symbol t, unit mm) of each layer are obtained, and the calculated average linear expansion coefficient (symbol) Sα) was calculated by the computer according to Equation 1.
[0027]
(Comparative Examples 1-3)
Apical NPI film (manufactured by Kaneka Chemical Co., Ltd.) (Comparative Examples 2 and 3) or Upilex S (Comparative Example 1) is used as a base film, and a polyamic acid solution is formed on both surfaces of the film in the same manner as in Examples A bonding layer having a three-layer structure was prepared by applying an adhesive layer. The elastic modulus, linear expansion coefficient, and thickness of each layer in the TD direction and MD direction were determined, and the calculated average linear expansion coefficient was calculated by Equation 1 using a computer.
[0028]
(Example 5)
Apical HP and an adhesive made of a polyamic acid solution were alternately laminated to form a 7-layer bonding sheet in the same manner as in Examples 1 to 4. The elastic modulus, linear expansion coefficient, and thickness of each layer in the TD direction and MD direction were determined, and the calculated average linear expansion coefficient was calculated by Equation 1 using a computer.
[0029]
(Comparative Examples 4 and 5)
A 7-layer bonding sheet was prepared using Apical NPI (Comparative Example 5) or Upilex S (Comparative Example 4) and an adhesive composed of a polyamic acid solution. The elastic modulus, linear expansion coefficient, and thickness of each layer in the TD direction and MD direction were determined, and the calculated average linear expansion coefficient was calculated by Equation 1 using a computer.
[0030]
The calculated average linear expansion coefficient (Sα) and dimensional change rate of the multilayer bonding sheets of Examples 1 to 5 and Comparative Examples 1 to 5 thus obtained, and the elastic modulus of each layer constituting the multilayer bonding sheet, Tables 1 and 2 show the thickness and the linear expansion coefficient. Table 1 represents the TD direction, and Table 2 represents the MD direction.
[0031]
[Table 1]
Figure 0004035243
[0032]
[Table 2]
Figure 0004035243
[0033]
Here, the linear expansion coefficient of each layer is an average value between 100 ° C. and 200 ° C. measured by a TMA8140 manufactured by Rigaku Denki under a nitrogen stream in a base film or an adhesive layer having a predetermined thickness.
[0034]
The elastic modulus of each layer was measured based on ASTM D882.
[0035]
The dimensional change rate was measured after laminating a multilayer bonding sheet with a copper foil and preparing a copper-clad laminate by thermocompression bonding at 280 ° C. for 7 minutes. First, for measurement of the dimensional change rate, the laminate was cut into 21 cm (MD direction) × 21 cm (TD direction), and holes with a diameter of 1 mm were formed at positions A, B, C, and D in FIG. A test piece was obtained. After leaving this test piece in a constant temperature and humidity chamber adjusted to 20 ° C. ± 2 ° C. and 60 ± 5% RH for 24 hours, the distances between AB, CD, AC and BD in FIG. 2 are measured. This was the initial value.
[0036]
Next, the entire surface of the copper foil of the test piece was removed by etching using a cupric chloride etchant maintained at 43 ± 5 ° C. This was thoroughly washed with water, wiped lightly, and then dried for 30 minutes in a heat circulating oven maintained at 40 ± 5 ° C. After leaving this test piece in a constant temperature and humidity chamber adjusted to 20 ° C. ± 2 ° C. and 60 ± 5% RH for 24 hours, measurements were taken between AB, CD, AC, and BD in FIG. This was the value after the etching treatment.
[0037]
The dimensional change rates in the MD direction and the TD direction can be obtained by the following equations, respectively.
[0038]
[Expression 2]
Figure 0004035243
[0039]
[Equation 3]
Figure 0004035243
[0040]
Here, AB is the distance between the hole A and the hole B (cm, the same applies hereinafter), CD is the distance between the hole C and the hole D (cm, the same applies hereinafter), and AC is the distance between the hole A and the hole C. , BD indicates the distance between the hole B and the hole D, the subscript I indicates the initial value, and the subscript F indicates the value after the etching process.
[0041]
From the above Examples and Comparative Examples, it was found that the bonding sheet having a calculated average linear expansion coefficient having a specific value is excellent in dimensional stability in bonding with a metal foil and subsequent processing.
[0042]
More specifically, if the calculated average linear expansion coefficient in either the MD direction or the TD direction is within a range of ± 3 ppm as compared with 16 ppm which is the linear expansion coefficient of the copper foil, either the MD direction or the TD direction is selected. The dimensional change rate is small. On the other hand, when the calculated average linear expansion coefficient in both the MD direction and the TD direction is ± 4 ppm or more compared to 16 ppm, the dimensional change rate in both the MD direction and the TD direction is large.
[0043]
【The invention's effect】
According to the multilayer bonding sheet manufacturing method of the present invention , the multilayer bonding sheet is calculated from the measured values of the coefficient of linear expansion, the elastic modulus, and the thickness of each of the candidate base films or adhesive layers that can constitute the multilayer bonding sheet. By deriving the average linear expansion coefficient and selecting the combination of the base film and adhesive layer so that the calculated average linear expansion coefficient is within a specific range, the dimensional change rate is small and it can be used as a printed circuit board. A multilayer bonding sheet having excellent properties can be easily produced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a calculation processing system for a calculated average linear expansion coefficient of a multilayer bonding sheet .
FIG. 2 is a view showing a method for measuring a dimensional change rate of a multilayer bonding sheet.

Claims (1)

少なくとも1つのベースフィルムおよび少なくとも1つの接着剤層を積層してなる銅張積層板用の多層ボンディングシートの製造方法であって、
多層ボンディングシートを構成し得る候補のベースフィルムあるいは接着剤層のそれぞれの線膨張係数、弾性率、および厚みを測定する工程と;
該測定値から、任意のベースフィルムあるいは接着剤層を組み合わせて、算出平均線膨張係数Sαを導出する工程と;
MD方向またはTD方向の少なくとも一方の算出平均線膨張係数Sαが、13ppm≦Sα≦19ppmを満たすようなベースフィルムと接着剤層との組み合わせを選択する工程と;
選択されたベースフィルムと選択された接着剤層とを交互に組み合わせて多層ボンディングシートを作成する工程と;
から成り、
前記算出平均線膨張係数を導出する工程が、
任意のベースフィルムあるいは接着剤層のそれぞれの線膨張係数と弾性率と厚みとの乗算値を算出し、各層の該乗算値を加算して積算値1を算出する工程と;
各層のそれぞれの弾性率と厚みとの乗算値を算出し、各層の該乗算値を加算して積算値2を算出する工程と;
該積算値1を積算値2で除する工程と;
からなることを特徴とする銅張積層板用の多層ボンディングシートの製造方法。
A method for producing a multi-layer bonding sheet for a copper clad laminate comprising at least one base film and at least one adhesive layer laminated,
Measuring the linear expansion coefficient, elastic modulus, and thickness of each of the candidate base films or adhesive layers that can constitute the multilayer bonding sheet;
A step of deriving a calculated average linear expansion coefficient Sα from the measured values by combining arbitrary base films or adhesive layers;
Selecting a combination of a base film and an adhesive layer such that at least one calculated average linear expansion coefficient Sα in the MD direction or TD direction satisfies 13 ppm ≦ Sα ≦ 19 ppm;
Creating a multilayer bonding sheet by alternately combining selected base films and selected adhesive layers;
Consisting of
Deriving the calculated mean linear expansion coefficient,
Calculating a multiplication value of each linear expansion coefficient, elastic modulus, and thickness of an arbitrary base film or adhesive layer, and adding the multiplication values of each layer to calculate an integrated value 1;
Calculating a multiplication value of each elastic modulus and thickness of each layer, and adding the multiplication values of each layer to calculate an integration value 2;
Dividing the integrated value 1 by the integrated value 2;
The manufacturing method of the multilayer bonding sheet for copper clad laminated boards characterized by comprising.
JP34367298A 1998-12-03 1998-12-03 Method for producing multilayer bonding sheet for copper-clad laminate Expired - Lifetime JP4035243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34367298A JP4035243B2 (en) 1998-12-03 1998-12-03 Method for producing multilayer bonding sheet for copper-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34367298A JP4035243B2 (en) 1998-12-03 1998-12-03 Method for producing multilayer bonding sheet for copper-clad laminate

Publications (2)

Publication Number Publication Date
JP2000174154A JP2000174154A (en) 2000-06-23
JP4035243B2 true JP4035243B2 (en) 2008-01-16

Family

ID=18363356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34367298A Expired - Lifetime JP4035243B2 (en) 1998-12-03 1998-12-03 Method for producing multilayer bonding sheet for copper-clad laminate

Country Status (1)

Country Link
JP (1) JP4035243B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946823A (en) * 2004-05-13 2007-04-11 株式会社钟化 Adhesive film, flexible metal-clad laminate, and process for producing the same
JP2005350668A (en) * 2004-05-13 2005-12-22 Kaneka Corp Adhesive film, flexible metal-clad laminate, and process for producing the same
JP2006052389A (en) * 2004-07-15 2006-02-23 Kaneka Corp Adhesive film, flexible metal-clad laminate, and method for producing the same laminate
JP5758457B2 (en) * 2004-07-15 2015-08-05 株式会社カネカ Method for producing adhesive film and method for producing flexible metal-clad laminate

Also Published As

Publication number Publication date
JP2000174154A (en) 2000-06-23

Similar Documents

Publication Publication Date Title
JP3994696B2 (en) Polyimide film and laminate with controlled linear expansion coefficient
US6350844B1 (en) Polyimide film and electric/electronic equipment bases with the use thereof
JP5168141B2 (en) Metallizing polyimide film and metal laminated polyimide film
JP5180814B2 (en) Laminated body for flexible wiring board
KR101282170B1 (en) Thick layer polyimide metal clad laminate
US8435641B2 (en) Process for producing heat-resistant flexible laminate and heat-resistant flexible laminate produced thereby
JP4642479B2 (en) COF laminate and COF film carrier tape
JP4035243B2 (en) Method for producing multilayer bonding sheet for copper-clad laminate
JP4086768B2 (en) Manufacturing method of flexible circuit board
KR100728150B1 (en) Bonding sheet and one-side metal-clad laminate
JP2006339661A (en) Manufacturing method of multilayer bonding sheet and flexible double-sided metal-clad laminate
JP3969886B2 (en) Method and system for calculating dimensional change rate of multilayer bonding sheet
JPH0281495A (en) Flexible double-sided metal-foil laminated sheet
JP3356560B2 (en) Flexible copper-clad laminated film and method for producing the same
JPH11309803A (en) Multi-layered laminated sheet, its manufacture, and multilayered mounting circuit board
JP2005271449A (en) Laminate for flexible printed circuit board
JPH03104185A (en) Manufacture of double surface conductor polyimide laminate
JP2000129228A (en) Heat-resistant bonding sheet and flexible copper-clad laminate made therefrom
JP5313191B2 (en) Metal-clad laminate and manufacturing method thereof
JP2010208322A (en) Polyimide metal laminate, and printed wiring board using the same
JP2002144510A (en) Resin sheet and metal laminate sheet
JPH05114784A (en) Double sided flexible metal plated laminate board
JP2024035266A (en) Manufacturing method for metal clad laminates
JP2006328407A (en) Polyimide film and substrate for electric and electronic apparatus using same
KR100965336B1 (en) Printed circuit board for semi-conductor package and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term