JP4033191B2 - Electronic component mounting apparatus, electronic component mounting method, and flux transfer method - Google Patents

Electronic component mounting apparatus, electronic component mounting method, and flux transfer method Download PDF

Info

Publication number
JP4033191B2
JP4033191B2 JP2004320234A JP2004320234A JP4033191B2 JP 4033191 B2 JP4033191 B2 JP 4033191B2 JP 2004320234 A JP2004320234 A JP 2004320234A JP 2004320234 A JP2004320234 A JP 2004320234A JP 4033191 B2 JP4033191 B2 JP 4033191B2
Authority
JP
Japan
Prior art keywords
metal powder
electronic component
solder bump
flux
bump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004320234A
Other languages
Japanese (ja)
Other versions
JP2006041462A (en
Inventor
忠彦 境
憲 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004320234A priority Critical patent/JP4033191B2/en
Publication of JP2006041462A publication Critical patent/JP2006041462A/en
Application granted granted Critical
Publication of JP4033191B2 publication Critical patent/JP4033191B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、電子部品を基板に半田付けするために用いられる電子部品搭載装置および電子部品搭載方法ならびにフラックス転写方法に関するものである。   The present invention relates to an electronic component mounting apparatus, an electronic component mounting method, and a flux transfer method used for soldering an electronic component to a substrate.

電子部品を基板へ実装する際の接合方法として、従来より半田付けによる方法が広く用いられており、半田付けの形態としては、電子部品に設けられた接合用電極としての金属バンプを半田によって形成する方法が知られている。近年、電子部品の小型化や実装の高密度化の進展に因り半田接合用のバンプのサイズが微小化するに伴って、同一の電子部品においてバンプサイズのばらつきが避けられず、電子部品を基板に搭載した状態では、サイズが他と比較して小さいバンプと基板の回路電極との間に隙間が生じ易い。   Conventionally, a soldering method has been widely used as a joining method for mounting electronic components on a substrate, and as a soldering form, metal bumps are formed as soldering electrodes provided on the electronic component by soldering. How to do is known. In recent years, as the size of bumps for solder joints has become smaller due to the miniaturization of electronic components and the increase in mounting density, bump size variation cannot be avoided in the same electronic component, and the electronic component is mounted on the board. In the state mounted on the board, a gap is likely to be generated between the bump having a smaller size than the others and the circuit electrode of the substrate.

そしてこのような隙間が生じた状態で半田付けのための加熱が行われると、バンプが溶融して液状となった半田が回路電極の表面に到達しないまま冷却固化する半田付け不良を招く場合がある。このような半田付け不良を防止するため、バンプの半田接合に際し、バンプを組成する半田の融点温度よりも融点が高い銀などの金属の金属粉を含有した金属ペーストを半田接合部分に供給する半田接合方法が知られている(例えば特許文献1)。   If heating for soldering is performed in a state where such a gap is generated, the solder that has become liquid due to melting of the bumps may cause a soldering failure that cools and solidifies without reaching the surface of the circuit electrode. is there. In order to prevent such a soldering failure, a solder for supplying a solder paste with a metal paste containing metal powder of a metal such as silver having a melting point higher than the melting point temperature of the solder composing the bump when soldering the bump. A joining method is known (for example, Patent Document 1).

この方法によれば、加熱工程においてバンプが溶融した時点で固体のまま存在する金属粉の表面に沿って溶融半田を濡れ拡がらせることにより、上述のような隙間が存在するような場合にあっても、溶融半田を回路電極の表面に導くことができ、バンプと回路電極との間の隙間に起因する接合不良を防止することができるという利点がある。
特開2000−114301号公報
According to this method, there is a case where there is a gap as described above by spreading the molten solder along the surface of the metal powder that remains solid when the bump is melted in the heating process. However, there is an advantage that the molten solder can be guided to the surface of the circuit electrode, and bonding failure due to the gap between the bump and the circuit electrode can be prevented.
JP 2000-114301 A

上記特許文献例に示す方法においては、バンプが溶融した半田を金属粉によって導くためには、金属ペースト中にバンプ表面の酸化膜を除去する活性成分を含有させてバンプの半田濡れ性を確保する必要があるが、活性作用の強いフラックスを使用する場合には、次のような不具合が生じる場合がある。   In the method shown in the above patent document example, in order to guide the solder in which the bump is melted with the metal powder, an active ingredient for removing the oxide film on the bump surface is contained in the metal paste to ensure the solder wettability of the bump. Although it is necessary, when using a flux having a strong active action, the following problems may occur.

近年環境保護や工程簡略化の観点から、従来行われていた半田付後の洗浄工程、すなわち半田接合過程において用いられたフラックスを洗浄剤を用いて洗浄除去する工程を省略する無洗浄工法が主流となってきている。このため、半田付けに際して供給されたフラックスは半田接合部にそのまま残留する。このとき、残留フラックスの活性作用が強いと、基板の回路電極が残留フラックスによって腐食されることによる絶縁特性の劣化を招きやすい。このように、従来の半田付方法には、接合不良や絶縁特性の劣化などの不具合を生じやすいという問題点があった。   From the viewpoint of environmental protection and process simplification in recent years, the mainstream is the no-cleaning method that eliminates the conventional post-soldering cleaning process, that is, the process of cleaning and removing the flux used in the soldering process using a cleaning agent. It has become. For this reason, the flux supplied at the time of soldering remains as it is in the solder joint. At this time, if the active action of the residual flux is strong, the circuit electrode of the substrate is likely to be deteriorated in the insulation characteristics due to corrosion by the residual flux. As described above, the conventional soldering method has a problem that defects such as poor bonding and deterioration of insulating characteristics are likely to occur.

そこで本発明は、接合不良や絶縁特性の劣化を招くことなく高品質の半田接合部を得ることができる電子部品搭載装置および電子部品搭載方法ならびにフラックス転写方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide an electronic component mounting apparatus, an electronic component mounting method, and a flux transfer method capable of obtaining a high-quality solder joint without causing poor bonding or deterioration of insulation characteristics.

本発明の電子部品搭載装置は、半田バンプが形成された電子部品を基板に搭載する電子部品搭載装置であって、凸部が形成された転写面を有するステージとスキージとを備えスキージを前記転写面に対して相対移動させることによりこの転写面上に薄片状の金属粉を含んだフラックスを薄膜状に広げる薄膜形成機構と、前記半田バンプを前記転写面上の薄膜が形成された部分に押しつけることにより前記凸部によって前記金属粉を半田バンプに押し付け、半田バンプの表面を覆う酸化膜を突き破るとともに半田バンプに食い込ませる加圧機構と、前記金属粉が食い込んだ状態の半田バンプを基板の電極に位置合わせして搭載する搭載機構とを備えた。 An electronic component mounting apparatus according to the present invention is an electronic component mounting apparatus for mounting an electronic component on which a solder bump is formed on a substrate, and includes a stage having a transfer surface on which a convex portion is formed and a squeegee, and transferring the squeegee to the above A thin film forming mechanism that spreads a flux containing flaky metal powder on the transfer surface in a thin film shape by moving the surface relative to the surface, and the solder bumps are pressed against the portion on the transfer surface where the thin film is formed Thus, the metal powder is pressed against the solder bumps by the convex portions, the pressurizing mechanism for breaking through the oxide film covering the surface of the solder bumps and biting into the solder bumps, and the solder bumps in the state where the metal powder has bitten in the electrode of the substrate Equipped with a mounting mechanism for positioning and mounting.

本発明の電子部品搭載方法は、半田バンプが形成された電子部品を基板に搭載する電子部品搭載方法であって、凸部が形成された転写面を有するステージ上に薄片状の金属粉を含んだフラックスを薄膜状に広げる薄膜形成工程と、前記半田バンプを前記転写面上の薄膜が形成された部分に押しつけることにより前記凸部によって前記金属粉を半田バンプに押し付け、半田バンプの表面を覆う酸化膜を突き破るとともに半田バンプに食い込ませる金属粉食込工程と、前記金属粉が食い込んだ状態の半田バンプを基板の電極に位置合わせして搭載する搭載工程とを含む。 The electronic component mounting method of the present invention is an electronic component mounting method for mounting an electronic component on which a solder bump is formed on a substrate, and includes a flaky metal powder on a stage having a transfer surface on which a convex portion is formed. A thin film forming step of spreading the flux into a thin film , and pressing the solder bump against the portion on the transfer surface where the thin film is formed, thereby pressing the metal powder against the solder bump by the convex portion to cover the surface of the solder bump It includes a metal powder biting process for breaking through the oxide film and biting into the solder bump, and a mounting process for mounting the solder bump in a state where the metal powder bites into the electrode of the substrate.

本発明のフラックス転写方法は、電子部品の半田バンプに金属粉を含んだフラックスを転写するフラックス転写方法であって、凸部が形成された転写面を有するステージ上に薄片状の金属粉を含んだフラックスを薄膜状に広げる薄膜形成工程と、前記半田バンプを前記転写面上の薄膜が形成された部分に押しつけることにより前記凸部によって前記金属粉を半田バンプに押し付け、半田バンプの表面を覆う酸化膜を突き破るとともに半田バンプに食い込ませる金属粉食込工程とを含む。 The flux transfer method of the present invention is a flux transfer method for transferring a flux containing metal powder to a solder bump of an electronic component, and includes a flaky metal powder on a stage having a transfer surface on which a convex portion is formed. A thin film forming step of spreading the flux into a thin film , and pressing the solder bump against the portion on the transfer surface where the thin film is formed, thereby pressing the metal powder against the solder bump by the convex portion to cover the surface of the solder bump And a metal powder biting process for breaking through the oxide film and biting into the solder bumps .

本発明によれば、フラックス転写において半田バンプを平坦面上の薄膜が形成された部分に押しつけることにより半田バンプの表面に金属粉を食い込ませ、電子部品搭載において金属粉が食い込んだ状態の半田バンプを基板の電極に位置合わせして搭載することにより、加熱により半田バンプが溶融した溶融半田をこの半田バンプに食い込んだ金属粉の表面を伝って濡れ拡がらせることができ、したがって接合不良や絶縁特性の劣化を招くことなく高品質の半田接合部を得ることができる。   According to the present invention, the solder bump is pressed into the surface of the solder bump by pressing the solder bump against the portion where the thin film is formed on the flat surface, and the solder bump is in a state where the metal powder is bitten in the electronic component mounting. By positioning and mounting to the electrodes on the board, it is possible to spread the molten solder, which has melted the solder bumps by heating, through the surface of the metal powder that has penetrated into the solder bumps. A high-quality solder joint can be obtained without deteriorating characteristics.

(実施の形態1)
図1は本発明の実施の形態1の電子部品搭載装置の正面図、図2、図3は本発明の実施の形態1の電子部品搭載方法の工程説明図、図4は本発明の実施の形態1の電子部品搭載方法におけるフラックス転写過程の説明図、図5は本発明の実施の形態1の電子部品搭載方法における半田接合過程の説明図、図6は本発明の実施の形態1の半田付方法においてフラックスに混入される金属粉の断面図である。
(Embodiment 1)
FIG. 1 is a front view of an electronic component mounting apparatus according to Embodiment 1 of the present invention, FIGS. 2 and 3 are process explanatory diagrams of the electronic component mounting method according to Embodiment 1 of the present invention, and FIG. FIG. 5 is an explanatory diagram of a solder transfer process in the electronic component mounting method according to the first embodiment of the present invention, and FIG. 6 is a solder solder according to the first embodiment of the present invention. It is sectional drawing of the metal powder mixed in the flux in an attaching method.

まず図1を参照して、電子部品搭載装置の構成を説明する。この電子部品搭載装置は、半田バンプが形成された電子部品を基板に搭載する機能を有するものであり、部品供給部1、フラックス転写部2、基板保持部3を直列に配置し、これらの各部の上方に部品移載機構4を配設した構成となっている。   First, the configuration of the electronic component mounting apparatus will be described with reference to FIG. This electronic component mounting apparatus has a function of mounting an electronic component on which a solder bump is formed on a substrate. The component supply unit 1, the flux transfer unit 2, and the substrate holding unit 3 are arranged in series, and each of these units is arranged. The component transfer mechanism 4 is disposed above the head.

部品供給部1は部品トレイ5を備えており、部品トレイ5上には下面に突起電極である半田バンプ7(以下、単に「バンプ7」と略称。)が形成された電子部品6が複数載置されている。バンプ7は、微細粒状の半田ボールを外部接続用の電極に半田接合して形成される。バンプ形成後のバンプ7のサイズは、半田ボールのサイズのばらつきなどの原因によって一様ではなく、各バンプの下端部の高さはばらついている。ここでバンプ7は大気暴露により表面が酸化された状態(図2,図3に示す酸化膜7a参照)にある。   The component supply unit 1 includes a component tray 5. A plurality of electronic components 6 having solder bumps 7 (hereinafter simply referred to as “bumps 7”) formed on the lower surface of the component tray 5 are mounted on the component tray 5. Is placed. The bumps 7 are formed by soldering fine-grained solder balls to external connection electrodes. The size of the bump 7 after bump formation is not uniform due to causes such as variations in the size of the solder balls, and the height of the lower end of each bump varies. Here, the bump 7 is in a state where the surface is oxidized by exposure to the atmosphere (see the oxide film 7a shown in FIGS. 2 and 3).

部品供給部1に隣接して配置されたフラックス転写部2は、表面に平坦面である転写面8aを有する転写ステージ8を備えており、転写面8aの上方にはスキージ9がスキージ移動機構(図示省略)によって転写面8aに沿って水平移動自在に配設されている。転写面8a上にフラックス10を供給した状態で、スキージ9を転写ステージ8に対して平行
に相対移動させることにより、スキージ9は転写面8a上にフラックス10を薄膜状に拡げてフラックス薄膜10aを形成する薄膜形成動作を行う。
The flux transfer unit 2 disposed adjacent to the component supply unit 1 includes a transfer stage 8 having a transfer surface 8a that is a flat surface on the surface, and a squeegee 9 is disposed above the transfer surface 8a. (Not shown) is disposed so as to be horizontally movable along the transfer surface 8a. In a state where the flux 10 is supplied onto the transfer surface 8a, the squeegee 9 is moved relative to the transfer stage 8 in parallel, so that the squeegee 9 spreads the flux 10 in a thin film shape on the transfer surface 8a to form the flux thin film 10a. A thin film forming operation is performed.

ここでフラックス10の組成について説明する。フラックス10は、ロジンなどの樹脂成分を溶剤に溶解した粘度の高い液状の基剤に、添加成分として活性剤と金属粉16(図2参照)とを混合したものである。活性剤は、バンプ7の表面に生成した半田の酸化膜7aを除去する目的で添加されるものであり、このような酸化膜除去能力を有する有機酸などが用いられる。なおここでは活性剤として半田付け後の洗浄を必要としない低活性のものが用いられる。   Here, the composition of the flux 10 will be described. The flux 10 is obtained by mixing an active agent and metal powder 16 (see FIG. 2) as an additive component with a liquid base having a high viscosity obtained by dissolving a resin component such as rosin in a solvent. The activator is added for the purpose of removing the oxide film 7a of the solder formed on the surface of the bump 7, and an organic acid or the like having such an oxide film removing ability is used. In this case, an activator having a low activity that does not require cleaning after soldering is used.

金属粉16の材質としては、バンプ7に用いられる半田の融点よりも高い融点を有し、しかも大気中で金属粉16の表面に酸化膜を生成しないものであって、さらにバンプ7を形成する半田に対する濡れ性がよく、バンプ7が溶融した流動状態の半田が金属粉16の表面を伝って濡れ拡がりやすい材質(例えば純度90%以上の金、銀、パラジウムなどの貴金属)が選定される。そしてフラックス10への添加は、これらの金属を鱗片状(薄片状)の金属箔に加工したものを、基剤中に混合することにより行われる。ここで、金属粉16のサイズとしては、代表サイズが0.05μm〜20μmの範囲のものが望ましく、基剤中への混合割合は、1〜20vol%の範囲が望ましい。   The material of the metal powder 16 has a melting point higher than that of the solder used for the bump 7 and does not generate an oxide film on the surface of the metal powder 16 in the atmosphere. A material (for example, a noble metal such as gold, silver, palladium or the like having a purity of 90% or more) is selected that has good wettability with respect to the solder, and the solder in a fluid state in which the bumps 7 are melted easily propagates through the surface of the metal powder 16. And the addition to the flux 10 is performed by mixing what processed these metals into scale-like (flaky shape) metal foil in a base material. Here, the size of the metal powder 16 is desirably a representative size in the range of 0.05 μm to 20 μm, and the mixing ratio in the base is desirably in the range of 1 to 20 vol%.

このように金属粉を含有したフラックス薄膜10aが形成された転写面8aに対してバンプ7を押しつけることにより、バンプ7の下端部にはフラックス10が転写される。このとき、昇降押圧機構14の押圧荷重を適切に設定することにより、バンプ7の下端部を押圧荷重により幾分押しつぶして、複数のバンプ7の高さをそろえるフラットニングが行われる。そして、固形の金属粉16はフラットニング時の押圧力により、バンプ7の表面を覆う酸化膜7aを部分的に突き破ってバンプ7の半田材質内部に食い込む。   By pressing the bump 7 against the transfer surface 8a on which the flux thin film 10a containing the metal powder is formed in this way, the flux 10 is transferred to the lower end portion of the bump 7. At this time, by appropriately setting the pressing load of the lifting / lowering pressing mechanism 14, the lower end portion of the bump 7 is somewhat crushed by the pressing load, and flattening is performed to align the heights of the plurality of bumps 7. The solid metal powder 16 partially penetrates the oxide film 7 a covering the surface of the bump 7 by the pressing force during flattening and bites into the solder material of the bump 7.

ここで転写ステージ8の転写面8aは完全な平滑面ではなく、表面に微細な凸部8b(図4参照)を設けて所定の表面粗度に加工されている。バンプ7の押圧過程においては、フラックス10中の金属粉16は凸部8bによってバンプ7に対して押し付けられる。これによりそのままでは酸化膜7aを突き破りにくい薄片状の金属粉16を、バンプ7に食い込ませることができる。このようにしてバンプ7の下端部に酸化膜7aを突き破って食い込んだ金属粉16が存在することにより、後述するように、バンプ7を溶融させて基板12の電極12aに半田接合するリフロー時において、接合性を向上させることができる。   Here, the transfer surface 8a of the transfer stage 8 is not a completely smooth surface, but is provided with fine convex portions 8b (see FIG. 4) on the surface and processed to a predetermined surface roughness. In the pressing process of the bump 7, the metal powder 16 in the flux 10 is pressed against the bump 7 by the convex portion 8 b. As a result, the flaky metal powder 16 that hardly breaks through the oxide film 7a as it is can be made to bite into the bumps 7. In this way, the presence of the metal powder 16 that penetrates through the oxide film 7a at the lower end of the bump 7 causes the bump 7 to melt and be soldered to the electrode 12a of the substrate 12 as will be described later. The bondability can be improved.

上記構成において、フラックス転写部2は、平坦面である転写面8aを有する転写ステージ8とスキージ9とを備え、スキージ9を平坦面に対して相対移動させることによりこの平坦面上に金属粉16を含んだフラックス10を薄膜状に拡げる薄膜形成機構となっている。そして昇降押圧機構14を備えた部品移載機構4は、バンプ7を転写面8aのフラックス薄膜10aが形成された部分に押しつけることにより、バンプ7の表面に金属粉16を食い込ませる加圧機構となっている。   In the above configuration, the flux transfer unit 2 includes a transfer stage 8 having a transfer surface 8a which is a flat surface and a squeegee 9, and the metal powder 16 is placed on the flat surface by moving the squeegee 9 relative to the flat surface. It is a thin film formation mechanism that spreads the flux 10 containing slag into a thin film shape. The component transfer mechanism 4 including the elevation pressing mechanism 14 includes a pressure mechanism that causes the metal powder 16 to bite into the surface of the bump 7 by pressing the bump 7 against a portion of the transfer surface 8a where the flux thin film 10a is formed. It has become.

フラックス転写部2に隣接して配置された基板保持部3は、基板保持テーブル11を備えている。基板保持テーブル11上には上面に電極12aが形成された基板12が保持されている。部品移載機構4は、移動テーブル13によって水平方向に移動する昇降押圧機構14を備えており、昇降押圧機構14の下端部には下面に電子部品6を吸着保持する機能を備えた部品保持ヘッド15が装着されている。部品保持ヘッド15を部品供給部1の上方に位置させた状態で昇降押圧機構14を駆動することにより、部品保持ヘッド15は部品トレイ5に対して昇降し電子部品6を吸着してピックアップする。   The substrate holding unit 3 disposed adjacent to the flux transfer unit 2 includes a substrate holding table 11. On the substrate holding table 11, a substrate 12 having an electrode 12a formed thereon is held. The component transfer mechanism 4 includes a lifting and lowering pressing mechanism 14 that is moved in the horizontal direction by a moving table 13, and a component holding head having a function of sucking and holding the electronic component 6 on the lower surface of the lowering and pressing mechanism 14. 15 is installed. By driving the elevation pressing mechanism 14 with the component holding head 15 positioned above the component supply unit 1, the component holding head 15 moves up and down with respect to the component tray 5 and picks up and picks up the electronic component 6.

そして電子部品6を保持した部品保持ヘッド15をフラックス転写部2へ移動させた状態で、昇降押圧機構14を駆動することにより、部品保持ヘッド15は転写面8a上に形成されたフラックス薄膜10aに対して下降し、バンプ7を転写面8aに押圧する。これによりバンプ7の下端部にはフラックス10が転写されて、金属粉16がバンプ7に食い込む。これとともに、バンプ7の下端部が押圧荷重により押しつぶされ、複数のバンプ7の高さをほぼ均一にそろえるフラットニングが行われる。   Then, the component holding head 15 is moved to the flux thin film 10a formed on the transfer surface 8a by driving the elevation pressing mechanism 14 with the component holding head 15 holding the electronic component 6 moved to the flux transfer unit 2. On the other hand, the bump 7 is pressed against the transfer surface 8a. As a result, the flux 10 is transferred to the lower end of the bump 7, and the metal powder 16 bites into the bump 7. At the same time, the lower end portions of the bumps 7 are crushed by the pressing load, and flattening is performed so that the heights of the plurality of bumps 7 are almost uniform.

そしてフラックス転写後の電子部品6を保持した部品保持ヘッド15を基板保持部3上に移動させ、バンプ7を基板12の電極12aに位置合わせして基板12に対して昇降させることにより、電子部品6は基板12に搭載される。したがって、部品移載機構4は金属粉16が食い込んだ状態のバンプを基板の電極に位置合わせして搭載する搭載機構となっている。そしてここでは、この搭載機構が前述の加圧機構を兼ねた構成となっている。   Then, the component holding head 15 holding the electronic component 6 after the flux transfer is moved onto the substrate holding unit 3, and the bump 7 is aligned with the electrode 12 a of the substrate 12 and moved up and down with respect to the substrate 12. 6 is mounted on the substrate 12. Therefore, the component transfer mechanism 4 is a mounting mechanism that positions and mounts the bumps in which the metal powder 16 is biting into the electrodes of the substrate. In this case, the mounting mechanism also serves as the pressure mechanism described above.

次に、バンプ7が形成された電子部品6を基板12に搭載する電子部品搭載方法について、図2〜図5を参照して説明する。この電子部品搭載方法においては、バンプ7にフラックス転写を行った後に、電子部品6を基板12に搭載してリフローすることにより、バンプ7を溶融させて基板12の電極12aに半田付けする。なお図4,図5は、図2(b)におけるA部詳細、図3(b)におけるB部詳細をそれぞれ示している。   Next, an electronic component mounting method for mounting the electronic component 6 on which the bumps 7 are formed on the substrate 12 will be described with reference to FIGS. In this electronic component mounting method, after flux transfer is performed on the bump 7, the electronic component 6 is mounted on the substrate 12 and reflowed to melt the bump 7 and solder it to the electrode 12 a of the substrate 12. 4 and 5 show the details of the A portion in FIG. 2B and the details of the B portion in FIG. 3B, respectively.

図2(a)において、平坦な転写面8aを有する転写ステージ8上に金属粉16を含んだフラックス10を薄膜状に拡げ、フラックス薄膜10aを形成する(薄膜形成工程)。次いで、電子部品6を保持した部品移載ヘッド15を転写ステージ8上に移動させ、図2(b)に示すように、バンプ7を転写面8a上のフラックス薄膜10aが形成された部分に押しつけることにより、バンプ7の表面に金属粉16を食い込ませる(金属粉食込工程)。   In FIG. 2A, a flux 10 containing metal powder 16 is spread in a thin film on a transfer stage 8 having a flat transfer surface 8a to form a flux thin film 10a (thin film forming step). Next, the component transfer head 15 holding the electronic component 6 is moved onto the transfer stage 8, and the bumps 7 are pressed against the portion on the transfer surface 8a where the flux thin film 10a is formed, as shown in FIG. As a result, the metal powder 16 is bitten into the surface of the bump 7 (metal powder biting process).

この金属粉食込工程においては、図4のA部詳細に示すように、転写面8aに形成された凸部8bによって薄片状の金属粉16を酸化膜7aを突き破って、バンプ7に食い込ませる。   In this metal powder encroaching step, as shown in detail in FIG. 4A, the flaky metal powder 16 is broken through the oxide film 7a by the projections 8b formed on the transfer surface 8a, and bites into the bumps 7.

そしてこの後、部品保持ヘッド15を転写ステージ8から上昇させることにより、図3(a)に示すように、バンプ7の下端部は部分的に押しつぶされてフラットニングが行われるとともに、バンプ7にはフラックス10が転写される。そしてバンプ7の下端部には金属粉16が食い込んだ状態で存在しており、この金属粉16および転写されたフラックス10中の金属粉16は、次に説明する搭載工程においてバンプ7とともに電極12aに移載される。   Thereafter, by raising the component holding head 15 from the transfer stage 8, the lower end portion of the bump 7 is partially crushed and flattened as shown in FIG. The flux 10 is transferred. The metal powder 16 and the metal powder 16 in the transferred flux 10 are present at the lower end portion of the bump 7 in a state where the metal powder 16 has digged into the electrode 12a together with the bump 7 in the mounting process described below. To be transferred.

この後、フラックス転写塗布後の電子部品6は基板12に実装される。まず図3(b)に示すように、金属粉16が食い込んだ状態のバンプ7を、基板12の電極12aに位置合わせして搭載する(搭載工程)。そして部品搭載後の基板12はリフロー炉にて加熱され、この加熱によりバンプ7が溶融した溶融半田を、このバンプ7に食い込んだ状態で電極12aに移載された金属粉16の表面を伝って濡れ拡がらせる(半田溶融工程)。   Thereafter, the electronic component 6 after the flux transfer coating is mounted on the substrate 12. First, as shown in FIG. 3B, the bumps 7 in which the metal powder 16 has digged in are positioned and mounted on the electrodes 12a of the substrate 12 (mounting process). Then, the substrate 12 after mounting the components is heated in a reflow furnace, and the molten solder in which the bumps 7 are melted by the heating is transferred to the surface of the metal powder 16 transferred to the electrodes 12a in a state where the bumps 7 are bitten. Spread wet (solder melting process).

この半田溶融工程について、図5のB部詳細を参照して説明する。図5は、半田接合開始時における電極12a表面とバンプ7との接触面を示しており、バンプ7はフラックス転写工程においてフラットニングが行われていることから、すべてのバンプ7において下端部が電極12aの表面にほぼ均一に当接する。   This solder melting step will be described with reference to the details of part B in FIG. FIG. 5 shows the contact surface between the surface of the electrode 12a and the bump 7 at the start of solder bonding. Since the bump 7 is flattened in the flux transfer process, the lower end portion of all the bumps 7 is the electrode. It abuts almost uniformly on the surface of 12a.

このとき、フラックス10の活性作用が弱い場合には酸化膜7aは完全には除去されず
バンプ7の表面に残留する。このため半田バンプ7は電極12aの表面には直接接触せず、表面の酸化膜7aを介して電極12aに接触する。そしてバンプ7の下端部に酸化膜7aを突き破った状態で食い込んだ金属粉16は、電極12aの表面に直接接触するか、あるいはフラックス10中に含有されてともに移載された金属粉16を介して電極12aに接触した状態にある。また食い込んだ状態の金属粉16が電極12aに接触していない場合でも、フラットニングによってバンプ7の電極12aへの当接状態が均一であることから、これらの金属粉16は電極12aの表面に至近距離で近接した状態にある。
At this time, when the active action of the flux 10 is weak, the oxide film 7 a is not completely removed and remains on the surface of the bump 7. For this reason, the solder bump 7 does not directly contact the surface of the electrode 12a but contacts the electrode 12a through the oxide film 7a on the surface. The metal powder 16 digging into the lower end of the bump 7 while breaking through the oxide film 7a is in direct contact with the surface of the electrode 12a, or the metal powder 16 contained in the flux 10 and transferred together. And in contact with the electrode 12a. Further, even when the metal powder 16 in the state of biting is not in contact with the electrode 12a, the contact state of the bump 7 with the electrode 12a is uniform by flattening, so that the metal powder 16 is applied to the surface of the electrode 12a. It is in close proximity at close range.

そしてこの状態でバンプ7が溶融すると、溶融半田は酸化膜7aを突き破ってバンプ7と電極12aの表面とを連結した状態にある金属粉16の表面を伝って下方に塗れ拡がる。そして電極12aの表面に直接、または酸化膜7aとの間に介在する金属粉16の表面を介して電極12aの表面に到達し、この後は電極12aの表面に沿って水平方向に濡れ拡がり、バンプ7の溶融半田は電極12aの接合面全体を覆うに至る。そしてこの後溶融半田が冷却固化することにより、バンプ7は電極12aに半田接合される。   When the bump 7 is melted in this state, the molten solder breaks through the oxide film 7a and spreads downwardly through the surface of the metal powder 16 in a state where the bump 7 and the surface of the electrode 12a are connected. And it reaches the surface of the electrode 12a directly through the surface of the electrode 12a or through the surface of the metal powder 16 interposed between the oxide film 7a, and then spreads in the horizontal direction along the surface of the electrode 12a, The molten solder of the bump 7 covers the entire bonding surface of the electrode 12a. Thereafter, the molten solder is cooled and solidified, whereby the bumps 7 are soldered to the electrodes 12a.

この半田接合過程においては、フラックス10中に含まれる活性剤はバンプ7の酸化膜7aを除去する作用を発揮するが、前述のように酸化膜7aを突き破った溶融半田が金属粉16に沿って濡れ拡がることにより、酸化膜7aが部分的にのみ除去されている場合においても良好な半田接合性が確保されるため、フラックス10中に含まれる活性剤には強い活性作用は要求されない。   In this solder bonding process, the activator contained in the flux 10 exerts an action of removing the oxide film 7a of the bump 7. However, the molten solder that has broken through the oxide film 7a as described above follows the metal powder 16. As a result of wetting and spreading, good solderability is ensured even when the oxide film 7a is only partially removed, so that the activator contained in the flux 10 is not required to have a strong active action.

換言すれば予め金属粉16をバンプ7の表面に酸化膜7aに食い込ませることにより、活性作用が弱い低活性フラックスの使用が可能となっており、半田接合後にフラックスが残留した状態においても回路電極が活性成分によって腐食される度合が低い。したがって半田付け後にフラックス除去のための洗浄を行わない無洗浄工法においても、接合不良や絶縁特性の劣化を招くことなく高品質の半田接合部を得ることができる。   In other words, it is possible to use a low activity flux having a weak active action by causing the metal powder 16 to bite into the oxide film 7a on the surface of the bump 7 in advance, and the circuit electrode even in a state where the flux remains after soldering. Is less likely to be corroded by active ingredients. Therefore, even in a non-cleaning method in which cleaning for flux removal is not performed after soldering, a high-quality solder joint can be obtained without causing poor bonding or deterioration of insulating characteristics.

なお、フラックス10中に混入する金属粉として、単一の金属種を用いる替わりに、図6(a)に示すように、中核体となるコア金属16aとコア金属16aの表面を覆う表面金属16bとで構成された金属粉16Aを用いるようにしてよい。この構成においては、錫(Sn)、亜鉛(Zn)、鉛(Pb)、インジウム(In)からコア金属16aとして用いられる金属種を選択し、この金属種によって薄片状の金属箔を形成する。そしてこの金属箔の表面に、半田との濡れ性のよい金(Au)または銀(Ag)の被膜を電気メッキなどの方法によって形成して表面金属16bとする。   Instead of using a single metal species as the metal powder mixed in the flux 10, as shown in FIG. 6A, the core metal 16a serving as the core and the surface metal 16b covering the surface of the core metal 16a You may make it use the metal powder 16A comprised by these. In this configuration, a metal species used as the core metal 16a is selected from tin (Sn), zinc (Zn), lead (Pb), and indium (In), and a flaky metal foil is formed by the metal species. Then, a gold (Au) or silver (Ag) film having good wettability with solder is formed on the surface of the metal foil by a method such as electroplating to form the surface metal 16b.

ここで、コア金属16aと表面金属16bに用いられる金属種の組み合わせは、表面金属16bから内部のコア金属16aへの拡散(図6(b)参照)がリフロー時の加熱によって容易に生じ、リフロー終了時において表面金属16bのコア金属16a中への拡散が完了してほとんどコア金属16a中に取り込まれるような拡散特性が実現される組み合わせが選択される。すなわちこの構成においては、表面金属16bは半田との濡れ性のよい金属にて形成され、コア金属16aはリフローによる加熱により表面金属16bを固溶して内部に取り込むことが可能な金属にて形成されている。   Here, in the combination of the metal species used for the core metal 16a and the surface metal 16b, diffusion (see FIG. 6B) from the surface metal 16b to the core metal 16a inside easily occurs due to heating during reflow, and reflow At the end of the process, a combination is selected that achieves such diffusion characteristics that the diffusion of the surface metal 16b into the core metal 16a is completed and is almost taken into the core metal 16a. That is, in this configuration, the surface metal 16b is formed of a metal that has good wettability with solder, and the core metal 16a is formed of a metal that can be dissolved into the surface metal 16b by heating by reflow and incorporated therein. Has been.

フラックス10に混入される金属粉としてこのような構成を採用することにより、以下に説明するような優れた効果を得ることができる。まず前述の半田溶融工程において半田バンプ7が溶融した段階では、金属粉16Aの表面金属16bが、表面に接触した溶融半田を表面伝いに濡れ拡がらせながら導く役割を果たす。ここで金属粉16Aは、高価な金や銀などの貴金属を安価なコア金属16aの表面を覆う表面金属16bとして用いるようにしていることから、金属粉入りフラックスにおいて高価な貴金属をそのまま粉体で用いる方法と比較して、大幅なコスト低減が可能となっている。   By adopting such a configuration as the metal powder mixed in the flux 10, excellent effects as described below can be obtained. First, at the stage where the solder bumps 7 are melted in the solder melting process described above, the surface metal 16b of the metal powder 16A plays a role of guiding the molten solder that has contacted the surface while wetting and spreading along the surface. Here, the metal powder 16A uses an expensive noble metal such as gold or silver as the surface metal 16b that covers the surface of the inexpensive core metal 16a. Compared with the method used, the cost can be significantly reduced.

そして半田溶融工程において加熱が継続されることにより、図6(b)に示すように、表面金属16bがコア金属16a中に拡散により徐々に取り込まれる。なおコア金属16aの金属種および加熱温度によっては、表面金属16bは液相のコア金属16aに拡散する場合と、固相のコア金属16aに拡散する場合とが存在するが、いずれの場合も表面金属16bは徐々にコア金属16a中に取り込まれる。そして表面金属16bが完全に取り込まれコア金属16aの表面が露呈されることにより、図6(c)に示すように、金属粉16Aの表面にはコア金属16aが加熱により酸化した酸化膜16cが形成される。そしてこの酸化膜16cは、半田接合後の絶縁性の向上に以下に説明するような効果を有する。   Then, by continuing the heating in the solder melting step, as shown in FIG. 6B, the surface metal 16b is gradually taken into the core metal 16a by diffusion. Depending on the metal type of the core metal 16a and the heating temperature, the surface metal 16b may be diffused into the liquid-phase core metal 16a or may be diffused into the solid-phase core metal 16a. The metal 16b is gradually taken into the core metal 16a. When the surface metal 16b is completely taken in and the surface of the core metal 16a is exposed, as shown in FIG. 6C, an oxide film 16c in which the core metal 16a is oxidized by heating is formed on the surface of the metal powder 16A. It is formed. The oxide film 16c has an effect as described below in improving the insulation after soldering.

半田接合工程後にフラックス除去のための洗浄を行わない無洗浄工法においては、半田ペースト中に含まれていた金属粉16Aはそのまま半田接合部の周囲にフラックス残渣として残留する。金や銀などの金属をそのままフラックスに混入する金属粉として用いた場合には、残留量によっては基板の回路電極間を電気的に腐食させて絶縁性を低下させるマイグレーションが発生するおそれがある。このため、従来は絶縁性の確保を勘案して金属粉の配合割合を低く抑える必要があり、この結果溶融半田を導く効果が良好に実現されない事態が生じていた。   In the non-cleaning method in which the cleaning for removing the flux is not performed after the solder joining process, the metal powder 16A contained in the solder paste remains as a flux residue around the solder joint. When a metal such as gold or silver is used as it is as a metal powder mixed in the flux, migration may occur depending on the residual amount, causing electrical corrosion between the circuit electrodes of the substrate and lowering the insulation. For this reason, conventionally, it has been necessary to keep the blending ratio of the metal powder low in consideration of ensuring insulation, and as a result, there has been a situation where the effect of guiding the molten solder is not realized well.

これに対し、上記構成の金属粉16Aを用いることにより、半田接合工程後に金属粉16Aが半田接合部の周囲に相当量残留した場合にあっても、金属粉16Aの表面は電気的に安定な酸化膜16cに覆われていることから、マイグレーションの発生がなく、良好な絶縁性が確保される。したがって上記構成の金属粉16Aを用いることにより、半田ペースト中に十分な量の金属粉を混入することによって半田接合性を向上させるとともに、半田接合後の絶縁性を確保して実装信頼性を向上させることが可能となっている。   On the other hand, by using the metal powder 16A having the above configuration, the surface of the metal powder 16A is electrically stable even when a considerable amount of the metal powder 16A remains around the solder joint after the solder joining process. Since it is covered with the oxide film 16c, no migration occurs and good insulation is ensured. Therefore, by using the metal powder 16A having the above-described structure, a sufficient amount of metal powder is mixed in the solder paste to improve solder jointability, and also ensure insulation after solder joint to improve mounting reliability. It is possible to make it.

(実施の形態2)
図6は本発明の実施の形態2の電子部品搭載装置の正面図である。本実施の形態2は、実施の形態1において単一の部品移載機構4によって行っていた電子部品6へのフラックス転写動作と電子部品6の基板12への搭載動作とを、それぞれ専用の部品移載機構によって行うように構成したものである。
(Embodiment 2)
FIG. 6 is a front view of the electronic component mounting apparatus according to the second embodiment of the present invention. In the second embodiment, the flux transfer operation to the electronic component 6 and the mounting operation of the electronic component 6 on the substrate 12 performed by the single component transfer mechanism 4 in the first embodiment are respectively dedicated components. It is configured to be performed by a transfer mechanism.

図6において、部品供給部1、フラックス転写部2、基板保持部3は、実施の形態1にて図1に示す各部と同様である。部品供給部1およびフラックス転写部2の上方には第1の部品移載機構4Aが配設されており、フラックス転写部2および基板保持部3の上方には第2の部品移載機構4Bが配設されている。   In FIG. 6, the component supply unit 1, the flux transfer unit 2, and the substrate holding unit 3 are the same as the units shown in FIG. 1 in the first embodiment. A first component transfer mechanism 4A is disposed above the component supply unit 1 and the flux transfer unit 2, and a second component transfer mechanism 4B is disposed above the flux transfer unit 2 and the substrate holding unit 3. It is arranged.

第1の部品移載機構4A、第2の部品移載機構4Bは、それぞれ第1の移動テーブル13A,第2の移動テーブル13Bによって水平方向に移動する第1の昇降押圧機構14A、第2の昇降押圧機構14Bを備えており、第1の昇降押圧機構14A、第2の昇降押圧機構14Bの下端部には、それぞれ下面に電子部品6を吸着保持する機能を備えた第1の部品保持ヘッド15A、第2の部品保持ヘッド15Bが装着されている。   The first component transfer mechanism 4A and the second component transfer mechanism 4B include a first lifting and lowering pressing mechanism 14A and a second moving mechanism 13A, which are moved in the horizontal direction by the first moving table 13A and the second moving table 13B, respectively. A first component holding head provided with a lifting and lowering pressing mechanism 14B and having a function of sucking and holding the electronic component 6 on the lower surface of each of the first lifting and lowering pressing mechanism 14A and the second lifting and lowering pressing mechanism 14B. 15A and a second component holding head 15B are mounted.

第1の部品保持ヘッド15Aを部品供給部1の上方に位置させた状態で、第1の昇降押圧機構14Aを駆動することにより、第1の部品保持ヘッド15Aは部品トレイ5に対して昇降し電子部品6を吸着してピックアップする。そして電子部品6を保持した第1の部品保持ヘッド15Aをフラックス転写部2へ移動させた状態で、第1の昇降押圧機構14Aを駆動することにより、第1の部品保持ヘッド15Aは転写面8a上に形成されたフラックス薄膜10aに対して下降する。   The first component holding head 15A moves up and down with respect to the component tray 5 by driving the first lifting / lowering pressing mechanism 14A with the first component holding head 15A positioned above the component supply unit 1. The electronic component 6 is picked up and picked up. The first component holding head 15A is moved to the transfer surface 8a by driving the first raising / lowering pressing mechanism 14A in a state where the first component holding head 15A holding the electronic component 6 is moved to the flux transfer unit 2. It descends with respect to the flux thin film 10a formed thereon.

これにより実施の形態1に示す例と同様に、バンプ7へのフラックス10の転写および金属粉16のバンプ7への食い込み、ならびにバンプ7のフラットニングが行われる。すなわち第1の部品移載機構4Aは、バンプ7を転写面8aのフラックス薄膜10aが形成された部分に押しつけることにより、バンプ7の表面に金属粉16を食い込ませる加圧機構となっている。   Thereby, similarly to the example shown in the first embodiment, the transfer of the flux 10 to the bump 7, the biting of the metal powder 16 into the bump 7, and the flattening of the bump 7 are performed. That is, the first component transfer mechanism 4A is a pressurizing mechanism that causes the metal powder 16 to bite into the surface of the bump 7 by pressing the bump 7 against the portion of the transfer surface 8a where the flux thin film 10a is formed.

そしてフラックス転写後の電子部品6は第1の部品保持ヘッド15Bによって保持され、基板保持部3上に移動する。そしてここで第2の昇降押圧機構14Bを駆動して電子部品6を基板12に対して昇降させることにより、電子部品6は基板12に搭載される。したがって第2の部品移載機構4Bは、金属粉16が食い込んだ状態のバンプを基板の電極に位置合わせして搭載する搭載機構となっている。   The electronic component 6 after the flux transfer is held by the first component holding head 15 </ b> B and moves onto the substrate holding unit 3. Then, the electronic component 6 is mounted on the substrate 12 by driving the second lifting and lowering pressing mechanism 14 </ b> B to raise and lower the electronic component 6 relative to the substrate 12. Therefore, the second component transfer mechanism 4B is a mounting mechanism that mounts the bumps in a state in which the metal powder 16 is biting in alignment with the electrodes of the substrate.

このように、バンプ7を転写面8aに押しつけて金属粉16を食い込ませる機能を有する第1の部品移載機構4Aと、フラックス転写後の電子部品6を基板12に搭載する機能を有する第2の部品移載機構4Bとを別個に設けることにより、それぞれの部品移載機構を必要とされる機能に応じた適正な機構特性を備えたものとすることができる。   As described above, the first component transfer mechanism 4A having the function of pressing the bumps 7 against the transfer surface 8a and causing the metal powder 16 to penetrate, and the second component having the function of mounting the electronic component 6 after the flux transfer on the substrate 12 are provided. By separately providing the component transfer mechanism 4B, each component transfer mechanism can be provided with an appropriate mechanism characteristic corresponding to a required function.

すなわち、第1の昇降押圧機構14A、第1の部品保持ヘッド15Aについては、金属粉16のバンプ7への食い込みやバンプ7のフラットニングなど押圧荷重を必要とする作業をバンプ数の大きい大型部品を対象として実行可能な高荷重型の構造とするとともに、第2の昇降押圧機構14B、第2の部品保持ヘッド15Bについては、薄型のフレキシブル基板など搭載動作において高い位置精度・精細な荷重制御を必要とする種類の基板に対応可能な高精度型の構造とすることができる。   That is, for the first lifting / lowering pressing mechanism 14A and the first component holding head 15A, a large component having a large number of bumps is required to perform a work requiring a pressing load such as biting of the metal powder 16 into the bump 7 or flattening of the bump 7. The second elevating and pressing mechanism 14B and the second component holding head 15B have high positional accuracy and fine load control in a mounting operation such as a thin flexible substrate. It is possible to obtain a high-accuracy type structure that can accommodate a required type of substrate.

本発明の電子部品搭載装置および電子部品搭載方法ならびにフラックス転写方法は、接合不良や絶縁特性の劣化を招くことなく高品質の半田接合部を得ることができるという効果を有し、半田バンプが形成された電子部品を基板に搭載する電子部品搭載分野において有用である。   The electronic component mounting apparatus, the electronic component mounting method, and the flux transfer method of the present invention have the effect that a high-quality solder joint can be obtained without causing poor bonding or deterioration of insulation characteristics, and solder bumps are formed. This is useful in the field of electronic component mounting where the electronic component is mounted on a substrate.

本発明の実施の形態1の電子部品搭載装置の正面図The front view of the electronic component mounting apparatus of Embodiment 1 of this invention 本発明の実施の形態1の電子部品搭載方法の工程説明図Process explanatory drawing of the electronic component mounting method of Embodiment 1 of this invention 本発明の実施の形態1の電子部品搭載方法の工程説明図Process explanatory drawing of the electronic component mounting method of Embodiment 1 of this invention 本発明の実施の形態1の電子部品搭載方法におけるフラックス転写過程の説明図Explanatory drawing of the flux transcription | transfer process in the electronic component mounting method of Embodiment 1 of this invention 本発明の実施の形態1の電子部品搭載方法における半田接合過程の説明図Explanatory drawing of the solder joint process in the electronic component mounting method of Embodiment 1 of this invention 本発明の実施の形態1の半田付方法においてフラックスに混入される金属粉の断面図Sectional drawing of the metal powder mixed in the flux in the soldering method of Embodiment 1 of this invention 本発明の実施の形態2の電子部品搭載装置の正面図The front view of the electronic component mounting apparatus of Embodiment 2 of this invention

符号の説明Explanation of symbols

2 フラックス転写部
4 部品移載機構
6 電子部品
7 半田バンプ
8 転写ステージ
8a 転写面
9 スキージ
10 フラックス
10a フラックス薄膜
12 基板
12a 電極
14 昇降押圧機構
15 部品保持ヘッド
16A 金属粉
16a コア金属
16b 表面金属
16c 酸化膜
DESCRIPTION OF SYMBOLS 2 Flux transfer part 4 Component transfer mechanism 6 Electronic component 7 Solder bump 8 Transfer stage 8a Transfer surface 9 Squeegee 10 Flux 10a Flux thin film 12 Substrate 12a Electrode 14 Lifting press mechanism 15 Component holding head 16A Metal powder 16a Core metal 16b Surface metal 16c Oxide film

Claims (5)

半田バンプが形成された電子部品を基板に搭載する電子部品搭載装置であって、凸部が形成された転写面を有するステージとスキージとを備えスキージを前記転写面に対して相対移動させることによりこの転写面上に薄片状の金属粉を含んだフラックスを薄膜状に広げる薄膜形成機構と、前記半田バンプを前記転写面上の薄膜が形成された部分に押しつけることにより前記凸部によって前記金属粉を半田バンプに押し付け、半田バンプの表面を覆う酸化膜を突き破るとともに半田バンプに食い込ませる加圧機構と、前記金属粉が食い込んだ状態の半田バンプを基板の電極に位置合わせして搭載する搭載機構とを備えたことを特徴とする電子部品搭載装置。 An electronic component mounting apparatus for mounting an electronic component on which a solder bump is formed on a substrate, comprising a stage having a transfer surface on which a convex portion is formed and a squeegee, and moving the squeegee relative to the transfer surface a thin film forming mechanism to spread the flux containing flaky metal powder on the transfer surface into a thin film, said metal powder by the protrusions by pressing the solder bump thin film is formed partially on said transfer surface Press mechanism against the solder bump, break through the oxide film covering the surface of the solder bump and bite into the solder bump, and mounting mechanism that aligns and mounts the solder bump with the metal powder biting into the electrode of the board An electronic component mounting apparatus characterized by comprising: 前記搭載機構は、前記加圧機構を兼ねることを特徴とする請求項1記載の電子部品搭載装置。   The electronic component mounting apparatus according to claim 1, wherein the mounting mechanism also serves as the pressure mechanism. 半田バンプが形成された電子部品を基板に搭載する電子部品搭載方法であって、凸部が形成された転写面を有するステージ上に薄片状の金属粉を含んだフラックスを薄膜状に広げる薄膜形成工程と、前記半田バンプを前記転写面上の薄膜が形成された部分に押しつけることにより前記凸部によって前記金属粉を半田バンプに押し付け、半田バンプの表面を覆う酸化膜を突き破るとともに半田バンプに食い込ませる金属粉食込工程と、前記金属粉が食い込んだ状態の半田バンプを基板の電極に位置合わせして搭載する搭載工程とを含むことを特徴とする電子部品搭載方法。 An electronic component mounting method for mounting an electronic component on which a solder bump is formed on a substrate, and forming a thin film that spreads a flux containing flaky metal powder on a stage having a transfer surface on which convex portions are formed. A step of pressing the solder bump against the portion where the thin film on the transfer surface is formed, pressing the metal powder against the solder bump by the convex portion , breaking through the oxide film covering the surface of the solder bump and biting into the solder bump An electronic component mounting method comprising: a metal powder engraving step, and a mounting step of aligning and mounting a solder bump in a state in which the metal powder has encroached on an electrode of a substrate. 電子部品の半田バンプに金属粉を含んだフラックスを転写するフラックス転写方法であって、凸部が形成された転写面を有するステージ上に薄片状の金属粉を含んだフラックスを薄膜状に広げる薄膜形成工程と、前記半田バンプを前記転写面上の薄膜が形成された部分に押しつけることにより前記凸部によって前記金属粉を半田バンプに押し付け、半田バンプの表面を覆う酸化膜を突き破るとともに半田バンプに食い込ませる金属粉食込工程とを含むことを特徴とするフラックス転写方法。 A flux transfer method for transferring a flux containing metal powder onto a solder bump of an electronic component, and spreading the flux containing a flaky metal powder into a thin film on a stage having a transfer surface on which convex portions are formed. Forming step , pressing the solder bump against the portion of the transfer surface on which the thin film is formed, and pressing the metal powder against the solder bump by the convex portion, breaking through the oxide film covering the surface of the solder bump and forming the solder bump A flux transfer method comprising: a metal powder encroaching step for encroaching. 前記金属粉は、純度90%以上の金、銀、パラジウムのいずれかを含むことを特徴とする請求項4記載のフラックス転写方法。 The flux transfer method according to claim 4, wherein the metal powder contains any one of gold, silver, and palladium having a purity of 90% or more .
JP2004320234A 2004-06-24 2004-11-04 Electronic component mounting apparatus, electronic component mounting method, and flux transfer method Expired - Fee Related JP4033191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004320234A JP4033191B2 (en) 2004-06-24 2004-11-04 Electronic component mounting apparatus, electronic component mounting method, and flux transfer method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004186093 2004-06-24
JP2004320234A JP4033191B2 (en) 2004-06-24 2004-11-04 Electronic component mounting apparatus, electronic component mounting method, and flux transfer method

Publications (2)

Publication Number Publication Date
JP2006041462A JP2006041462A (en) 2006-02-09
JP4033191B2 true JP4033191B2 (en) 2008-01-16

Family

ID=35906087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320234A Expired - Fee Related JP4033191B2 (en) 2004-06-24 2004-11-04 Electronic component mounting apparatus, electronic component mounting method, and flux transfer method

Country Status (1)

Country Link
JP (1) JP4033191B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240112337A (en) * 2022-01-19 2024-07-18 가부시키가이샤 신가와 Electronic component mounting device and electronic component mounting method

Also Published As

Publication number Publication date
JP2006041462A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
KR100776114B1 (en) Paste for soldering and soldering method using the same
JP4650220B2 (en) Electronic component soldering method and electronic component soldering structure
JP3565047B2 (en) Solder bump forming method and solder bump mounting method
JP4633630B2 (en) Soldering flux and soldering method
US7740713B2 (en) Flux composition and techniques for use thereof
JP4356581B2 (en) Electronic component mounting method
KR20070115660A (en) Solder paste
JP2009283628A (en) Method for mounting semiconductor element
JP3400408B2 (en) Flip chip mounting method
JP4093223B2 (en) Soldering method
JP4134976B2 (en) Solder bonding method
JP4222290B2 (en) Soldering method
JP4033191B2 (en) Electronic component mounting apparatus, electronic component mounting method, and flux transfer method
JP2009277777A (en) Solder ball loading method and member for mounting electronic component
JP2000176678A (en) Cream solder and packaging product using it
JP2009188063A (en) Method for connection between terminals and method for mounting semiconductor element
JP2004031724A (en) Soldering method for work and soldering mounter
JP2000271782A (en) Metal paste for soldering and soldering method
TW202421327A (en) Use of indium-bismuth alloys as solder
JP2005057117A (en) Soldering method, joining structure, and electric/electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4033191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees