JP4032515B2 - Automatic boiler number control method - Google Patents

Automatic boiler number control method Download PDF

Info

Publication number
JP4032515B2
JP4032515B2 JP20125498A JP20125498A JP4032515B2 JP 4032515 B2 JP4032515 B2 JP 4032515B2 JP 20125498 A JP20125498 A JP 20125498A JP 20125498 A JP20125498 A JP 20125498A JP 4032515 B2 JP4032515 B2 JP 4032515B2
Authority
JP
Japan
Prior art keywords
boiler
combustion
boilers
purge
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20125498A
Other languages
Japanese (ja)
Other versions
JP2000018503A (en
Inventor
英司 田坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP20125498A priority Critical patent/JP4032515B2/en
Publication of JP2000018503A publication Critical patent/JP2000018503A/en
Application granted granted Critical
Publication of JP4032515B2 publication Critical patent/JP4032515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【0001】
発明の属する分野】
この発明は、蒸気ボイラ、温水ボイラ、熱媒ボイラ等のボイラを複数台、並列に設置し、負荷の状況に応じてその燃焼台数を自動的に制御する自動台数制御方法に関するものである。
【0002】
【従来の技術】
周知のように、ボイラを複数台、並列に設置し、このボイラの燃焼台数を、負荷の状況に応じて、予め設定した優先順位にしたがって自動的に制御するようにしたボイラの多缶設置システムが実施されている。たとえば、蒸気ボイラの多缶設置システムでは、各ボイラに共通のスチームヘッダ内の圧力を検出し、この圧力に基づいて、ボイラの燃焼台数を制御するようにしている。ボイラの多缶設置システムは、大容量のボイラを1台設置するのと比較して、各ボイラを高効率で運転することができるので、省エネルギーに顕著な効果があるとともに、負荷の変動に対する応答性が優れているという長所を有する。
【0003】
【発明が解決しようとする課題】
このようなボイラの多缶設置システムにおいて、燃焼中のボイラに異常が発生して停止したとき、スチームヘッダ内の蒸気圧力の低下を検出して、待機中の次優先順位のボイラを燃焼に移行させたのでは、応答遅れを生じる。すなわち、待機中のボイラが起動する際には、着火動作の前に約20秒のプレパージを行って燃焼室内を掃気する動作を行うため、その時間分の応答遅れが生じる。
【0004】
この発明は、ボイラに異常が発生したとき、応答遅れを生じることなく、速やかに他のボイラをバックアップ燃焼させることを目的としている。
【0005】
【課題を解決するための手段】
請求項1に記載の発明は、複数台のボイラを設置し、各ボイラを、予め設定した優先順位にしたがい負荷の状況に応じて高燃焼、低燃焼および待機の各状態に制御し、ボイラに異常が発生したとき、この異常発生ボイラを停止させるとともに、他のボイラの燃焼量を変更するボイラの自動台数制御方法において、この燃焼量変更の際、低燃焼のボイラの有無を判定する第一の判定ステップを行い、この第一の判定ステップにおいて低燃焼のボイラが有ればその低燃焼のボイラを高燃焼に変更し、前記第一の判定ステップにおいて低燃焼ボイラが無ければ、ポストパージ中のボイラの有無を判定する第二の判定ステップを行い、この第二の判定ステップにおいてポストパージ中のボイラが有れば、そのポストパージ中のボイラを燃焼に移行させることを特徴としている。
【0006】
請求項2に記載の発明は、請求項1に記載の発明において、前記第二の判定ステップにおいて、ポストパージ中のボイラが複数台ある場合には、ポストパージの経過時間の長いボイラを優先して燃焼に移行させることを特徴としている。
【0008】
【発明の実施の形態】
この発明は、蒸気ボイラ、温水ボイラ、熱媒ボイラ等のボイラに適用する。複数台のボイラを並列に設置し、各ボイラを、予め設定した優先順位にしたがい負荷の状況に応じて運転する。各ボイラは、高燃焼、低燃焼および待機の各状態に制御する。ボイラに異常が発生したとき、この異常発生ボイラを停止させるとともに、不足する燃焼量を補充するために、他のボイラの燃焼量を変更する。この燃焼量変更の際、低燃焼のボイラを高燃焼に変更することを優先して行う。低燃焼で燃焼中であるため、燃焼量変更指令信号を受けると、直ちに高燃焼の状態に移行させることができ、異常発生ボイラ停止による燃焼量の不足分を、応答遅れを生じることなく速やかに補うことができる。
【0009】
燃焼量は、最大燃焼量を100%としたとき、たとえば100%,50%,0%の三段階で制御する他に、100%,70%,35%,0%の四段階、あるいはそれ以上の多段階で制御することもできる。上述の三段階制御の場合は、100%が高燃焼、50%が低燃焼、0%が待機の状態となる。四段階以上の場合は、0%が待機状態となる点は同じであるが、高燃焼および低燃焼は、0%以外の燃焼量のうち、相対的に大きいものと小さいものとの組み合わせで適用する。たとえば、四段階制御の場合、燃焼量の不足分を補充するのに、35%→100%としてもよいし、35%→70%としてもよいし、70%→100%としてもよい。
【0010】
燃焼量の不足分を補充する際、低燃焼のボイラが無ければ、ポストパージ中のボイラを燃焼に移行させることを、次に優先して行う。ポストパージ中であるので、プレパージを省略して直ちに着火動作を行い、燃焼に移行させることができる。その際、より安全性を高めるために、プレパージ時間分のポストパージを行ってから燃焼に移行させるようにするが、プレパージ時間分のポストパージ時間が経過していなくても、燃焼に移行させることは可能である。ポストパージ中のボイラが複数台有るときは、ポストパージの経過時間の長いボイラを優先して燃焼に移行させるようにする。また、異常ボイラ発生時のみならず、通常の負荷変動時においても、ポストパージ中に燃焼指令信号があれば、直ちに(望ましくは、プレパージ時間分のポストパージ時間が経過した後)、燃焼に移行させるようにし、負荷変動に対する応答性を向上させる。
【0011】
【実施例】
以下、この発明を蒸気ボイラに適用した実施例について、図面に基づいて説明する。図1に、この発明の一実施例におけるシステムの概略を示す。ボイラ1は複数台(図示した実施例では4台)、並列に設置され、各ボイラ1は、蒸気管2を介して、スチームヘッダ3に接続されている。このスチームヘッダ3には、内部の圧力を検出する圧力センサ4が設けられている。この圧力センサ4は、信号線5を介して台数制御器6に接続されている。この台数制御器6は通信線7を介して、各ボイラ1の制御器8に接続されている。前記通信線7は、前記台数制御器6と前記各制御器8、および前記各制御器8同士を接続し、制御信号や運転情報を伝達する働きをなす。
【0012】
前記ボイラ1は、高燃焼、低燃焼および待機の各状態に制御される。たとえば、最大燃焼量を100%としたとき、高燃焼を100%、低燃焼を50%、待機を0%の燃焼量に設定している。前記台数制御器6には、予め各ボイラ1の優先順位を設定してあり、この優先順位にしたがい、負荷の状況に応じて各ボイラ1の燃焼量を制御する。負荷の状況、すなわち、前記ボイラ1で発生した蒸気を使用する機器の蒸気使用量は、前記圧力センサ4で検出した前記スチームヘッダ3内の圧力に基づいて判定し、この圧力の値に基づいて各ボイラ1の燃焼量を決定する。前記ボイラ1は、起動に際しては、燃焼指令信号を受けて所定時間(約20秒)のプレパージを行って燃焼室内を掃気した後、着火動作を行い、燃焼に移行する。また、停止に際しては、停止指令信号を受けて燃焼を停止した後、所定時間(約30秒)のポストパージを行って燃焼室内を掃気し、待機状態となる。
【0013】
前記ボイラ1のうちいずれかのボイラに異常が発生したとき、この異常発生ボイラは安全制御が働いて停止し、異常ボイラ発生の旨の情報が、前記台数制御器6に伝えられる。前記台数制御器6は、異常ボイラ発生による燃焼量の不足分を算出し、この不足分を補充すべく、他の正常なボイラに対して燃焼量変更の指令信号を出す。その際、低燃焼のボイラを高燃焼に変更することを優先して行う。また、低燃焼のボイラが無ければ、ポストパージ中のボイラを燃焼に移行させることを、次に優先して行う。ポストパージ中のボイラが複数台有るときは、ポストパージの経過時間の長いボイラを優先して燃焼に移行させるようにする。
【0014】
以下、制御フローの詳細について、図2に基づいて説明する。まず、異常ボイラ発生の有無を判定する(ステップS1)。ボイラに異常が発生していれば、この異常発生ボイラは停止させ(ステップS2)、異常発生ボイラの停止により不足する燃焼量を算出する(ステップS3)。
【0015】
この不足燃焼量に基づいて、他の正常なボイラの燃焼量を変更する(増加させる)。その際、低燃焼のボイラの有無を判定し(ステップS4)、低燃焼のボイラが有れば、そのボイラを高燃焼に移行させる(ステップS5)。低燃焼の状態にあるので、直ちに、高燃焼に移行させることができ、燃焼量の不足分を、応答遅れを生じることなく速やかに補うことができる。
【0016】
低燃焼のボイラが無ければ、ステップS6に移って、ポストパージ中のボイラの有無を判定する。ポストパージ中のボイラが有れば、このボイラを燃焼に移行させる(ステップS7)。ポストパージ中であるので、プレパージを省略して直ちに着火動作を行い、燃焼に移行させることができる。ポストパージ中のボイラが無ければ、ステップS8に移って、待機中のボイラの有無を判定し、待機中のボイラが有れば、そのボイラを起動させ、プレパージを行った後に燃焼に移行させる(ステップS9)。待機中のボイラが無ければ、燃焼量の増加が可能なボイラが無いということであり、燃焼量の補充を行うことができないので、その旨の警報を発する(ステップS10)。また、ステップS11で、不足燃焼量の補充が完了したかどうかを判定し、まだ燃焼量が不足するのであれば、ステップS4に戻って、上述の制御を繰り返す。
【0017】
図3に、燃焼量変更の一例を時間的流れに沿って示す。4台のボイラのうち、優先順位第一位のボイラをNo.1、優先順位第二位のボイラをNo.2、優先順位第三位のボイラをNo.3、優先順位第四位のボイラをNo.4とし、No.1が高燃焼、No.2が低燃焼、No.3も低燃焼、No.4が待機の状態のとき、No.1に異常が発生したとする。高燃焼はH、低燃焼はLで示す。この場合、高燃焼のボイラ1台分の燃焼量が不足するので、低燃焼の状態にあるNo.2およびNo.3の2台のボイラを、高燃焼に移行させる。
【0018】
【発明の効果】
この発明によれば、異常発生ボイラ停止による燃焼量の不足分を、応答遅れを生じることなく速やかに補うことができる。したがって、たとえば、蒸気ボイラに適用した場合は、ボイラに異常が発生しても、蒸気量が不足することがなく、所定の圧力の蒸気を安定して供給することができる。
【図面の簡単な説明】
【図1】この発明の一実施例におけるシステムの概略を示す説明図である。
【図2】この発明の一実施例における制御フローを示す説明図である。
【図3】この発明一実施例におけるに燃焼量変更の一例を、時間的流れに沿って示す説明図である。
【符号の説明】
1 ボイラ
2 蒸気管
3 スチームヘッダ
4 圧力センサ
5 信号線
6 台数制御器
7 通信線
8 制御器
[0001]
[Sp field of the invention]
The present invention relates to an automatic number control method in which a plurality of boilers such as steam boilers, hot water boilers, heat medium boilers and the like are installed in parallel and the number of combustion is automatically controlled according to the load conditions.
[0002]
[Prior art]
As is well known, a boiler multi-can installation system in which a plurality of boilers are installed in parallel, and the number of combustion of these boilers is automatically controlled in accordance with preset priorities in accordance with load conditions. Has been implemented. For example, in a multi-can installation system for steam boilers, a pressure in a steam header common to each boiler is detected, and the number of boilers burned is controlled based on this pressure. Compared to installing one large-capacity boiler, the boiler multi-can installation system can operate each boiler with high efficiency, which has a significant effect on energy saving and response to load fluctuations. It has the advantage that it has excellent properties.
[0003]
[Problems to be solved by the invention]
In such a boiler multi-can installation system, when an abnormality occurs in the boiler during combustion and it stops, the steam pressure drop in the steam header is detected, and the standby priority boiler is shifted to combustion. Doing so causes a response delay. That is, when the standby boiler is activated, a pre-purge of about 20 seconds is performed before the ignition operation to scavenge the combustion chamber, resulting in a response delay for that time.
[0004]
An object of the present invention is to quickly back up combustion of another boiler without causing a response delay when an abnormality occurs in the boiler.
[0005]
[Means for Solving the Problems]
According to the first aspect of the present invention, a plurality of boilers are installed, and the boilers are controlled to high combustion, low combustion, and standby states according to load conditions according to preset priorities. When an abnormality occurs, the first boiler determines whether or not there is a low-combustion boiler when changing the combustion amount in the automatic number control method of the boiler that stops the abnormality-occurring boiler and changes the combustion amount of the other boilers . If there is a low combustion boiler in the first determination step, the low combustion boiler is changed to high combustion. If there is no low combustion boiler in the first determination step, post-purge is in progress. A second determination step is performed to determine the presence or absence of a boiler, and if there is a post-purge boiler in this second determination step, the post-purge boiler is shifted to combustion. It is characterized in that.
[0006]
According to a second aspect of the present invention, in the first aspect of the invention, when there are a plurality of post-purge boilers in the second determination step, priority is given to a boiler having a long post-purge elapsed time. It is characterized by shifting to combustion .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is applied to boilers such as steam boilers, hot water boilers, heat medium boilers, and the like. A plurality of boilers are installed in parallel, and each boiler is operated according to a load condition according to a preset priority order. Each boiler is controlled to each state of high combustion, low combustion, and standby. When an abnormality occurs in the boiler, the abnormality generating boiler is stopped, and the combustion amount of other boilers is changed in order to supplement the insufficient combustion amount. When changing the combustion amount, priority is given to changing the low combustion boiler to high combustion. Because it is burning at low combustion, when it receives a combustion amount change command signal, it can immediately shift to a high combustion state, and the shortage of combustion amount due to the stop of the abnormal boiler can be promptly performed without causing a response delay. Can be supplemented.
[0009]
Combustion amount is controlled in three stages of 100%, 50% and 0%, for example, when the maximum combustion amount is 100%, and in four stages of 100%, 70%, 35% and 0%, or more It is also possible to control in multiple stages. In the case of the above-described three-stage control, 100% is high combustion, 50% is low combustion, and 0% is in a standby state. In the case of four or more stages, the point that 0% is in the standby state is the same, but high combustion and low combustion are applied in a combination of relatively large and small combustion amounts other than 0%. To do. For example, in the case of four-stage control, 35% → 100%, 35% → 70%, or 70% → 100% may be used to supplement the shortage of the combustion amount.
[0010]
When there is no low combustion boiler when the shortage of the combustion amount is replenished, the next priority is to shift the post-purge boiler to combustion. Since the post-purge is being performed, the pre-purge can be omitted and an ignition operation can be immediately performed to shift to combustion. At that time, in order to improve safety, the post-purge for the pre-purge time is performed before the shift to combustion. However, even if the post-purge time for the pre-purge time has not elapsed, the shift to the combustion is performed. Is possible. When there are a plurality of post-purge boilers, the boiler having a long post-purge elapsed time is preferentially shifted to combustion. Also, not only when an abnormal boiler occurs but also during normal load fluctuations, if there is a combustion command signal during post-purge, it immediately shifts to combustion (preferably after the post-purge time for the pre-purge time has elapsed). To improve responsiveness to load fluctuations.
[0011]
【Example】
Hereinafter, an embodiment in which the present invention is applied to a steam boiler will be described with reference to the drawings. FIG. 1 shows an outline of a system in one embodiment of the present invention. A plurality of boilers 1 (four in the illustrated embodiment) are installed in parallel, and each boiler 1 is connected to a steam header 3 via a steam pipe 2. The steam header 3 is provided with a pressure sensor 4 for detecting the internal pressure. The pressure sensor 4 is connected to the number controller 6 through a signal line 5. This number controller 6 is connected to the controller 8 of each boiler 1 via a communication line 7. The communication line 7 connects the number controller 6, the controllers 8, and the controllers 8, and serves to transmit control signals and operation information.
[0012]
The boiler 1 is controlled to high combustion, low combustion, and standby states. For example, assuming that the maximum combustion amount is 100%, high combustion is set to 100%, low combustion is set to 50%, and standby is set to 0%. Priorities of the boilers 1 are set in the number controller 6 in advance, and the combustion amount of the boilers 1 is controlled according to the load conditions according to the priorities. The state of the load, that is, the amount of steam used by the equipment using the steam generated in the boiler 1 is determined based on the pressure in the steam header 3 detected by the pressure sensor 4, and based on the value of this pressure The combustion amount of each boiler 1 is determined. Upon startup, the boiler 1 performs a pre-purge for a predetermined time (about 20 seconds) in response to a combustion command signal, scavenging the combustion chamber, performs an ignition operation, and shifts to combustion. Further, when stopping, after receiving a stop command signal and stopping combustion, a post purge is performed for a predetermined time (about 30 seconds) to scavenge the combustion chamber and enter a standby state.
[0013]
When an abnormality occurs in any one of the boilers 1, the abnormality occurrence boiler stops due to safety control, and information indicating the occurrence of the abnormality boiler is transmitted to the unit controller 6. The number controller 6 calculates the shortage of the combustion amount due to the occurrence of the abnormal boiler, and issues a command signal for changing the combustion amount to other normal boilers in order to supplement this shortage. At that time, priority is given to changing the low combustion boiler to high combustion. If there is no low-combustion boiler, the post-purge boiler is shifted to combustion next with priority. When there are a plurality of post-purge boilers, the boiler having a long post-purge elapsed time is preferentially shifted to combustion.
[0014]
Hereinafter, the details of the control flow will be described with reference to FIG. First, it is determined whether or not an abnormal boiler has occurred (step S1). If an abnormality has occurred in the boiler, the abnormality occurrence boiler is stopped (step S2), and a combustion amount that is insufficient due to the stop of the abnormality occurrence boiler is calculated (step S3).
[0015]
Based on this insufficient combustion amount, the combustion amount of another normal boiler is changed (increased). At that time, it is determined whether or not there is a low combustion boiler (step S4). If there is a low combustion boiler, the boiler is shifted to high combustion (step S5). Since it is in the low combustion state, it is possible to immediately shift to high combustion, and the shortage of the combustion amount can be quickly compensated without causing a response delay.
[0016]
If there is no low-combustion boiler, the process proceeds to step S6 to determine the presence or absence of a post-purge boiler. If there is a post-purge boiler, the boiler is shifted to combustion (step S7). Since the post-purge is being performed, the pre-purge can be omitted and an ignition operation can be immediately performed to shift to combustion. If there is no post-purge boiler, the process proceeds to step S8, where it is determined whether there is a standby boiler. If there is a standby boiler, the boiler is activated, and after pre-purge is performed, shifts to combustion ( Step S9). If there is no waiting boiler, it means that there is no boiler capable of increasing the combustion amount, and the combustion amount cannot be replenished, so an alarm to that effect is issued (step S10). In step S11, it is determined whether or not the supplement of the insufficient combustion amount is completed. If the combustion amount is still insufficient, the process returns to step S4 and the above control is repeated.
[0017]
FIG. 3 shows an example of the combustion amount change along the time flow. Of the four boilers, the boiler with the first priority is No.1, the boiler with the second priority is No.2, the boiler with the third priority is No.3, and the boiler with the fourth priority Is No.4, No.1 is high combustion, No.2 is low combustion, No.3 is low combustion, and No.4 is in standby state. High combustion is indicated by H, and low combustion is indicated by L. In this case, since the combustion amount for one high combustion boiler is insufficient, the two boilers No. 2 and No. 3 in a low combustion state are shifted to high combustion.
[0018]
【The invention's effect】
According to the present invention, the shortage of the combustion amount due to the stop of the abnormality occurrence boiler can be quickly compensated without causing a response delay. Therefore, for example, when applied to a steam boiler, even if an abnormality occurs in the boiler, the steam amount is not insufficient, and steam at a predetermined pressure can be stably supplied.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an outline of a system in one embodiment of the present invention;
FIG. 2 is an explanatory diagram showing a control flow in one embodiment of the present invention.
FIG. 3 is an explanatory view showing an example of a change in combustion amount in the embodiment of the present invention along a temporal flow.
[Explanation of symbols]
1 Boiler 2 Steam Pipe 3 Steam Header 4 Pressure Sensor 5 Signal Line 6 Number Controller 7 Communication Line 8 Controller

Claims (2)

複数台のボイラを設置し、各ボイラを、予め設定した優先順位にしたがい負荷の状況に応じて高燃焼、低燃焼および待機の各状態に制御し、ボイラに異常が発生したとき、この異常発生ボイラを停止させるとともに、他のボイラの燃焼量を変更し、
この燃焼量変更の際、低燃焼のボイラの有無を判定する第一の判定ステップを行い、この第一の判定ステップにおいて低燃焼のボイラが有ればその低燃焼のボイラを高燃焼に変更し、前記第一の判定ステップにおいて低燃焼ボイラが無ければ、ポストパージ中のボイラの有無を判定する第二の判定ステップを行い、この第二の判定ステップにおいてポストパージ中のボイラが有れば、そのポストパージ中のボイラを燃焼に移行させることを特徴とするボイラの自動台数制御方法。
When multiple boilers are installed, and each boiler is controlled to high combustion, low combustion, and standby according to the load status according to the preset priority, this abnormality occurs when an abnormality occurs in the boiler While stopping the boiler, change the combustion amount of other boilers,
When the combustion amount is changed, a first determination step is performed to determine whether or not there is a low combustion boiler. If there is a low combustion boiler in the first determination step, the low combustion boiler is changed to high combustion. If there is no low combustion boiler in the first determination step, a second determination step is performed to determine the presence or absence of a boiler during post purge, and if there is a post purge purge boiler in the second determination step, An automatic number control method for boilers, characterized in that the boiler during the post purge is shifted to combustion .
前記第二の判定ステップにおいて、ポストパージ中のボイラが複数台ある場合には、ポストパージの経過時間の長いボイラを優先して燃焼に移行させることを特徴とする請求項1に記載のボイラの自動台数制御方法。 2. The boiler according to claim 1, wherein in the second determination step, when there are a plurality of boilers during post purge, the boiler having a long post purge elapsed time is preferentially shifted to combustion . Automatic number control method.
JP20125498A 1998-06-30 1998-06-30 Automatic boiler number control method Expired - Fee Related JP4032515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20125498A JP4032515B2 (en) 1998-06-30 1998-06-30 Automatic boiler number control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20125498A JP4032515B2 (en) 1998-06-30 1998-06-30 Automatic boiler number control method

Publications (2)

Publication Number Publication Date
JP2000018503A JP2000018503A (en) 2000-01-18
JP4032515B2 true JP4032515B2 (en) 2008-01-16

Family

ID=16437904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20125498A Expired - Fee Related JP4032515B2 (en) 1998-06-30 1998-06-30 Automatic boiler number control method

Country Status (1)

Country Link
JP (1) JP4032515B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505850B2 (en) * 2003-06-26 2010-07-21 三浦工業株式会社 Number control method of boiler
JP2005055014A (en) * 2003-08-07 2005-03-03 Miura Co Ltd Method of controlling number of boilers
JP4865269B2 (en) * 2005-07-19 2012-02-01 三菱重工業株式会社 Combined boiler system and operation method thereof
JP5418109B2 (en) * 2009-09-24 2014-02-19 三浦工業株式会社 Boiler group control method, program, controller, and boiler system
JP2016148460A (en) * 2015-02-10 2016-08-18 株式会社サムソン Multi-can installed boiler

Also Published As

Publication number Publication date
JP2000018503A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
NL192050C (en) Modular power installation for the combined supply of electrical energy and heat.
US7455238B2 (en) Control system and method for multistage air conditioning system
JP4032515B2 (en) Automatic boiler number control method
JP4898409B2 (en) Steam supply equipment
JP3999024B2 (en) Multi-can installed boiler unit control device
JP2861880B2 (en) Automatic boiler unit control method
JP2009228983A (en) Multiple can installed boiler
JP2002081606A (en) Method for controlling boiler
JP2544948B2 (en) Boiler automatic number control system
JPH0148366B2 (en)
JPH0692804B2 (en) Boiler automatic number control system
JPH05288302A (en) Method of controlling number of once-through boiler
JP2004069086A (en) Multi-boiler installation boiler
JP3357573B2 (en) Boiler unit control device
JPH06272802A (en) Device for controlling the number of heat equipment
JPH08219550A (en) Control method in multi-can installation system of fluid heater
JP3283153B2 (en) Control method in multi-can installation system of fluid heater
JP2002081605A (en) Method for controlling number of thermal instruments
JP2008107021A (en) Multi-can installation system for boiler
JP2861876B2 (en) Automatic number control method in the event of boiler failure
JP3078724B2 (en) Control method in multi-can installation system of fluid heater
JP6289119B2 (en) Multi-can boiler with air supply valve
JPH0344961Y2 (en)
JPH0217302A (en) Automatic control device for the number of boilers
JPH08233204A (en) Method for automatically controlling the number of fluid heating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees