JP4031820B2 - Manufacturing method of fiber panel - Google Patents

Manufacturing method of fiber panel Download PDF

Info

Publication number
JP4031820B2
JP4031820B2 JP31528498A JP31528498A JP4031820B2 JP 4031820 B2 JP4031820 B2 JP 4031820B2 JP 31528498 A JP31528498 A JP 31528498A JP 31528498 A JP31528498 A JP 31528498A JP 4031820 B2 JP4031820 B2 JP 4031820B2
Authority
JP
Japan
Prior art keywords
mold
fiber
containing slurry
manufacturing
dehydrated cake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31528498A
Other languages
Japanese (ja)
Other versions
JP2000096498A (en
Inventor
政典 遠山
征道 永易
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP31528498A priority Critical patent/JP4031820B2/en
Publication of JP2000096498A publication Critical patent/JP2000096498A/en
Application granted granted Critical
Publication of JP4031820B2 publication Critical patent/JP4031820B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Panels For Use In Building Construction (AREA)
  • Laminated Bodies (AREA)
  • Paper (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、繊維パネルの製造方法に関し、特に、複数のリブにより構成される開口セル格子と、該格子の一方の開口部を覆う連続的な平板と、他方の開口部の一部を覆うフランジとが、緻密な圧縮繊維により一体成形された構造の繊維パネルの製造方法に関するものである。
【0002】
【従来の技術及びその課題】
特開平9−195440号公報に、開口セル格子を有する繊維パネルの製造方法が開示されている。
かかる製造方法の概略は、概ね次の如くである。
【0003】
先ず、例えば木材繊維、再生紙等の原料Aを強力な攬拌力によりパルプ化し、水分濃度99%程度の繊維含有スラリーSとする〔図7(a)参照〕。
続いて、該スラリーSを、図4に示した多孔性キャリア51と、該多孔性キャリア51の板面に幾何学的に配置固定された複数のエラストマーパッド52とから構成された型枠50上に打設し〔図7(b)参照〕、該型枠50の上・下方向からの平盤によるプレス(プリプレス)及び型枠50の下面からの吸引により脱水し、スラリーSを水分濃度50%程度の脱水ケーキKとする〔図7(c)参照〕。
【0004】
その後、型枠50をホットプレス60に搬送し、加熱下において型枠50に対して垂直方向の圧力を加えることにより脱水ケーキKを加熱圧縮成形し〔図8(a)参照〕、水分濃度8%程度の成形品Xとする。
この際、型枠50を構成する上記エラストマーパッド52が、図5に示したように、プレスの圧縮力により偏平に変形し、パッド間に充填された脱水ケーキKを型枠に対して垂直方向のみならず平行な方向にも圧縮し、緻密な開口セル格子を有する繊維パネルに成形する。
【0005】
成形が完了した後、型枠50と共に成形品Xをホットプレス60から取り出し、成形品Xを型枠50から脱型する〔図8(b)参照〕。
【0006】
上記した工程によって、図6に示した複数のリブにより構成される開口セル格子71と、該格子71の一方の開口部を覆う連続的な平板72と、他方の開口部の一部を覆うフランジ73とが、緻密な圧縮繊維により一体成形された構造の繊維パネル70を製造することが出来る。
【0007】
ここで、上記開口セル格子を有する繊維パネル70の製造工程中、ホットプレス60による脱水ケーキKの加熱圧縮成形工程に要する電力量は、概ね成形品1kg当たり10kWh程度であり、全体の電力消費量の8割近くをこの工程において占め、製造コストを高騰させていた。
【0008】
これは、加熱圧縮成形工程に移行する際の脱水ケーキKの水分濃度が、50%程度と高いことに起因していることは明らかであるが、従来の前工程における圧搾と吸引と言う機械的脱水のみでは、その脱水効果にはおのずと限度があり、特に、本発明が対象としている開口セル格子を有する繊維パネル70の製造においては、開口セル格子を構成する薄肉のリブ部分の脱水が特にネックとなり、最終工程である加熱圧縮成形工程前に、脱水ケーキKの水分濃度を50%未満に持っていくことは困難であったことによる。
【0009】
そのため、本発明が対象としている開口セル格子を有する繊維パネルは、軽量で且つ高強度のパネルとなり、住宅用部材、建具或いは家具等の幅広い用途が考えられ、古紙等のリサイクル資源の有効活用を図れる製品であると期待されたが、その製造原価が高いことから、需要が伸びなやんでいた。
【0010】
本発明は、上述した従来の開口セル格子を有する繊維パネルの製造方法が有する課題に鑑み成されたものであって、その目的は、製品を製造するための全工程を含めたトータル的な電力消費量を節減し、安価に開口セル格子を有する繊維パネルを製造できる方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、上記した目的を達成すべく検討を重ねた結果、汚泥の脱水技術として従来より広く知られている電気浸透脱水に着目し、該電気浸透脱水と従来より行われている圧搾・吸引と言う機械的脱水とを、型枠上に打設された繊維含有スラリーの脱水に併用することによって、加熱圧縮成形工程前に脱水ケーキの水分濃度を50%未満の所定水準まで持っていくことが可能であり、またこの水準まで含水率が下げられた脱水ケーキの加熱圧縮成形に要する電力量は、従来より大幅に節減でき、電気浸透脱水を前工程において併用したことによる電力消費量の増加を考慮しても、トータル的な電力消費量を抵く抑えることができることを見出し、本発明を完成させた。
【0012】
即ち、本発明は、多孔性キャリアと、該多孔性キャリアの板面に幾何学的に配置固定された複数のエラストマーパッドとから構成された型枠を使用し、複数のリブにより構成される開口セル格子と、該格子の一方の開口部を覆う連続的な平板と、他方の開口部の一部を覆うフランジとが、緻密な圧縮繊維により一体成形された構造の繊維パネルを製造する方法において、上記型枠上に繊維含有スラリーを打設する工程と、前記型枠上に打設された繊維含有スラリーを、型枠の上・下方向からの平盤によるプレス及び型枠の下面からの吸引によって圧搾・吸引脱水すると共に、上記プレス用平盤間に直流電圧を印加して繊維含有スラリーを電気浸透脱水し、水分濃度35〜45%の脱水ケーキとする工程と、前記型枠上の脱水ケーキを、型枠の上・下方向からの平盤によるプレス下において、前記プレス用平盤間に高周波電圧を印加して脱水ケーキを高周波誘電加熱すると共に、前記型枠の上・下方向から吸引して加熱圧縮成形し、水分濃度10%以下の成形品とする工程とから成る繊維パネルの製造方法とした。
【0013】
ここで、上記型枠上に打設された繊維含有スラリーの脱水は、電気浸透脱水と圧搾・吸引と言う機械的脱水とを併用することによって、加熱圧縮成形工程前に水分濃度35〜45%の脱水ケーキまで持っていくことが重要である。
これは、45%を越える脱水ケーキの加熱圧縮成形にはかなりの電力量が必要となり、前工程において電気浸透脱水を併用したことによる電力消費量の増加を考慮した場合、トータル的な電力消費量の節減効果が少ないためであり、また逆に35%未満の脱水ケーキまで持っていくことは、電気浸透脱水と機械的脱水とを併用したとしても短時間では困難であり、繊維含有スラリーの脱水工程における電力消費量が急激に増加するために好ましくない。
【0014】
また、本発明においては、上記型枠上に繊維含有スラリーを打設する工程は、従来と同様に、繊維含有スラリーを重力の作用のみによって型枠上に打設するものであっても良いが、水分濃度65〜80%の繊維含有スラリーを、型枠の下面から吸引しながら打設するものとすることが好ましい。
これは、製造にかかるトータル的な電力消費量の節減を考慮した場合、原料となる繊維含有スラリーの水分濃度は低ければ低い程、その後の脱水等に要する電力量が少なくなるために好ましいのであるが、本発明において使用する型枠は、上述したように複数のエラストマーパッドが多孔性キャリアの板面に幾何学的に配置固定されたものであるため、水分濃度が低く、流動性を有しない原料の場合には、エラストマーパッド間への原料の充填が不十分となり、製品強度が低下するために吸引しながら打設することが好ましく、この際、水分濃度65%に満たない繊維含有スラリーでは、吸引しても充填が不十分となり、逆に水分濃度80%を越える繊維含有スラリーの場合は、トータル的な電力消費量の節減効果が少ないために好ましくない。
【0015】
さらに、本発明においては、上記型枠上の脱水ケーキを加熱圧縮成形する工程は型枠の上・下方向からの平盤によるプレス下において、前記プレス用平盤間に高周波電圧を印加して脱水ケーキを高周波誘電加熱すると共に、前記型枠の上・下方向から吸引して行なうものとする
これは、上段においても記載したように、本発明において使用する型枠は、熱伝導率の低いシリコンゴム等の弾性材料で作られたエラストマーパッドをその構成部材としているため、従来の伝導伝熱を期待した加熱された平盤のプレスによる加熱圧縮成形よりも、高周波電圧の印加により、脱水ケーキ自体に誘電加熱を起こさせた方が効率の良い加熱が可能となるためであり、また、この高周波誘電加熱する際に、型枠の上・下方向から吸引することにより、蒸発した液体分を吸引除去することとすると、平盤間の絶縁度が高まり、効率のよい脱水ケーキの誘電加熱が可能となるためである
【0016】
【発明の実施の形態】
以下、上記した本発明にかかる繊維パネルの製造方法の実施の形態を、図面に基づいて詳細に説明する。
【0017】
本発明で使用する型枠は、従来と同様のものが使用できる。即ち、図4に示したように、多孔性キャリア51と、その板面に幾何学的に配置固定された複数のエラストマーパッド52とから構成された型枠50である。
この型枠50のエラストマーパッド52の各々は、図5にも示したように、該パッドが圧縮される際に、その中心から外側に向かって上記キャリアに平行に拡大し、パッド間に充填された繊維を圧縮すると同時に、パッドの上及び拡大したパッドの下に位置する繊維をも圧縮できるような所定のサイズ及び形状を呈している。
【0018】
上記多孔性キャリア51は、通常矩形の金属製板に、複数の貫通穴を穿設した構造のもので、その周囲板面には、図4に示したように補強を兼ねて帯状のプレスストッパー53が添設されている。なお、この多孔性キャリア51は、一枚の板体により構成されていても、また複数枚の板体を重ね合わせて構成されていても良い。
また、上記エラストマーパッド52は、十分な弾性を有する材料で形成されており、例えばシリコンゴム、クロロプレンゴムなどを含む、各種の合成ゴムを用いて形成することができるが、中でもシリコンゴムが耐久性及び弾性を考慮した場合に特に優れている。そして、このエラストマーパッド52を、図4において拡大して示したように、断面六角形の台形体とすることにより、製造される繊維パネル70のセル格子71を、図6に示したように六角形とすることが可能となる。
【0019】
本発明にかかる製造方法においては、先ず上記型枠50上に繊維含有スラリーSを打設する。
この繊維含有スラリーSの打設工程は、従来と同様に、例えば木材繊維、再生紙等の原料Aを強力な攬拌力によりパルプ化し、水分濃度99%程度の繊維含有スラリーSに調整した後、該繊維含有スラリーSを、重力の作用のみによって型枠50上に打設するものであっても良いが、図1に示したように、型枠50の下面から吸引しながら、水分濃度65〜80%に調整された繊維含有スラリーSを、型枠50上に打設する方法を採用することが好ましい。これは、繊維含有スラリーSを型枠であるエラストマーパッド52間に十分に充填できると共に、その水分濃度を低下させることができ、後の脱水等に要する電力を節減できるために好ましい。
【0020】
ここで、本発明者らが行った試験によれば、この打設工程における吸引圧力は、スラリーSの水分濃度にも左右されるが、概ね−650mmHg程度で吸引すれば目的は達成でき、その際のスラリーSの水分濃度は、65%に満たない場合には、吸引圧力を上昇させても型枠上への原料の充填が不十分となり好ましくなく、また、80%を越える場合には、トータル的な電力消費量の節減効果が少ないために好ましくなかった。
【0021】
続いて、上記型枠50上に打設された繊維含有スラリーSを、水分濃度35〜45%の脱水ケーキKにまで脱水する。
この繊維含有スラリーSの脱水工程においては、電気浸透脱水と、圧搾・吸引と言う機械的脱水とを併用して行う。即ち、図2に示したように、型枠50の上・下方向からの平盤によるプレスと、型枠50の下面からの吸引によって繊維含有スラリーSを圧搾・吸引脱水すると共に、上記プレス用平盤間に直流電圧を印加すると、平盤間に挟まれた繊維含有スラリーSには電流が流れる。ここで、スラリーS中に分散している繊維質材は、通常マイナス電荷を帯びた状態にあり、この繊維質材と接する周囲の液体は、繊維質材の表面電荷と逆極性のプラスに帯電している。そのため、上方のプレス用平盤をプラス極、下方のプレス用平盤をマイナス極として直流電源より電圧を印加すると、電気浸透現象の働きによりスラリーS中に含まれている液体は繊維質材間を毛細管として下方のプレス用平盤側に移動し、型枠50の下面からの吸引により外部に排水される。これにより、圧搾・吸引と言う機械的脱水のみでは達成し得なかった、水分濃度35〜45%の脱水ケーキKにまで、繊維含有スラリーSを脱水することができる。
【0022】
ここで、本発明者らが行った試験によれば、上記プレス用平盤によって加える圧縮圧力は10〜12kgf/cmとし、また型枠の下面からの吸引圧力は−650mmHg程度とする。そして、プレス用平盤間に印加する直流電源の電圧は200〜400Vで、45〜90秒間印加して電気浸透脱水と機械的脱水とを併用して行うと、水分濃度35〜45%の脱水ケーキKにまで、繊維含有スラリーSを脱水することができた。
なお、吸引による脱水は、型枠50の下面からのみならず、図示したように上方のプレス用平盤にも細孔を設け、型枠50の上方からも吸引できるようにしても良い。
【0023】
次ぎに、型枠50上の脱水ケーキKを加熱圧縮成形し、水分濃度10%以下の成形品Xとする。
この脱水ケーキKの加熱圧縮成形工程は図3に示したように、型枠50の上・下方向からの平盤によるプレス下において、前記プレス用平盤間に高周波電圧を印加し、脱水ケーキK自体を高周波誘電加熱するものとするこれは、本発明において使用する型枠は、上記したように熱伝導率の低いシリコンゴム等の弾性材料で作られたエラストマーパッド52をその構成部材としているため、伝導伝熱を期待した加熱された平盤のプレスによる加熱圧縮成形よりも、高周波電圧の印加により、脱水ケーキ自体に誘電加熱を起こさせた方が効率の良い加熱が可能となるためである
また、脱水ケーキKを高周波誘電加熱する際に、図3に示したように、型枠50の上・下方向から吸引することにより、蒸発した液体分を吸引除去することとすると、平盤間の絶縁度が高まり、効率のよい脱水ケーキKの誘電加熱が可能となる
なお、同図に示したように、プレス用平盤のプレス面を、ヒーター或いは加熱媒体により120〜160℃程度に加熱した状態とし、型枠50の上・下方向からの伝導伝熱による脱水ケーキKの加熱をも併用する構成とすると、高周波電力が不均一にかかることによる脱水ケーキKの乾燥ムラを、解消することができるために好ましい。
【0024】
ここで、本発明者らが行った試験によれば、この加熱圧縮成形工程においてプレス用平盤によって型枠50上の脱水ケーキKに加える圧縮圧力は、概ね10〜12kgf/cm程度とし、また、このプレス用平盤間に印加する高周波電圧は、周波数13.56MHz、電圧200Vの高周波電圧を、120〜180秒間程度印加すれば、型枠50上の脱水ケーキKを、水分濃度10%以下の成形品Xとすることができた。
【0025】
また、本発明者らが行った試験によれば、水分濃度50%程度の脱水ケーキKをホットプレスにより加熱圧縮成形した場合の電力量は、従来の技術の項においても記載したように、概ね成形品1kg当たり10kWh程度であったが、前工程において電気浸透脱水と圧搾・吸引と言う機械的脱水とを併用することによって、水分濃度35〜45%まで持っていった脱水ケーキKを、ホットプレスにより従来と同様に加熱圧縮成形した場合の電力量は、概ね成形品1kg当たり4〜6kWh程度と大幅に節減でき、前工程において電気浸透脱水を併用したことによる電力消費量の増加を考慮しても、トータル的な電力消費量を低く抑えることができることが確認できた。
【0026】
以上、本発明にかかる繊維パネルの製造方法の実施の形態を説明したが、本発明は既述の実施の形態に限定されるものではなく、本発明の技術的思想の範囲内において、種々の変形及び変更が可能である。
【0027】
例えば、上記実施の形態においては、型枠50としてバッチ式のものを使用したが、型枠50を構成する多孔性キャリアを、ベルト状或いはホイール状のものとすることにより、本発明にかかる各工程を連続的に受けるように可動させたものとしても良い。
【0028】
また、上記実施の形態においては、繊維含有スラリーSの脱水工程において使用するプレス用平盤と、脱水ケーキKの加熱圧縮成形工程において使用するプレス用平盤とを、別異のものとして記載したが、同一のものを併用しても良く、またその場合には、プレスの型締めを行ったまま、脱水工程と、その後の加熱圧縮成形工程とを連続的に行っても良い。
【0029】
【発明の効果】
以上、説明した本発明にかかる繊維パネルの製造方法は、加熱圧縮成形工程前に、繊維含有スラリーを、電気浸透脱水と圧搾・吸引と言う機械的脱水とを併用することによって、水分濃度35〜45%の脱水ケーキにまで脱水すると共に、該脱水ケーキを、型枠の上・下方向からの平盤によるプレス下において、前記プレス用平盤間に高周波電圧を印加して脱水ケーキを高周波誘電加熱すると共に、前記型枠の上・下方向から吸引して加熱圧縮成形し、水分濃度10%以下の成形品とすることに最大の特徴があり、これによって加熱圧縮成形工程における電力消費量を大幅に節減でき、安価に開口セル格子を有する繊維パネルを製造できる効果がある。
【図面の簡単な説明】
【図1】本発明にかかる繊維パネルの製造工程中、繊維含有スラリーの打設工程の一実施の形態を示した概念図である。
【図2】本発明にかかる繊維パネルの製造工程中、繊維含有スラリーの脱水工程の一実施の形態を示した概念図である。
【図3】本発明にかかる繊維パネルの製造工程中、脱水ケーキの加熱圧縮成形工程の一実施の形態を示した概念図である。
【図4】繊維パネルの製造に使用される型枠の一実施の形態を示した斜視図である。
【図5】原料の加熱圧縮成形工程中における状態を示した断面図である。
【図6】成形品である繊維パネルを示した斜視図である。
【図7】従来の繊維パネルの製造工程を示した図であって、(a)は原料スラリーの製造工程、(b)は型枠上への原料の打設工程、(c)は原料の脱水工程を各々示した図である。
【図8】従来の繊維パネルの製造工程を示した図であって、(a)は原料の加熱圧縮成形工程、(b)は製品の型枠からの剥離工程を各々示した図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a fiber panel, and in particular, an open cell grid composed of a plurality of ribs, a continuous flat plate covering one opening of the grid, and a flange covering a part of the other opening. Are related to a method of manufacturing a fiber panel having a structure integrally formed with dense compressed fibers.
[0002]
[Prior art and problems]
Japanese Laid-Open Patent Publication No. 9-195440 discloses a method for manufacturing a fiber panel having an open cell lattice.
An outline of such a manufacturing method is as follows.
[0003]
First, a raw material A such as wood fiber or recycled paper is pulped with a strong stirring force to obtain a fiber-containing slurry S having a moisture concentration of about 99% [see FIG. 7 (a)].
Subsequently, the slurry S is formed on the mold 50 including the porous carrier 51 shown in FIG. 4 and a plurality of elastomer pads 52 geometrically arranged and fixed on the plate surface of the porous carrier 51. [See FIG. 7 (b)], and dehydrated by pressing (prepress) with a flat plate from above and below the mold 50 and suction from the lower surface of the mold 50, and the slurry S has a moisture concentration of 50. % Of dehydrated cake K (see FIG. 7C).
[0004]
Thereafter, the mold 50 is conveyed to the hot press 60, and under pressure, the dehydrated cake K is heated and compression-molded by applying vertical pressure to the mold 50 (see FIG. 8 (a)). The molded product X is about%.
At this time, as shown in FIG. 5, the elastomer pad 52 constituting the mold 50 is deformed flat by the compressive force of the press, and the dehydrated cake K filled between the pads is perpendicular to the mold. Compressed not only in the parallel direction, but formed into a fiber panel having a dense open cell lattice.
[0005]
After the molding is completed, the molded product X is taken out from the hot press 60 together with the mold 50, and the molded product X is removed from the mold 50 (see FIG. 8B).
[0006]
Through the steps described above, the open cell lattice 71 constituted by the plurality of ribs shown in FIG. 6, the continuous flat plate 72 covering one opening of the lattice 71, and the flange covering a part of the other opening 73 can be manufactured as a fiber panel 70 having a structure integrally formed with dense compressed fibers.
[0007]
Here, during the manufacturing process of the fiber panel 70 having the open cell lattice, the amount of power required for the heat compression molding process of the dewatered cake K by the hot press 60 is approximately 10 kWh per 1 kg of the molded product, and the total power consumption Nearly 80% of this was occupied in this process, raising the manufacturing cost.
[0008]
This is apparently due to the fact that the moisture concentration of the dewatered cake K at the time of shifting to the heat compression molding process is as high as about 50%. Dehydration alone has its limit in its dehydration effect. In particular, in the production of the fiber panel 70 having the open cell lattice, which is the subject of the present invention, the dewatering of the thin rib portions constituting the open cell lattice is particularly a bottleneck. This is because it was difficult to bring the moisture concentration of the dewatered cake K to less than 50% before the heat compression molding process as the final process.
[0009]
Therefore, the fiber panel having an open cell lattice, which is the subject of the present invention, is a lightweight and high-strength panel, which can be used in a wide range of applications such as housing members, joinery or furniture, and can effectively use recycled resources such as waste paper. Although it was expected to be a product that could be planned, because of its high manufacturing cost, demand was slow.
[0010]
The present invention has been made in view of the problems of the above-described conventional method for manufacturing a fiber panel having an open cell lattice, and its purpose is to provide total power including all steps for manufacturing a product. An object of the present invention is to provide a method for manufacturing a fiber panel having an open cell lattice at a low cost by reducing consumption.
[0011]
[Means for Solving the Problems]
As a result of repeated studies to achieve the above-mentioned object, the present inventors paid attention to electroosmosis dehydration, which has been widely known as a dewatering technique for sludge, and the electroosmosis dehydration and the compression performed conventionally.・ By using mechanical dehydration called suction together with dehydration of the fiber-containing slurry placed on the mold, the moisture concentration of the dehydrated cake is brought to a predetermined level of less than 50% before the heat compression molding process. In addition, the amount of power required for heat compression molding of dehydrated cakes whose moisture content has been reduced to this level can be greatly reduced compared to the conventional method. The present inventors have found that the total power consumption can be suppressed even when the increase in power consumption is taken into consideration.
[0012]
That is, the present invention uses a mold frame composed of a porous carrier and a plurality of elastomer pads geometrically arranged and fixed on the plate surface of the porous carrier, and is formed with a plurality of ribs. In a method of manufacturing a fiber panel having a structure in which a cell lattice, a continuous flat plate covering one opening of the lattice, and a flange covering a part of the other opening are integrally formed of dense compressed fibers The step of placing the fiber-containing slurry on the mold, and the fiber-containing slurry placed on the mold are pressed by a flat plate from above and below the mold and from the lower surface of the mold Squeezing and suction dewatering by suction, applying a DC voltage between the flat plates for pressing to electroosmotic dewater the fiber-containing slurry to form a dehydrated cake having a moisture concentration of 35 to 45%, and on the mold the dehydrated cake, formwork · In the press under due platen from downward, a by applying a high frequency voltage dehydrated cake with high frequency dielectric heating, heat compression molding was aspirated from the upper and lower direction of the mold between the press platen And a fiber panel manufacturing method comprising a step of forming a molded article having a moisture concentration of 10% or less.
[0013]
Here, the dehydration of the fiber-containing slurry placed on the mold is performed by using both electroosmotic dehydration and mechanical dehydration called squeezing / suction, so that the moisture concentration is 35 to 45% before the heat compression molding step. It is important to bring even the dehydrated cake.
This means that a considerable amount of power is required for heat compression molding of dehydrated cake exceeding 45%, and when considering the increase in power consumption due to the combined use of electroosmotic dehydration in the previous process, total power consumption It is difficult to bring dehydrated cakes of less than 35% to a dehydrated cake in a short time even if electroosmotic dehydration and mechanical dehydration are used in combination. This is not preferable because the power consumption in the process increases rapidly.
[0014]
In the present invention, the step of placing the fiber-containing slurry on the mold may be a process of placing the fiber-containing slurry on the mold only by the action of gravity, as in the prior art. It is preferable that the fiber-containing slurry having a moisture concentration of 65 to 80% is placed while sucking from the lower surface of the mold.
This is preferable in view of the reduction of the total power consumption for manufacturing, because the lower the moisture concentration of the fiber-containing slurry as the raw material, the less the amount of power required for subsequent dehydration and the like. However, the formwork used in the present invention is one in which a plurality of elastomer pads are geometrically arranged and fixed on the plate surface of the porous carrier as described above. In the case of the raw material, it is preferable that the raw material is filled between the elastomer pads and the strength of the product is reduced, so that the strength of the product is reduced. However, in the case of a fiber-containing slurry having a moisture concentration exceeding 80% even if sucked, it is preferable because the effect of reducing the total power consumption is small. .
[0015]
Further, in the present invention, the step of heat compression molding a dewatered cake on the formwork, in a press under due platen from the upper and lower direction of the mold, a high frequency voltage is applied between the press platen The dehydrated cake is heated by high-frequency dielectric and sucked from above and below the mold .
This is because, as described in the upper part, the mold used in the present invention is composed of an elastomer pad made of an elastic material such as silicon rubber having a low thermal conductivity. This is because it is possible to heat the dehydrated cake itself more efficiently by applying a high-frequency voltage than by heat compression molding using a heated flat plate press that expects high temperature. When high-frequency dielectric heating is performed, the evaporated liquid component is sucked and removed by suction from above and below the mold, increasing the insulation between the flat plates, and efficient dielectric heating of the dehydrated cake. This is because it becomes possible .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a manufacturing method of a fiber panel concerning the above-mentioned present invention is described in detail based on a drawing.
[0017]
The molds used in the present invention can be the same as the conventional ones. That is, as shown in FIG. 4, the mold 50 is composed of a porous carrier 51 and a plurality of elastomer pads 52 geometrically arranged and fixed on the plate surface.
As shown in FIG. 5, each of the elastomer pads 52 of the mold 50 expands in parallel to the carrier from the center toward the outside when the pad is compressed, and is filled between the pads. The fiber has a predetermined size and shape so that the fibers located above the pad and under the enlarged pad can be compressed simultaneously.
[0018]
The porous carrier 51 has a structure in which a plurality of through holes are formed in a generally rectangular metal plate, and a belt-like press stopper is provided on the peripheral plate surface as a reinforcement as shown in FIG. 53 is attached. The porous carrier 51 may be constituted by a single plate or may be constituted by overlapping a plurality of plates.
The elastomer pad 52 is formed of a material having sufficient elasticity, and can be formed using various synthetic rubbers including, for example, silicon rubber and chloroprene rubber. And is particularly excellent when considering elasticity. Then, the elastomer pad 52 is formed into a trapezoidal body having a hexagonal cross section as shown in an enlarged manner in FIG. It can be a square.
[0019]
In the manufacturing method according to the present invention, the fiber-containing slurry S is first placed on the mold 50.
The fiber-containing slurry S is placed in the same manner as before, for example, after pulping the raw material A such as wood fiber and recycled paper with a strong stirring force, and adjusting the fiber-containing slurry S to a moisture concentration of about 99%. The fiber-containing slurry S may be cast on the mold 50 only by the action of gravity. However, as shown in FIG. It is preferable to employ a method in which the fiber-containing slurry S adjusted to ˜80% is placed on the mold 50. This is preferable because the fiber-containing slurry S can be sufficiently filled between the elastomer pads 52 as the mold, the moisture concentration can be reduced, and the power required for subsequent dehydration can be reduced.
[0020]
Here, according to the test conducted by the present inventors, the suction pressure in this placing step depends on the moisture concentration of the slurry S, but the purpose can be achieved if suction is performed at about −650 mmHg. When the water concentration of the slurry S is less than 65%, the raw material is not sufficiently filled on the mold even if the suction pressure is increased, and when it exceeds 80%, This is not preferable because the effect of reducing the total power consumption is small.
[0021]
Subsequently, the fiber-containing slurry S placed on the mold 50 is dehydrated to a dehydrated cake K having a moisture concentration of 35 to 45%.
In the dehydration step of the fiber-containing slurry S, electroosmosis dehydration and mechanical dehydration such as squeezing / suction are performed in combination. That is, as shown in FIG. 2, the fiber-containing slurry S is squeezed and sucked and dehydrated by pressing with a flat plate from above and below the mold 50 and suction from the lower surface of the mold 50. When a DC voltage is applied between the flat plates, a current flows through the fiber-containing slurry S sandwiched between the flat plates. Here, the fibrous material dispersed in the slurry S is usually in a negatively charged state, and the surrounding liquid in contact with the fibrous material is charged positively with a polarity opposite to the surface charge of the fibrous material. is doing. Therefore, when a voltage is applied from a DC power source with the upper pressing flat plate as the positive electrode and the lower pressing flat plate as the negative electrode, the liquid contained in the slurry S is between the fibrous materials due to the action of the electroosmosis phenomenon. Is moved to the lower pressing flat plate side as a capillary tube and drained to the outside by suction from the lower surface of the mold 50. Thereby, the fiber-containing slurry S can be dehydrated up to a dehydrated cake K having a moisture concentration of 35 to 45%, which could not be achieved only by mechanical dehydration called compression / suction.
[0022]
Here, according to a test conducted by the present inventors, the compression pressure applied by the flat plate for press is 10 to 12 kgf / cm 2, and the suction pressure from the lower surface of the mold is about −650 mmHg. The voltage of the DC power source applied between the flat plates for pressing is 200 to 400 V. When the electroosmotic dehydration and mechanical dehydration are performed in combination for 45 to 90 seconds, dehydration with a moisture concentration of 35 to 45% is performed. The fiber-containing slurry S could be dewatered up to cake K.
The dehydration by suction may be performed not only from the lower surface of the mold 50 but also from the upper side of the mold 50 by providing pores in the upper press platen as shown.
[0023]
Next, the dehydrated cake K on the mold 50 is heat compression molded to obtain a molded product X having a moisture concentration of 10% or less.
As shown in FIG. 3, the heat compression molding process of the dewatered cake K is performed by applying a high-frequency voltage between the flat plates for pressing under a press with a flat plate from the upper and lower sides of the mold 50. It is assumed that the cake K itself is subjected to high-frequency dielectric heating . This is because the formwork used in the present invention is composed of the elastomer pad 52 made of an elastic material such as silicon rubber having a low thermal conductivity as described above, so that it is heated to expect conduction heat transfer. was than heated compression molding by Release press flat, the application of the high-frequency voltage, because the person who was to cause a dielectric heating in dehydrated cake itself becomes possible efficient heating.
Further , when the dehydrated cake K is subjected to high-frequency dielectric heating, as shown in FIG. 3, when the evaporated liquid is sucked and removed by suction from above and below the mold 50, Therefore, the dielectric heating of the dehydrated cake K can be performed efficiently .
As shown in the figure, the press surface of the press platen is heated to about 120 to 160 ° C. by a heater or a heating medium, and dehydration is performed by conduction heat transfer from above and below the mold 50. A configuration in which heating of the cake K is also used is preferable because unevenness of drying of the dehydrated cake K due to nonuniform application of high-frequency power can be eliminated.
[0024]
Here, according to the test conducted by the present inventors, the compression pressure applied to the dewatered cake K on the mold 50 by the flat plate for press in this heat compression molding step is about 10 to 12 kgf / cm 2 . The high frequency voltage applied between the flat plates for pressing is a high frequency voltage of 13.56 MHz and a voltage of 200 V for about 120 to 180 seconds. The following molded product X could be obtained.
[0025]
In addition, according to the test conducted by the present inventors, the amount of electric power when the dehydrated cake K having a moisture concentration of about 50% is heated and compression-molded by a hot press is almost the same as described in the section of the prior art. Although it was about 10 kWh per 1 kg of the molded product, the dehydrated cake K, which had a moisture concentration of 35 to 45%, was obtained by combining electroosmotic dehydration and mechanical dehydration called pressing / suction in the previous process. The amount of electric power when heat-press-molding with a press as in the past can be largely reduced to about 4 to 6 kWh per kg of the molded product, considering the increase in power consumption due to the combined use of electroosmotic dehydration in the previous process. However, it was confirmed that the total power consumption can be kept low.
[0026]
As mentioned above, although embodiment of the manufacturing method of the fiber panel concerning this invention was described, this invention is not limited to above-mentioned embodiment, In the range of the technical idea of this invention, various Variations and changes are possible.
[0027]
For example, in the above-described embodiment, a batch type is used as the mold 50, but the porous carrier constituting the mold 50 is belt-shaped or wheel-shaped so It is good also as what was moved so that a process might be received continuously.
[0028]
Moreover, in the said embodiment, the flat plate for press used in the dehydration process of the fiber containing slurry S and the flat plate for press used in the heat compression molding process of the dewatering cake K were described as different things. However, the same thing may be used together, and in that case, a dehydration process and a subsequent heat compression molding process may be performed continuously while performing press clamping.
[0029]
【The invention's effect】
As mentioned above, the manufacturing method of the fiber panel concerning this invention demonstrated the water density | concentration 35-35 by using together the mechanical dehydration called electroosmosis dehydration and pressing and suction | inhalation for a fiber containing slurry before a heat compression molding process. The dehydrated cake is dewatered to 45% dehydrated cake, and the dehydrated cake is pressed by a flat plate from above and below the mold, and a high frequency voltage is applied between the flat plates for pressing to dehydrate the dehydrated cake. It has the greatest feature in that it is heated and compression-molded by sucking from above and below the mold to make it a molded product with a moisture concentration of 10% or less, thereby reducing the power consumption in the heat-compression molding process. There is an effect that a fiber panel having an open cell lattice can be manufactured at a low cost, which can be greatly reduced.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a conceptual diagram showing an embodiment of a fiber-containing slurry placing process during a fiber panel manufacturing process according to the present invention.
FIG. 2 is a conceptual diagram showing an embodiment of a fiber-containing slurry dewatering step during a fiber panel manufacturing process according to the present invention.
FIG. 3 is a conceptual diagram showing an embodiment of a heat compression molding process of a dehydrated cake during the manufacturing process of the fiber panel according to the present invention.
FIG. 4 is a perspective view showing an embodiment of a mold used for manufacturing a fiber panel.
FIG. 5 is a cross-sectional view showing a state during a heat compression molding process of a raw material.
FIG. 6 is a perspective view showing a fiber panel that is a molded article.
FIGS. 7A and 7B are diagrams illustrating a conventional fiber panel manufacturing process, where FIG. 7A is a process for manufacturing a raw slurry, FIG. 7B is a process for placing a raw material on a mold, and FIG. It is the figure which showed each dehydration process.
FIGS. 8A and 8B are diagrams showing a conventional fiber panel manufacturing process, where FIG. 8A shows a raw material heat compression molding process, and FIG. 8B shows a product peeling process from a mold.

Claims (2)

多孔性キャリアと、該多孔性キャリアの板面に幾何学的に配置固定された複数のエラストマーパッドとから構成された型枠を使用し、複数のリブにより構成される開口セル格子と、該格子の一方の開口部を覆う連続的な平板と、他方の開口部の一部を覆うフランジとが、緻密な圧縮繊維により一体成形された構造の繊維パネルを製造する方法において、上記型枠上に繊維含有スラリーを打設する工程と、前記型枠上に打設された繊維含有スラリーを、型枠の上・下方向からの平盤によるプレス及び型枠の下面からの吸引によって圧搾・吸引脱水すると共に、上記プレス用平盤間に直流電圧を印加して繊維含有スラリーを電気浸透脱水し、水分濃度35〜45%の脱水ケーキとする工程と、前記型枠上の脱水ケーキを、型枠の上・下方向からの平盤によるプレス下において、前記プレス用平盤間に高周波電圧を印加して脱水ケーキを高周波誘電加熱すると共に、前記型枠の上・下方向から吸引して加熱圧縮成形し、水分濃度10%以下の成形品とする工程とから成ることを特徴とする、繊維パネルの製造方法。An open cell lattice comprising a plurality of ribs using a formwork composed of a porous carrier and a plurality of elastomer pads geometrically arranged and fixed on a plate surface of the porous carrier, and the lattice In the method of manufacturing a fiber panel having a structure in which a continuous flat plate covering one opening of the first member and a flange covering a part of the other opening are integrally formed of dense compressed fibers, The step of placing the fiber-containing slurry, and the fiber-containing slurry placed on the mold are pressed and sucked and dehydrated by pressing with a flat plate from above and below the mold and suction from the lower surface of the mold. In addition, a DC voltage is applied between the flat plates for press to electroosmose dehydrate the fiber-containing slurry to obtain a dehydrated cake having a moisture concentration of 35 to 45%, and the dehydrated cake on the mold is formed into a mold. From above and below In the press under by the board, the inter-press platen and by applying a high frequency voltage dehydrated cake with high frequency dielectric heating, the heated compression molding was aspirated from the upper and lower direction of the mold and a water content of 10% or less A process for producing a fiber panel comprising the steps of: 上記型枠上に繊維含有スラリーを打設する工程が、水分濃度65〜80%の繊維含有スラリーを、型枠の下面から吸引しながら打設するものであることを特徴とする、請求項1記載の繊維パネルの製造方法。  The step of placing the fiber-containing slurry on the mold is a process of placing the fiber-containing slurry having a moisture concentration of 65 to 80% while sucking from the lower surface of the mold. The manufacturing method of the fiber panel of description.
JP31528498A 1998-09-14 1998-09-14 Manufacturing method of fiber panel Expired - Lifetime JP4031820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31528498A JP4031820B2 (en) 1998-09-14 1998-09-14 Manufacturing method of fiber panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31528498A JP4031820B2 (en) 1998-09-14 1998-09-14 Manufacturing method of fiber panel

Publications (2)

Publication Number Publication Date
JP2000096498A JP2000096498A (en) 2000-04-04
JP4031820B2 true JP4031820B2 (en) 2008-01-09

Family

ID=18063558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31528498A Expired - Lifetime JP4031820B2 (en) 1998-09-14 1998-09-14 Manufacturing method of fiber panel

Country Status (1)

Country Link
JP (1) JP4031820B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001608A1 (en) * 2007-06-27 2008-12-31 Maezawa Industries, Inc. Process for producing fiber panel and fiber panel mold form
PL2707540T3 (en) 2011-05-13 2016-12-30 Process for treating microfibrillated cellulose and microfibrillated cellulose treated according to the process
CH709486A2 (en) * 2014-04-11 2015-10-15 Bionicalpha Ag Lightweight construction element, production method thereof, use thereof, and lightweight panels and insulation.

Also Published As

Publication number Publication date
JP2000096498A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
JP4031820B2 (en) Manufacturing method of fiber panel
KR100877008B1 (en) A mould cavity device to reduce residual moisture of pulp-moulded products during compression
CN112277127B (en) Electromagnetic ceramic tape casting processing method
JP4139511B2 (en) Manufacturing method of fiber panel
CN108231428A (en) A kind of micropore conduction sheet electrodes and its processing technology
WO2018110745A1 (en) Device for dehydrating laver
JPH08302597A (en) Molding of pulp molding and device thereof
JP2005238051A (en) Heating type filter press and its dewatering and drying method
JPH0513686B2 (en)
CN207462809U (en) A kind of DC electric field combination vertical pressurization is high to contain interior water dehydration device
JP2002138383A (en) Dehydrating apparatus for paper machine
JP4072147B2 (en) Non-combustible compressed fiber panel
JP3766220B2 (en) Filter press apparatus and sludge dewatering method
JP4418572B2 (en) Manufacturing method of silicone rubber mold
CN205528355U (en) Paliform negative pole clamp plate
JP2000336600A (en) Mold used for producing fiber panel
KR20030013670A (en) filter press and filter press method
JP2001232109A5 (en)
CN207928791U (en) Filter plate unit
JP3757137B2 (en) Sludge dewatering equipment by electrophoresis
CN214262107U (en) Rubbing and crushing device for traditional Chinese medicinal materials
CN217465153U (en) Drying device is used in processing of iron oxide pigment
JP2009155748A (en) Method for producing fiber panel
CN209839497U (en) Heat insulation strip
CN107551656A (en) A kind of DC electric field combination vertical pressurization height contains interior water dehydration device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

EXPY Cancellation because of completion of term