JP4031253B2 - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
JP4031253B2
JP4031253B2 JP2002024049A JP2002024049A JP4031253B2 JP 4031253 B2 JP4031253 B2 JP 4031253B2 JP 2002024049 A JP2002024049 A JP 2002024049A JP 2002024049 A JP2002024049 A JP 2002024049A JP 4031253 B2 JP4031253 B2 JP 4031253B2
Authority
JP
Japan
Prior art keywords
patch
feed
axis
horizontal polarization
dielectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002024049A
Other languages
Japanese (ja)
Other versions
JP2003224416A (en
Inventor
徹 高橋
善彦 小西
弘晶 中畔
一朗 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002024049A priority Critical patent/JP4031253B2/en
Publication of JP2003224416A publication Critical patent/JP2003224416A/en
Application granted granted Critical
Publication of JP4031253B2 publication Critical patent/JP4031253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、アンテナ装置に関し、特に、通信/レーダ等に好適な、直交する2つの偏波を放射する直交偏波共用マイクロストリップアンテナに関する。
【0002】
【従来の技術】
図12は、従来の直交偏波共用マイクロストリップアンテナを示す図であり、例えば特開2000―312112号公報に示されたものである。
図において、1は板状の金属導体からなる導体パッチ、2は金属導体からなる地導体、3は誘電体基板、5aは例えば垂直偏波の電波を放射するために導体パッチ1に給電する給電点、5bは垂直偏波と直交する水平偏波の電波を放射するために導体パッチ1に給電する給電点、6は導体パッチ中心である。
【0003】
また、図13は、従来の2点給電円偏波励振のマイクロストリップアンテナを示す図であり、例えば特開平1−284104号公報に示されたものである。
図において、32aおよび32bは給電点であり、33は給電点32aと給電点32bのなす角度で90度以上の角度である。
【0004】
【発明が解決しようとする課題】
図12のように構成された従来の直交偏波共用マイクロストリップアンテナにおいては、給電点5aは導体パッチ中心6を通り、垂直偏波に平行な軸上に設けられており、給電点5bは導体パッチ中心6を通り、水平偏波に平行な軸上に設けられていた。すなわち、給電点5aと導体パッチ中心6を通る軸と、給電点5bと導体パッチ中心6を通る軸とは直交していた。上記のような位置に給電点を設けた場合、垂直偏波給電点5aと水平偏波給電点5bとの間に高次モードによる相互結合が生じる。その結果、所望の直線偏波と直交する偏波、すなわち交差偏波特性が劣化するという問題点があった。
【0005】
また、上記2つの給電点間の相互結合による放射特性劣化を改善するものとして、図13に示すマイクロストリップアンテナが従来技術としてある。この従来のマイクロストリップアンテナは、2つの給電点オフセット角度をずらし給電点間のアイソレーション値を下げることにより円偏波特性を改善するものであるが、単一の円偏波に対する特性改善であり、直交する2つ直線偏波を共用したときの交差偏波改善を目的にしていないという問題があった。そのため、所望の直交する2つ直線偏波の方向と2つの給電点の位置関係が明らかになっていないという問題点があった。
【0006】
この発明は、以上のような課題を解決するためになされたもので,直交偏波の給電点間の相互結合により生じた交差偏波を相殺する位置に給電点を定めることにより、交差偏波発生を抑制した直交偏波共用マイクロストリップアンテナを得ることを目的とする。
【0007】
【課題を解決するための手段】
請求項1の発明に係るアンテナ装置は、板状の金属導体からなる正方形の給電パッチと、金属導体からなる地導体と、上記給電パッチが一面に設けられ、上記地導体が一面とは反対側の他面の全面に設けられた方形の誘電体基板と、上記給電パッチの第1の辺から上記誘電体基板の第1の辺まで、上記給電パッチの中心を通り垂直偏波と平行な垂直偏波軸と平行に上記誘電体基板の一面に設けられ、垂直偏波の電波を放射するため第1のマイクロストリップ線路と、上記給電パッチの第1の辺と直交する第2の辺から上記誘電体基板の第2の辺まで、上記給電パッチの中心を通り水平偏波と平行な水平偏波軸と平行に上記誘電体基板の一面に設けられ、水平偏波の電波を放射するため第2のマイクロストリップ線路とを備え、上記給電パッチと第1のマイクロストリップ線路との接続点に垂直偏波給電点を設けるとともに、上記給電パッチと第2のマイクロストリップ線路との接続点に水平偏波給電点を設け、上記垂直偏波給電点と上記給電パッチの中心を結ぶ垂直偏波給電軸と上記水平偏波給電点と上記給電パッチの中心を結ぶ水平偏波給電軸のなす角度が90度よりも大きく、かつ上記垂直偏波給電軸および上記水平偏波給電軸はそれぞれ上記垂直偏波軸および上記水平偏波軸と平行でないものである。
【0008】
請求項2の発明に係るアンテナ装置は、板状の金属導体からなる正方形の給電パッチと、金属導体からなる地導体と、上記給電パッチが一面に設けられ、上記地導体が一面とは反対側の他面の全面に設けられた方形の誘電体基板と、上記給電パッチの誘電体基板側の面の所定箇所に内導体が誘電体基板を貫通して接続され、上記地導体の誘電体基板側の面と反対側の面の所定箇所に外導体が接続され、垂直偏波の電波を放射するための第1の同軸線路と、上記給電パッチの誘電体基板側の面の上記所定箇所とは異なる別の箇所に内導体が誘電体基板を貫通して接続され、上記地導体の誘電体基板側の面と反対側の面の上記所定箇所とは異なる別の箇所に外導体が接続され、水平偏波の電波を放射するための第2の同軸線路とを備え、上記給電パッチと第1の同軸線路との接続点に垂直偏波給電点を設けるとともに、上記給電パッチと第2の同軸線路との接続点に水平偏波給電点を設け、上記垂直偏波給電点と上記給電パッチの中心を結ぶ垂直偏波給電軸と上記水平偏波給電点と上記給電パッチの中心を結ぶ水平偏波給電軸のなす角度が90度よりも大きく、かつ上記垂直偏波給電軸および上記水平偏波給電軸はそれぞれ上記給電パッチの中心を通り垂直偏波と平行な垂直偏波軸および上記給電パッチの中心を通り水平偏波と平行な水平偏波軸と平行でないものである。
【0009】
請求項3の発明に係るアンテナ装置は、板状の金属導体からなる正方形の給電パッチと、金属導体からなる地導体と、上記給電パッチが一面に設けられ、上記地導体が一面とは反対側の他面の全面に設けられた方形の第1の誘電体基板と、上記給電パッチの中心を通り垂直偏波と平行な垂直偏波軸と垂直に、上記給電パッチと積層方向で重なるように上記地導体に設けられた矩形状の垂直偏波給電用スロットと、上記給電パッチの中心を通り水平偏波と平行な水平偏波軸と垂直に、上記給電パッチと積層方向で重なるように上記地導体に設けられた矩形状の水平偏波給電用スロットと、上記地導体の第1の誘電体基板側とは反対側の面に設けられた方形の第2の誘電体基板と、上記垂直偏波給電用スロットとクロスして上記垂直偏波給電用スロットから上記第2の誘電体基板の第1の辺まで、上記垂直偏波軸と平行に上記第2の誘電体基板の地導体側とは反対側の面に設けられ、垂直偏波の電波を放射するための第1のマイクロストリップ線路と、上記水平偏波給電用スロットとクロスして上記水平偏波給電用スロットから上記第2の誘電体基板の第2の辺まで、上記水平偏波軸と平行に上記第2の誘電体基板の地導体側とは反対側の面に設けられ、水平偏波の電波を放射するための第2のマイクロストリップ線路とを備え、上記給電パッチと第1のマイクロストリップ線路とを電磁結合させる上記垂直偏波給電用スロットと第1のマイクロストリップ線路のクロス点に垂直偏波給電点を設けるとともに、上記給電パッチと第2のマイクロストリップ線路とを電磁結合させる上記水平偏波給電用スロットと第2のマイクロストリップ線路のクロス点に水平偏波給電点を設け、上記垂直偏波給電点と上記給電パッチの中心を結ぶ垂直偏波給電軸と上記水平偏波給電点と上記給電パッチの中心を結ぶ水平偏波給電軸のなす角度が90度よりも小さく、かつ上記垂直偏波給電軸および上記水平偏波給電軸はそれぞれ上記垂直偏波軸および上記水平偏波軸と垂直でないものである。
【0010】
請求項4の発明に係るアンテナ装置は、上記垂直偏波給電用スロットと水平偏波給電用スロットとをそれぞれ上記給電パッチの中心方向へ中心を越える位置まで伸延させ、伸延させた垂直偏波給電用スロットと水平偏波給電用スロットを十文字に重ねあわせることによりクロススロットとしたものである。
【0011】
請求項5の発明に係るアンテナ装置は、板状の金属導体からなる正方形の給電パッチと、金属導体からなる地導体と、上記給電パッチが一面に設けられ、上記地導体が一面とは反対側の他面の全面に設けられた方形の第1の誘電体基板と、上記給電パッチの誘電体基板側の面の所定箇所に内導体が第1の誘電体基板を貫通して接続され、上記地導体の誘電体基板側の面と反対側の面の所定箇所に外導体が接続され、垂直偏波の電波を放射するための第1の同軸線路と、上記給電パッチの誘電体基板側の面の上記所定箇所とは異なる別の箇所に内導体が第1の誘電体基板を貫通して接続され、上記地導体の誘電体基板側の面と反対側の面の上記所定箇所とは異なる別の箇所に外導体が接続され、水平偏波の電波を放射するための第2の同軸線路と、上記給電パッチよりも小さく、中心が上記給電パッチの中心からずれて、上記給電パッチの第1の誘電体基板側とは反対側の面に設けられた方形の第2の誘電体基板と、上記給電パッチよりも小さく、中心が上記給電パッチの中心からずれて、上記第2の誘電体基板の給電パッチ側とは反対側の面に設けられた方形の無給電パッチとを備え、上記給電パッチと第1の同軸線路との接続点に垂直偏波給電点を設けるとともに、上記給電パッチと第2の同軸線路との接続点に水平偏波給電点を設け、上記垂直偏波給電点と上記給電パッチの中心を結ぶ垂直偏波給電軸と上記水平偏波給電点と上記給電パッチの中心を結ぶ水平偏波給電軸のなす角度が90度であり、かつ上記給電パッチの中心を通り垂直偏波と平行な垂直偏波軸および上記給電パッチの中心を通り水平偏波と平行な水平偏波軸は、それぞれ上記垂直偏波給電軸および上記水平偏波給電軸と平行であり、上記垂直偏波給電点と上記無給電パッチの中心を結ぶ第1の軸と上記水平偏波給電点と上記無給電パッチの中心を結ぶ第2の軸のなす角度が90度よりも大きく、かつ上記第1の軸および上記第2の軸はそれぞれ上記水平偏波軸および上記垂直偏波軸と平行でないものである。
【0012】
請求項6の発明に係るアンテナ装置は、板状の金属導体からなる正方形の給電パッチと、金属導体からなる地導体と、上記給電パッチが一面に設けられ、上記地導体が一面とは反対側の他面の全面に設けられた方形の第2の誘電体基板と、上記給電パッチの第1の辺から上記第1の誘電体基板の第1の辺まで、上記給電パッチの中心を通り垂直偏波と平行な垂直偏波軸と平行に上記第1の誘電体基板の一面に設けられ、垂直偏波の電波を放射するための第1のマイクロストリップ線路と、上記給電パッチの第1の辺と直交する第2の辺から上記第1の誘電体基板の第2の辺まで、上記給電パッチの中心を通り水平偏波と平行な水平偏波軸と平行に上記第1の誘電体基板の一面に設けられ、水平偏波の電波を放射するための第2のマイクロストリップ線路と、上記給電パッチよりも小さく、中心が上記給電パッチの中心からずれて、上記給電パッチの第1の誘電体基板側とは反対側の面に設けられた方形の第2の誘電体基板と、上記給電パッチよりも小さく、中心が上記給電パッチの中心からずれて、上記第2の誘電体基板の給電パッチ側とは反対側の面に設けられた方形の無給電パッチとを備え、上記給電パッチと第1のマイクロストリップ線路との接続点に垂直偏波給電点を設けるとともに、上記給電パッチと第2のマイクロストリップ線路との接続点に水平偏波給電点を設け、上記垂直偏波給電点と上記給電パッチの中心を結ぶ垂直偏波給電軸と上記水平偏波給電点と上記給電パッチの中心を結ぶ水平偏波給電軸のなす角度が90度よりも大きく、かつ上記垂直偏波給電軸および上記水平偏波給電軸はそれぞれ上記垂直偏波軸および上記水平偏波軸と平行でなく、上記垂直偏波給電点と上記無給電パッチの中心を結ぶ第1の軸と上記水平偏波給電点と上記無給電パッチの中心を結ぶ第2の軸のなす角度が90度よりも大きく、かつ上記第1の軸および上記第2の軸はそれぞれ上記垂直偏波軸および上記水平偏波軸と平行でないものである。
【0013】
請求項7の発明に係るアンテナ装置は、板状の金属導体からなる正方形の給電パッチと、金属導体からなる地導体と、上記給電パッチが一面に設けられ、上記地導体が一面とは反対側の他面の全面に設けられた方形の誘電体基板と、上記給電パッチの誘電体基板側の面の所定箇所に内導体が誘電体基板を貫通して接続され、上記地導体の誘電体基板側の面と反対側の面の所定箇所に外導体が接続され、垂直偏波の電波を放射するための第1の同軸線路と、上記給電パッチの誘電体基板側の面の上記所定箇所とは異なる別の箇所に内導体が誘電体基板を貫通して接続され、上記地導体の誘電体基板側の面と反対側の面の上記所定箇所とは異なる別の箇所に外導体が接続され、水平偏波の電波を放射するための第2の同軸線路と、上記給電パッチと上記地導体を短絡し金属導体からなる短絡導体とを備え、上記給電パッチと第1の同軸線路との接続点に垂直偏波給電点を設けるとともに、上記給電パッチと第2の同軸線路との接続点に水平偏波給電点を設け、かつ上記給電パッチと短絡導体との接続点に短絡点を設け、上記垂直偏波給電点と上記給電パッチの中心を結ぶ垂直偏波給電軸と上記水平偏波給電点と上記給電パッチの中心を結ぶ水平偏波給電軸のなす角度が90度であり、かつ上記垂直偏波給電軸および上記水平偏波給電軸はそれぞれ上記給電パッチの中心を通り垂直偏波と平行な垂直偏波軸および上記給電パッチの中心を通り水平偏波と平行な水平偏波軸と平行であり、上記垂直偏波給電点と上記短絡点を結ぶ第1の軸と上記水平偏波給電点と上記短絡点を結ぶ第2の軸のなす角度が90度よりも小さく、かつ上記第1の軸および上記第2の軸はそれぞれ上記垂直偏波軸および上記水平偏波軸と平行でないものである。
【0014】
請求項8の発明に係るアンテナ装置は、上記第1の同軸線路に接続された第1の出力端子と、上記第2の同軸線路に接続された第2の出力端子とを有し、上記第1及び第2の出力端子から上記垂直偏波給電点及び水平偏波給電点に等振幅かつ位相差が+90度あるいは−90度の信号を供給する円偏波発生回路をさらに備えたものである。
【0016】
【発明の実施の形態】
以下、この発明の実施の形態を、アンテナ装置として直交偏波共用マイクロストリップアンテナを例にとり、図に基づいて説明する。
実施の形態1.
図1は、この発明の実施の形態1による直交偏波共用マイクロストリップアンテナの構成を説明するための図であって、図1(a)はその斜視図、図1(b)はその正面図である。
図において、1は板状の金属導体からなる給電パッチとしての導体パッチであり、ここでは例えば正方形の方形パッチとする。2は金属導体からなる地導体、3は誘電体基板である。4aは方形パッチ1から第1の直線偏波の電波である垂直偏波を放射させるための第1の給電回路としての垂直偏波給電回路であり、ここでは例えば誘電体基板3上に形成されたマイクロストリップ線路とする。4bは方形パッチ1から垂直偏波と直交する第2の直線偏波の電波である水平偏波を放射させるための第2の給電回路としての水平偏波給電回路であり、ここでは例えば誘電体基板3上に形成されたマイクロストリップ線路とする。
【0017】
5aは方形パッチ1と垂直偏波給電回路4aとの接続点である第1の給電点としての垂直偏波給電点、5bは方形パッチ1と水平偏波給電回路4bとの接続点である第2の給電点としての水平偏波給電点である。6は方形パッチ中心であり、7aは方形パッチ中心6を通り、垂直偏波と平行な垂直偏波軸であり、7bは方形パッチ中心6を通り、水平偏波と平行な水平偏波軸である。8aは垂直偏波給電点5aと方形パッチ中心6を通る垂直偏波給電軸、8bは水平偏波給電点5bと方形パッチ中心6を通る水平偏波給電軸である。垂直偏波給電軸8aと水平偏波給電軸8bのなす角度9は90度よりも大きく、かつ垂直偏波給電軸8aおよび水平偏波給電軸8bはそれぞれ垂直偏波軸7aおよび水平偏波軸7bと平行ではないものとする。
【0018】
以上のように構成された直交偏波共用マイクロストリップアンテナでは、垂直偏波給電点5aと水平偏波給電点5bとの間の相互結合により生じる交差偏波を抑制することが可能である。
以下にその原理を、図2に基づいて説明する。
【0019】
まず、上記角度9が90度の場合、すなわち垂直偏波軸7aと垂直偏波給電軸8a、水平偏波軸7bと水平偏波給電軸8bがそれぞれ一致する従来の直交偏波共用マイクロストリップアンテナにおいて垂直偏波の電波を給電した時を考える。このとき方形パッチ1上に流れる電流の様子を示したのが図2(a)である。つまり、この場合所望の垂直偏波を発生させるために方形パッチ1上に垂直偏波電流10が流れる。しかし、垂直偏波給電点5aと水平偏波給電点5bとの間の相互結合により方形パッチ上には相互結合量に相当する水平偏波電流11があたかも水平偏波給電点5bから給電されたように流れる。この給電点間の相互結合により生じた水平偏波電流11により水平偏波、すなわち所望の垂直偏波にとっては交差偏波が発生する。
【0020】
ここで、図2(b)に示すように、垂直偏波給電軸8aが垂直偏波軸7aと平行でなく、かつ角度9が90度よりも大きくなるように垂直偏波給電点5aを摂動させることを考える。この場合上記垂直偏波給電点から給電すると、方形パッチ1上には垂直偏波電流10に加え、新たに水平偏波電流12が流れる。水平偏波電流12と水平偏波電流11は互いに逆向きであるので、これらが打ち消しあうことにより交差偏波の発生を抑制することが可能である。
【0021】
以上のことは水平偏波給電点5bから給電した場合も同じである。すなわち、垂直偏波給電軸8aが垂直偏波軸7aと平行でなく、かつ水平偏波給電軸8bが水平偏波軸7bと平行ではないものとし、なおかつ垂直偏波給電軸8aと水平偏波給電軸8bのなす角度9は90度よりも大きいものとすることにより、垂直偏波給電点5aと水平偏波給電点5bとの間の相互結合により生じる交差偏波を抑制する効果がある。また、交差偏波抑制のための特別な回路などを必要としないため、アンテナの構成が簡易なものになるという効果がある。
【0022】
実施の形態2.
図3は、この発明の実施の形態2による直交偏波共用マイクロストリップアンテナの構成を説明するための図であって、図3(a)はその斜視図、図3(b)はその正面図、図3(c)は図3(b)中のA−A’断面図である。
図において、13aは方形パッチ1から垂直偏波を放射させるための垂直偏波給電回路であり、ここでは例えば同軸線路とする。13bは方形パッチ1から上記垂直偏波と直交する水平偏波を放射させるための水平偏波給電回路であり、ここでは例えば同軸線路とする。また、図に示すように、同軸線路13aおよび13bの内導体は、それぞれ垂直偏波給電点5aおよび水平偏波給電点5bにおいて方形パッチ1と接続されており、同軸線路13aおよび13bの外導体は地導体2と接続されている。さらに、垂直偏波給電軸8aと水平偏波給電軸8bのなす角度9は90度よりも大きく、かつ垂直偏波給電軸8aおよび水平偏波給電軸8bはそれぞれ垂直偏波軸7aおよび水平偏波軸7bと平行ではない、すなわちそれぞれ所望の垂直偏波および所望の水平偏波と平行ではないものとする。
【0023】
以上のように構成された直交偏波共用のマイクロストリップアンテナでは、上記実施の形態1と同じく、垂直偏波給電軸8aと水平偏波給電軸8bのなす角度9は90度よりも大きく、かつ垂直偏波給電軸8aおよび水平偏波給電軸8bはそれぞれ垂直偏波軸7aおよび水平偏波軸7bと平行ではないので、垂直偏波給電点5aと水平偏波給電点5bとの間の相互結合により生じる交差偏波を抑制する効果がある。また、交差偏波抑制のための特別な回路などを必要としないため、アンテナの構成が簡易なものになるという効果がある。
【0024】
実施の形態3.
図4および図5は、この発明の実施の形態3による直交偏波共用マイクロストリップアンテナの構成を説明するための図であって、図4(a)はその正面透視図、図4(b)は図4(a)中のA−A’断面図、図5はその地導体透視図である。
図において、14aは地導体2の背面に設けられ、方形パッチ1から垂直偏波を放射させるための垂直偏波給電回路であり、ここでは例えばマイクロストリップ線路とする。14bは地導体2の背面に設けられ、方形パッチ1から垂直偏波と直交する水平偏波を放射させるための水平偏波給電回路であり、ここでは例えばマイクロストリップ線路とする。
【0025】
15aは方形パッチ1と垂直偏波給電回路14aを垂直偏波給電点5aにおいて電磁結合させるために地導体2に設けられた垂直偏波給電用スロットであり、15bは方形パッチ1と上記水平偏波給電回路14bを水平偏波給電点5bにおいて電磁結合させるために地導体2に設けられた水平偏波給電用スロット、16はマイクロストリップ線路14aおよび14bを形成するための誘電体基板である。また、図に示すように、垂直偏波給電点5aと方形パッチ中心6を結ぶ軸17aと水平偏波給電点5bと方形パッチ中心6を結ぶ軸17bとのなす角度18は90度よりも小さく、かつ軸17aおよび軸17bはそれぞれ垂直偏波軸7aおよび水平偏波軸7bと垂直ではない、すなわち所望の垂直偏波および所望の水平偏波と垂直ではないものとする。
【0026】
以上のように構成された直交偏波共用のマイクロストリップアンテナにおいて、垂直偏波給電点5aおよび水平偏波給電点5bの摂動方向と上記方形パッチ1の相対的な位置関係は、上記実施の形態1あるいは2と同じである。したがって、本実施の形態においても図2記載の原理により交差偏波の発生を抑制することができる。すなわち、垂直偏波給電点5aと水平偏波給電点5bとの間の相互結合により生じる交差偏波を抑制する効果がある。また、交差偏波抑制のための特別な回路などを必要としないため、アンテナの構成が簡易なものになるという効果がある。
【0027】
実施の形態4.
図6および図7は、この発明の実施の形態4による直交偏波共用マイクロストリップアンテナの構成を説明するための図であって、図6(a)はその正面透視図、図6(b)は図6(a)中のA−A'断面図、図7はその地導体透視図である。
図において、19は方形パッチ1と垂直偏波給電回路14aを垂直偏波給電点5aにおいて電磁結合させ、かつ方形パッチ1と水平偏波給電回路14bを水平偏波給電点5bにおいて電磁結合させるために地導体2に設けられた十文字状のクロススロットである。また、図に示すように、垂直偏波給電点5aと方形パッチ中心6を結ぶ軸17aと水平偏波給電点5bと方形パッチ中心6を結ぶ軸17bとのなす角度18は90度よりも小さく、かつ軸17aおよび軸17bはそれぞれ垂直偏波軸7aおよび水平偏波軸7bと垂直ではないものとする。
【0028】
以上のように構成された直交偏波共用のマイクロストリップアンテナでは、上記実施の形態3と同じく、垂直偏波給電点5aと方形パッチ中心6を結ぶ軸16aと水平偏波給電点5bと方形パッチ中心6を結ぶ軸16bとのなす角度は90度よりも小さく、かつ軸16aおよび軸16bはそれぞれ垂直偏波軸7aおよび水平偏波軸7bと垂直ではないので、垂直偏波給電点5aと水平偏波給電点5bとの間の相互結合により生じる交差偏波を抑制する効果がある。また、交差偏波抑制のための特別な回路などを必要としないため、アンテナの構成が簡易なものになるという効果がある。
【0029】
実施の形態5.
図8は、この発明の実施の形態5による直交偏波共用マイクロストリップアンテナの構成を説明するための図であって、図8(a)はその斜視図、図8(b)はその正面透視、図8(c)は図8(b)中のA−A’断面図である。
図において、20は方形パッチ1上方に設けられた無給電パッチ、21は無給電パッチ20を形成するための誘電体基板、22は無給電パッチ中心、23aは垂直偏波給電点5aと無給電パッチ中心22を結ぶ軸、23bは水平偏波給電点5bと無給電パッチ中心22を結ぶ軸である。また、図に示すように、垂直偏波給電点5aと方形パッチ中心6を結ぶ軸8aと水平偏波給電点5bと方形パッチ中心6を結ぶ軸8bのなす角度は90度であり、かつ軸8aおよび軸8bはそれぞれ垂直偏波軸7aおよび水平偏波軸7bと平行である、つまりそれぞれ所望の垂直偏波および所望の水平偏波と平行であるものとする。なおかつ垂直偏波給電点5aと無給電パッチ中心22を結ぶ軸23aと水平偏波給電点5bと無給電パッチ中心23bを結ぶ軸23bのなす角度24は90度よりも大きく、かつ軸23aおよび軸23bはそれぞれ垂直偏波軸7aおよび水平偏波軸7bと平行ではない、つまりそれぞれ所望の垂直偏波および所望の水平偏波と平行ではないものとする。
【0030】
以上のように構成された直交偏波共用のマイクロストリップアンテナにおいて、垂直偏波給電点5aおよび水平偏波給電点5bと無給電パッチ20の摂動方向との相対的な位置関係は、実施の形態1あるいは2と同じである。したがって、本実施の形態においても、図2記載の原理により交差偏波の発生を抑制することができる。すなわち、垂直偏波給電点5aと水平偏波給電点5bとの間の相互結合により生じる交差偏波を抑制する効果がある。また、交差偏波抑制のための特別な回路などを必要としないため、アンテナの構成が簡易なものになるという効果がある。
【0031】
実施の形態6.
図9は、この発明の実施の形態6による直交偏波共用マイクロストリップアンテナの構成を説明するための図であって、図9(a)はその斜視図、図9(b)はその正面透視図である。
本実施の形態では、垂直偏波給電点5aと方形パッチ中心6を結ぶ軸8aと水平偏波給電点5bと方形パッチ中心6を結ぶ軸8bのなす角度は90度よりも大きく、かつ軸8aおよび軸8bはそれぞれ垂直偏波軸7aおよび水平偏波軸7bと平行ではない、つまりそれぞれ所望の垂直偏波および所望の水平偏波と平行ではないものとする。なおかつ垂直偏波給電点5aと無給電パッチ中心22を結ぶ軸23aと水平偏波給電点5bと無給電パッチ中心23bを結ぶ軸23bのなす角度24は90度よりも大きく、かつ軸23aおよび軸23bはそれぞれ垂直偏波軸7aおよび水平偏波軸7bと平行ではない、つまりそれぞれ所望の垂直偏波および所望の水平偏波と平行ではないものとする。
【0032】
以上のように構成された直交偏波共用のマイクロストリップアンテナにおいて、垂直偏波給電点5aおよび水平偏波給電点5bと無給電パッチ20の摂動方向との相対的な位置関係は、上記実施の形態1と同じである。したがって、本実施の形態においても、図2記載の原理により交差偏波の発生を抑制することができる。すなわち、垂直偏波給電点5aと水平偏波給電点5bとの間の相互結合により生じる交差偏波を抑制する効果がある。また、交差偏波抑制のための特別な回路などを必要としないため、アンテナの構成が簡易なものになるという効果がある。
【0033】
また、無給電パッチ20を上記実施の形態2から4のいずれかに記載の給電パッチ1上方に設けた場合においても垂直偏波給電点5aおよび水平偏波給電点5bと無給電パッチ20の摂動方向との相対的な位置関係は、上記実施の形態1と同じである。したがって、本実施の形態においても、図2記載の原理により交差偏波の発生を抑制することができる。すなわち、垂直偏波給電点5aと水平偏波給電点5bとの間の相互結合により生じる交差偏波を抑制する効果がある。また、交差偏波抑制のための特別な回路などを必要としないため、アンテナの構成が簡易なものになるという効果がある。
【0034】
実施の形態7.
図10は、この発明の実施の形態7による直交偏波共用マイクロストリップアンテナの構成を説明するための図であって、図10(a)はその斜視図、図10(b)はその正面透視、図10(c)は図10(b)中のA−A’断面図である。
図において、25は方形パッチ1と地導体2を短絡する短絡点、26aは垂直偏波給電点5aと短絡点25を結ぶ軸、26bは水平偏波給電点5bと短絡点25を結ぶ軸、27は方形パッチ1と地導体2を短絡し金属導体からなる短絡導体である。また、図に示すように、垂直偏波給電点5aと方形パッチ中心6を結ぶ軸8aと水平偏波給電点5bと方形パッチ中心6を結ぶ軸8bのなす角度は90度であり、かつ軸8aおよび軸8bはそれぞれ垂直偏波軸7aおよび水平偏波軸7bと平行である、つまりそれぞれ所望の垂直偏波および所望の水平偏波と平行であるものとする。なおかつ垂直偏波給電点5aと短絡点25を結ぶ軸26aと水平偏波給電点5bと短絡点25を結ぶ軸26bのなす角度28は90度よりも小さく、かつ軸26aおよび軸26bはそれぞれ垂直偏波軸7aおよび水平偏波軸7bと平行ではない、つまりそれぞれ所望の垂直偏波および所望の水平偏波と平行ではないものとする。
【0035】
以上のように構成された直交偏波共用のマイクロストリップアンテナにおいて、図に示す位置に短絡点を設けると、そこでの電界を強制的に零とする電界があらたに生じる。短絡点が方形パッチ中心6を挟んで、垂直偏波給電点5aおよび水平偏波給電点5bと反対側に有るため、この新たに生じた電界は、垂直偏波給電点5aと水平偏波給電点5bとの間の相互結合により生じる電界と逆向きとなる。したがって、垂直偏波給電点5aと水平偏波給電点5bとの間の相互結合により生じる交差偏波を抑制する効果がある。また、交差偏波抑制のための特別な回路などを必要としないため、アンテナの構成が簡易なものになるという効果がある。
【0036】
実施の形態8.
図11は、この発明の実施の形態8による直交偏波共用マイクロストリップアンテナの構成を説明するための図であって、図11(a)はその正面図、図11(b)は図11(a)中のA−A’断面図である。
図において、29は円偏波発生回路であり、30aおよび30bはそれぞれ円偏波発生回路29の入力端子、31a、31bはそれぞれ円偏波発生回路29の出力端子である。円偏波発生回路の特性としては、入力端子30aに電波を入力すると、出力端子31aおよび31bから等振幅かつ位相差が+90°の電波が出力され、入力端子30bに電波を入力すると、出力端子31aおよび31bから等振幅かつ位相差が−90°の電波が出力されるものとする。また、図に示すように、出力端子31aと垂直偏波給電回路13aが接続され、出力端子31bと垂直偏波給電回路13bが接続されているものとする。さらに、図に示すように、垂直偏波給電軸8aと水平偏波給電軸8bのなす角度9は90度よりも大きく、かつ垂直偏波給電軸8aおよび水平偏波給電軸8bはそれぞれ垂直偏波軸7aおよび水平偏波軸7bと平行ではない、すなわちそれぞれ所望の垂直偏波および所望の水平偏波と平行ではないものとする。
【0037】
以上のように構成された直交偏波共用のマイクロストリップアンテナにおいては、垂直偏波給電回路13aにより給電される電波と水平偏波給電回路13bにより給電される電波は等振幅かつ位相差+90度あるいは−90度なので、方形パッチ1からは左旋円偏波あるいは右旋円偏波が放射される。さらに、垂直偏波給電軸8aと水平偏波給電軸8bのなす角度9は90度よりも大きく、かつ垂直偏波給電軸8aおよび水平偏波給電軸8bはそれぞれ垂直偏波軸7aおよび水平偏波軸7bと平行ではないので、上記左旋円偏波あるいは右旋円偏波の垂直偏波成分および水平偏波成分は交差偏波が抑制された良好な直線偏波となる。したがって、低交差偏波な左旋円偏波あるいは右旋円偏波を得る効果がある。また、交差偏波抑制のための特別な回路などを必要としないため、アンテナの構成が簡易なものになるという効果がある。
【0038】
【発明の効果】
以上のように、請求項1の発明によれば、板状の金属導体からなる正方形の給電パッチと、金属導体からなる地導体と、上記給電パッチが一面に設けられ、上記地導体が一面とは反対側の他面の全面に設けられた方形の誘電体基板と、上記給電パッチの第1の辺から上記誘電体基板の第1の辺まで、上記給電パッチの中心を通り垂直偏波と平行な垂直偏波軸と平行に上記誘電体基板の一面に設けられ、垂直偏波の電波を放射するため第1のマイクロストリップ線路と、上記給電パッチの第1の辺と直交する第2の辺から上記誘電体基板の第2の辺まで、上記給電パッチの中心を通り水平偏波と平行な水平偏波軸と平行に上記誘電体基板の一面に設けられ、水平偏波の電波を放射するため第2のマイクロストリップ線路とを備え、上記給電パッチと第1のマイクロストリップ線路との接続点に垂直偏波給電点を設けるとともに、上記給電パッチと第2のマイクロストリップ線路との接続点に水平偏波給電点を設け、上記垂直偏波給電点と上記給電パッチの中心を結ぶ垂直偏波給電軸と上記水平偏波給電点と上記給電パッチの中心を結ぶ水平偏波給電軸のなす角度が90度よりも大きく、かつ上記垂直偏波給電軸および上記水平偏波給電軸はそれぞれ上記垂直偏波軸および上記水平偏波軸と平行でないので、交差偏波発生を抑制し、また、この交差偏波発生の抑制に特別な回路などを必要としないため、アンテナの構成が簡易なものになるという効果がある。
【0040】
また、請求項2の発明によれば、板状の金属導体からなる正方形の給電パッチと、金属導体からなる地導体と、上記給電パッチが一面に設けられ、上記地導体が一面とは反対側の他面の全面に設けられた方形の誘電体基板と、上記給電パッチの誘電体基板側の面の所定箇所に内導体が誘電体基板を貫通して接続され、上記地導体の誘電体基板側の面と反対側の面の所定箇所に外導体が接続され、垂直偏波の電波を放射するための第1の同軸線路と、上記給電パッチの誘電体基板側の面の上記所定箇所とは異なる別の箇所に内導体が誘電体基板を貫通して接続され、上記地導体の誘電体基板側の面と反対側の面の上記所定箇所とは異なる別の箇所に外導体が接続され、水平偏波の電波を放射するための第2の同軸線路とを備え、上記給電パッチと第1の同軸線路との接続点に垂直偏波給電点を設けるとともに、上記給電パッチと第2の同軸線路との接続点に水平偏波給電点を設け、上記垂直偏波給電点と上記給電パッチの中心を結ぶ垂直偏波給電軸と上記水平偏波給電点と上記給電パッチの中心を結ぶ水平偏波給電軸のなす角度が90度よりも大きく、かつ上記垂直偏波給電軸および上記水平偏波給電軸はそれぞれ上記給電パッチの中心を通り垂直偏波と平行な垂直偏波軸および上記給電パッチの中心を通り水平偏波と平行な水平偏波軸と平行でないので、交差偏波発生の抑制、アンテナの構成の簡略化に寄与できるという効果がある。
【0041】
また、請求項3の発明によれば、板状の金属導体からなる正方形の給電パッチと、金属導体からなる地導体と、上記給電パッチが一面に設けられ、上記地導体が一面とは反対側の他面の全面に設けられた方形の第1の誘電体基板と、上記給電パッチの中心を通り垂直偏波と平行な垂直偏波軸と垂直に、上記給電パッチと積層方向で重なるように上記地導体に設けられた矩形状の垂直偏波給電用スロットと、上記給電パッチの中心を通り水平偏波と平行な水平偏波軸と垂直に、上記給電パッチと積層方向で重なるように上記地導体に設けられた矩形状の水平偏波給電用スロットと、上記地導体の第1の誘電体基板側とは反対側の面に設けられた方形の第2の誘電体基板と、上記垂直偏波給電用スロットとクロスして上記垂直偏波給電用スロットから上記第2の誘電体基板の第1の辺まで、上記垂直偏波軸と平行に上記第2の誘電体基板の地導体側とは反対側の面に設けられ、垂直偏波の電波を放射するための第1のマイクロストリップ線路と、上記水平偏波給電用スロットとクロスして上記水平偏波給電用スロットから上記第2の誘電体基板の第2の辺まで、上記水平偏波軸と平行に上記第2の誘電体基板の地導体側とは反対側の面に設けられ、水平偏波の電波を放射するための第2のマイクロストリップ線路とを備え、上記給電パッチと第1のマイクロストリップ線路とを電磁結合させる上記垂直偏波給電用スロットと第1のマイクロストリップ線路のクロス点に垂直偏波給電点を設けるとともに、上記給電パッチと第2のマイクロストリップ線路とを電磁結合させる上記水平偏波給電用スロットと第2のマイクロストリップ線路のクロス点に水平偏波給電点を設け、上記垂直偏波給電点と上記給電パッチの中心を結ぶ垂直偏波給電軸と上記水平偏波給電点と上記給電パッチの中心を結ぶ水平偏波給電軸のなす角度が90度よりも小さく、かつ上記垂直偏波給電軸および上記水平偏波給電軸はそれぞれ上記垂直偏波軸および上記水平偏波軸と垂直でないので、交差偏波発生を抑制し、また、この交差偏波発生の抑制に特別な回路などを必要としないため、アンテナの構成が簡易なものになるという効果がある。
【0042】
また、請求項4の発明によれば、上記垂直偏波給電用スロットと水平偏波給電用スロットとをそれぞれ上記給電パッチの中心方向へ中心を越える位置まで伸延させ、伸延させた垂直偏波給電用スロットと水平偏波給電用スロットを十文字に重ねあわせることによりクロススロットとしたので、交差偏波発生の抑制、アンテナの構成の簡略化に寄与できるという効果がある。
【0043】
また、請求項5の発明によれば、板状の金属導体からなる正方形の給電パッチと、金属導体からなる地導体と、上記給電パッチが一面に設けられ、上記地導体が一面とは反対側の他面の全面に設けられた方形の第1の誘電体基板と、上記給電パッチの誘電体基板側の面の所定箇所に内導体が第1の誘電体基板を貫通して接続され、上記地導体の誘電体基板側の面と反対側の面の所定箇所に外導体が接続され、垂直偏波の電波を放射するための第1の同軸線路と、上記給電パッチの誘電体基板側の面の上記所定箇所とは異なる別の箇所に内導体が第1の誘電体基板を貫通して接続され、上記地導体の誘電体基板側の面と反対側の面の上記所定箇所とは異なる別の箇所に外導体が接続され、水平偏波の電波を放射するための第2の同軸線路と、上記給電パッチよりも小さく、中心が上記給電パッチの中心からずれて、上記給電パッチの第1の誘電体基板側とは反対側の面に設けられた方形の第2の誘電体基板と、上記給電パッチよりも小さく、中心が上記給電パッチの中心からずれて、上記第2の誘電体基板の給電パッチ側とは反対側の面に設けられた方形の無給電パッチとを備え、上記給電パッチと第1の同軸線路との接続点に垂直偏波給電点を設けるとともに、上記給電パッチと第2の同軸線路との接続点に水平偏波給電点を設け、上記垂直偏波給電点と上記給電パッチの中心を結ぶ垂直偏波給電軸と上記水平偏波給電点と上記給電パッチの中心を結ぶ水平偏波給電軸のなす角度が90度であり、かつ上記給電パッチの中心を通り垂直偏波と平行な垂直偏波軸および上記給電パッチの中心を通り水平偏波と平行な水平偏波軸は、それぞれ上記垂直偏波給電軸および上記水平偏波給電軸と平行であり、上記垂直偏波給電点と上記無給電パッチの中心を結ぶ第1の軸と上記水平偏波給電点と上記無給電パッチの中心を結ぶ第2の軸のなす角度が90度よりも大きく、かつ上記第1の軸および上記第2の軸はそれぞれ上記水平偏波軸および上記垂直偏波軸と平行でないので、交差偏波発生を抑制し、また、この交差偏波発生の抑制に特別な回路などを必要としないため、アンテナの構成が簡易なものになるという効果がある。
【0044】
また、請求項6の発明によれば、板状の金属導体からなる正方形の給電パッチと、金属導体からなる地導体と、上記給電パッチが一面に設けられ、上記地導体が一面とは反対側の他面の全面に設けられた方形の第2の誘電体基板と、上記給電パッチの第1の辺から上記第1の誘電体基板の第1の辺まで、上記給電パッチの中心を通り垂直偏波と平行な垂直偏波軸と平行に上記第1の誘電体基板の一面に設けられ、垂直偏波の電波を放射するための第1のマイクロストリップ線路と、上記給電パッチの第1の辺と直交する第2の辺から上記第1の誘電体基板の第2の辺まで、上記給電パッチの中心を通り水平偏波と平行な水平偏波軸と平行に上記第1の誘電体基板の一面に設けられ、水平偏波の電波を放射するための第2のマイクロストリップ線路と、上記給電パッチよりも小さく、中心が上記給電パッチの中心からずれて、上記給電パッチの第1の誘電体基板側とは反対側の面に設けられた方形の第2の誘電体基板と、上記給電パッチよりも小さく、中心が上記給電パッチの中心からずれて、上記第2の誘電体基板の給電パッチ側とは反対側の面に設けられた方形の無給電パッチとを備え、上記給電パッチと第1のマイクロストリップ線路との接続点に垂直偏波給電点を設けるとともに、上記給電パッチと第2のマイクロストリップ線路との接続点に水平偏波給電点を設け、上記垂直偏波給電点と上記給電パッチの中心を結ぶ垂直偏波給電軸と上記水平偏波給電点と上記給電パッチの中心を結ぶ水平偏波給電軸のなす角度が90度よりも大きく、かつ上記垂直偏波給電軸および上記水平偏波給電軸はそれぞれ上記垂直偏波軸および上記水平偏波軸と平行でなく、上記垂直偏波給電点と上記無給電パッチの中心を結ぶ第1の軸と上記水平偏波給電点と上記無給電パッチの中心を結ぶ第2の軸のなす角度が90度よりも大きく、かつ上記第1の軸および上記第2の軸はそれぞれ上記垂直偏波軸および上記水平偏波軸と平行でないので、交差偏波発生の抑制、アンテナの構成の簡略化に寄与できるという効果がある。
【0045】
また、請求項7の発明によれば、板状の金属導体からなる正方形の給電パッチと、金属導体からなる地導体と、上記給電パッチが一面に設けられ、上記地導体が一面とは反対側の他面の全面に設けられた方形の誘電体基板と、上記給電パッチの誘電体基板側の面の所定箇所に内導体が誘電体基板を貫通して接続され、上記地導体の誘電体基板側の面と反対側の面の所定箇所に外導体が接続され、垂直偏波の電波を放射するための第1の同軸線路と、上記給電パッチの誘電体基板側の面の上記所定箇所とは異なる別の箇所に内導体が誘電体基板を貫通して接続され、上記地導体の誘電体基板側の面と反対側の面の上記所定箇所とは異なる別の箇所に外導体が接続され、水平偏波の電波を放射するための第2の同軸線路と、上記給電パッチと上記地導体を短絡し金属導体からなる短絡導体とを備え、上記給電パッチと第1の同軸線路との接続点に垂直偏波給電点を設けるとともに、上記給電パッチと第2の同軸線路との接続点に水平偏波給電点を設け、かつ上記給電パッチと短絡導体との接続点に短絡点を設け、上記垂直偏波給電点と上記給電パッチの中心を結ぶ垂直偏波給電軸と上記水平偏波給電点と上記給電パッチの中心を結ぶ水平偏波給電軸のなす角度が90度であり、かつ上記垂直偏波給電軸および上記水平偏波給電軸はそれぞれ上記給電パッチの中心を通り垂直偏波と平行な垂直偏波軸および上記給電パッチの中心を通り水平偏波と平行な水平偏波軸と平行であり、上記垂直偏波給電点と上記短絡点を結ぶ第1の軸と上記水平偏波給電点と上記短絡点を結ぶ第2の軸のなす角度が90度よりも小さく、かつ上記第1の軸および上記第2の軸はそれぞれ上記垂直偏波軸および上記水平偏波軸と平行でないので、交差偏波発生を抑制し、また、この交差偏波発生の抑制に特別な回路などを必要としないため、アンテナの構成が簡易なものになるという効果がある。
【0046】
さらに、請求項8の発明によれば、上記第1の同軸線路に接続された第1の出力端子と、上記第2の同軸線路に接続された第2の出力端子とを有し、上記第1及び第2の出力端子から上記垂直偏波給電点及び水平偏波給電点に等振幅かつ位相差が+90度あるいは−90度の信号を供給する円偏波発生回路をさらに備えたので、交差偏波発生の抑制、アンテナの構成の簡略化に寄与でき、また、低交差偏波な左旋円偏波あるいは右旋円偏波を得ることができるという効果がある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1によるアンテナ装置を示す構成図である。
【図2】 この発明の実施の形態1によるアンテナ装置の原理を説明するための図である。
【図3】 この発明の実施の形態2によるアンテナ装置を示す構成図である。
【図4】 この発明の実施の形態3によるアンテナ装置を示す構成図である。
【図5】 この発明の実施の形態3によるアンテナ装置を示す構成図である。
【図6】 この発明の実施の形態4によるアンテナ装置を示す構成図である。
【図7】 この発明の実施の形態4によるアンテナ装置を示す構成図である。
【図8】 この発明の実施の形態5によるアンテナ装置を示す構成図である。
【図9】 この発明の実施の形態6によるアンテナ装置を示す構成図である。
【図10】 この発明の実施の形態7によるアンテナ装置を示す構成図である。
【図11】 この発明の実施の形態8によるアンテナ装置を示す構成図である。
【図12】 従来の直交偏波共用マイクロストリップアンテナを示す構成図図である。
【図13】 従来の2点給電円偏波励振のマイクロストリップアンテナを示す構成図である。
【符号の説明】
1 方形パッチ(導体パッチ)、2 地導体、3,16 誘電体基板、4a,14a マイクロストリップ線路(垂直偏波給電回路)、4b,14b マイクロストリップ線路(水平偏波給電回路)、5a 垂直偏波給電点、5b 水平偏波給電点、6 方形パッチ中心、7a 垂直偏波軸、7b 水平偏波軸、8a 垂直偏波給電軸、8b 水平偏波給電軸、13a 垂直偏波給電用同軸線路、13b 水平偏波給電用同軸線路、15a 垂直偏波給電用スロット、15b 水平偏波給電用スロット、17a 垂直偏波給電点と方形パッチ中心を結ぶ軸、17b 水平偏波給電点と方形パッチ中心を結ぶ軸、19 クロススロット、25短絡点、26a 垂直偏波給電点と短絡点を結ぶ軸、26b 水平偏波給電点と短絡点を結ぶ軸、27 短絡導体、29 円偏波発生回路、30a,30b 入力端子、31a,31b 出力端子。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an antenna device, and more particularly to an orthogonally polarized microstrip antenna that radiates two orthogonally polarized waves suitable for communication / radar and the like.
[0002]
[Prior art]
FIG. 12 is a diagram showing a conventional cross-polarization shared microstrip antenna, which is disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-312112.
In the figure, 1 is a conductor patch made of a plate-like metal conductor, 2 is a ground conductor made of a metal conductor, 3 is a dielectric substrate, and 5a is a power supply that feeds the conductor patch 1 to radiate vertically polarized radio waves, for example. Points 5b are feed points for feeding the conductor patch 1 to radiate horizontally polarized radio waves orthogonal to the vertically polarized wave, and 6 is the center of the conductor patch.
[0003]
FIG. 13 is a diagram showing a conventional microstrip antenna with two-point feed circularly polarized wave excitation, which is disclosed in, for example, Japanese Patent Laid-Open No. 1-284104.
In the figure, 32a and 32b are feeding points, and 33 is an angle formed by the feeding point 32a and the feeding point 32b, which is 90 degrees or more.
[0004]
[Problems to be solved by the invention]
In the conventional orthogonally polarized microstrip antenna configured as shown in FIG. 12, the feeding point 5a is provided on an axis passing through the conductor patch center 6 and parallel to the vertical polarization, and the feeding point 5b is a conductor. It was provided on an axis passing through the patch center 6 and parallel to the horizontal polarization. That is, the axis passing through the feeding point 5a and the conductor patch center 6 was orthogonal to the axis passing through the feeding point 5b and the conductor patch center 6. When the feeding point is provided at the position as described above, mutual coupling due to a higher-order mode occurs between the vertical polarization feeding point 5a and the horizontal polarization feeding point 5b. As a result, there has been a problem that the polarization orthogonal to the desired linear polarization, that is, the cross polarization property is deteriorated.
[0005]
As a conventional technique, a microstrip antenna shown in FIG. 13 is used to improve deterioration of radiation characteristics due to mutual coupling between the two feeding points. This conventional microstrip antenna improves the circular polarization characteristics by shifting the offset angle between the two feed points and lowering the isolation value between the feed points. There was a problem that it was not aimed at improving cross polarization when two orthogonal linear polarizations were shared. For this reason, there is a problem that the positional relationship between the desired two directions of two linearly polarized waves and the two feeding points has not been clarified.
[0006]
The present invention has been made to solve the above-described problems, and by determining the feed point at a position that cancels the cross-polarization generated by the mutual coupling between the feed points of orthogonal polarization, The object is to obtain a cross-polarized microstrip antenna with suppressed generation.
[0007]
[Means for Solving the Problems]
The antenna device according to the invention of claim 1 is made of a plate-like metal conductor. Square A power supply patch, a ground conductor made of a metal conductor, and the power supply patch Is provided on one side, Above ground conductor Is the other side of the other side Provided in Square A dielectric substrate; From the first side of the power supply patch to the first side of the dielectric substrate, provided on one surface of the dielectric substrate in parallel with the vertical polarization axis parallel to the vertical polarization passing through the center of the power supply patch, Vertical polarization To emit radio waves of First Microstrip line When, From the second side orthogonal to the first side of the power supply patch to the second side of the dielectric substrate, the dielectric passes through the center of the power supply patch and is parallel to the horizontal polarization axis parallel to the horizontal polarization. Horizontally polarized wave provided on one side of the board To emit radio waves of Second Microstrip line And A vertical polarization feed point is provided at a connection point between the feed patch and the first microstrip line, and a horizontal polarization feed point is provided at a connection point between the feed patch and the second microstrip line, the above Vertical polarization Connect the feeding point and the center of the feeding patch Vertical polarization feed Axis and above Horizontal polarization Connect the feeding point and the center of the feeding patch Horizontal polarization feed The angle formed by the shaft is greater than 90 degrees, and the above Vertical polarization feed Shaft and above Horizontal polarization feed Each axis is Vertical polarization axis above and Horizontal polarization axis above Parallel to Not Is.
[0008]
The antenna device according to the invention of claim 2 A square power supply patch made of a plate-shaped metal conductor, a ground conductor made of a metal conductor, and the power supply patch are provided on one surface, and the ground conductor is provided on the entire other surface opposite to the one surface. An inner conductor is connected to the dielectric substrate and a predetermined location on the dielectric substrate side surface of the power supply patch through the dielectric substrate, and a predetermined location on the surface of the ground conductor opposite to the dielectric substrate side surface. The outer conductor is connected to the first coaxial line for radiating vertically polarized radio waves, and the inner conductor is a dielectric at a location different from the predetermined location on the dielectric substrate side surface of the feed patch. The outer conductor is connected to another location different from the predetermined location on the surface of the ground conductor opposite to the surface on the dielectric substrate side through the substrate, for radiating horizontally polarized radio waves A second coaxial line, and is suspended at a connection point between the feeding patch and the first coaxial line. A polarization feed point, a horizontal polarization feed point at a connection point between the feed patch and the second coaxial line, and a vertical polarization feed shaft connecting the vertical polarization feed point and the center of the feed patch; The angle formed by the horizontal polarization feed axis connecting the horizontal polarization feed point and the center of the feed patch is greater than 90 degrees, and the vertical polarization feed axis and the horizontal polarization feed axis are respectively the centers of the feed patches. Is not parallel to the vertical polarization axis parallel to the vertical polarization and the horizontal polarization axis parallel to the horizontal polarization passing through the center of the feeding patch. Is.
[0009]
An antenna device according to the invention of claim 3 is provided. A square power supply patch made of a plate-shaped metal conductor, a ground conductor made of a metal conductor, and the power supply patch are provided on one surface, and the ground conductor is provided on the entire other surface opposite to the one surface. A rectangular vertical provided on the ground conductor so as to overlap the first dielectric substrate and the vertical polarization axis parallel to the vertical polarization passing through the center of the power supply patch and overlapping the power supply patch in the stacking direction. A rectangular horizontal polarization provided on the ground conductor so as to overlap the feed patch and the horizontal polarization axis passing through the center of the feed patch and parallel to the horizontal polarization in the stacking direction. The vertical slot crossing the slot for wave feed, the second dielectric substrate provided on the surface of the ground conductor opposite to the first dielectric substrate, and the slot for vertically polarized feed From the polarization feeding slot, the first dielectric substrate first A first microstrip line for radiating vertically polarized radio waves, provided on the surface opposite to the ground conductor side of the second dielectric substrate in parallel with the vertical polarization axis, Crossing the horizontal polarization feed slot and extending from the horizontal polarization feed slot to the second side of the second dielectric substrate in parallel with the horizontal polarization axis. A second microstrip line provided on a surface opposite to the conductor side for radiating horizontally polarized radio waves, and electromagnetically coupling the feed patch and the first microstrip line. A vertical polarization feed point is provided at the cross point between the wave feed slot and the first microstrip line, and the horizontal polarization feed slot and the second electromagnetically coupling the feed patch and the second microstrip line are coupled to each other. micro A horizontal polarization feed point is provided at the crossing point of the trip line, a vertical polarization feed axis connecting the vertical polarization feed point and the center of the feed patch, and a horizontal polarization connecting the horizontal polarization feed point and the center of the feed patch. The angle formed by the wave feed axis is smaller than 90 degrees, and the vertical polarization feed axis and the horizontal polarization feed axis are not perpendicular to the vertical polarization axis and the horizontal polarization axis, respectively. Is.
[0010]
The antenna device according to the invention of claim 4 The vertical polarized wave feeding slot and the horizontal polarized wave feeding slot are extended to a position exceeding the center in the central direction of the feeding patch, and the extended vertical polarized wave feeding slot and horizontal polarized wave feeding slot are cross-shaped. Cross slot by overlapping Is.
[0011]
The antenna device according to the invention of claim 5 is: A square power supply patch made of a plate-shaped metal conductor, a ground conductor made of a metal conductor, and the power supply patch are provided on one surface, and the ground conductor is provided on the entire other surface opposite to the one surface. An inner conductor is connected to a predetermined portion of the first dielectric substrate and a surface on the dielectric substrate side of the power supply patch through the first dielectric substrate, and is opposite to the surface of the ground conductor on the dielectric substrate side. The outer conductor is connected to a predetermined location on the side surface, and the first coaxial line for emitting vertically polarized radio waves and another location different from the predetermined location on the dielectric substrate side surface of the feed patch The inner conductor is connected through the first dielectric substrate, and the outer conductor is connected to a different location from the predetermined location on the surface of the ground conductor opposite to the dielectric substrate side, A second coaxial line for radiating a polarized radio wave, and a center smaller than the feeding patch A square second dielectric substrate provided on a surface opposite to the first dielectric substrate side of the power supply patch, shifted from the center of the power supply patch, and smaller than the power supply patch, the center being the above A square non-feeding patch provided on a surface opposite to the feeding patch side of the second dielectric substrate, deviating from the center of the feeding patch, and connecting the feeding patch and the first coaxial line A vertical polarization feed point is provided at a point, a horizontal polarization feed point is provided at a connection point between the feed patch and the second coaxial line, and a vertical polarization is connected between the vertical polarization feed point and the center of the feed patch. An angle formed by a horizontal polarization feed axis connecting the feed axis, the horizontal polarization feed point, and the center of the feed patch is 90 degrees, and a vertical polarization axis passing through the center of the feed patch and parallel to the vertical polarization, and Water passing through the center of the feeding patch and parallel to the horizontal polarization The polarization axes are respectively parallel to the vertical polarization feed axis and the horizontal polarization feed axis, and the first axis connecting the vertical polarization feed point and the center of the parasitic patch and the horizontal polarization feed point. And the second axis connecting the center of the parasitic patch is greater than 90 degrees, and the first axis and the second axis are parallel to the horizontal polarization axis and the vertical polarization axis, respectively. Not Is.
[0012]
The antenna device according to the invention of claim 6 is composed of a plate-like metal conductor. Square A power supply patch, a ground conductor made of a metal conductor, and the power supply patch Is provided on one surface, and the ground conductor is provided on the entire other surface opposite to the one surface. A dielectric substrate; From the first side of the power supply patch to the first side of the first dielectric substrate, the first dielectric substrate passes through the center of the power supply patch and is parallel to the vertical polarization axis parallel to the vertical polarization. A first microstrip line for radiating vertically polarized radio waves and a second side perpendicular to the first side of the power supply patch from the second side of the first dielectric substrate. To the side of the first dielectric substrate parallel to the horizontal polarization axis parallel to the horizontal polarization passing through the center of the feed patch, and a second for radiating horizontally polarized radio waves. A microstrip line and a rectangular second dielectric provided on a surface opposite to the first dielectric substrate side of the power supply patch, which is smaller than the power supply patch and whose center is shifted from the center of the power supply patch. Body substrate and smaller than the power supply patch, the center is the power supply patch A square non-feeding patch provided on a surface opposite to the feeding patch side of the second dielectric substrate at a connection point between the feeding patch and the first microstrip line. A vertical polarization feed point is provided, a horizontal polarization feed point is provided at a connection point between the feed patch and the second microstrip line, and a vertical polarization feed point connects the vertical polarization feed point and the center of the feed patch. An angle formed by a horizontal polarization feed axis connecting the axis, the horizontal polarization feed point, and the center of the feed patch is greater than 90 degrees, and the vertical polarization feed axis and the horizontal polarization feed axis are A second axis that is not parallel to the wave axis and the horizontal polarization axis but that connects the vertical polarization feed point and the center of the parasitic patch, and a second axis that connects the horizontal polarization feed point and the center of the parasitic patch. The angle formed by the axis is more than 90 degrees Large and the first axis and the second axis are not respectively parallel to the vertical polarization axis and the horizontal polarization axis Is.
[0013]
The antenna device according to the invention of claim 7 A square power supply patch made of a plate-shaped metal conductor, a ground conductor made of a metal conductor, and the power supply patch are provided on one surface, and the ground conductor is provided on the entire other surface opposite to the one surface. An inner conductor is connected to the dielectric substrate and a predetermined location on the dielectric substrate side surface of the power supply patch through the dielectric substrate, and a predetermined location on the surface of the ground conductor opposite to the dielectric substrate side surface. The outer conductor is connected to the first coaxial line for radiating vertically polarized radio waves, and the inner conductor is a dielectric at a location different from the predetermined location on the dielectric substrate side surface of the feed patch. The outer conductor is connected to another location different from the predetermined location on the surface of the ground conductor opposite to the surface on the dielectric substrate side through the substrate, for radiating horizontally polarized radio waves The second coaxial line, the feed patch and the ground conductor are short-circuited and made of a metal conductor. A vertical polarization feed point at the connection point between the feed patch and the first coaxial line, and a horizontal polarization feed point at the connection point between the feed patch and the second coaxial line. In addition, a short-circuit point is provided at a connection point between the feed patch and the short-circuit conductor, and a vertical polarization feed axis that connects the vertical polarization feed point and the center of the feed patch, the horizontal polarization feed point, and the center of the feed patch. And the vertical polarization feed axis and the horizontal polarization feed axis pass through the center of the feed patch and are parallel to the vertical polarization axis and the vertical polarization axis, respectively. A first axis connecting the vertical polarization feed point and the short-circuit point, the horizontal polarization feed point, and the short-circuit point are parallel to the horizontal polarization axis passing through the center of the feed patch and parallel to the horizontal polarization. The angle formed by the connecting second axis is smaller than 90 degrees and above The first axis and the second axis not respectively parallel to the vertical polarization axis and the horizontal polarization axis Is.
[0014]
An antenna device according to an invention of claim 8 is A first output terminal connected to the first coaxial line; and a second output terminal connected to the second coaxial line, the vertical offset from the first and second output terminals. And a circularly polarized wave generating circuit for supplying a signal having an equal amplitude and a phase difference of +90 degrees or −90 degrees to the wave feeding point and the horizontal polarization feeding point. Is.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings, taking an orthogonal polarization shared microstrip antenna as an example of an antenna device.
Embodiment 1 FIG.
1A and 1B are views for explaining the configuration of a cross-polarized microstrip antenna according to Embodiment 1 of the present invention. FIG. 1A is a perspective view and FIG. 1B is a front view. It is.
In the figure, reference numeral 1 denotes a conductor patch as a power supply patch made of a plate-like metal conductor, and here, for example, a square patch. 2 is a ground conductor made of a metal conductor, and 3 is a dielectric substrate. Reference numeral 4a denotes a vertical polarization power supply circuit as a first power supply circuit for radiating a vertical polarized wave, which is a first linearly polarized radio wave, from the rectangular patch 1, and is formed on the dielectric substrate 3, for example, here. A microstrip line. Reference numeral 4b denotes a horizontal polarization power supply circuit as a second power supply circuit for radiating a horizontal polarization, which is a second linearly polarized radio wave orthogonal to the vertical polarization, from the rectangular patch 1. Here, for example, a dielectric A microstrip line formed on the substrate 3 is used.
[0017]
Reference numeral 5a denotes a connection point between the rectangular patch 1 and the vertical polarization feed circuit 4a. A vertical polarization feed point as a first feed point 5b denotes a connection point between the square patch 1 and the horizontal polarization feed circuit 4b. 2 is a horizontal polarization feed point. 6 is a rectangular patch center, 7a is a vertical polarization axis that passes through the rectangular patch center 6 and is parallel to the vertical polarization, and 7b is a horizontal polarization axis that passes through the square patch center 6 and is parallel to the horizontal polarization. is there. Reference numeral 8 a denotes a vertical polarization feed axis passing through the vertical polarization feed point 5 a and the rectangular patch center 6, and 8 b denotes a horizontal polarization feed axis passing through the horizontal polarization feed point 5 b and the rectangular patch center 6. The angle 9 formed by the vertical polarization feed axis 8a and the horizontal polarization feed axis 8b is greater than 90 degrees, and the vertical polarization feed axis 8a and the horizontal polarization feed axis 8b are respectively the vertical polarization axis 7a and the horizontal polarization axis. It is not parallel to 7b.
[0018]
In the orthogonal polarization shared microstrip antenna configured as described above, it is possible to suppress cross polarization caused by mutual coupling between the vertical polarization feed point 5a and the horizontal polarization feed point 5b.
The principle will be described below with reference to FIG.
[0019]
First, when the angle 9 is 90 degrees, that is, a conventional orthogonal polarization shared microstrip antenna in which the vertical polarization axis 7a and the vertical polarization feed axis 8a, and the horizontal polarization axis 7b and the horizontal polarization feed axis 8b coincide with each other. Let us consider a case where a vertically polarized radio wave is fed. FIG. 2A shows the state of current flowing on the rectangular patch 1 at this time. That is, in this case, a vertical polarization current 10 flows on the rectangular patch 1 in order to generate a desired vertical polarization. However, due to the mutual coupling between the vertical polarization feed point 5a and the horizontal polarization feed point 5b, the horizontal polarization current 11 corresponding to the mutual coupling amount is fed from the horizontal polarization feed point 5b on the square patch. It flows like. Horizontal polarization, that is, cross polarization is generated for a desired vertical polarization due to the horizontal polarization current 11 generated by mutual coupling between the feeding points.
[0020]
Here, as shown in FIG. 2B, the vertical polarization feed point 5a is perturbed so that the vertical polarization feed axis 8a is not parallel to the vertical polarization axis 7a and the angle 9 is larger than 90 degrees. Think about it. In this case, when the power is fed from the vertical polarization feeding point, a horizontal polarization current 12 newly flows on the rectangular patch 1 in addition to the vertical polarization current 10. Since the horizontal polarization current 12 and the horizontal polarization current 11 are opposite to each other, it is possible to suppress the occurrence of cross polarization by canceling each other.
[0021]
The above is the same when power is supplied from the horizontal polarization feed point 5b. That is, the vertical polarization feed axis 8a is not parallel to the vertical polarization axis 7a, the horizontal polarization feed axis 8b is not parallel to the horizontal polarization axis 7b, and the vertical polarization feed axis 8a and the horizontal polarization By setting the angle 9 formed by the feed shaft 8b to be greater than 90 degrees, there is an effect of suppressing cross polarization caused by mutual coupling between the vertical polarization feed point 5a and the horizontal polarization feed point 5b. Further, since a special circuit for suppressing cross polarization is not required, there is an effect that the configuration of the antenna becomes simple.
[0022]
Embodiment 2. FIG.
FIGS. 3A and 3B are diagrams for explaining the configuration of a cross-polarized microstrip antenna according to Embodiment 2 of the present invention, in which FIG. 3A is a perspective view and FIG. 3B is a front view. FIG. 3C is a cross-sectional view taken along the line AA ′ in FIG.
In the figure, reference numeral 13a denotes a vertical polarization feeding circuit for radiating vertical polarization from the rectangular patch 1, and here, for example, a coaxial line is used. Reference numeral 13b denotes a horizontal polarization feeding circuit for radiating horizontal polarization orthogonal to the vertical polarization from the rectangular patch 1, and here, for example, a coaxial line is used. Further, as shown in the figure, the inner conductors of the coaxial lines 13a and 13b are connected to the rectangular patch 1 at the vertical polarization feed point 5a and the horizontal polarization feed point 5b, respectively, and the outer conductors of the coaxial lines 13a and 13b. Is connected to the ground conductor 2. Further, the angle 9 formed by the vertical polarization feed shaft 8a and the horizontal polarization feed shaft 8b is larger than 90 degrees, and the vertical polarization feed shaft 8a and the horizontal polarization feed shaft 8b are respectively connected to the vertical polarization feed shaft 7a and the horizontal polarization feed shaft 8b. It is assumed that they are not parallel to the wave axis 7b, that is, not parallel to the desired vertical polarization and the desired horizontal polarization, respectively.
[0023]
In the orthogonally polarized microstrip antenna configured as described above, the angle 9 formed by the vertical polarization feed shaft 8a and the horizontal polarization feed shaft 8b is larger than 90 degrees, as in the first embodiment. Since the vertical polarization feed shaft 8a and the horizontal polarization feed shaft 8b are not parallel to the vertical polarization feed shaft 7a and the horizontal polarization feed shaft 7b, respectively, the mutual connection between the vertical polarization feed point 5a and the horizontal polarization feed point 5b. There is an effect of suppressing cross polarization caused by coupling. Further, since a special circuit for suppressing cross polarization is not required, there is an effect that the configuration of the antenna becomes simple.
[0024]
Embodiment 3 FIG.
4 and 5 are diagrams for explaining the configuration of a cross-polarized microstrip antenna according to Embodiment 3 of the present invention. FIG. 4 (a) is a front perspective view thereof, and FIG. 4 (b). Fig. 4A is a cross-sectional view taken along line AA 'in Fig. 4A, and Fig. 5 is a perspective view of the ground conductor.
In the figure, reference numeral 14a denotes a vertical polarization feeding circuit which is provided on the back surface of the ground conductor 2 and radiates vertical polarization from the rectangular patch 1. Here, for example, a microstrip line is used. Reference numeral 14b denotes a horizontal polarization feeding circuit that is provided on the back surface of the ground conductor 2 and radiates a horizontal polarization orthogonal to the vertical polarization from the rectangular patch 1. Here, for example, a microstrip line is used.
[0025]
Reference numeral 15a denotes a vertical polarization feed slot provided in the ground conductor 2 for electromagnetically coupling the rectangular patch 1 and the vertical polarization feed circuit 14a at the vertical polarization feed point 5a. A horizontal polarization feed slot 16 provided in the ground conductor 2 for electromagnetically coupling the wave feed circuit 14b at the horizontal polarization feed point 5b is a dielectric substrate for forming the microstrip lines 14a and 14b. As shown in the figure, an angle 18 formed by an axis 17a connecting the vertical polarization feeding point 5a and the rectangular patch center 6 and an axis 17b connecting the horizontal polarization feeding point 5b and the rectangular patch center 6 is smaller than 90 degrees. The axes 17a and 17b are not perpendicular to the vertical polarization axis 7a and the horizontal polarization axis 7b, that is, not perpendicular to the desired vertical polarization and the desired horizontal polarization.
[0026]
In the orthogonally polarized microstrip antenna configured as described above, the relative positional relationship between the perturbation direction of the vertical polarization feed point 5a and the horizontal polarization feed point 5b and the rectangular patch 1 is as described above. Same as 1 or 2. Therefore, also in this embodiment, the generation of cross polarization can be suppressed by the principle shown in FIG. That is, there is an effect of suppressing cross polarization caused by mutual coupling between the vertical polarization feed point 5a and the horizontal polarization feed point 5b. Further, since a special circuit for suppressing cross polarization is not required, there is an effect that the configuration of the antenna becomes simple.
[0027]
Embodiment 4 FIG.
6 and 7 are views for explaining the configuration of a cross-polarized microstrip antenna according to Embodiment 4 of the present invention. FIG. 6 (a) is a front perspective view thereof, and FIG. 6 (b). Is a sectional view taken along line AA 'in FIG. 6A, and FIG. 7 is a perspective view of the ground conductor.
In the figure, 19 is for electromagnetically coupling the rectangular patch 1 and the vertical polarization feeding circuit 14a at the vertical polarization feeding point 5a, and electromagnetically coupling the square patch 1 and the horizontal polarization feeding circuit 14b at the horizontal polarization feeding point 5b. This is a cross-shaped cross slot provided in the ground conductor 2. Further, as shown in the figure, an axis connecting the vertical polarization feeding point 5a and the rectangular patch center 6 17a Axis connecting horizontal polarization feed point 5b and rectangular patch center 6 17b Angle made with 18 Is less than 90 degrees and the axis 17a And axis 17b Are not perpendicular to the vertical polarization axis 7a and the horizontal polarization axis 7b, respectively.
[0028]
In the cross-polarized microstrip antenna configured as described above, as in the third embodiment, the axis 16a connecting the vertical polarization feeding point 5a and the rectangular patch center 6, the horizontal polarization feeding point 5b, and the rectangular patch. The angle formed by the axis 16b connecting the centers 6 is smaller than 90 degrees, and the axes 16a and 16b are not perpendicular to the vertical polarization axis 7a and the horizontal polarization axis 7b, respectively. There is an effect of suppressing cross polarization caused by mutual coupling with the polarization feeding point 5b. Further, since a special circuit for suppressing cross polarization is not required, there is an effect that the configuration of the antenna becomes simple.
[0029]
Embodiment 5. FIG.
FIGS. 8A and 8B are diagrams for explaining the configuration of a cross-polarized microstrip antenna according to Embodiment 5 of the present invention, in which FIG. 8A is a perspective view and FIG. 8B is a front see-through view. FIG.8 (c) is AA 'sectional drawing in FIG.8 (b).
In the figure, 20 is a parasitic patch provided above the rectangular patch 1, 21 is a dielectric substrate for forming the parasitic patch 20, 22 is the center of the parasitic patch, 23 a is a parasitic polarization feeding point 5 a and a parasitic power supply. An axis connecting the patch center 22, and 23 b are an axis connecting the horizontal polarization feeding point 5 b and the parasitic patch center 22. As shown in the figure, the angle formed by the axis 8a connecting the vertical polarization feeding point 5a and the rectangular patch center 6 and the axis 8b connecting the horizontal polarization feeding point 5b and the rectangular patch center 6 is 90 degrees, and the axis 8a and 8b are parallel to the vertical polarization axis 7a and horizontal polarization axis 7b, respectively, that is, they are parallel to the desired vertical polarization and the desired horizontal polarization, respectively. The angle 24 formed by the axis 23a connecting the vertical polarization feeding point 5a and the parasitic patch center 22 and the axis 23b connecting the horizontal polarization feeding point 5b and the parasitic patch center 23b is larger than 90 degrees, and the axis 23a and the axis 23b is not parallel to the vertical polarization axis 7a and horizontal polarization axis 7b, that is, is not parallel to the desired vertical polarization and the desired horizontal polarization, respectively.
[0030]
In the cross-polarized microstrip antenna configured as described above, the relative positional relationship between the vertical polarization feed point 5a and the horizontal polarization feed point 5b and the perturbation direction of the parasitic patch 20 is described in the embodiment. Same as 1 or 2. Therefore, also in the present embodiment, the generation of cross polarization can be suppressed by the principle shown in FIG. That is, there is an effect of suppressing cross polarization caused by mutual coupling between the vertical polarization feed point 5a and the horizontal polarization feed point 5b. Further, since a special circuit for suppressing cross polarization is not required, there is an effect that the configuration of the antenna becomes simple.
[0031]
Embodiment 6 FIG.
9A and 9B are diagrams for explaining the configuration of a cross-polarized microstrip antenna according to Embodiment 6 of the present invention. FIG. 9A is a perspective view thereof, and FIG. 9B is a front perspective view thereof. FIG.
In the present embodiment, the angle formed by the axis 8a connecting the vertical polarization feeding point 5a and the rectangular patch center 6 and the axis 8b connecting the horizontal polarization feeding point 5b and the rectangular patch center 6 is greater than 90 degrees, and the axis 8a And the axis 8b are not parallel to the vertical polarization axis 7a and the horizontal polarization axis 7b, respectively, that is, are not parallel to the desired vertical polarization and the desired horizontal polarization, respectively. The angle 24 formed by the axis 23a connecting the vertical polarization feeding point 5a and the parasitic patch center 22 and the axis 23b connecting the horizontal polarization feeding point 5b and the parasitic patch center 23b is larger than 90 degrees, and the axis 23a and the axis 23b is not parallel to the vertical polarization axis 7a and horizontal polarization axis 7b, that is, is not parallel to the desired vertical polarization and the desired horizontal polarization, respectively.
[0032]
In the cross-polarized microstrip antenna configured as described above, the relative positional relationship between the vertical polarization feed point 5a and the horizontal polarization feed point 5b and the perturbation direction of the parasitic patch 20 is as described above. It is the same as Form 1. Therefore, also in the present embodiment, the generation of cross polarization can be suppressed by the principle shown in FIG. That is, there is an effect of suppressing cross polarization caused by mutual coupling between the vertical polarization feed point 5a and the horizontal polarization feed point 5b. Further, since a special circuit for suppressing cross polarization is not required, there is an effect that the configuration of the antenna becomes simple.
[0033]
Further, even when the parasitic patch 20 is provided above the feeding patch 1 according to any of the second to fourth embodiments, the vertical polarization feeding point 5a and the horizontal polarization feeding point 5b and the parasitic patch 20 are perturbed. The relative positional relationship with the direction is the same as in the first embodiment. Therefore, also in the present embodiment, the generation of cross polarization can be suppressed by the principle shown in FIG. That is, there is an effect of suppressing cross polarization caused by mutual coupling between the vertical polarization feed point 5a and the horizontal polarization feed point 5b. Further, since a special circuit for suppressing cross polarization is not required, there is an effect that the configuration of the antenna becomes simple.
[0034]
Embodiment 7 FIG.
10A and 10B are diagrams for explaining the configuration of a cross-polarized microstrip antenna according to Embodiment 7 of the present invention. FIG. 10A is a perspective view and FIG. 10B is a front perspective view. FIG.10 (c) is AA 'sectional drawing in FIG.10 (b).
In the figure, 25 is a short-circuit point that short-circuits the rectangular patch 1 and the ground conductor 2, 26a is an axis that connects the vertical polarization feed point 5a and the short-circuit point 25, 26b is an axis that connects the horizontal polarization feed point 5b and the short-circuit point 25, Reference numeral 27 denotes a short-circuit conductor made of a metal conductor by short-circuiting the rectangular patch 1 and the ground conductor 2. As shown in the figure, the angle formed by the axis 8a connecting the vertical polarization feeding point 5a and the rectangular patch center 6 and the axis 8b connecting the horizontal polarization feeding point 5b and the rectangular patch center 6 is 90 degrees, and the axis 8a and 8b are parallel to the vertical polarization axis 7a and horizontal polarization axis 7b, respectively, that is, they are parallel to the desired vertical polarization and the desired horizontal polarization, respectively. In addition, the angle 28 formed by the axis 26a connecting the vertical polarization feeding point 5a and the short-circuiting point 25 and the axis 26b connecting the horizontal polarization feeding point 5b and the short-circuiting point 25 is smaller than 90 degrees, and the axes 26a and 26b are vertical. It is assumed that it is not parallel to the polarization axis 7a and the horizontal polarization axis 7b, that is, not parallel to the desired vertical polarization and the desired horizontal polarization, respectively.
[0035]
In the cross-polarized microstrip antenna configured as described above, when a short-circuit point is provided at the position shown in the figure, an electric field forcibly setting the electric field there to zero is newly generated. Since the short-circuit point is on the opposite side of the vertical polarization feed point 5a and the horizontal polarization feed point 5b across the square patch center 6, this newly generated electric field is generated by the vertical polarization feed point 5a and the horizontal polarization feed point. This is in the opposite direction to the electric field generated by the mutual coupling with the point 5b. Therefore, there is an effect of suppressing cross polarization caused by mutual coupling between the vertical polarization feed point 5a and the horizontal polarization feed point 5b. Further, since a special circuit for suppressing cross polarization is not required, there is an effect that the configuration of the antenna becomes simple.
[0036]
Embodiment 8 FIG.
11A and 11B are diagrams for explaining the configuration of a cross-polarized microstrip antenna according to an eighth embodiment of the present invention. FIG. 11A is a front view thereof, and FIG. It is AA 'sectional drawing in a).
In the figure, 29 is a circularly polarized wave generating circuit, 30a and 30b are input terminals of the circularly polarized wave generating circuit 29, and 31a and 31b are output terminals of the circularly polarized wave generating circuit 29, respectively. As a characteristic of the circularly polarized wave generating circuit, when a radio wave is input to the input terminal 30a, a radio wave having an equal amplitude and a phase difference of + 90 ° is output from the output terminals 31a and 31b, and when a radio wave is input to the input terminal 30b, the output terminal It is assumed that radio waves with equal amplitude and phase difference of −90 ° are output from 31a and 31b. Further, as shown in the figure, it is assumed that the output terminal 31a and the vertical polarization feeding circuit 13a are connected, and the output terminal 31b and the vertical polarization feeding circuit 13b are connected. Further, as shown in the figure, the angle 9 formed by the vertical polarization feed shaft 8a and the horizontal polarization feed shaft 8b is larger than 90 degrees, and the vertical polarization feed shaft 8a and the horizontal polarization feed shaft 8b are respectively vertically polarized. It is assumed that it is not parallel to the wave axis 7a and the horizontal polarization axis 7b, that is, not parallel to the desired vertical polarization and the desired horizontal polarization, respectively.
[0037]
In the cross-polarized microstrip antenna configured as described above, the radio wave fed by the vertical polarization feed circuit 13a and the radio wave fed by the horizontal polarization feed circuit 13b have the same amplitude and phase difference of +90 degrees or Since the angle is −90 degrees, a left-handed circularly polarized wave or a right-handed circularly polarized wave is radiated from the rectangular patch 1. Further, the angle 9 formed by the vertical polarization feed shaft 8a and the horizontal polarization feed shaft 8b is larger than 90 degrees, and the vertical polarization feed shaft 8a and the horizontal polarization feed shaft 8b are respectively connected to the vertical polarization feed shaft 7a and the horizontal polarization feed shaft 8b. Since it is not parallel to the wave axis 7b, the vertical polarization component and horizontal polarization component of the left-handed circularly polarized wave or right-handed circularly polarized wave are good linearly polarized waves in which cross-polarized waves are suppressed. Therefore, there is an effect of obtaining a left-handed circularly polarized wave or a right-handed circularly polarized wave having a low cross polarization. Further, since a special circuit for suppressing cross polarization is not required, there is an effect that the configuration of the antenna becomes simple.
[0038]
【The invention's effect】
As described above, according to the invention of claim 1, the plate-like metal conductor is used. Square A power supply patch, a ground conductor made of a metal conductor, and the power supply patch Is provided on one side, Above ground conductor Is the other side of the other side Provided in Square A dielectric substrate; From the first side of the power supply patch to the first side of the dielectric substrate, provided on one surface of the dielectric substrate in parallel with the vertical polarization axis parallel to the vertical polarization passing through the center of the power supply patch, Vertical polarization To emit radio waves of First Microstrip line When, From the second side orthogonal to the first side of the power supply patch to the second side of the dielectric substrate, the dielectric passes through the center of the power supply patch and is parallel to the horizontal polarization axis parallel to the horizontal polarization. Horizontally polarized wave provided on one side of the board To emit radio waves of Second Microstrip line And A vertical polarization feed point is provided at a connection point between the feed patch and the first microstrip line, and a horizontal polarization feed point is provided at a connection point between the feed patch and the second microstrip line, the above Vertical polarization Connect the feeding point and the center of the feeding patch Vertical polarization feed Axis and above Horizontal polarization Connect the feeding point and the center of the feeding patch Horizontal polarization feed The angle formed by the shaft is greater than 90 degrees, and the above Vertical polarization feed Shaft and above Horizontal polarization feed Each axis is Vertical polarization axis above and Horizontal polarization axis above Parallel to Not Therefore, the generation of the cross polarization is suppressed, and a special circuit or the like is not required for suppressing the generation of the cross polarization, so that the antenna configuration can be simplified.
[0040]
Also, Claim 2 According to the invention of A square power supply patch made of a plate-shaped metal conductor, a ground conductor made of a metal conductor, and the power supply patch are provided on one surface, and the ground conductor is provided on the entire other surface opposite to the one surface. An inner conductor is connected to the dielectric substrate and a predetermined location on the dielectric substrate side surface of the power supply patch through the dielectric substrate, and a predetermined location on the surface of the ground conductor opposite to the dielectric substrate side surface. The outer conductor is connected to the first coaxial line for radiating vertically polarized radio waves, and the inner conductor is a dielectric at a location different from the predetermined location on the dielectric substrate side surface of the feed patch. The outer conductor is connected to another location different from the predetermined location on the surface of the ground conductor opposite to the surface on the dielectric substrate side through the substrate, for radiating horizontally polarized radio waves A second coaxial line, and is suspended at a connection point between the feeding patch and the first coaxial line. A polarization feed point, a horizontal polarization feed point at a connection point between the feed patch and the second coaxial line, and a vertical polarization feed shaft connecting the vertical polarization feed point and the center of the feed patch; The angle formed by the horizontal polarization feed axis connecting the horizontal polarization feed point and the center of the feed patch is greater than 90 degrees, and the vertical polarization feed axis and the horizontal polarization feed axis are respectively the centers of the feed patches. Is not parallel to the vertical polarization axis parallel to the vertical polarization and the horizontal polarization axis parallel to the horizontal polarization passing through the center of the feeding patch. Therefore, there is an effect that it is possible to contribute to suppression of the generation of cross polarization and simplification of the antenna configuration.
[0041]
Also, Claim 3 According to the invention of A square power supply patch made of a plate-shaped metal conductor, a ground conductor made of a metal conductor, and the power supply patch are provided on one surface, and the ground conductor is provided on the entire other surface opposite to the one surface. A rectangular vertical provided on the ground conductor so as to overlap the first dielectric substrate and the vertical polarization axis parallel to the vertical polarization passing through the center of the power supply patch and overlapping the power supply patch in the stacking direction. A rectangular horizontal polarization provided on the ground conductor so as to overlap the feed patch and the horizontal polarization axis passing through the center of the feed patch and parallel to the horizontal polarization in the stacking direction. The vertical slot crossing the slot for wave feed, the second dielectric substrate provided on the surface of the ground conductor opposite to the first dielectric substrate, and the slot for vertically polarized feed From the polarization feeding slot, the first dielectric substrate first A first microstrip line for radiating vertically polarized radio waves, provided on the surface opposite to the ground conductor side of the second dielectric substrate in parallel with the vertical polarization axis, Crossing the horizontal polarization feed slot and extending from the horizontal polarization feed slot to the second side of the second dielectric substrate in parallel with the horizontal polarization axis. A second microstrip line provided on a surface opposite to the conductor side for radiating horizontally polarized radio waves, and electromagnetically coupling the feed patch and the first microstrip line. A vertical polarization feed point is provided at the cross point between the wave feed slot and the first microstrip line, and the horizontal polarization feed slot and the second electromagnetically coupling the feed patch and the second microstrip line are coupled to each other. micro A horizontal polarization feed point is provided at the crossing point of the trip line, a vertical polarization feed axis connecting the vertical polarization feed point and the center of the feed patch, and a horizontal polarization connecting the horizontal polarization feed point and the center of the feed patch. The angle formed by the wave feed axis is smaller than 90 degrees, and the vertical polarization feed axis and the horizontal polarization feed axis are not perpendicular to the vertical polarization axis and the horizontal polarization axis, respectively. Therefore, the generation of the cross polarization is suppressed, and a special circuit or the like is not required for suppressing the generation of the cross polarization, so that the antenna configuration can be simplified.
[0042]
Also, Claim 4 According to the invention of The vertical polarized wave feeding slot and the horizontal polarized wave feeding slot are extended to a position exceeding the center in the central direction of the feeding patch, and the extended vertical polarized wave feeding slot and horizontal polarized wave feeding slot are cross-shaped. Cross slot by overlapping Therefore, there is an effect that it is possible to contribute to suppression of the generation of cross polarization and simplification of the antenna configuration.
[0043]
Also, Claim 5 According to the invention of A square power supply patch made of a plate-shaped metal conductor, a ground conductor made of a metal conductor, and the power supply patch are provided on one surface, and the ground conductor is provided on the entire other surface opposite to the one surface. An inner conductor is connected to a predetermined portion of the first dielectric substrate and a surface on the dielectric substrate side of the power supply patch through the first dielectric substrate, and is opposite to the surface of the ground conductor on the dielectric substrate side. The outer conductor is connected to a predetermined location on the side surface, and the first coaxial line for emitting vertically polarized radio waves and another location different from the predetermined location on the dielectric substrate side surface of the feed patch The inner conductor is connected through the first dielectric substrate, and the outer conductor is connected to a different location from the predetermined location on the surface of the ground conductor opposite to the dielectric substrate side, A second coaxial line for radiating a polarized radio wave, and a center smaller than the feeding patch A square second dielectric substrate provided on a surface opposite to the first dielectric substrate side of the power supply patch, shifted from the center of the power supply patch, and smaller than the power supply patch, the center being the above A square non-feeding patch provided on a surface opposite to the feeding patch side of the second dielectric substrate, deviating from the center of the feeding patch, and connecting the feeding patch and the first coaxial line A vertical polarization feed point is provided at a point, a horizontal polarization feed point is provided at a connection point between the feed patch and the second coaxial line, and a vertical polarization is connected between the vertical polarization feed point and the center of the feed patch. An angle formed by a horizontal polarization feed axis connecting the feed axis, the horizontal polarization feed point, and the center of the feed patch is 90 degrees, and a vertical polarization axis passing through the center of the feed patch and parallel to the vertical polarization, and Water passing through the center of the feeding patch and parallel to the horizontal polarization The polarization axes are respectively parallel to the vertical polarization feed axis and the horizontal polarization feed axis, and the first axis connecting the vertical polarization feed point and the center of the parasitic patch and the horizontal polarization feed point. And the second axis connecting the center of the parasitic patch is greater than 90 degrees, and the first axis and the second axis are parallel to the horizontal polarization axis and the vertical polarization axis, respectively. Not Therefore, the generation of the cross polarization is suppressed, and a special circuit or the like is not required for suppressing the generation of the cross polarization, so that the antenna configuration can be simplified.
[0044]
Also, Claim 6 According to this invention, it consists of a plate-shaped metal conductor. Square A power supply patch, a ground conductor made of a metal conductor, and the power supply patch Is provided on one surface, and the ground conductor is provided on the entire other surface opposite to the one surface. A dielectric substrate; From the first side of the power supply patch to the first side of the first dielectric substrate, the first dielectric substrate passes through the center of the power supply patch and is parallel to the vertical polarization axis parallel to the vertical polarization. A first microstrip line for radiating vertically polarized radio waves and a second side perpendicular to the first side of the power supply patch from the second side of the first dielectric substrate. To the side of the first dielectric substrate parallel to the horizontal polarization axis parallel to the horizontal polarization passing through the center of the feed patch, and a second for radiating horizontally polarized radio waves. A microstrip line and a rectangular second dielectric provided on a surface opposite to the first dielectric substrate side of the power supply patch, which is smaller than the power supply patch and whose center is shifted from the center of the power supply patch. Body substrate and smaller than the power supply patch, the center is the power supply patch A square non-feeding patch provided on a surface opposite to the feeding patch side of the second dielectric substrate at a connection point between the feeding patch and the first microstrip line. A vertical polarization feed point is provided, a horizontal polarization feed point is provided at a connection point between the feed patch and the second microstrip line, and a vertical polarization feed point connects the vertical polarization feed point and the center of the feed patch. An angle formed by a horizontal polarization feed axis connecting the axis, the horizontal polarization feed point, and the center of the feed patch is greater than 90 degrees, and the vertical polarization feed axis and the horizontal polarization feed axis are A second axis that is not parallel to the wave axis and the horizontal polarization axis but that connects the vertical polarization feed point and the center of the parasitic patch, and a second axis that connects the horizontal polarization feed point and the center of the parasitic patch. The angle formed by the axis is more than 90 degrees Large and the first axis and the second axis are not respectively parallel to the vertical polarization axis and the horizontal polarization axis Therefore, there is an effect that it is possible to contribute to suppression of the generation of cross polarization and simplification of the antenna configuration.
[0045]
Also, Claim 7 According to the invention of A square power supply patch made of a plate-shaped metal conductor, a ground conductor made of a metal conductor, and the power supply patch are provided on one surface, and the ground conductor is provided on the entire other surface opposite to the one surface. An inner conductor is connected to the dielectric substrate and a predetermined location on the dielectric substrate side surface of the power supply patch through the dielectric substrate, and a predetermined location on the surface of the ground conductor opposite to the dielectric substrate side surface. The outer conductor is connected to the first coaxial line for radiating vertically polarized radio waves, and the inner conductor is a dielectric at a location different from the predetermined location on the dielectric substrate side surface of the feed patch. The outer conductor is connected to another location different from the predetermined location on the surface of the ground conductor opposite to the surface on the dielectric substrate side through the substrate, for radiating horizontally polarized radio waves The second coaxial line, the feed patch and the ground conductor are short-circuited and made of a metal conductor. A vertical polarization feed point at the connection point between the feed patch and the first coaxial line, and a horizontal polarization feed point at the connection point between the feed patch and the second coaxial line. In addition, a short-circuit point is provided at a connection point between the feed patch and the short-circuit conductor, and a vertical polarization feed axis that connects the vertical polarization feed point and the center of the feed patch, the horizontal polarization feed point, and the center of the feed patch. And the vertical polarization feed axis and the horizontal polarization feed axis pass through the center of the feed patch and are parallel to the vertical polarization axis and the vertical polarization axis, respectively. A first axis connecting the vertical polarization feed point and the short-circuit point, the horizontal polarization feed point, and the short-circuit point are parallel to the horizontal polarization axis passing through the center of the feed patch and parallel to the horizontal polarization. The angle formed by the connecting second axis is smaller than 90 degrees and above The first axis and the second axis not respectively parallel to the vertical polarization axis and the horizontal polarization axis Therefore, the generation of the cross polarization is suppressed, and a special circuit or the like is not required for suppressing the generation of the cross polarization, so that the antenna configuration can be simplified.
[0046]
further, Claim 8 According to the invention of A first output terminal connected to the first coaxial line; and a second output terminal connected to the second coaxial line, the vertical offset from the first and second output terminals. And a circularly polarized wave generating circuit for supplying a signal having an equal amplitude and a phase difference of +90 degrees or −90 degrees to the wave feeding point and the horizontal polarization feeding point. Therefore, it is possible to contribute to the suppression of the generation of cross-polarized waves, the simplification of the antenna configuration, and to obtain a left-handed circularly polarized wave or a right-handed circularly polarized wave having a low cross polarization.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating an antenna device according to a first embodiment of the present invention.
FIG. 2 is a diagram for explaining the principle of an antenna device according to Embodiment 1 of the present invention;
FIG. 3 is a block diagram showing an antenna apparatus according to Embodiment 2 of the present invention.
FIG. 4 is a block diagram showing an antenna apparatus according to Embodiment 3 of the present invention.
FIG. 5 is a block diagram showing an antenna apparatus according to Embodiment 3 of the present invention.
FIG. 6 is a block diagram showing an antenna apparatus according to a fourth embodiment of the present invention.
FIG. 7 is a block diagram showing an antenna apparatus according to Embodiment 4 of the present invention.
FIG. 8 is a block diagram showing an antenna apparatus according to a fifth embodiment of the present invention.
FIG. 9 is a block diagram showing an antenna apparatus according to a sixth embodiment of the present invention.
FIG. 10 is a block diagram showing an antenna apparatus according to a seventh embodiment of the present invention.
FIG. 11 is a block diagram showing an antenna apparatus according to an eighth embodiment of the present invention.
FIG. 12 is a configuration diagram showing a conventional orthogonally polarized wave shared microstrip antenna.
FIG. 13 is a block diagram showing a conventional two-point feed circularly polarized microstrip antenna.
[Explanation of symbols]
1 square patch (conductor patch), 2 ground conductors, 3, 16 dielectric substrate, 4a, 14a microstrip line (vertically polarized feed circuit), 4b, 14b microstrip line (horizontal polarization feed circuit), 5a vertical offset Wave feed point, 5b Horizontal polarization feed point, 6 Rectangular patch center, 7a Vertical polarization axis, 7b Horizontal polarization axis, 8a Vertical polarization feed axis, 8b Horizontal polarization feed axis, 13a Coaxial line for vertical polarization feed 13b Coaxial line for horizontal polarization feed, 15a Slot for vertical polarization feed, 15b Slot for horizontal polarization feed, 17a Axis connecting vertical polarization feed point and square patch center, 17b Horizontal polarization feed point and square patch center , 19 cross slot, 25 short-circuit point, 26a axis connecting vertical polarization feed point and short-circuit point, 26b axis connecting horizontal polarization feed point and short-circuit point, 27 short-circuit conductor, 29 circular polarization generation times , 30a, 30b input terminal, 31a, 31b output terminal.

Claims (8)

板状の金属導体からなる正方形の給電パッチと、
金属導体からなる地導体と、
上記給電パッチが一面に設けられ、上記地導体が一面とは反対側の他面の全面に設けられた方形の誘電体基板と、
上記給電パッチの第1の辺から上記誘電体基板の第1の辺まで、上記給電パッチの中心を通り垂直偏波と平行な垂直偏波軸と平行に上記誘電体基板の一面に設けられ、垂直偏波の電波を放射するため第1のマイクロストリップ線路と、
上記給電パッチの第1の辺と直交する第2の辺から上記誘電体基板の第2の辺まで、上記給電パッチの中心を通り水平偏波と平行な水平偏波軸と平行に上記誘電体基板の一面に設けられ、水平偏波の電波を放射するため第2のマイクロストリップ線路とを備え、
上記給電パッチと第1のマイクロストリップ線路との接続点に垂直偏波給電点を設けるとともに、上記給電パッチと第2のマイクロストリップ線路との接続点に水平偏波給電点を設け、
上記垂直偏波給電点と上記給電パッチの中心を結ぶ垂直偏波給電軸と上記水平偏波給電点と上記給電パッチの中心を結ぶ水平偏波給電軸のなす角度が90度よりも大きく、かつ上記垂直偏波給電軸および上記水平偏波給電軸はそれぞれ上記垂直偏波軸および上記水平偏波軸と平行でない
ことを特徴とするアンテナ装置。
A square power supply patch made of a plate-shaped metal conductor,
A ground conductor made of a metal conductor;
A rectangular dielectric substrate in which the power supply patch is provided on one surface, and the ground conductor is provided on the entire other surface opposite to the one surface ;
From the first side of the power supply patch to the first side of the dielectric substrate, provided on one surface of the dielectric substrate in parallel with the vertical polarization axis parallel to the vertical polarization passing through the center of the power supply patch, a first microstrip line for emitting radio waves vertical polarization,
From the second side orthogonal to the first side of the power supply patch to the second side of the dielectric substrate, the dielectric passes through the center of the power supply patch and is parallel to the horizontal polarization axis parallel to the horizontal polarization. provided on one surface of the substrate, and a second microstrip line for emitting a radio wave of the horizontal polarization,
A vertical polarization feed point is provided at a connection point between the feed patch and the first microstrip line, and a horizontal polarization feed point is provided at a connection point between the feed patch and the second microstrip line,
The angle of the horizontal polarization feed axis connecting the vertically polarized feed shaft and the horizontally polarized feed point and the center of the fed patch connecting the centers of the vertically polarized feed point and the feeding patch is greater than 90 degrees, and antenna apparatus characterized by the vertically polarized feed axis and the horizontal polarization feed axis are not respectively parallel to the vertical polarization axis and the horizontal polarization axis.
板状の金属導体からなる正方形の給電パッチと、
金属導体からなる地導体と、
上記給電パッチが一面に設けられ、上記地導体が一面とは反対側の他面の全面に設けられた方形の誘電体基板と、
上記給電パッチの誘電体基板側の面の所定箇所に内導体が誘電体基板を貫通して接続され、上記地導体の誘電体基板側の面と反対側の面の所定箇所に外導体が接続され、垂直偏波の電波を放射するための第1の同軸線路と、
上記給電パッチの誘電体基板側の面の上記所定箇所とは異なる別の箇所に内導体が誘電体基板を貫通して接続され、上記地導体の誘電体基板側の面と反対側の面の上記所定箇所とは異なる別の箇所に外導体が接続され、水平偏波の電波を放射するための第2の同軸線路とを備え、
上記給電パッチと第1の同軸線路との接続点に垂直偏波給電点を設けるとともに、上記給電パッチと第2の同軸線路との接続点に水平偏波給電点を設け、
上記垂直偏波給電点と上記給電パッチの中心を結ぶ垂直偏波給電軸と上記水平偏波給電点と上記給電パッチの中心を結ぶ水平偏波給電軸のなす角度が90度よりも大きく、かつ上記垂直偏波給電軸および上記水平偏波給電軸はそれぞれ上記給電パッチの中心を通り垂直偏波と平行な垂直偏波軸および上記給電パッチの中心を通り水平偏波と平行な水平偏波軸と平行でない
ことを特徴とするアンテナ装置。
A square power supply patch made of a plate-shaped metal conductor,
A ground conductor made of a metal conductor;
A rectangular dielectric substrate in which the power supply patch is provided on one surface, and the ground conductor is provided on the entire other surface opposite to the one surface;
An inner conductor is connected to a predetermined portion of the surface of the power supply patch on the dielectric substrate side through the dielectric substrate, and an outer conductor is connected to a predetermined portion of the surface of the ground conductor opposite to the surface of the dielectric substrate. A first coaxial line for emitting vertically polarized radio waves;
The inner conductor penetrates through the dielectric substrate at a location different from the predetermined location on the surface of the power supply patch on the dielectric substrate side, and the surface of the ground conductor opposite to the surface on the dielectric substrate side is connected. The outer conductor is connected to another location different from the predetermined location, and includes a second coaxial line for radiating horizontally polarized radio waves,
A vertical polarization feed point is provided at a connection point between the feed patch and the first coaxial line, and a horizontal polarization feed point is provided at a connection point between the feed patch and the second coaxial line,
An angle formed by a vertical polarization feed axis connecting the vertical polarization feed point and the center of the feed patch and a horizontal polarization feed axis connecting the horizontal polarization feed point and the center of the feed patch is greater than 90 degrees, and The vertical polarization feed axis and the horizontal polarization feed axis are respectively a vertical polarization axis passing through the center of the feed patch and parallel to the vertical polarization, and a horizontal polarization axis passing through the center of the feed patch and parallel to the horizontal polarization. features and to luer antenna device that is not parallel with.
板状の金属導体からなる正方形の給電パッチと、
金属導体からなる地導体と、
上記給電パッチが一面に設けられ、上記地導体が一面とは反対側の他面の全面に設けられた方形の第1の誘電体基板と、
上記給電パッチの中心を通り垂直偏波と平行な垂直偏波軸と垂直に、上記給電パッチと積層方向で重なるように上記地導体に設けられた矩形状の垂直偏波給電用スロットと、
上記給電パッチの中心を通り水平偏波と平行な水平偏波軸と垂直に、上記給電パッチと積層方向で重なるように上記地導体に設けられた矩形状の水平偏波給電用スロットと、
上記地導体の第1の誘電体基板側とは反対側の面に設けられた方形の第2の誘電体基板と、
上記垂直偏波給電用スロットとクロスして上記垂直偏波給電用スロットから上記第2の誘電体基板の第1の辺まで、上記垂直偏波軸と平行に上記第2の誘電体基板の地導体側と は反対側の面に設けられ、垂直偏波の電波を放射するための第1のマイクロストリップ線路と、
上記水平偏波給電用スロットとクロスして上記水平偏波給電用スロットから上記第2の誘電体基板の第2の辺まで、上記水平偏波軸と平行に上記第2の誘電体基板の地導体側とは反対側の面に設けられ、水平偏波の電波を放射するための第2のマイクロストリップ線路とを備え、
上記給電パッチと第1のマイクロストリップ線路とを電磁結合させる上記垂直偏波給電用スロットと第1のマイクロストリップ線路のクロス点に垂直偏波給電点を設けるとともに、上記給電パッチと第2のマイクロストリップ線路とを電磁結合させる上記水平偏波給電用スロットと第2のマイクロストリップ線路のクロス点に水平偏波給電点を設け、
上記垂直偏波給電点と上記給電パッチの中心を結ぶ垂直偏波給電軸と上記水平偏波給電点と上記給電パッチの中心を結ぶ水平偏波給電軸のなす角度が90度よりも小さく、かつ上記垂直偏波給電軸および上記水平偏波給電軸はそれぞれ上記垂直偏波軸および上記水平偏波軸と垂直でない
ことを特徴とするアンテナ装置。
A square power supply patch made of a plate-shaped metal conductor,
A ground conductor made of a metal conductor;
A rectangular first dielectric substrate in which the power supply patch is provided on one surface, and the ground conductor is provided on the entire other surface opposite to the one surface;
A rectangular vertical polarization feed slot provided in the ground conductor so as to overlap the feed patch in the stacking direction perpendicular to the vertical polarization axis parallel to the vertical polarization passing through the center of the feed patch;
A rectangular horizontal polarization feed slot provided in the ground conductor so as to overlap the feed patch in the stacking direction perpendicular to the horizontal polarization axis parallel to the horizontal polarization passing through the center of the feed patch;
A rectangular second dielectric substrate provided on the surface of the ground conductor opposite to the first dielectric substrate;
Crossing the vertical polarization feed slot from the vertical polarization feed slot to the first side of the second dielectric substrate, the ground plane of the second dielectric substrate is parallel to the vertical polarization axis. A first microstrip line provided on a surface opposite to the conductor side for radiating vertically polarized radio waves;
Crossing the horizontal polarization feed slot and extending from the horizontal polarization feed slot to the second side of the second dielectric substrate in parallel with the horizontal polarization axis. A second microstrip line provided on the surface opposite to the conductor side for radiating horizontally polarized radio waves;
A vertical polarization feed point is provided at a cross point between the vertical polarization feed slot for electromagnetically coupling the feed patch and the first microstrip line and the first microstrip line, and the feed patch and the second microstrip line are provided. A horizontal polarization feed point is provided at the cross point of the horizontal polarization feed slot for electromagnetically coupling the strip line to the second microstrip line,
An angle formed by a vertical polarization feed axis connecting the vertical polarization feed point and the center of the feed patch and a horizontal polarization feed axis connecting the horizontal polarization feed point and the center of the feed patch is smaller than 90 degrees, and the vertically polarized feed axis and wherein the to luer antenna device that respectively the horizontal polarization feed axis is not perpendicular to the vertical polarization axis and the horizontal polarization axis.
上記垂直偏波給電用スロットと水平偏波給電用スロットとをそれぞれ上記給電パッチの中心方向へ中心を越える位置まで伸延させ、伸延させた垂直偏波給電用スロットと水平偏波給電用スロットを十文字に重ねあわせることによりクロススロットとした
ことを特徴とする請求項3記載のアンテナ装置。
The vertical polarized wave feeding slot and the horizontal polarized wave feeding slot are extended to a position exceeding the center in the central direction of the feeding patch, and the extended vertical polarized wave feeding slot and horizontal polarized wave feeding slot are cross-shaped. 4. The antenna device according to claim 3, wherein the antenna device is formed into a cross slot by overlapping with each other .
板状の金属導体からなる正方形の給電パッチと、
金属導体からなる地導体と、
上記給電パッチが一面に設けられ、上記地導体が一面とは反対側の他面の全面に設けられた方形の第1の誘電体基板と、
上記給電パッチの誘電体基板側の面の所定箇所に内導体が第1の誘電体基板を貫通して接続され、上記地導体の誘電体基板側の面と反対側の面の所定箇所に外導体が接続され、垂直偏波の電波を放射するための第1の同軸線路と、
上記給電パッチの誘電体基板側の面の上記所定箇所とは異なる別の箇所に内導体が第1の誘電体基板を貫通して接続され、上記地導体の誘電体基板側の面と反対側の面の上記所定箇所とは異なる別の箇所に外導体が接続され、水平偏波の電波を放射するための第2の同軸線路と、
上記給電パッチよりも小さく、中心が上記給電パッチの中心からずれて、上記給電パッチの第1の誘電体基板側とは反対側の面に設けられた方形の第2の誘電体基板と、
上記給電パッチよりも小さく、中心が上記給電パッチの中心からずれて、上記第2の誘電体基板の給電パッチ側とは反対側の面に設けられた方形の無給電パッチとを備え、
上記給電パッチと第1の同軸線路との接続点に垂直偏波給電点を設けるとともに、上記給電パッチと第2の同軸線路との接続点に水平偏波給電点を設け、
上記垂直偏波給電点と上記給電パッチの中心を結ぶ垂直偏波給電軸と上記水平偏波給電点と上記給電パッチの中心を結ぶ水平偏波給電軸のなす角度が90度であり、かつ上記給電パッチの中心を通り垂直偏波と平行な垂直偏波軸および上記給電パッチの中心を通り水平偏波と平行な水平偏波軸は、それぞれ上記垂直偏波給電軸および上記水平偏波給電軸と平行であり、
上記垂直偏波給電点と上記無給電パッチの中心を結ぶ第1の軸と上記水平偏波給電点と上記無給電パッチの中心を結ぶ第2の軸のなす角度が90度よりも大きく、かつ上記第1の軸および上記第2の軸はそれぞれ上記水平偏波軸および上記垂直偏波軸と平行でない
ことを特徴とするアンテナ装置。
A square power supply patch made of a plate-shaped metal conductor,
A ground conductor made of a metal conductor;
A rectangular first dielectric substrate in which the power supply patch is provided on one surface, and the ground conductor is provided on the entire other surface opposite to the one surface;
An inner conductor is connected to a predetermined location on the surface of the power supply patch on the dielectric substrate side through the first dielectric substrate, and is connected to a predetermined location on the surface of the ground conductor opposite to the surface on the dielectric substrate side. A first coaxial line to which a conductor is connected and radiates a vertically polarized radio wave;
The inner conductor penetrates through the first dielectric substrate at a location different from the predetermined location on the surface of the power supply patch on the dielectric substrate side, and is opposite to the surface of the ground conductor on the dielectric substrate side. A second coaxial line for radiating horizontally polarized radio waves, wherein the outer conductor is connected to another location different from the predetermined location on the surface of
A square second dielectric substrate that is smaller than the power supply patch and whose center is shifted from the center of the power supply patch and is provided on a surface opposite to the first dielectric substrate side of the power supply patch;
A square non-feeding patch provided on a surface opposite to the feeding patch side of the second dielectric substrate, the center being smaller than the feeding patch, the center being shifted from the center of the feeding patch,
A vertical polarization feed point is provided at a connection point between the feed patch and the first coaxial line, and a horizontal polarization feed point is provided at a connection point between the feed patch and the second coaxial line,
The angle formed by the vertical polarization feed axis connecting the vertical polarization feed point and the center of the feed patch and the horizontal polarization feed axis connecting the horizontal polarization feed point and the center of the feed patch is 90 degrees, and A vertical polarization axis passing through the center of the feed patch and parallel to the vertical polarization and a horizontal polarization axis passing through the center of the feed patch and parallel to the horizontal polarization are the vertical polarization feed axis and the horizontal polarization feed axis, respectively. Parallel to
An angle formed by a first axis connecting the vertical polarization feeding point and the center of the parasitic patch and a second axis connecting the horizontal polarization feeding point and the center of the parasitic patch is larger than 90 degrees, and the first axis and wherein the to luer antenna device in that the second axis are not respectively parallel to the horizontal polarization axis and the vertical polarization axis.
板状の金属導体からなる正方形の給電パッチと、
金属導体からなる地導体と、
上記給電パッチが一面に設けられ、上記地導体が一面とは反対側の他面の全面に設けられた方形の第2の誘電体基板と、
上記給電パッチの第1の辺から上記第1の誘電体基板の第1の辺まで、上記給電パッチの中心を通り垂直偏波と平行な垂直偏波軸と平行に上記第1の誘電体基板の一面に設けられ、垂直偏波の電波を放射するための第1のマイクロストリップ線路と、
上記給電パッチの第1の辺と直交する第2の辺から上記第1の誘電体基板の第2の辺まで、上記給電パッチの中心を通り水平偏波と平行な水平偏波軸と平行に上記第1の誘電体基板の一面に設けられ、水平偏波の電波を放射するための第2のマイクロストリップ線路と、
上記給電パッチよりも小さく、中心が上記給電パッチの中心からずれて、上記給電パッチの第1の誘電体基板側とは反対側の面に設けられた方形の第2の誘電体基板と、
上記給電パッチよりも小さく、中心が上記給電パッチの中心からずれて、上記第2の誘電体基板の給電パッチ側とは反対側の面に設けられた方形の無給電パッチとを備え、
上記給電パッチと第1のマイクロストリップ線路との接続点に垂直偏波給電点を設けるとともに、上記給電パッチと第2のマイクロストリップ線路との接続点に水平偏波給電点を設け、
上記垂直偏波給電点と上記給電パッチの中心を結ぶ垂直偏波給電軸と上記水平偏波給電点と上記給電パッチの中心を結ぶ水平偏波給電軸のなす角度が90度よりも大きく、かつ上記垂直偏波給電軸および上記水平偏波給電軸はそれぞれ上記垂直偏波軸および上記水平偏波軸と平行でなく、
上記垂直偏波給電点と上記無給電パッチの中心を結ぶ第1の軸と上記水平偏波給電点と上記無給電パッチの中心を結ぶ第2の軸のなす角度が90度よりも大きく、かつ上記第1の軸および上記第2の軸はそれぞれ上記垂直偏波軸および上記水平偏波軸と平行でない
ことを特徴とするアンテナ装置。
A square power supply patch made of a plate-shaped metal conductor,
A ground conductor made of a metal conductor;
A square second dielectric substrate provided with the power supply patch on one side and the ground conductor provided on the entire other side opposite to the one side ;
From the first side of the power supply patch to the first side of the first dielectric substrate, the first dielectric substrate passes through the center of the power supply patch and is parallel to the vertical polarization axis parallel to the vertical polarization. A first microstrip line for radiating vertically polarized radio waves,
From the second side orthogonal to the first side of the power supply patch to the second side of the first dielectric substrate, passing through the center of the power supply patch and parallel to the horizontal polarization axis parallel to the horizontal polarization A second microstrip line provided on one surface of the first dielectric substrate for radiating horizontally polarized radio waves;
A square second dielectric substrate that is smaller than the power supply patch and whose center is shifted from the center of the power supply patch and is provided on a surface opposite to the first dielectric substrate side of the power supply patch;
A square non-feeding patch provided on a surface opposite to the feeding patch side of the second dielectric substrate, the center being smaller than the feeding patch, the center being shifted from the center of the feeding patch,
A vertical polarization feed point is provided at a connection point between the feed patch and the first microstrip line, and a horizontal polarization feed point is provided at a connection point between the feed patch and the second microstrip line,
An angle formed by a vertical polarization feed axis connecting the vertical polarization feed point and the center of the feed patch and a horizontal polarization feed axis connecting the horizontal polarization feed point and the center of the feed patch is greater than 90 degrees, and The vertical polarization feed axis and the horizontal polarization feed axis are not parallel to the vertical polarization axis and the horizontal polarization axis, respectively.
An angle formed by a first axis connecting the vertical polarization feeding point and the center of the parasitic patch and a second axis connecting the horizontal polarization feeding point and the center of the parasitic patch is larger than 90 degrees, and The antenna device, wherein the first axis and the second axis are not parallel to the vertical polarization axis and the horizontal polarization axis, respectively .
板状の金属導体からなる正方形の給電パッチと、
金属導体からなる地導体と、
上記給電パッチが一面に設けられ、上記地導体が一面とは反対側の他面の全面に設けられた方形の誘電体基板と、
上記給電パッチの誘電体基板側の面の所定箇所に内導体が誘電体基板を貫通して接続され、上記地導体の誘電体基板側の面と反対側の面の所定箇所に外導体が接続され、垂直偏波の電波を放射するための第1の同軸線路と、
上記給電パッチの誘電体基板側の面の上記所定箇所とは異なる別の箇所に内導体が誘電体基板を貫通して接続され、上記地導体の誘電体基板側の面と反対側の面の上記所定箇所とは異なる別の箇所に外導体が接続され、水平偏波の電波を放射するための第2の同軸線路と、
上記給電パッチと上記地導体を短絡し金属導体からなる短絡導体とを備え、
上記給電パッチと第1の同軸線路との接続点に垂直偏波給電点を設けるとともに、上記給電パッチと第2の同軸線路との接続点に水平偏波給電点を設け、かつ上記給電パッチと短絡導体との接続点に短絡点を設け、
上記垂直偏波給電点と上記給電パッチの中心を結ぶ垂直偏波給電軸と上記水平偏波給電点と上記給電パッチの中心を結ぶ水平偏波給電軸のなす角度が90度であり、かつ上記垂直偏波給電軸および上記水平偏波給電軸はそれぞれ上記給電パッチの中心を通り垂直偏波と平行な垂直偏波軸および上記給電パッチの中心を通り水平偏波と平行な水平偏波軸と平行であり、
上記垂直偏波給電点と上記短絡点を結ぶ第1の軸と上記水平偏波給電点と上記短絡点を結ぶ第2の軸のなす角度が90度よりも小さく、かつ上記第1の軸および上記第2の軸はそれぞれ上記垂直偏波軸および上記水平偏波軸と平行でない
ことを特徴とするアンテナ装置。
A square power supply patch made of a plate-shaped metal conductor,
A ground conductor made of a metal conductor;
A rectangular dielectric substrate in which the power supply patch is provided on one surface, and the ground conductor is provided on the entire other surface opposite to the one surface;
An inner conductor is connected to a predetermined portion of the surface of the power supply patch on the dielectric substrate side through the dielectric substrate, and an outer conductor is connected to a predetermined portion of the surface of the ground conductor opposite to the surface of the dielectric substrate. A first coaxial line for emitting vertically polarized radio waves;
The inner conductor penetrates through the dielectric substrate at a location different from the predetermined location on the surface of the power supply patch on the dielectric substrate side, and the surface of the ground conductor opposite to the surface on the dielectric substrate side is connected. A second coaxial line for radiating horizontally polarized radio waves, wherein an outer conductor is connected to a different location from the predetermined location;
A short-circuit conductor made of a metal conductor by short-circuiting the power feeding patch and the ground conductor,
A vertical polarization feed point is provided at a connection point between the feed patch and the first coaxial line, a horizontal polarization feed point is provided at a connection point between the feed patch and the second coaxial line, and the feed patch Provide a short-circuit point at the connection point with the short-circuit conductor,
The angle formed by the vertical polarization feed axis connecting the vertical polarization feed point and the center of the feed patch and the horizontal polarization feed axis connecting the horizontal polarization feed point and the center of the feed patch is 90 degrees, and The vertical polarization feed axis and the horizontal polarization feed axis pass through the center of the feed patch and are parallel to the vertical polarization axis and the center of the feed patch and the horizontal polarization axis parallel to the horizontal polarization, respectively. Parallel,
An angle formed by a first axis connecting the vertical polarization feed point and the short-circuit point and a second axis connecting the horizontal polarization feed point and the short-circuit point is smaller than 90 degrees, and the first axis and features and to luer antenna device in that the second axis are not respectively parallel to the vertical polarization axis and the horizontal polarization axis.
上記第1の同軸線路に接続された第1の出力端子と、上記第2の同軸線路に接続された第2の出力端子とを有し、上記第1及び第2の出力端子から上記垂直偏波給電点及び水平偏波給電点に等振幅かつ位相差が+90度あるいは−90度の信号を供給する円偏波発生回路をさらに備えた
ことを特徴とする請求項2記載のアンテナ装置。
A first output terminal connected to the first coaxial line; and a second output terminal connected to the second coaxial line, the vertical offset from the first and second output terminals. 3. The antenna device according to claim 2 , further comprising a circularly polarized wave generating circuit for supplying a signal having an equal amplitude and a phase difference of +90 degrees or -90 degrees to the wave feeding point and the horizontal polarization feeding point .
JP2002024049A 2002-01-31 2002-01-31 Antenna device Expired - Lifetime JP4031253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002024049A JP4031253B2 (en) 2002-01-31 2002-01-31 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002024049A JP4031253B2 (en) 2002-01-31 2002-01-31 Antenna device

Publications (2)

Publication Number Publication Date
JP2003224416A JP2003224416A (en) 2003-08-08
JP4031253B2 true JP4031253B2 (en) 2008-01-09

Family

ID=27746599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002024049A Expired - Lifetime JP4031253B2 (en) 2002-01-31 2002-01-31 Antenna device

Country Status (1)

Country Link
JP (1) JP4031253B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI239681B (en) * 2004-12-22 2005-09-11 Tatung Co Ltd Circularly polarized array antenna
KR101309505B1 (en) 2012-05-21 2013-09-23 쌍신전자통신주식회사 Mimo antenna
JP5639217B2 (en) * 2013-03-29 2014-12-10 電気興業株式会社 Transmit / receive separation antenna device
JP2015092653A (en) * 2013-09-30 2015-05-14 京セラサーキットソリューションズ株式会社 Antenna substrate
JP6962479B2 (en) * 2018-10-12 2021-11-05 株式会社村田製作所 Antenna module and communication device equipped with it
WO2020090838A1 (en) * 2018-11-02 2020-05-07 京セラ株式会社 Antenna, array antenna, wireless communication module, and wireless communication device
JP7328070B2 (en) 2018-11-02 2023-08-16 京セラ株式会社 Antennas, array antennas, wireless communication modules, and wireless communication equipment
JP7122389B2 (en) * 2018-11-02 2022-08-19 京セラ株式会社 Antennas, array antennas, wireless communication modules, and wireless communication equipment
CN112467353B (en) * 2020-11-20 2023-12-08 Oppo广东移动通信有限公司 Antenna device and electronic equipment

Also Published As

Publication number Publication date
JP2003224416A (en) 2003-08-08

Similar Documents

Publication Publication Date Title
US20220045440A1 (en) Integrated filter radiator for a multiband antenna
JP3875592B2 (en) Multi-element array type planar antenna
CN107895846B (en) Circular polarization patch antenna with broadband
US7847747B2 (en) Orientation-independent antenna (ORIAN) with shorts
CN107808998A (en) Multipolarization radiating doublet and antenna
CN207353447U (en) Multipolarization radiating doublet and antenna
JP2003198240A (en) Multi-element array planar antenna
US20240097349A1 (en) Antenna device
JP4031253B2 (en) Antenna device
Zhai et al. Uniplanar millimeter-wave log-periodic dipole array antenna fed by coplanar waveguide
TW478206B (en) Printed microstrip dipole antenna
KR20130096009A (en) Multi band patch antenna
EP2309596B1 (en) Dual-polarization antenna's radiating element
WO2017085871A1 (en) Power feed circuit and antenna device
CN212517535U (en) Microstrip antenna based on double-coupling feed structure
JP5139919B2 (en) Cross dipole antenna
JP4053144B2 (en) Dual-polarized antenna
US6765537B1 (en) Dual uncoupled mode box antenna
KR100962321B1 (en) Micro strip patch type of antena
JP2007142876A (en) Polarization-common patch antenna
JP3813495B2 (en) Antenna device
JP6391886B2 (en) Antenna device
Johnstone et al. A compact cylindrical dielectric resonator antenna for MIMO applications
KR101599526B1 (en) Multi Polarization Dipole Antenna
JPH0126564B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071018

R150 Certificate of patent or registration of utility model

Ref document number: 4031253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term