WO2020090838A1 - Antenna, array antenna, wireless communication module, and wireless communication device - Google Patents

Antenna, array antenna, wireless communication module, and wireless communication device Download PDF

Info

Publication number
WO2020090838A1
WO2020090838A1 PCT/JP2019/042426 JP2019042426W WO2020090838A1 WO 2020090838 A1 WO2020090838 A1 WO 2020090838A1 JP 2019042426 W JP2019042426 W JP 2019042426W WO 2020090838 A1 WO2020090838 A1 WO 2020090838A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
power supply
antenna
supply line
line
Prior art date
Application number
PCT/JP2019/042426
Other languages
French (fr)
Japanese (ja)
Inventor
吉川 博道
信樹 平松
正道 米原
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019148850A external-priority patent/JP7328070B2/en
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US17/290,776 priority Critical patent/US11862878B2/en
Priority to CN201980073047.1A priority patent/CN112997358A/en
Priority to EP19879002.4A priority patent/EP3876344A4/en
Publication of WO2020090838A1 publication Critical patent/WO2020090838A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the present disclosure relates to an antenna, an array antenna, a wireless communication module, and a wireless communication device.
  • An antenna which is an example of a plurality of embodiments of the present disclosure, includes a radiation conductor, a ground conductor, a first feeding line, a second feeding line, a third feeding line, a fourth feeding line, and a first feeding circuit. And a second power supply circuit.
  • the first power supply line is configured to be electromagnetically connected to the radiation conductor.
  • the second power supply line is configured to be electromagnetically connected to the radiation conductor.
  • the third power supply line is configured to be electromagnetically connected to the radiation conductor.
  • the fourth power supply line is configured to be electromagnetically connected to the radiation conductor.
  • the first feeding circuit is configured to feed opposite-phase signals having opposite phases to the first feeding line and the third feeding line.
  • the second feeding circuit is configured to feed opposite-phase signals having opposite phases to the second feeding line and the fourth feeding line.
  • the radiation conductor is configured to be excited in the first direction by power feeding from the first power feeding line and the third power feeding line.
  • the radiation conductor is configured to be excited in the second direction by power feeding from the second power feeding line and the fourth power feeding line.
  • the third power supply line is located on the opposite side of the first power supply line in the first direction when viewed from the center of the radiation conductor.
  • the fourth power supply line is located on the opposite side of the second power supply line in the second direction when viewed from the center of the radiation conductor.
  • An array antenna which is an example of a plurality of embodiments of the present disclosure, includes a plurality of antenna elements that are the above antennas.
  • the plurality of antenna elements are arranged in the first direction.
  • a wireless communication module that is an example of a plurality of embodiments of the present disclosure includes an antenna element that is the above-described antenna and a drive circuit.
  • the drive circuit is configured to be directly or indirectly connected to each of the first power supply circuit and the second power supply circuit.
  • a wireless communication module which is an example of a plurality of embodiments of the present disclosure, includes the array antenna described above and a drive circuit.
  • the drive circuit is configured to be directly or indirectly connected to each of the first power supply circuit and the second power supply circuit.
  • a wireless communication device that is an example of a plurality of embodiments of the present disclosure includes the above-described wireless communication module and a battery.
  • the battery is configured to drive the drive circuit.
  • FIG. 1 is a perspective view showing an embodiment of an antenna.
  • FIG. 2 is a sectional view showing an embodiment of the antenna.
  • FIG. 3 is a block diagram showing an embodiment of the antenna.
  • FIG. 4 is a plan view showing an embodiment of the radiation conductor.
  • FIG. 5 is a perspective view showing an embodiment of the antenna.
  • FIG. 6 is a cross-sectional view of the antenna taken along the line L1-L1 shown in FIG.
  • FIG. 7 is a perspective view in which a part of the antenna shown in FIG. 5 is disassembled.
  • FIG. 8 is a block diagram of the antenna shown in FIG.
  • FIG. 9 is a plan view illustrating the configuration of the radiation conductor shown in FIG.
  • FIG. 10 is a plan view showing an embodiment of the antenna.
  • FIG. 9 is a plan view illustrating the configuration of the radiation conductor shown in FIG.
  • FIG. 10 is a plan view showing an embodiment of the antenna.
  • FIG. 11 is a perspective view in which a part of the antenna shown in FIG. 10 is disassembled.
  • FIG. 12 is a perspective view showing an embodiment of the antenna.
  • FIG. 13 is a perspective view in which a part of the circuit board shown in FIG. 12 is disassembled.
  • FIG. 14 is a cross-sectional view of the circuit board taken along line L2-L2 shown in FIG.
  • FIG. 15 is a plan view illustrating the configuration of the radiation conductor shown in FIG.
  • FIG. 16 is a plan view showing an embodiment of the array antenna.
  • FIG. 17 is a plan view showing an embodiment of the wireless communication module.
  • FIG. 18 is a plan view showing an embodiment of the wireless communication device.
  • FIG. 19 is a plan view showing an embodiment of a wireless communication system.
  • the structure of the antenna becomes large.
  • the present disclosure relates to providing a new antenna, an array antenna, a wireless communication module, and a wireless communication device.
  • a new antenna, array antenna, wireless communication module, and wireless communication device can be provided.
  • the antenna 10 includes a base body 20, a radiation conductor 30, a ground conductor 40, a power supply line 50, and a circuit board 60.
  • the base body 20 contacts the radiation conductor 30, the ground conductor 40, and the power supply line 50.
  • the radiation conductor 30, the ground conductor 40, and the feed line 50 are configured to function as the antenna element 11.
  • the antenna 10 oscillates at a predetermined resonance frequency and radiates an electromagnetic wave.
  • the base body 20 may include either a ceramic material or a resin material as a composition.
  • Ceramic materials include aluminum oxide sintered bodies, aluminum nitride sintered bodies, mullite sintered bodies, glass ceramic sintered bodies, crystallized glass obtained by precipitating crystal components in a glass base material, and mica or titanic acid. It includes a microcrystalline sintered body such as aluminum.
  • the resin material includes a material obtained by curing an uncured material such as an epoxy resin, a polyester resin, a polyimide resin, a polyamideimide resin, a polyetherimide resin, and a liquid crystal polymer.
  • the radiation conductor 30 and the ground conductor 40 may include any of a metal material, an alloy of a metal material, a cured product of a metal paste, and a conductive polymer as a composition.
  • the radiating conductor 30 and the ground conductor 40 may all include the same material.
  • the radiating conductor 30 and the ground conductor 40 may all include different materials. Any combination of radiating conductor 30 and ground conductor 40 may include the same material.
  • the metal material includes copper, silver, palladium, gold, platinum, aluminum, chromium, nickel, cadmium lead, selenium, manganese, tin, vanadium, lithium, cobalt, titanium, and the like.
  • the alloy includes a plurality of metallic materials.
  • the metal paste agent includes a powder of a metal material kneaded together with an organic solvent and a binder.
  • the binder includes epoxy resin, polyester resin, polyimide resin, polyamideimide resin, and polyetherimide resin.
  • Conductive polymers include polythiophene-based polymers, polyacetylene-based polymers, polyaniline-based polymers, polypyrrole-based polymers, and the like.
  • the radiation conductor 30 is configured to function as a resonator.
  • the radiation conductor 30 may be configured as a patch type resonator.
  • the radiation conductor 30 is located on the base body 20.
  • the radiation conductor 30 is located at the end of the base body 20 in the z direction.
  • the radiating conductor 30 may be located within the substrate 20.
  • a part of the radiation conductor 30 may be located inside the base body 20.
  • the other part of the radiation conductor 30 may be located outside the base body 20.
  • a part of the surface of the radiation conductor 30 may face the outside of the base body 20.
  • the radiation conductor 30 extends along the first plane.
  • the ends of the radiation conductor 30 are along the first direction and the second direction.
  • the first direction is shown as the y direction.
  • the second direction (third axis) is shown as the x direction.
  • the first direction is orthogonal to the second direction.
  • the first direction does not have to be orthogonal to the second direction.
  • the first direction may intersect with the second direction.
  • the third direction (second axis) is shown as the z direction.
  • the third direction is orthogonal to the first direction and the second direction.
  • the third direction does not have to be orthogonal to the first direction and the second direction.
  • the third direction may intersect with the first direction and the second direction.
  • the first plane is shown as an xy plane.
  • the second plane is shown as the yz plane.
  • the third plane is shown as the zx plane.
  • These planes are planes in the coordinate space and do not indicate a specific surface (plate) or a specific surface (surface).
  • the area (surface integral) in the xy plane may be referred to as the first area.
  • the area on the yz plane may be referred to as the second area.
  • the area in the zx plane may be referred to as the third area. Area (surface integral) is counted in units such as square meters.
  • the length in the x direction may be simply referred to as “length”.
  • the length in the y direction may be simply referred to as “width”.
  • the length in the z direction may be simply referred to as “height”.
  • the radiation conductor 30 includes a center O.
  • the center O is the center of the radiation conductor 30 in both the x direction and the y direction.
  • the radiation conductor 30 may include a first symmetry axis S1 extending along the xy plane.
  • the first axis of symmetry S1 passes through the center O and extends in a direction intersecting the x direction and the y direction.
  • the first symmetry axis S1 may extend along a direction inclined by 45 degrees from the positive direction of the y-axis toward the negative direction of the x-axis.
  • the radiation conductor 30 may include a second axis of symmetry S2 extending along the xy plane.
  • the second axis of symmetry S2 passes through the center O and extends in a direction intersecting with the first axis of symmetry S1.
  • the second axis of symmetry S2 may extend along a direction inclined by 45 degrees from the positive direction of the y-axis toward the positive direction of the x-axis.
  • the radiation conductor 30 may be one-half the size of the operating wavelength.
  • the operating wavelength is the wavelength of the electromagnetic wave at the operating frequency of the antenna 10.
  • the operating wavelength may be the same as the wavelength of the resonance frequency of the antenna 10.
  • the operating wavelength may be different than the wavelength of the resonant frequency of the antenna 10.
  • the length of the radiation conductor 30 in the x direction and the length of the radiation conductor 30 in the y direction may be one half of the operating wavelength.
  • the ground conductor 40 may be configured to function as the ground in the antenna element 11. In one example of embodiments, the ground conductor 40 extends along the xy plane. As shown in FIG. 2, the ground conductor 40 faces the radiation conductor 30 in the z direction.
  • the power supply line 50 may be configured to supply an electric signal from the outside to the antenna element 11.
  • the power supply line 50 can be configured to supply an electric signal from the antenna element 11 to the outside.
  • the power supply line 50 may be a through-hole conductor, a via conductor, or the like.
  • the power supply line 50 may include a first power supply line 51, a second power supply line 52, a third power supply line 53, and a fourth power supply line 54, as shown in FIG. 1.
  • Each of the first feeder line 51, the second feeder line 52, the third feeder line 53, and the fourth feeder line 54 is configured to be electrically connected to the radiation conductor 30.
  • each of the first power supply line 51 to the fourth power supply line 54 may be configured to be electromagnetically connected to the radiation conductor 30.
  • electromagtic connection includes electrical connection and magnetic connection.
  • the first feeding line 51, the second feeding line 52, the third feeding line 53, and the fourth feeding line 54 are respectively connected to the radiation conductor 30 at a feeding point 51A and a feeding point 52A. , Feeding point 53A, and feeding point 54A, respectively.
  • Each of the first power supply line 51, the second power supply line 52, the third power supply line 53, and the fourth power supply line 54 contacts different positions of the radiation conductor 30.
  • the ground conductor 40 has a plurality of openings 40a, as shown in FIG.
  • Each of the first feeder line 51, the second feeder line 52, the third feeder line 53, and the fourth feeder line 54 communicates with the outside via the opening 40a of the ground conductor 40.
  • Each of the first feeder line 51 to the fourth feeder line 54 may extend along the z direction.
  • the first power supply line 51 is configured to at least contribute to the supply of an electric signal to the outside when the radiation conductor 30 resonates in the y direction.
  • the second power supply line 52 is configured to at least contribute to the supply of an electric signal to the outside when the radiation conductor 30 resonates in the x direction.
  • the third feeder 53 is configured to at least contribute to the supply of an electric signal to the outside when the radiation conductor 30 resonates in the y direction.
  • the fourth feeder 54 is configured to at least contribute to the supply of an electric signal to the outside when the radiation conductor 30 resonates in the x direction.
  • the first power supply line 51 and the third power supply line 53, and the second power supply line 52 and the fourth power supply line 54 are configured to excite the radiation conductor 30 in different directions.
  • the first power supply line 51 and the third power supply line 53 are configured to excite the radiation conductor 30 in the y direction.
  • the second feeder line 52 and the fourth feeder line 54 are configured to excite the radiation conductor 30 in the x direction. Since the antenna 10 has the feed line 50, it is possible to reduce the excitation of the radiation conductor 30 to the other side when the radiation conductor 30 is excited to the one side.
  • the first feeding line 51 and the third feeding line 53 are configured to excite the radiation conductor 30 with a differential voltage.
  • the second feeder line 52 and the fourth feeder line 54 are configured to excite the radiation conductor 30 with a differential voltage.
  • the center O may be located between the first power feeding line 51 and the third power feeding line 53.
  • the third power supply line 53 is located on the substantially opposite side to the first power supply line 51 in the y direction when viewed from the center O of the radiation conductor 30.
  • the first distance d1 between the first power supply line 51 and the center O is substantially equal to the third distance d3 between the third power supply line 53 and the center O.
  • the center O may be located between the second power feeding line 52 and the fourth power feeding line 54.
  • the fourth power supply line 54 is located substantially opposite to the second power supply line 52 in the x direction when viewed from the center O of the radiation conductor 30.
  • the second distance d2 between the second power supply line 52 and the center O is substantially equal to the fourth distance d4 between the fourth power supply line 54 and the center O.
  • the second distance d2 may be substantially equal to the first distance d1.
  • the second distance d2 may be different from the first distance d1.
  • the first power supply line 51 and the second power supply line 52 may have symmetry with the first axis of symmetry S1 interposed therebetween.
  • the third feeder line 53 and the fourth feeder line 54 may have symmetry with the first axis of symmetry S1 interposed therebetween.
  • the feeding point 51A and the feeding point 52A may be line-symmetric with respect to the first axis of symmetry S1.
  • the feeding point 53A and the feeding point 54A may be line-symmetric with respect to the first axis of symmetry S1.
  • the first feeder line 51 and the fourth feeder line 54 may have symmetry with respect to the second axis of symmetry S2.
  • the second power supply line 52 and the third power supply line 53 may have symmetry with the second axis of symmetry S2 interposed therebetween.
  • the feeding point 51A and the feeding point 54A may be line-symmetric with respect to the second axis of symmetry S2.
  • the feeding point 52A and the feeding point 53A may be line-symmetric with respect to the second axis of symmetry S2.
  • the direction connecting the first power supply line 51 and the third power supply line 53 is inclined with respect to the y direction.
  • the first power supply line 51 and the third power supply line 53 can excite the radiation conductor 30 also in the x direction.
  • the direction connecting the second power supply line 52 and the fourth power supply line 54 is inclined with respect to the x direction.
  • the second power supply line 52 and the fourth power supply line 54 can excite the radiation conductor 30 also in the y direction.
  • the combination of the first power supply line 51 and the third power supply line 53 and the combination of the second power supply line 52 and the fourth power supply line 54 can excite the radiation conductor 30 in two excitation directions.
  • the antenna 10 excites the radiation conductor 30 in two excitation directions, so that the impedance component in each direction acts on the feeder line 50.
  • the antenna 10 can reduce the impedance at the time of input by canceling the impedance components in each direction. By reducing the impedance at the time of input, the antenna 10 can improve isolation in two polarization directions.
  • the circuit board 60 includes a ground conductor 60A. As shown in FIG. 3, the circuit board 60 includes a first feeding circuit 61 and a second feeding circuit 62. The circuit board 60 may include one of the first feeding circuit 61 and the second feeding circuit 62.
  • the ground conductor 60A includes any conductive material.
  • the ground conductor 60A may include the same material as the radiation conductor 30 and the ground conductor 40, or may include a material different from the radiation conductor 30 and the ground conductor 40. Any combination of ground conductor 60A, radiating conductor 30, and ground conductor 40 may include the same material.
  • the ground conductor 60A may be connected to the ground conductor 140.
  • the ground conductor 60A may be integrated with the ground conductor 140.
  • the first power supply circuit 61 is electrically connected to the first power supply line 51 and the third power supply line 53.
  • the 1st electric power feeding circuit 61 is comprised so that the mutually opposite phase signal may be supplied to the 1st electric power feeding line 51 and the 3rd electric power feeding line 53 in a reverse phase signal.
  • the first power supply signal supplied to the first power supply line 51 has a phase substantially opposite to that of the third power supply signal supplied to the third power supply line 53.
  • the first feeding circuit 61 includes a first inverting circuit 63.
  • the first inverting circuit 63 can output two electric signals whose phases are opposite to each other, based on the inputted one electric signal.
  • the first inverting circuit 63 may be a circuit that inverts the phase of one input electric signal in the resonance frequency band.
  • the first inverting circuit 63 may be a circuit that outputs, from one input electric signal, negative-phase signals whose phases are substantially opposite to each other.
  • the first inverting circuit 63 may be any one of a balun, a power distribution circuit and a delay line (delay line memory).
  • the first inverting circuit 63 may include an inductance element connected to one of the first power supply line 51 and the third power supply line 53 and a capacitance element connected to the other.
  • the second power supply circuit 62 is configured to be electrically connected to the second power supply line 52 and the fourth power supply line 54.
  • the second power feeding circuit 62 is configured to supply a negative phase signal whose phases are substantially opposite to each other to the second power feeding line 52 and the fourth power feeding line 54.
  • the second power supply signal supplied to the second power supply line 52 has a phase substantially opposite to that of the fourth power supply signal supplied to the fourth power supply line 54.
  • the second power feeding circuit 62 includes a second inverting circuit 64.
  • the second inverting circuit 64 can output two electric signals whose phases are opposite to each other, based on the inputted one electric signal.
  • the second inversion circuit 64 may be a circuit that inverts the phase of one input electric signal in the resonance frequency band.
  • the second inverting circuit 64 may be a circuit that outputs, from one input electric signal, negative-phase signals whose phases are substantially opposite to each other.
  • the second inversion circuit 64 may be any one of a balun, a power distribution circuit, and a delay line (delay line memory).
  • the second inverting circuit 64 may include an inductance element connected to one of the second power supply line 52 and the fourth power supply line 54 and a capacitance element connected to the other.
  • the antenna 10 electric signals of opposite phases are fed to the first feeding line 51 and the third feeding line 53.
  • the antenna 10 when the radiation conductor 30 resonates along the y direction, the potential fluctuation near the center O of the radiation conductor 30 becomes small.
  • the antenna 10 is configured to resonate with a node near the center O.
  • electric signals of opposite phases are fed to the second feeding line 52 and the fourth feeding line 54.
  • the antenna 10 when the radiation conductor 30 resonates along the y direction, the potential fluctuation near the center O of the radiation conductor 30 becomes small.
  • FIG. 5 is a perspective view showing an embodiment of the antenna 110.
  • FIG. 6 is a cross-sectional view of the antenna 110 taken along the line L1-L1 shown in FIG.
  • FIG. 7 is an exploded perspective view of a part of the antenna 110 shown in FIG.
  • FIG. 8 is a block diagram of the antenna 110 shown in FIG.
  • FIG. 9 is a plan view illustrating the configuration of the radiation conductor 130 shown in FIG.
  • the antenna 110 includes a base 120, a radiation conductor 130, a ground conductor 140, a first connecting conductor 155, a second connecting conductor 156, a third connecting conductor 157, and a third connecting conductor 157. 4 connection conductors 158 are included.
  • the antenna 110 includes a power supply line 150 and a circuit board 160.
  • the radiation conductor 130, the ground conductor 140, and the feed line 150 function as the antenna element 111.
  • the power supply line 150 includes a first power supply line 151, a second power supply line 152, a third power supply line 153, and a fourth power supply line 154.
  • the number of each of the first connecting conductor 155 to the fourth connecting conductor 158 included in the antenna 110 shown in FIG. 5 is two. However, the number of each of the first connecting conductor 155 to the fourth connecting conductor 158 included in the antenna 110 may be one, or may be three or more.
  • the antenna element 111 is configured to be able to oscillate at a predetermined resonance frequency.
  • the antenna 110 may be configured to radiate an electromagnetic wave when the antenna element 111 oscillates at a predetermined resonance frequency.
  • the antenna 110 may have at least one of the at least one resonance frequency band of the antenna element 111 as an operating frequency.
  • the antenna 110 can radiate an electromagnetic wave having an operating frequency.
  • the wavelength of the operating frequency may be the operating wavelength that is the wavelength of the electromagnetic wave at the operating frequency of the antenna 110.
  • the antenna element 111 exhibits an artificial magnetic wall characteristic (Artificial Magnetic Conductor Character), as described later, with respect to an electromagnetic wave of a predetermined frequency that is incident on a plane substantially parallel to the xy plane of the antenna element 111 from the positive direction of the z axis. ..
  • artificial magnetic wall characteristic means a characteristic of a surface where the phase difference between the incident wave and the reflected wave at the operating frequency is 0 degree. On the surface having the artificial magnetic wall characteristic, the phase difference between the incident wave and the reflected wave is ⁇ 90 degrees to +90 degrees in the operating frequency band.
  • the operating frequency band includes a resonant frequency and an operating frequency that exhibit artificial magnetic wall characteristics.
  • the antenna element 111 Since the antenna element 111 exhibits the above-mentioned artificial magnetic wall characteristic, as shown in FIG. 5, even if the below-described ground conductor 165 of the circuit board 160 is located on the negative side of the z axis of the antenna 110, The radiation efficiency can be maintained.
  • the base body 120 includes the same or similar material as the base body 20 shown in FIG.
  • the base body 120 contacts the radiation conductor 130, the ground conductor 140, and the power supply line 150.
  • the base body 120 may have a shape corresponding to the shape of the radiation conductor 130.
  • the base body 120 may be a substantially square prism.
  • the base body 120 includes an upper surface 121 and a lower surface 122.
  • Each of the upper surface 121 and the lower surface 122 may be each of an upper surface and a bottom surface of the base body 120 that is a substantially square prism.
  • the upper surface 121 and the lower surface 122 may be substantially parallel to the xy plane.
  • Each of the upper surface 121 and the lower surface 122 may have a substantially square shape.
  • One of the two diagonal lines of the upper surface 121 and the lower surface 122 which are substantially square, runs along the x direction.
  • the other diagonal line of the two diagonal lines is along the y direction.
  • the upper surface 121 is located on the positive side of the z-axis than the lower surface 122.
  • the radiation conductor 130 is configured to function as a resonator.
  • the radiation conductor 130 includes the same or similar material as the radiation conductor 30 shown in FIG. As shown in FIG. 6, the radiation conductor 130 may be located on the upper surface 121 of the base body 120.
  • the radiation conductor 130 extends along the xy plane.
  • the radiation conductor 130 is configured to capacitively connect the first connecting conductor 155 to the fourth connecting conductor 158.
  • the radiation conductor 130 is surrounded by the first connecting conductor 155 to the fourth connecting conductor 158 on the xy plane.
  • the radiating conductor 130 can be configured to resonate in the y direction by being supplied with electric signals of mutually opposite phases from the first power feeding line 151 and the third power feeding line 153, for example.
  • the first connecting conductor 155 can be seen from the radiating conductor 130 as an electric wall positioned on the negative side of the y axis
  • the third connecting conductor 157 can be viewed on the positive side of the y axis. It can be seen as an electric wall located at.
  • the positive side of the x axis can be seen as a magnetic wall and the negative side of the x axis can be seen as a magnetic wall from the radiation conductor 130.
  • the radiating conductor 130 When the radiating conductor 130 resonates in the y direction, the radiating conductor 130 is surrounded by the two electric walls and the two magnetic walls, so that the antenna 110 is provided with an xy plane included in the antenna 110 from the positive side of the z axis. It can be configured to exhibit artificial magnetic wall characteristics for electromagnetic waves of a predetermined frequency incident on the.
  • the radiating conductor 130 can be configured to resonate in the x direction by being supplied with electric signals having mutually opposite phases from the second power feeding line 152 and the fourth power feeding line 154, for example.
  • the second connection conductor 156 can be seen from the radiation conductor 130 as an electric wall located on the positive side of the x axis
  • the fourth connection conductor 158 can be viewed on the negative side of the x axis. It can be seen as an electric wall located at.
  • the positive side of the y axis can be seen as a magnetic wall and the negative side of the y axis can be seen as a magnetic wall from the radiation conductor 130.
  • the radiation conductor 130 When the radiation conductor 130 resonates in the x direction, the radiation conductor 130 is surrounded by the two electric walls and the two magnetic walls, so that the antenna 110 is provided with an xy plane included in the antenna 110 from the positive side of the z axis. It can be configured to exhibit artificial magnetic wall characteristics with respect to an electromagnetic wave having a predetermined frequency incident on the.
  • the radiation conductor 130 includes a center O1.
  • the center O1 is the center of the radiation conductor 130 in both the x direction and the y direction.
  • the radiation conductor 130 may include a first axis of symmetry T1 extending along the xy plane.
  • the first axis of symmetry T1 passes through the center O1 and extends in a direction intersecting the x direction and the y direction.
  • the first axis of symmetry T1 may extend along a direction inclined by 45 degrees from the positive direction of the y-axis toward the negative direction of the x-axis.
  • the radiation conductor 130 may include a second axis of symmetry T2 extending along the xy plane.
  • the second axis of symmetry T2 passes through the center O1 and extends in a direction intersecting with the first axis of symmetry T1.
  • the second axis of symmetry T2 may extend along a direction inclined by 45 degrees from the positive direction of the y-axis toward the positive direction of the x-axis.
  • the radiation conductor 130 may be one-half the size of the operating wavelength.
  • the length of the radiation conductor 130 in the x direction and the length of the radiation conductor 130 in the y direction may be one half of the operating wavelength.
  • the radiation conductor 130 includes a first conductor 131, a second conductor 132, a third conductor 133, and a fourth conductor 134.
  • the radiation conductor 130 may further include an inner conductor 135. All of the first conductor 131 to the fourth conductor 134, the inner conductor 135, the ground conductor 140, the first feeding line 151 to the fourth feeding line 154, and the first connecting conductor 155 to the fourth connecting conductor 158 include the same material. Or may include different materials.
  • the first conductor 131 to the fourth conductor 134, the inner conductor 135, the ground conductor 140, the first feeding line 151 to the fourth feeding line 154, and the first connecting conductor 155 to the fourth connecting conductor 158 are the same material in any combination. May be included.
  • Each of the first conductor 131 to the fourth conductor 134 may have, for example, the same shape and a substantially square shape.
  • the two diagonal lines of the substantially square first conductor 131 and the two diagonal lines of the substantially square third conductor 133 are along the x direction and the y direction.
  • the length of the diagonal line of the first conductor 131 along the y direction and the length of the diagonal line of the third conductor 133 along the y direction may be about 1 ⁇ 4 of the operating wavelength.
  • Two diagonal lines of the substantially square second conductor 132 and two diagonal lines of the substantially square fourth conductor 134 are along the x direction and the y direction.
  • the length of the diagonal line of the second conductor 132 along the x direction and the length of the diagonal line of the fourth conductor 134 along the x direction may be about a quarter of the operating wavelength.
  • each of the first conductor 131 to the fourth conductor 134 may be exposed to the outside of the base body 120.
  • a part of each of the first conductor 131 to the fourth conductor 134 may be located in the base body 120.
  • the entirety of each of the first conductor 131 to the fourth conductor 134 may be located in the base body 120.
  • the first conductor 131 to the fourth conductor 134 spread along the upper surface 121 of the base 120.
  • the first conductor 131 to the fourth conductor 134 may be arranged in a square lattice on the upper surface 121.
  • the first conductor 131 and the fourth conductor 134, and the second conductor 132 and the third conductor 133 may be arranged along the first symmetry axis T1.
  • the first conductor 131 and the second conductor 132, and the fourth conductor 134 and the third conductor 133 may be arranged along the second axis of symmetry T2.
  • the two diagonal directions of the square lattice in which the first conductor 131 to the fourth conductor 134 are arranged are along the x direction and the y direction.
  • the diagonal direction along the y direction is referred to as the first diagonal direction.
  • the diagonal direction along the x direction is referred to as the second diagonal direction.
  • the first diagonal direction and the second diagonal direction may intersect at the center O1.
  • the first conductor 131 to the fourth conductor 134 are spaced apart from each other with a predetermined interval.
  • the first conductor 131 and the second conductor 132 are located apart from each other with a space t1.
  • the third conductor 133 and the fourth conductor 134 are located apart from each other with a space t1.
  • the first conductor 131 and the fourth conductor 134 are located apart from each other with a space t2.
  • the second conductor 132 and the third conductor 133 are located apart from each other with a space t2.
  • the first conductor 131 to the fourth conductor 134 are configured to be capacitively connected to each other by being spaced apart from each other by a predetermined distance.
  • the inner conductor 135 faces the first conductors 131 to 134 in the z direction.
  • the inner conductor 135 is located on the negative side of the z-axis with respect to the first conductor 131 to the fourth conductor 134.
  • the inner conductor 135 may be located within the substrate 120, as shown in FIG. However, when the entire first conductor 131 to the fourth conductor 134 are located inside the base body 120, the inner conductor 135 is located on the positive side in the z-axis direction than the first conductor 131 to the fourth conductor 134. You can do it. In this case, at least a part of the inner conductor 135 may be exposed from the upper surface 121 of the base 120.
  • the inner conductor 135 is configured to capacitively connect each of the first conductor 131 to the fourth conductor 134.
  • a part of the base 120 may be located between the inner conductor 135 and the first conductor 131 to the fourth conductor 134. Since a part of the base body 120 is located between the inner conductor 135 and the first conductor 131 to the fourth conductor 134, the inner conductor 135 capacitively connects each of the first conductor 131 to the fourth conductor 134.
  • the area of the inner conductor 135 in the xy plane may be appropriately adjusted in consideration of a desired magnitude of capacitive coupling between the first conductor 131 to the fourth conductor 134 and the inner conductor 135.
  • the distance between the first conductor 131 to the fourth conductor 134 and the inner conductor 135 in the z-direction is determined by considering the magnitude of the desired capacitive coupling between the first conductor 131 to the fourth conductor 134 and the inner conductor 135. Therefore, it may be appropriately adjusted.
  • the inner conductor 135 may be substantially parallel to the xy plane.
  • the inner conductor 135 may have a substantially square shape.
  • the center of the substantially square inner conductor 135 may substantially coincide with the center O1 of the first conductor 131 to the fourth conductor 134.
  • One of the two diagonal lines of the substantially square inner conductor 135 may extend along the first diagonal direction.
  • the other diagonal line of the two diagonal lines of the inner conductor 135 having a substantially square shape may be along the second diagonal direction.
  • Ground conductor 140 includes the same or similar material as ground conductor 40 shown in FIG.
  • the ground conductor 140 may be configured to function as the ground of the antenna element 111. As shown in FIG. 6, the ground conductor 140 may be configured to be connected to the below-described ground conductor 165 of the circuit board 160. In this case, the ground conductor 140 may be integrated with the ground conductor 165 of the circuit board 160.
  • the ground conductor 140 can be a flat conductor.
  • the ground conductor 140 is located on the lower surface 122 of the base 120.
  • the ground conductor 140 extends along the xy plane.
  • the ground conductor 140 faces the radiation conductor 130 in the z direction.
  • the base body 120 is interposed between the ground conductor 140 and the radiation conductor 130.
  • the ground conductor 140 may have a shape corresponding to the shape of the radiation conductor 130.
  • the ground conductor 140 has a substantially square shape corresponding to the radiation conductor 130 having a substantially square shape.
  • the ground conductor 140 may have any shape depending on the radiation conductor 130.
  • the ground conductor 140 includes openings 141, 142, 143, 144. The positions of the openings 141 to 144 on the xy plane may be appropriately adjusted according to the positions of the first feeder line 151 to the fourth feeder line 154 on the xy plane.
  • the power supply line 150 includes the same or similar material as the power supply line 50 shown in FIG.
  • the power supply line 150 may be a through-hole conductor, a via conductor, or the like.
  • the power supply line 150 is configured to be able to supply the electric signal from the antenna element 111 to the external circuit board 160 or the like.
  • the first feeder line 151 to the fourth feeder line 154 are in contact with different positions of the radiation conductor 130.
  • the first power supply line 151 is configured to be electrically connected to the first conductor 131.
  • the second power supply line 152 is configured to be electrically connected to the second conductor 132.
  • the third power supply line 153 is configured to be electrically connected to the third conductor 133.
  • the fourth power supply line 154 is configured to be electrically connected to the fourth conductor 134.
  • each of the first feeder line 151 to the fourth feeder line 154 may be configured to be magnetically connected to each of the first conductor 131 to the fourth conductor 134.
  • the points where the first feeder line 151 to the fourth feeder line 154 are connected to the first conductor 131 to the fourth conductor 134 are also described as the feeding point 151A, the feeding point 152A, the feeding point 153A, and the feeding point 154A. To do.
  • each of the first power supply line 151 to the fourth power supply line 154 communicates with the outside through each of the openings 141 to 144 of the ground conductor 140.
  • Each of the first feeder line 151 to the fourth feeder line 154 may extend along the z direction.
  • the first power supply line 151 and the third power supply line 153 are configured to at least contribute to the supply of an electric signal to the outside when the radiation conductor 130 resonates in the y direction.
  • the second feeder line 152 and the fourth feeder line 154 are configured to at least contribute to the supply of an electric signal to the outside when the radiation conductor 130 resonates in the x direction.
  • the first feeder line 151 and the third feeder line 153, and the second feeder line 152 and the fourth feeder line 154 are configured to excite the radiation conductor 130 in different directions.
  • the first feeder line 151 and the third feeder line 153 are configured to excite the radiation conductor 130 in the y direction.
  • the second feeder line 152 and the fourth feeder line 154 are configured to excite the radiation conductor 130 in the x direction. Since the antenna 110 has the power supply line 150, it is possible to reduce the excitation of the radiation conductor 130 to the other side when the radiation conductor 130 is excited to the one side.
  • the first feeder line 151 and the third feeder line 153 are configured to excite the radiation conductor 130 with a differential voltage.
  • the second feeder line 152 and the fourth feeder line 154 are configured to excite the radiation conductor 130 with a differential voltage.
  • the center O1 of the radiation conductor 130 is located between the first feeder line 151 and the third feeder line 153 in the y direction.
  • the first distance D1 between the first power supply line 151 and the center O1 is substantially equal to the third distance D3 between the third power supply line 153 and the center O1.
  • the center O1 of the radiation conductor 130 is located between the second feeder line 152 and the fourth feeder line 154 in the x direction.
  • the second distance D2 between the second power supply line 152 and the center O1 is substantially equal to the fourth distance D4 between the fourth power supply line 154 and the center O1.
  • the second distance D2 is substantially equal to the first distance D1.
  • the second distance D2 may be different from the first distance D1.
  • the first power supply line 151 and the second power supply line 152 may have symmetry with respect to the first axis of symmetry T1.
  • the third feeder line 153 and the fourth feeder line 154 may have symmetry with the first axis of symmetry T1 interposed therebetween.
  • the feeding point 151A and the feeding point 152A, and the feeding point 153A and the feeding point 154A may be line-symmetric with respect to the first symmetry axis T1.
  • the first power supply line 151 and the fourth power supply line 154 may have symmetry with the second axis of symmetry T2 in between.
  • the second power supply line 152 and the third power supply line 153 may have symmetry with the second axis of symmetry T2 interposed therebetween.
  • the feeding point 151A and the feeding point 154A and the feeding point 152A and the feeding point 153A may be line-symmetric with respect to the second axis of symmetry T2.
  • the direction connecting the first power supply line 151 and the third power supply line 153 is along the y direction.
  • the direction connecting the first power supply line 151 and the third power supply line 153 is along the first diagonal direction.
  • the direction connecting the second power supply line 152 and the fourth power supply line 154 is along the x direction.
  • the direction connecting the second power supply line 152 and the fourth power supply line 154 is along the second diagonal direction.
  • the direction connecting the first power supply line 151 and the third power supply line 153 may be inclined with respect to the first diagonal direction.
  • the direction connecting the second power supply line 152 and the fourth power supply line 154 may be inclined with respect to the second diagonal direction.
  • the circuit board 160 includes a first feeding circuit 61A and a second feeding circuit 62A. As shown in FIG. 6, the circuit board 160 includes a ground conductor 165.
  • the first power supply circuit 61A is configured to be electrically connected to the first power supply line 151 and the third power supply line 153.
  • the first feeding circuit 61A includes a first inverting circuit 63, a first wiring 161, and a third wiring 163.
  • the first inverting circuit 63 may include an inductance element connected to one of the first feeding line 151 and the third feeding line 153 and a capacitance element connected to the other.
  • 61 A of 1st electric power feeding circuits are comprised so that the mutually opposite phase signal may be supplied to the 1st electric power feeding line 151 and the 3rd electric power feeding line 153.
  • electric signals of opposite phases are supplied to the first feeder line 151 and the third feeder line 153.
  • the antenna 110 when the radiation conductor 130 resonates along the y direction, potential fluctuations near the center O1 of the first conductor 131 to the fourth conductor 134 are reduced.
  • the antenna 110 is configured to resonate with the node near the center O1 as a node when the radiation conductor 130 resonates along the y direction.
  • the second power supply circuit 62A is configured to be electrically connected to the second power supply line 152 and the fourth power supply line 154.
  • the second power feeding circuit 62A includes a second inverting circuit 64, a second wiring 162, and a fourth wiring 164.
  • the second inverting circuit 64 may include an inductance element connected to one of the second feeding line 152 and the fourth feeding line 154 and a capacitance element connected to the other.
  • the second power feeding circuit 62A is configured to supply a negative phase signal whose phases are substantially opposite to each other to the second power feeding line 152 and the fourth power feeding line 154. In the antenna 110, electric signals of opposite phases are supplied to the second power supply line 152 and the fourth power supply line 154.
  • the antenna 110 when the radiating conductor 130 resonates along the x direction, the potential fluctuation near the center O1 of the first conductor 131 to the fourth conductor 134 becomes small.
  • the antenna 110 is configured to resonate with the node near the center O1 as a node when the radiation conductor 130 resonates along the x direction.
  • the first wiring 161 to the fourth wiring 164 include any conductive material.
  • the first wiring 161 to the fourth wiring 164 may be formed as a wiring pattern as described later.
  • the first wiring 161 is configured to electrically connect the first inverting circuit 63 and the first power supply line 151.
  • the second wiring 162 is configured to electrically connect the second inverting circuit 64 and the second power supply line 152.
  • the third wiring 163 is configured to electrically connect the first inverting circuit 63 and the third power supply line 153.
  • the fourth wiring 164 is configured to electrically connect the second inverting circuit 64 and the fourth power supply line 154.
  • the wiring length and width of the first wiring 161 and the wiring length and width of the third wiring 163 may be substantially equal. Since the wiring length and width of the first wiring 161 and the wiring length and width of the third wiring 163 are substantially equal to each other, the impedance of the first wiring 161 and the impedance of the third wiring 163 can be substantially equal to each other.
  • the wiring length and width of the second wiring 162 and the wiring length and width of the fourth wiring 164 may be substantially equal. Since the wiring length and width of the second wiring 162 and the wiring length and width of the fourth wiring 164 are substantially equal to each other, the impedance of the second wiring 162 and the impedance of the fourth wiring 164 can be substantially equal to each other.
  • the ground conductor 165 includes any conductive material.
  • the ground conductor 165 may be a conductor layer.
  • the ground conductor 165 is located on the surface located on the positive side of the z-axis of the two surfaces substantially parallel to the xy plane included in the circuit board 160.
  • FIG. 10 is a plan view showing an embodiment of the antenna 210.
  • FIG. 11 is a perspective view in which a part of the antenna 210 shown in FIG. 10 is disassembled.
  • the main difference between the antenna 210 shown in FIG. 10 and the antenna 110 shown in FIG. 5 will be described.
  • the antenna 210 includes a base body 120, a radiation conductor 230, a ground conductor 140, and first to fourth connection conductors 155 to 158.
  • the antenna 210 includes a first feed line 151, a second feed line 152, a third feed line 153, a fourth feed line 154, and a circuit board 160.
  • the radiating conductor 230, the ground conductor 140, the first connecting conductor 155 to the fourth connecting conductor 158, and the feed line 150 are configured to function as the antenna element 211.
  • the radiation conductor 230 includes a first conductor 131 to a fourth conductor 134 and an inner conductor 235.
  • the inner conductor 235 may include the same or similar material as the inner conductor 135 shown in FIG. 7.
  • the inner conductor 235 includes a first branch portion 235a, a second branch portion 235b, a first inner conductor 236, a second inner conductor 237, a third inner conductor 238, and a fourth inner conductor 239. All of the first branch portion 235a, the second branch portion 235b, the first inner conductor 236, the second inner conductor 237, the third inner conductor 238, and the fourth inner conductor 239 may include the same material, or all of them may include the same material. It may include different materials. Any combination of the first branch portion 235a, the second branch portion 235b, the first inner conductor 236, the second inner conductor 237, the third inner conductor 238, and the fourth inner conductor 239 may include the same material.
  • the first inner conductor 236 faces the first conductor 131 in the z direction.
  • the first inner conductor 236 is located away from the first conductor 131 in the z direction.
  • the entire first inner conductor 236 may overlap the first conductor 131 in the xy plane.
  • the area of the first inner conductor 236 in the xy plane may be smaller than the area of the first conductor 131 in the xy plane.
  • the first inner conductor 236 is configured to be capacitively connected to the first conductor 131 by interposing a part of the base 120 between the first inner conductor 236 and the first conductor 131.
  • the position of the first inner conductor 236 on the xy plane may be appropriately adjusted according to the position of the first conductor 131 on the xy plane.
  • the second inner conductor 237 faces the second conductor 132 in the z direction.
  • the second inner conductor 237 is located away from the second conductor 132 in the z direction.
  • the entire second inner conductor 237 may overlap the second conductor 132 in the xy plane.
  • the area of the second inner conductor 237 in the xy plane may be smaller than the area of the second conductor 132 in the xy plane.
  • the second inner conductor 237 is configured to be capacitively connected to the second conductor 132 by interposing a part of the base body 120 with the second conductor 132.
  • the position of the second inner conductor 237 on the xy plane may be appropriately adjusted according to the position of the second conductor 132 on the xy plane.
  • the third inner conductor 238 faces the third conductor 133 in the z direction.
  • the third inner conductor 238 is located away from the third conductor 133 in the z direction.
  • the entire third inner conductor 238 may overlap the third conductor 133 in the xy plane.
  • the area of the third inner conductor 238 in the xy plane may be smaller than the area of the third conductor 133 in the xy plane.
  • the third inner conductor 238 is configured to be capacitively connected to the third conductor 133 by interposing a part of the base 120 between the third inner conductor 238 and the third conductor 133.
  • the position of the third inner conductor 238 on the xy plane may be appropriately adjusted according to the position of the third conductor 133 on the xy plane.
  • the fourth inner conductor 239 faces the fourth conductor 134 in the z direction.
  • the fourth inner conductor 239 is located away from the fourth conductor 134 in the z direction.
  • the entire fourth inner conductor 239 may overlap the fourth conductor 134 in the xy plane.
  • the area of the fourth inner conductor 239 in the xy plane may be smaller than the area of the fourth conductor 134 in the xy plane.
  • the fourth inner conductor 239 is configured to be capacitively connected to the fourth conductor 134 by interposing a part of the base 120 between the fourth inner conductor 239 and the fourth conductor 134.
  • the position of the fourth inner conductor 239 on the xy plane may be appropriately adjusted according to the position of the fourth conductor 134 on the xy plane.
  • Each of the first inner conductor 236 to the fourth inner conductor 239 may have a flat plate shape.
  • Each of the first inner conductor 236 to the fourth inner conductor 239 may be substantially square.
  • each of the first inner conductor 236 to the fourth inner conductor 239 is not limited to a square.
  • each of the first inner conductor 236 to the fourth inner conductor 239 may be circular or elliptical. All of the first inner conductor 236 to the fourth inner conductor 239 may have the same shape, and all the first inner conductor 236 to the fourth inner conductor 239 may have different shapes.
  • the first branch portion 235a is configured to electrically connect the first inner conductor 236 and the third inner conductor 238.
  • One end of the first branch portion 235a is configured to be electrically connected to one of the four corner portions of the first inner conductor 236.
  • the other end of the first branch portion 235a is configured to be electrically connected to one of the four corner portions of the third inner conductor 238.
  • the first branch portion 235a may extend along the direction connecting the first power supply line 151 and the third power supply line 153.
  • the first branch portion 235a may extend along the y direction.
  • the width of the first branch portion 235a in the x direction may be thin enough to maintain mechanical or electrical connection between the first inner conductor 236 and the third inner conductor 238.
  • the second branch portion 235b is configured to electrically connect the second inner conductor 237 and the fourth inner conductor 239.
  • One end of the second branch portion 235b is configured to be electrically connected to one corner of the four corners of the second inner conductor 237.
  • the other end of the second branch portion 235b is configured to be electrically connected to one corner of the four corners of the fourth inner conductor 239.
  • the second branch portion 235b may extend along the direction connecting the second power supply line 152 and the fourth power supply line 154.
  • the second branch portion 235b may extend along the x direction.
  • the width of the second branch portion 235b in the y direction may be thin enough to maintain a mechanical connection or an electrical connection between the second inner conductor 237 and the fourth inner conductor 239.
  • the first branch portion 235a and the second branch portion 235b may intersect near the center O1 of the radiation conductor 230.
  • the first branch portion 235a and the second branch portion 235b may share a part near the center O1.
  • the width of the first branch portion 235a in the x direction and the width of the second branch portion 235b in the y direction may be the same or different.
  • the capacitive coupling between the first inner conductor 236 to the fourth inner conductor 239 and the first conductor 131 to the fourth conductor 134 is the first branch portion 235a and the second branch portion 235b. It may be larger than the capacitive coupling between the first conductor 131 to the fourth conductor 134.
  • the capacitive coupling between the first inner conductor 236 to the fourth inner conductor 239 and the first conductor 131 to the fourth conductor 134 is performed. , Can be dominant.
  • the shift amount between each of the first inner conductor 236 to the fourth inner conductor 239 and each of the first conductor 131 to the fourth conductor 134 in the xy plane can be small. ..
  • By reducing this shift amount it is possible to reduce the probability that the magnitude of capacitive coupling between the inner conductor 235 and the first conductor 131 to the fourth conductor 134 deviates from the designed value.
  • FIG. 12 is a perspective view showing an embodiment of the antenna 310.
  • FIG. 13 is a perspective view in which a part of the circuit board 360 shown in FIG. 12 is disassembled.
  • FIG. 14 is a cross-sectional view of the circuit board 360 taken along line L2-L2 shown in FIG.
  • FIG. 15 is a plan view illustrating the configuration of the radiation conductor 330 shown in FIG.
  • the main differences between the antenna 310 shown in FIG. 12 and the antenna 110 shown in FIG. 5 will be described.
  • the antenna 310 includes a base body 120, a radiation conductor 330, a ground conductor 140, and first to fourth connection conductors 155 to 158.
  • the antenna 310 includes a first power supply line 151, a second power supply line 152, a third power supply line 153, a fourth power supply line 154, and a circuit board 360 (multilayer wiring board). ..
  • the radiating conductor 330, the ground conductor 140, the first connecting conductor 155 to the fourth connecting conductor 158, and the feeding line 150 are configured to function as the antenna element 311.
  • the radiation conductor 330 includes a first conductor 131, a second conductor 132, a third conductor 133, and a fourth conductor 134. As shown in FIG. 15, the radiation conductor 330 includes an inner conductor 135. However, the radiation conductor 330 may include the inner conductor 235 shown in FIG. 11 instead of the inner conductor 135.
  • the first conductor 131 to the fourth conductor 134 are arranged in a square lattice pattern on the upper surface 121 in the same or similar manner to the configuration shown in FIG.
  • the first diagonal direction of the square lattice in which the first conductor 131 to the fourth conductor 134 are arranged is inclined with respect to the y direction.
  • the first diagonal direction tilting with respect to the y direction the first diagonal direction can tilt with respect to the direction connecting the first power feeding line 151 and the third power feeding line 153, for example, the y direction.
  • the first power supply line 151 and the third power supply line 153 Since the direction connecting the first power supply line 151 and the third power supply line 153 is inclined with respect to the first diagonal direction, the first power supply line 151 and the third power supply line 153 excite the radiation conductor 330 also in the x direction.
  • the second diagonal direction of the square lattice in which the first conductor 131 to the fourth conductor 134 are arranged is inclined with respect to the x direction. Since the second diagonal direction is inclined with respect to the x direction, the second diagonal direction can be inclined with respect to the direction connecting the second power feeding line 152 and the fourth power feeding line 154, for example, the x direction.
  • the second power supply line 152 and the fourth power supply line 154 excite the radiation conductor 330 also in the y direction.
  • the combination of the first feeding line 151 and the third feeding line 153 and the combination of the second feeding line 152 and the fourth feeding line 154 can excite the radiation conductor 330 in two excitation directions.
  • the impedance component in each direction acts on the feeder 150.
  • the antenna 310 can reduce the impedance at the time of input by canceling the impedance components in each direction.
  • the antenna 310 can improve the isolation in the two polarization directions.
  • the angle of inclination of the first diagonal direction with respect to the y direction and the angle of inclination of the second diagonal direction with respect to the x direction may be appropriately adjusted in consideration of the desired gain of the antenna 310.
  • one of the two diagonal lines of the substantially square inner conductor 135 may extend along the first diagonal direction.
  • One of the two diagonal lines of the substantially square inner conductor 135 may be inclined with respect to the y direction in the same or similar manner as the first diagonal direction.
  • the other diagonal line of the two diagonal lines of the inner conductor 135 having a substantially square shape may be along the second diagonal direction.
  • the other diagonal of the two diagonals of the inner conductor 135, which is substantially square, may be tilted with respect to the x-direction, the same as or similar to the second diagonal.
  • the circuit board 360 has a structure in which each layer is stacked along the z direction.
  • the stacking direction of the circuit board 360 may correspond to the z direction.
  • the layer located on the side opposite to the antenna 310 is referred to as a lower layer.
  • the layer located on the antenna 310 side is referred to as an upper layer.
  • the circuit board 360 includes a first feeding circuit 61B and a second feeding circuit 62B.
  • the first power feeding circuit 61B includes a first inverting circuit 63A.
  • the second feeding circuit 62B includes a second inverting circuit 64A.
  • the first inversion circuit 63A and the second inversion circuit 64A are baluns.
  • the first inverting circuit 63A may be located away from the center O1 of the radiation conductor 330 along the x direction.
  • a distance connecting the center O1 of the radiation conductor 330 and the first inverting circuit 63A is described as a distance D5.
  • the second inverting circuit 64A may be located away from the center O1 of the radiation conductor 330 along the y direction.
  • a distance connecting the center O1 of the radiation conductor 330 and the second inverting circuit 64A is described as a distance D6. As described below, the distance D5 and the distance D6 may be different.
  • the circuit board 360 includes a first wiring pattern 361 and a dielectric layer 361A, a second wiring pattern 362 and a dielectric layer 362A, a third wiring pattern 363 and a dielectric layer 363A, and a fourth wiring pattern 362.
  • the wiring pattern 364 and the dielectric layer 364A are included.
  • the circuit board 360 includes a ground conductor layer 365, conductor layers 366 and 367, a first layer 368, and a second layer 369.
  • Each of the first wiring pattern 361 to the fourth wiring pattern 364 may be the wiring pattern of each of the first wiring 161 to the fourth wiring 164.
  • the first wiring pattern 361 is configured to electrically connect the first inverting circuit 63A and the first power supply line 151.
  • the second wiring pattern 362 is configured to electrically connect the second inverting circuit 64A and the second power supply line 152.
  • the third wiring pattern 363 is configured to electrically connect the first inverting circuit 63A and the third power supply line 153.
  • the fourth wiring pattern 364 is configured to electrically connect the second inverting circuit 64A and the fourth power supply line 154.
  • Connection points 151B, connection points 152B, connection points 153B, and 154B are points at which the first to fourth power supply lines 151 to 154 are connected to the first to fourth wiring patterns 361 to 364, respectively. Both are also described.
  • the first wiring pattern 361 and the third wiring pattern 363 are located on the first layer 368 shown in FIG.
  • the first wiring pattern 361 and the third wiring pattern 363 may extend along the xy plane in the first layer 368.
  • the first wiring pattern 361 and the third wiring pattern 363 may be line-symmetrical with the direction connecting the center O1 of the radiation conductor 330 and the first inverting circuit 63A as the axis of symmetry. Since the first wiring pattern 361 and the third wiring pattern 363 are line-symmetric, the width and wiring length of the first wiring pattern 361 can be equal to the width and wiring length of the third wiring pattern 363.
  • the wiring length of the first wiring pattern 361 and the wiring length of the third wiring pattern 363 may be longer as the distance D5 shown in FIG. 15 is longer, and may be shorter as the distance D5 is shorter.
  • the second wiring pattern 362 and the fourth wiring pattern 364 are located on the second layer 369 shown in FIG.
  • the second wiring pattern 362 and the fourth wiring pattern 364 may extend along the xy plane in the second layer 369.
  • the second wiring pattern 362 and the fourth wiring pattern 364 may be line-symmetric with respect to the direction connecting the center O1 of the radiation conductor 330 and the second inverting circuit 64A. Since the second wiring pattern 362 and the fourth wiring pattern 364 are line-symmetrical, the width and wiring length of the second wiring pattern 362 can be equal to the width and wiring length of the fourth wiring pattern 364.
  • the wiring length of the second wiring pattern 362 and the wiring length of the fourth wiring pattern 364 may be longer as the distance D6 shown in FIG. 15 is longer, and may be shorter as the distance D6 is shorter.
  • the wiring lengths of the first wiring pattern 361 and the third wiring pattern 363 and the wiring lengths of the second wiring pattern 362 and the fourth wiring pattern 364 may be substantially equal or different.
  • the wiring lengths of the first wiring pattern 361 and the third wiring pattern 363 are substantially equal to the wiring lengths of the second wiring pattern 362 and the fourth wiring pattern 364. sell.
  • the wiring lengths of the first wiring pattern 361 and the third wiring pattern 363 and the wiring lengths of the second wiring pattern 362 and the fourth wiring pattern 364 may be different.
  • the wiring lengths of the first wiring pattern 361 and the third wiring pattern 363 and the wiring lengths of the second wiring pattern 362 and the fourth wiring pattern 364 are adjusted by appropriately adjusting the distance D5 and the distance D6. The relationship between can be adjusted.
  • Each of the dielectric layers 361A to 364A includes any dielectric material.
  • Each of the dielectric layers 361A to 364A surrounds the circumference of each of the first wiring pattern 361 to the fourth wiring pattern 364.
  • Each of the dielectric layers 361A to 364A may have a shape depending on the shape of each of the first wiring pattern 361 to the fourth wiring pattern 364.
  • the dielectric layer 361A and the dielectric layer 363A are located on the first layer 368 in the same or similar to the first wiring pattern 361 and the third wiring pattern 363.
  • the dielectric layer 362A and the dielectric layer 364A are located in the second layer 369 in the same or similar to the second wiring pattern 362 and the fourth wiring pattern 364.
  • Ground conductor layer 365 may include the same or similar material as ground conductor 165 shown in FIG.
  • the ground conductor layer 365 can extend along the xy plane.
  • the ground conductor layer 365 may be the uppermost layer of the circuit board 360.
  • the ground conductor layer 365 faces the ground conductor 140 of the antenna 310.
  • the ground conductor layer 365 and the ground conductor 140 of the antenna 310 may be integrated.
  • Each of the conductor layers 366 and 367 may include the same or similar material as the ground conductor 165 shown in FIG.
  • the conductor layer 366 is a lower layer of the first layer 366.
  • the conductor layer 367 is located between the first layer 368 and the second layer 369.
  • Each of the conductor layers 366 and 367 can extend along the xy plane.
  • Each of the conductor layer 366 and the conductor layer 367 may be configured to be electrically connected to the ground conductor layer 365 via a via or the like.
  • the conductor layer 366 and the conductor layer 377 are configured to shield each of the first wiring pattern 361 and the third wiring pattern 363 in the z direction.
  • the conductor layer 367 and the ground conductor layer 365 are configured to shield each of the second wiring pattern 362 and the fourth wiring pattern 364 in the z direction.
  • the first layer 368 is a lower layer than the second layer 369.
  • the first layer 368 is farther from the radiation conductor 330 than the second layer 369 in the stacking direction of the circuit boards 360, for example, in the z direction.
  • the first layer 368 includes a first wiring pattern 361 and a dielectric layer 361A, a third wiring pattern 363 and a dielectric layer 363A, and a conductor layer 368A.
  • Conductor layer 368A may include the same or similar material as ground conductor 165 shown in FIG.
  • the conductor layer 368A may be configured to be electrically connected to the conductor layer 366 below the first layer 368 and the conductor layer 367 above the first layer 368 by vias or the like.
  • the conductor layer 368A may be configured to fill a portion of the first layer 368 excluding the dielectric layer 361A and the dielectric layer 363A.
  • the conductor layer 368A is configured to shield each of the first wiring pattern 361 and the third wiring pattern 363 in the x direction and the y direction.
  • the second layer 369 includes a second wiring pattern 362 and a dielectric layer 362A, a fourth wiring pattern 364 and a dielectric layer 364A, and a conductor layer 369A.
  • Conductor layer 369A may include the same or similar material as ground conductor 165 shown in FIG.
  • the conductor layer 369A may be configured to be electrically connected to the ground conductor layer 365 that is the upper layer of the second layer 369 and the conductor layer 367 that is the lower layer of the second layer 369 by vias or the like.
  • the conductor layer 369A may be configured to fill a portion of the second layer 369 excluding the dielectric layer 362A and the dielectric layer 364A.
  • the conductor layer 369A is configured to shield each of the second wiring pattern 362 and the fourth wiring pattern 364 in the x direction and the y direction.
  • each of the first power supply line 151 and the third power supply line 153 is configured to be electrically connected to each of the first wiring pattern 361 and the third wiring pattern 363.
  • each of the first wiring pattern 361 and the third wiring pattern 363 is located on the same first layer 368. Since the first wiring pattern 361 and the third wiring pattern 363 are located on the same first layer 368, the positions of the connection points 151B and 153B in the z direction can be substantially equal. Since the positions of the connection point 151B and the connection point 153B in the z direction are substantially equal, the position of the feeding point 151A in the z direction and the position of the feeding point 153A in the z direction can be substantially equal. Therefore, the length of the first power supply line 151 in the z direction and the length of the third power supply line 153 in the z direction can be substantially equal.
  • each of the second power supply line 152 and the fourth power supply line 154 is configured to be electrically connected to each of the second wiring pattern 362 and the fourth wiring pattern 364.
  • each of the second wiring pattern 362 and the fourth wiring pattern 364 is located on the same second layer 369. Since the second wiring pattern 362 and the fourth wiring pattern 364 are located on the same second layer 369, the positions of the connection points 152B and 154B in the z direction can be substantially equal. Since the positions of the connection point 152B and the connection point 154B in the z direction are substantially equal, the position of the feeding point 152A in the z direction and the position of the feeding point 154A in the z direction can be substantially equal. Therefore, the length of the second power supply line 152 in the z direction and the length of the fourth power supply line 154 in the z direction can be substantially equal.
  • the first layer 368 is lower than the second layer 369. Since the first layer 368 is lower than the second layer 369, the connection points 151B and 153B located on the first layer 368 are more z than the connection points 152B and 154B located on the second layer. Located on the negative side of the axis. As shown in FIG. 13, the feed point 151A, the feed point 152A, the feed point 153A, and the feed point 154A can be substantially equal in position in the z direction.
  • the length of the first power supply line 151 in the z direction and the length of the third power supply line 153 in the z direction are greater than the length of the second power supply line 152 in the z direction and the length of the fourth power supply line 154 in the z direction. Can also be long.
  • the resistance value of the first power supply line 151 and the resistance value of the third power supply line 153 may be higher than the resistance value of the second power supply line 152 and the resistance value of the fourth power supply line 154.
  • the resistance value of the first power supply line 151 and the resistance value of the third power supply line 153 are higher than the resistance value of the second power supply line 152 and the resistance value of the fourth power supply line 152, as shown in FIG. , And may be longer than the distance D5. Since the distance D6 is longer than the distance D5, the wiring lengths of the second wiring pattern 362 and the fourth wiring pattern 364 can be longer than the wiring lengths of the first wiring pattern 361 and the third wiring pattern 363. The resistance values of the second wiring pattern 362 and the fourth wiring pattern 364 may be higher than the resistance values of the first wiring pattern 361 and the third wiring pattern 363.
  • the resistance value from the first inverting circuit 63A to each of the feeding point 151A and the feeding point 153A and the resistance value from the second inverting circuit 64A to each of the feeding point 152A and the feeding point 154A are substantially equal. can do.
  • the balun characteristics of each of the first inverting circuit 63A and the second inverting circuit 64A may vary within the allowable error range. In this case, the phase difference between the two electric signals output from the first inverting circuit 63A and the phase difference between the two electric signals output from the second inverting circuit 64A may deviate from 180 °.
  • the degree of interference between the first wiring pattern 361 to the fourth wiring pattern 364 deviates from the 180 ° phase difference between these two electric signals. It may change as compared to the absence.
  • the distance D5 and the distance D6 may be appropriately adjusted in consideration of the desired gain of the antenna 310 in the desired frequency band.
  • the direction connecting the center O1 of the radiation conductor 330 and the first inversion circuit 63A may be inclined with respect to the x direction depending on the phase difference between the two electric signals output from the first inversion circuit 63A.
  • the direction connecting the center O1 of the radiation conductor 330 and the first inverting circuit 63A to the x direction is such that the phase difference between the electric signal at the feeding point 151A and the electric signal at the feeding point 153A is 180 °. You can tilt it.
  • the direction connecting the center O1 of the radiation conductor 330 and the second inverting circuit 64A may be tilted with respect to the y direction depending on the phase difference between the two electric signals output from the second inverting circuit 64A.
  • the direction connecting the center O1 of the radiation conductor 330 and the second inverting circuit 64A to the y direction is such that the phase difference between the electric signal at the feeding point 152A and the electric signal at the feeding point 154A is 180 °. You can tilt it.
  • FIG. 16 is a plan view showing an embodiment of the array antenna 12.
  • the array antenna 12 includes a plurality of antenna elements 11. However, the array antenna 12 may include any one of the antenna element 111 shown in FIG. 5, the antenna element 211 shown in FIG. 10, and the antenna element 311 shown in FIG. 12, instead of the antenna element 11.
  • the antenna elements 11 can be arranged along the y direction.
  • the antenna elements 11 can be arranged in the y direction.
  • the antenna elements 11 can be arranged along the x direction.
  • the antenna elements 11 can be arranged in the x direction.
  • the array antenna 12 includes at least one circuit board 60.
  • the circuit board 60 includes at least one first feeding circuit 61 and at least one second feeding circuit 62.
  • the array antenna 12 includes at least one first feeding circuit 61 and at least one second feeding circuit 62.
  • the first feeding circuit 61 may be configured to be connected to one or more antenna elements 11.
  • the first feeding circuit 61 may be configured to supply the same signal to all the antenna elements 11 when feeding the plurality of antenna elements 11.
  • the first feeding circuit 61 may be configured to supply the same signal to the first feeding line 51 of each antenna element 11 when feeding the plurality of antenna elements 11.
  • the first feeding circuit 61 may be configured to supply signals having different phases to the first feeding line 51 of each antenna element 11 when feeding the plurality of antenna elements 11.
  • the first feeding circuit 61 may be configured to supply the same signal to the third feeding line 53 of each antenna element 11 when feeding the plurality of antenna elements 11.
  • the first feeding circuit 61 may be configured to supply signals having different phases to the third feeding line 53 of each antenna element 11 when feeding the plurality of antenna elements 11.
  • the second feeding circuit 62 can be configured to be connected to one or more antenna elements 11.
  • the second feeding circuit 62 may be configured to supply the same signal to all the antenna elements 11 when feeding the plurality of antenna elements 11.
  • the second feeding circuit 62 may be configured to supply the same signal to the second feeding line 52 of each antenna element 11 when feeding the plurality of antenna elements 11.
  • the second feeding circuit 62 may be configured to supply signals having different phases to the second feeding line 52 of each antenna element 11 when feeding the plurality of antenna elements 11.
  • the second feeding circuit 62 may be configured to supply the same signal to the fourth feeding line 54 of each antenna element 11 when feeding the plurality of antenna elements 11.
  • the second feeding circuit 62 may be configured to supply signals having different phases to the fourth feeding line 54 of each antenna element 11 when feeding the plurality of antenna elements 11.
  • FIG. 17 is a plan view showing an embodiment of the wireless communication module 70.
  • the wireless communication module 70 includes a drive circuit 71.
  • the drive circuit 71 is configured to drive the antenna element 11. However, the drive circuit 71 may be configured to drive any of the antenna element 111 shown in FIG. 5, the antenna element 211 shown in FIG. 10, and the antenna element 311 shown in FIG.
  • the drive circuit 71 is configured to be directly or indirectly connected to each of the first power supply circuit 61 and the second power supply circuit 62.
  • the drive circuit 71 can be configured to supply a transmission signal to at least one of the first power supply circuit 61 and the second power supply circuit 62.
  • the drive circuit 71 can be configured to receive power of the received signal from at least one of the first power supply circuit 61 and the second power supply circuit 62.
  • FIG. 18 is a plan view showing an embodiment of the wireless communication device 80.
  • the wireless communication device 80 may include the wireless communication module 70, a sensor 81, and a battery 82.
  • the sensor 81 performs sensing.
  • the battery 82 is configured to supply power to any of the wireless communication devices 80.
  • the drive circuit 71 can be configured to be driven by the power supply from the battery 82.
  • FIG. 19 is a plan view showing an embodiment of the wireless communication system 90.
  • the wireless communication system 90 includes a wireless communication device 80 and a second wireless communication device 91.
  • the second wireless communication device 91 is configured to wirelessly communicate with the wireless communication device 80.
  • a new antenna 10, 110, 210, 310, array antenna 12, wireless communication module 70, and wireless communication device 80 can be provided.
  • each component can be rearranged so as not to logically contradict each other, and a plurality of components can be combined into one or divided.
  • a patch antenna is adopted as the antenna element 11.
  • the antenna element 11 is not limited to the patch antenna. Other antennas may be used as the antenna element 11.
  • a plurality of antenna elements 11 can be arranged in the same direction in the array antenna 12.
  • two adjacent antenna elements 11 may have different directions. When the orientations of two adjacent antenna elements 11 are different, the antenna elements 11 are excited in the same direction.
  • descriptions such as “first”, “second”, and “third” are examples of identifiers for distinguishing the configuration.
  • the configurations distinguished by the description such as “first” and “second” in the present disclosure can exchange the numbers in the configurations.
  • the first power supply line can exchange the identifiers “first” and “second” with the second power supply line. The exchange of identifiers is done simultaneously. Even after exchanging the identifiers, the configurations are distinguished.
  • the identifier may be deleted.
  • the configuration in which the identifier is deleted is distinguished by the code.
  • the first power supply line 51 can be the power supply line 51.
  • the present disclosure includes a configuration in which the circuit board 60 includes the second power supply circuit 62 but does not include the first power supply circuit 61.

Abstract

The present disclosure provides a novel antenna, array antenna, wireless communication module, and wireless communication device. An antenna as one example of a plurality of embodiments of the present disclosure comprises a radiation conductor, a ground conductor, a first power supply line, a second power supply line, a third power supply line, a fourth power supply line, a first power supply circuit, and a second power supply circuit. Each of the first power supply line through the fourth power supply line is configured to be electromagnetically connected to the radiation conductor. The first power supply circuit is configured to supply mutually opposite anti-phase signals to the first power supply line and the third power supply line. The second power supply circuit is configured to supply mutually opposite anti-phase signals to the second power supply line and the fourth power supply line. The radiation conductor is configured to be excited in a first direction by power being supplied from the first power supply line and the third power supply line. The radiation conductor is configured to be excited in a second direction by power being supplied from the second power supply line and the fourth power supply line.

Description

アンテナ、アレイアンテナ、無線通信モジュール、および無線通信機器Antennas, array antennas, wireless communication modules, and wireless communication devices 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年11月2日に日本国に特許出願された特願2018-207477、および、2019年8月14日に日本国に特許出願された特願2019-148850の優先権を主張するものであり、これら先の出願の開示全体を、ここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2018-207477 filed in Japan on November 2, 2018 and Japanese Patent Application No. 2019-148850 filed in Japan on August 14, 2019. The entire disclosures of these earlier applications are hereby incorporated by reference.
 本開示は、アンテナ、アレイアンテナ、無線通信モジュール、および無線通信機器に関する。 The present disclosure relates to an antenna, an array antenna, a wireless communication module, and a wireless communication device.
 2つのアンテナを近づけると、アイソレーションが確保できなくなる。アンテナのアイソレーションを確保するため、2つのアンテナを離し、且つ、その間に構造体を挿入する技術がある。かかる技術は、例えば特許文献1に記載されている。 ▽ Isolation cannot be secured if the two antennas are brought close to each other. There is a technique of separating two antennas and inserting a structure between them in order to ensure the isolation of the antennas. Such a technique is described in Patent Document 1, for example.
特開2016-105583号公報JP, 2016-105583, A
 本開示の複数の実施形態の一例であるアンテナは、放射導体と、グラウンド導体と、第1給電線と、第2給電線と、第3給電線と、第4給電線と、第1給電回路と、第2給電回路とを含む。前記第1給電線は、前記放射導体に電磁気的に接続されるように構成されている。前記第2給電線は、前記放射導体に電磁気的に接続されるように構成されている。前記第3給電線は、前記放射導体に電磁気的に接続されるように構成されている。前記第4給電線は、前記放射導体に電磁気的に接続されるように構成されている。前記第1給電回路は、前記第1給電線および前記第3給電線に互いに逆相な逆相信号を給電するように構成されている。前記第2給電回路は、前記第2給電線および前記第4給電線に互いに逆相な逆相信号を給電するように構成されている。前記放射導体は、前記第1給電線および前記第3給電線からの給電によって第1方向に励振するように構成されている。前記放射導体は、前記第2給電線および前記第4給電線からの給電によって第2方向に励振するように構成されている。前記第3給電線は、前記放射導体の中心から観て、前記第1方向において前記第1給電線と反対側に位置する。前記第4給電線は、前記放射導体の中心から観て、前記第2方向において前記第2給電線と反対側に位置する。 An antenna, which is an example of a plurality of embodiments of the present disclosure, includes a radiation conductor, a ground conductor, a first feeding line, a second feeding line, a third feeding line, a fourth feeding line, and a first feeding circuit. And a second power supply circuit. The first power supply line is configured to be electromagnetically connected to the radiation conductor. The second power supply line is configured to be electromagnetically connected to the radiation conductor. The third power supply line is configured to be electromagnetically connected to the radiation conductor. The fourth power supply line is configured to be electromagnetically connected to the radiation conductor. The first feeding circuit is configured to feed opposite-phase signals having opposite phases to the first feeding line and the third feeding line. The second feeding circuit is configured to feed opposite-phase signals having opposite phases to the second feeding line and the fourth feeding line. The radiation conductor is configured to be excited in the first direction by power feeding from the first power feeding line and the third power feeding line. The radiation conductor is configured to be excited in the second direction by power feeding from the second power feeding line and the fourth power feeding line. The third power supply line is located on the opposite side of the first power supply line in the first direction when viewed from the center of the radiation conductor. The fourth power supply line is located on the opposite side of the second power supply line in the second direction when viewed from the center of the radiation conductor.
 本開示の複数の実施形態の一例であるアレイアンテナは、上述のアンテナであるアンテナ素子を複数含む。複数のアンテナ素子は、第1方向に配列される。 An array antenna, which is an example of a plurality of embodiments of the present disclosure, includes a plurality of antenna elements that are the above antennas. The plurality of antenna elements are arranged in the first direction.
 本開示の複数の実施形態の一例である無線通信モジュールは、上述のアンテナであるアンテナ素子と、駆動回路とを含む。駆動回路は、第1給電回路および第2給電回路の各々に直接的または間接的に接続されるように構成されている。 A wireless communication module that is an example of a plurality of embodiments of the present disclosure includes an antenna element that is the above-described antenna and a drive circuit. The drive circuit is configured to be directly or indirectly connected to each of the first power supply circuit and the second power supply circuit.
 本開示の複数の実施形態の一例である無線通信モジュールは、上述のアレイアンテナと、駆動回路とを含む。駆動回路は、第1給電回路および第2給電回路の各々に直接的または間接的に接続されるように構成されている。 A wireless communication module, which is an example of a plurality of embodiments of the present disclosure, includes the array antenna described above and a drive circuit. The drive circuit is configured to be directly or indirectly connected to each of the first power supply circuit and the second power supply circuit.
 本開示の複数の実施形態の一例である無線通信機器は、上述の無線通信モジュールと、バッテリとを含む。バッテリは、駆動回路を駆動するように構成されている。 A wireless communication device that is an example of a plurality of embodiments of the present disclosure includes the above-described wireless communication module and a battery. The battery is configured to drive the drive circuit.
図1は、アンテナの一実施形態を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of an antenna. 図2は、アンテナの一実施形態を示す断面図である。FIG. 2 is a sectional view showing an embodiment of the antenna. 図3は、アンテナの一実施形態を示すブロック図である。FIG. 3 is a block diagram showing an embodiment of the antenna. 図4は、放射導体の一実施形態を示す平面図である。FIG. 4 is a plan view showing an embodiment of the radiation conductor. 図5は、アンテナの一実施形態を示す斜視図である。FIG. 5 is a perspective view showing an embodiment of the antenna. 図6は、図5に示すL1-L1線に沿ったアンテナの断面図である。FIG. 6 is a cross-sectional view of the antenna taken along the line L1-L1 shown in FIG. 図7は、図5に示すアンテナの一部を分解した斜視図である。FIG. 7 is a perspective view in which a part of the antenna shown in FIG. 5 is disassembled. 図8は、図5に示すアンテナのブロック図である。FIG. 8 is a block diagram of the antenna shown in FIG. 図9は、図5に示す放射導体の構成を説明する平面図である。FIG. 9 is a plan view illustrating the configuration of the radiation conductor shown in FIG. 図10は、アンテナの一実施形態を示す平面図である。FIG. 10 is a plan view showing an embodiment of the antenna. 図11は、図10に示すアンテナの一部を分解した斜視図である。FIG. 11 is a perspective view in which a part of the antenna shown in FIG. 10 is disassembled. 図12は、アンテナの一実施形態を示す斜視図である。FIG. 12 is a perspective view showing an embodiment of the antenna. 図13は、図12に示す回路基板の一部を分解した斜視図である。FIG. 13 is a perspective view in which a part of the circuit board shown in FIG. 12 is disassembled. 図14は、図13に示すL2-L2線に沿った回路基板の断面図である。FIG. 14 is a cross-sectional view of the circuit board taken along line L2-L2 shown in FIG. 図15は、図12に示す放射導体の構成を説明する平面図である。FIG. 15 is a plan view illustrating the configuration of the radiation conductor shown in FIG. 図16は、アレイアンテナの一実施形態を示す平面図である。FIG. 16 is a plan view showing an embodiment of the array antenna. 図17は、無線通信モジュールの一実施形態を示す平面図である。FIG. 17 is a plan view showing an embodiment of the wireless communication module. 図18は、無線通信機器の一実施形態を示す平面図である。FIG. 18 is a plan view showing an embodiment of the wireless communication device. 図19は、無線通信システムの一実施形態を示す平面図である。FIG. 19 is a plan view showing an embodiment of a wireless communication system.
 従来の技術では、構造体を挿入するため、アンテナの構造が大きくなる。 According to the conventional technology, since the structure is inserted, the structure of the antenna becomes large.
 本開示は、新たなアンテナ、アレイアンテナ、無線通信モジュール、および無線通信機器を提供することに関する。 The present disclosure relates to providing a new antenna, an array antenna, a wireless communication module, and a wireless communication device.
 本開示によれば、新たなアンテナ、アレイアンテナ、無線通信モジュール、および無線通信機器が提供されうる。 According to the present disclosure, a new antenna, array antenna, wireless communication module, and wireless communication device can be provided.
 本開示の複数の実施形態を以下に説明する。各図面において、同じ構成要素には、同じ参照符号を付す。 A plurality of embodiments of the present disclosure will be described below. In each of the drawings, the same constituents are given the same reference numerals.
 図1および図2に示すように、アンテナ10は、基体20と、放射導体30と、グラウンド導体40と、給電線50と、回路基板60とを含む。基体20は、放射導体30、グラウンド導体40、給電線50と接する。放射導体30、グラウンド導体40、および給電線50は、アンテナ素子11として機能するように構成されている。アンテナ10は、所定の共振周波数で発振し、電磁波を放射するように構成されている。 As shown in FIGS. 1 and 2, the antenna 10 includes a base body 20, a radiation conductor 30, a ground conductor 40, a power supply line 50, and a circuit board 60. The base body 20 contacts the radiation conductor 30, the ground conductor 40, and the power supply line 50. The radiation conductor 30, the ground conductor 40, and the feed line 50 are configured to function as the antenna element 11. The antenna 10 oscillates at a predetermined resonance frequency and radiates an electromagnetic wave.
 基体20は、セラミック材料、および樹脂材料のいずれかを組成として含みうる。セラミック材料は、酸化アルミニウム質焼結体、窒化アルミニウム質焼結体、ムライト質焼結体、ガラスセラミック焼結体、ガラス母材中に結晶成分を析出させた結晶化ガラス、および雲母もしくはチタン酸アルミニウム等の微結晶焼結体を含む。樹脂材料は、エポキシ樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、および液晶ポリマー等の未硬化物を硬化させたものを含む。 The base body 20 may include either a ceramic material or a resin material as a composition. Ceramic materials include aluminum oxide sintered bodies, aluminum nitride sintered bodies, mullite sintered bodies, glass ceramic sintered bodies, crystallized glass obtained by precipitating crystal components in a glass base material, and mica or titanic acid. It includes a microcrystalline sintered body such as aluminum. The resin material includes a material obtained by curing an uncured material such as an epoxy resin, a polyester resin, a polyimide resin, a polyamideimide resin, a polyetherimide resin, and a liquid crystal polymer.
 放射導体30およびグラウンド導体40は、金属材料、金属材料の合金、金属ペーストの硬化物、および導電性高分子のいずれかを組成として含みうる。放射導体30およびグラウンド導体40の全てが同じ材料を含んでよい。放射導体30およびグラウンド導体40の全てが異なる材料を含んでよい。放射導体30およびグラウンド導体40のいずれかの組合せが同じ材料を含んでよい。金属材料は、銅、銀、パラジウム、金、白金、アルミニウム、クロム、ニッケル、カドミウム鉛、セレン、マンガン、錫、バナジウム、リチウム、コバルト、およびチタン等を含む。合金は、複数の金属材料を含む。金属ペースト剤は、金属材料の粉末を有機溶剤、およびバインダとともに混練したものを含む。バインダは、エポキシ樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂を含む。導電性ポリマーは、ポリチオフェン系ポリマー、ポリアセチレン系ポリマー、ポリアニリン系ポリマー、ポリピロール系ポリマー等を含む。 The radiation conductor 30 and the ground conductor 40 may include any of a metal material, an alloy of a metal material, a cured product of a metal paste, and a conductive polymer as a composition. The radiating conductor 30 and the ground conductor 40 may all include the same material. The radiating conductor 30 and the ground conductor 40 may all include different materials. Any combination of radiating conductor 30 and ground conductor 40 may include the same material. The metal material includes copper, silver, palladium, gold, platinum, aluminum, chromium, nickel, cadmium lead, selenium, manganese, tin, vanadium, lithium, cobalt, titanium, and the like. The alloy includes a plurality of metallic materials. The metal paste agent includes a powder of a metal material kneaded together with an organic solvent and a binder. The binder includes epoxy resin, polyester resin, polyimide resin, polyamideimide resin, and polyetherimide resin. Conductive polymers include polythiophene-based polymers, polyacetylene-based polymers, polyaniline-based polymers, polypyrrole-based polymers, and the like.
 放射導体30は、共振器として機能するように構成されている。放射導体30は、パッチ型の共振器として構成されうる。一例において、放射導体30は、基体20の上に位置する。一例において、放射導体30は、z方向において、基体20の端に位置する。一例において、放射導体30は、基体20の中に位置しうる。放射導体30の一部は、基体20の内に位置しうる。放射導体30の他の一部は、基体20の外に位置しうる。放射導体30の一部の面は、基体20の外に面しうる。 The radiation conductor 30 is configured to function as a resonator. The radiation conductor 30 may be configured as a patch type resonator. In one example, the radiation conductor 30 is located on the base body 20. In one example, the radiation conductor 30 is located at the end of the base body 20 in the z direction. In one example, the radiating conductor 30 may be located within the substrate 20. A part of the radiation conductor 30 may be located inside the base body 20. The other part of the radiation conductor 30 may be located outside the base body 20. A part of the surface of the radiation conductor 30 may face the outside of the base body 20.
 複数の実施形態の一例において、放射導体30は、第1平面に沿って広がる。放射導体30の端は、第1方向および第2方向に沿っている。本実施形態では、第1方向(first axis)をy方向として示す。本実施形態では、第2方向(third axis)をx方向として示す。本実施形態では、第1方向は、第2方向と直交する。ただし、本開示において、第1方向は、第2方向と直交しなくてよい。本開示において、第1方向は、第2方向と交わればよい。本実施形態では、第3方向(second axis)をz方向として示す。本実施形態では、第3方向は、第1方向および第2方向と直交する。ただし、本開示において、第3方向は、第1方向および第2方向と直交しなくてよい。本開示において、第3方向は、第1方向および第2方向と交わればよい。本実施形態では、第1平面(first plane)を、xy面として示す。本実施形態では、第2平面(second plane)を、yz面として示す。本実施形態では、第3平面(third plane)を、zx面として示す。これら平面は、座標空間(coordinate space)における平面(plane)であって、特定の面(plate)および特定の面(surface)を示すものではない。本開示では、xy平面における面積(surface integral)を第1面積という場合がある。本開示では、yz平面における面積を第2面積という場合がある。本開示では、zx平面における面積を第3面積という場合がある。面積(surface integral)は、平方メートル(square meter)などの単位で数えられる。本開示では、x方向における長さを単に“長さ”という場合がある。本開示では、y方向における長さを単に“幅”という場合がある。本開示では、z方向における長さを単に“高さ"という場合がある。 In one example of the embodiments, the radiation conductor 30 extends along the first plane. The ends of the radiation conductor 30 are along the first direction and the second direction. In the present embodiment, the first direction is shown as the y direction. In the present embodiment, the second direction (third axis) is shown as the x direction. In this embodiment, the first direction is orthogonal to the second direction. However, in the present disclosure, the first direction does not have to be orthogonal to the second direction. In the present disclosure, the first direction may intersect with the second direction. In the present embodiment, the third direction (second axis) is shown as the z direction. In the present embodiment, the third direction is orthogonal to the first direction and the second direction. However, in the present disclosure, the third direction does not have to be orthogonal to the first direction and the second direction. In the present disclosure, the third direction may intersect with the first direction and the second direction. In this embodiment, the first plane is shown as an xy plane. In the present embodiment, the second plane is shown as the yz plane. In the present embodiment, the third plane is shown as the zx plane. These planes are planes in the coordinate space and do not indicate a specific surface (plate) or a specific surface (surface). In the present disclosure, the area (surface integral) in the xy plane may be referred to as the first area. In the present disclosure, the area on the yz plane may be referred to as the second area. In the present disclosure, the area in the zx plane may be referred to as the third area. Area (surface integral) is counted in units such as square meters. In the present disclosure, the length in the x direction may be simply referred to as “length”. In the present disclosure, the length in the y direction may be simply referred to as “width”. In the present disclosure, the length in the z direction may be simply referred to as “height”.
 図4に示すように、放射導体30は、中心Oを含む。中心Oは、放射導体30の、x方向およびy方向の両方の中心である。放射導体30は、xy平面に沿って延びる第1対称軸S1を含みうる。第1対称軸S1は、中心Oを通り、x方向およびy方向に交わる方向に延びている。第1対称軸S1は、y軸の正方向からx軸の負方向に向けて45度傾いた方向に沿って延びてよい。放射導体30は、xy平面に沿って延びる第2対称軸S2を含みうる。第2対称軸S2は、中心Oを通り、第1対称軸S1に交わる方向に延びている。
第2対称軸S2は、y軸の正方向からx軸の正方向に向けて45度傾いた方向に沿って延びてよい。放射導体30は、動作波長の2分の1の大きさであってよい。動作波長は、アンテナ10の動作周波数における電磁波の波長である。動作波長は、アンテナ10の共振周波数の波長と同じであってよい。動作波長は、アンテナ10の共振周波数の波長と異なってよい。例えば、放射導体30のx方向における長さ、および放射導体30のy方向における長さは、動作波長の2分の1であってよい。
As shown in FIG. 4, the radiation conductor 30 includes a center O. The center O is the center of the radiation conductor 30 in both the x direction and the y direction. The radiation conductor 30 may include a first symmetry axis S1 extending along the xy plane. The first axis of symmetry S1 passes through the center O and extends in a direction intersecting the x direction and the y direction. The first symmetry axis S1 may extend along a direction inclined by 45 degrees from the positive direction of the y-axis toward the negative direction of the x-axis. The radiation conductor 30 may include a second axis of symmetry S2 extending along the xy plane. The second axis of symmetry S2 passes through the center O and extends in a direction intersecting with the first axis of symmetry S1.
The second axis of symmetry S2 may extend along a direction inclined by 45 degrees from the positive direction of the y-axis toward the positive direction of the x-axis. The radiation conductor 30 may be one-half the size of the operating wavelength. The operating wavelength is the wavelength of the electromagnetic wave at the operating frequency of the antenna 10. The operating wavelength may be the same as the wavelength of the resonance frequency of the antenna 10. The operating wavelength may be different than the wavelength of the resonant frequency of the antenna 10. For example, the length of the radiation conductor 30 in the x direction and the length of the radiation conductor 30 in the y direction may be one half of the operating wavelength.
 複数の実施形態の一例において、グラウンド導体40は、アンテナ素子11におけるグラウンドとして機能するように構成されうる。複数の実施形態の一例において、グラウンド導体40は、xy平面に沿って広がる。図2に示すように、グラウンド導体40は、z方向において放射導体30と対向している。 In one example of multiple embodiments, the ground conductor 40 may be configured to function as the ground in the antenna element 11. In one example of embodiments, the ground conductor 40 extends along the xy plane. As shown in FIG. 2, the ground conductor 40 faces the radiation conductor 30 in the z direction.
 給電線50は、外部からの電気信号をアンテナ素子11に供給するように構成されうる。給電線50は、アンテナ素子11からの電気信号を外部に供給するように構成されうる。給電線50は、スルーホール導体またはビア導体等であってよい。給電線50は、図1に示すように、第1給電線51と、第2給電線52と、第3給電線53と、第4給電線54とを含みうる。 The power supply line 50 may be configured to supply an electric signal from the outside to the antenna element 11. The power supply line 50 can be configured to supply an electric signal from the antenna element 11 to the outside. The power supply line 50 may be a through-hole conductor, a via conductor, or the like. The power supply line 50 may include a first power supply line 51, a second power supply line 52, a third power supply line 53, and a fourth power supply line 54, as shown in FIG. 1.
 第1給電線51、第2給電線52、第3給電線53、および第4給電線54の各々は、放射導体30に電気的に接続されるように構成されている。ただし、本開示では、第1給電線51~第4給電線54の各々は電磁気的に放射導体30に接続されるように構成されていればよい。本開示において「電磁気的な接続」は、電気的な接続および磁気的な接続を含む。図4に示すように、第1給電線51、第2給電線52、第3給電線53、および第4給電線54が放射導体30に各々接続される箇所は、給電点51A、給電点52A、給電点53A、および給電点54Aとも各々記載する。第1給電線51、第2給電線52、第3給電線53、および第4給電線54の各々は、放射導体30の異なる位置に接する。グラウンド導体40は、図2に示すように、複数の開口40aを有する。第1給電線51、第2給電線52、第3給電線53、および第4給電線54の各々は、グラウンド導体40の開口40aを経由して外部に通じている。第1給電線51~第4給電線54の各々は、z方向に沿って延びてよい。 Each of the first feeder line 51, the second feeder line 52, the third feeder line 53, and the fourth feeder line 54 is configured to be electrically connected to the radiation conductor 30. However, in the present disclosure, each of the first power supply line 51 to the fourth power supply line 54 may be configured to be electromagnetically connected to the radiation conductor 30. In the present disclosure, "electromagnetic connection" includes electrical connection and magnetic connection. As shown in FIG. 4, the first feeding line 51, the second feeding line 52, the third feeding line 53, and the fourth feeding line 54 are respectively connected to the radiation conductor 30 at a feeding point 51A and a feeding point 52A. , Feeding point 53A, and feeding point 54A, respectively. Each of the first power supply line 51, the second power supply line 52, the third power supply line 53, and the fourth power supply line 54 contacts different positions of the radiation conductor 30. The ground conductor 40 has a plurality of openings 40a, as shown in FIG. Each of the first feeder line 51, the second feeder line 52, the third feeder line 53, and the fourth feeder line 54 communicates with the outside via the opening 40a of the ground conductor 40. Each of the first feeder line 51 to the fourth feeder line 54 may extend along the z direction.
 第1給電線51は、放射導体30がy方向に共振した際の電気信号の外部への供給に少なくとも寄与するように構成されている。第2給電線52は、放射導体30がx方向に共振した際の電気信号の外部への供給に少なくとも寄与するように構成されている。第3給電線53は、放射導体30がy方向に共振した際の電気信号の外部への供給に少なくとも寄与するように構成されている。第4給電線54は、放射導体30がx方向に共振した際の電気信号の外部への供給に少なくとも寄与するように構成されている。 The first power supply line 51 is configured to at least contribute to the supply of an electric signal to the outside when the radiation conductor 30 resonates in the y direction. The second power supply line 52 is configured to at least contribute to the supply of an electric signal to the outside when the radiation conductor 30 resonates in the x direction. The third feeder 53 is configured to at least contribute to the supply of an electric signal to the outside when the radiation conductor 30 resonates in the y direction. The fourth feeder 54 is configured to at least contribute to the supply of an electric signal to the outside when the radiation conductor 30 resonates in the x direction.
 第1給電線51および第3給電線53と、第2給電線52および第4給電線54とは、放射導体30を異なる方向に励振させるように構成されている。例えば、第1給電線51および第3給電線53は、放射導体30をy方向に励振させるように構成されている。第2給電線52および第4給電線54は、放射導体30をx方向に励振させるように構成されている。アンテナ10は、かかる給電線50を有することで、放射導体30を一方に励振させる際に放射導体30が他方に励振することを低減することができる。 The first power supply line 51 and the third power supply line 53, and the second power supply line 52 and the fourth power supply line 54 are configured to excite the radiation conductor 30 in different directions. For example, the first power supply line 51 and the third power supply line 53 are configured to excite the radiation conductor 30 in the y direction. The second feeder line 52 and the fourth feeder line 54 are configured to excite the radiation conductor 30 in the x direction. Since the antenna 10 has the feed line 50, it is possible to reduce the excitation of the radiation conductor 30 to the other side when the radiation conductor 30 is excited to the one side.
 第1給電線51と第3給電線53とは、差動電圧で放射導体30を励振させるように構成されている。第2給電線52と第4給電線54とは、差動電圧で放射導体30を励振させるように構成されている。アンテナ10は、差動電圧で放射導体30を励振させることで、放射導体30が励振する際の電位中心の、放射導体30の中心Oからの揺らぎを小さくすることができる。 The first feeding line 51 and the third feeding line 53 are configured to excite the radiation conductor 30 with a differential voltage. The second feeder line 52 and the fourth feeder line 54 are configured to excite the radiation conductor 30 with a differential voltage. By exciting the radiation conductor 30 with a differential voltage, the antenna 10 can reduce fluctuation of the potential center when the radiation conductor 30 is excited from the center O of the radiation conductor 30.
 図4に示すように、放射導体30において、第1給電線51と第3給電線53との間には、中心Oが位置しうる。第3給電線53は、放射導体30の中心Оから観て、y方向において、第1給電線51と略反対側に位置する。第1給電線51と中心Oとの間の第1距離d1は、第3給電線53と中心Oとの間の第3距離d3と略等しい。 As shown in FIG. 4, in the radiation conductor 30, the center O may be located between the first power feeding line 51 and the third power feeding line 53. The third power supply line 53 is located on the substantially opposite side to the first power supply line 51 in the y direction when viewed from the center O of the radiation conductor 30. The first distance d1 between the first power supply line 51 and the center O is substantially equal to the third distance d3 between the third power supply line 53 and the center O.
 図4に示すように、放射導体30において、第2給電線52と第4給電線54との間には、中心Oが位置しうる。第4給電線54は、放射導体30の中心Oから観て、x方向において、第2給電線52と略反対側に位置する。第2給電線52と中心Oとの間の第2距離d2は、第4給電線54と中心Oとの間の第4距離d4と略等しい。第2距離d2は、第1距離d1と略等しくしうる。第2距離d2は、第1距離d1と異なりうる。 As shown in FIG. 4, in the radiation conductor 30, the center O may be located between the second power feeding line 52 and the fourth power feeding line 54. The fourth power supply line 54 is located substantially opposite to the second power supply line 52 in the x direction when viewed from the center O of the radiation conductor 30. The second distance d2 between the second power supply line 52 and the center O is substantially equal to the fourth distance d4 between the fourth power supply line 54 and the center O. The second distance d2 may be substantially equal to the first distance d1. The second distance d2 may be different from the first distance d1.
 第1給電線51および第2給電線52は、第1対称軸S1を挟んで対称性を有してよい。第3給電線53および第4給電線54は、第1対称軸S1を挟んで対称性を有してよい。例えば、給電点51Aと給電点52Aとは、第1対称軸S1を対称軸として線対称であってよい。例えば、給電点53Aと給電点54Aとは、第1対称軸S1を対称軸として線対称であってよい。第1給電線51および第4給電線54は、第2対称軸S2を挟んで対称性を有してよい。第2給電線52および第3給電線53は、第2対称軸S2を挟んで対称性を有してよい。例えば、給電点51Aと給電点54Aとは、第2対称軸S2を対称軸として線対称であってよい。例えば、給電点52Aと給電点53Aとは、第2対称軸S2を対称軸として線対称であってよい。 The first power supply line 51 and the second power supply line 52 may have symmetry with the first axis of symmetry S1 interposed therebetween. The third feeder line 53 and the fourth feeder line 54 may have symmetry with the first axis of symmetry S1 interposed therebetween. For example, the feeding point 51A and the feeding point 52A may be line-symmetric with respect to the first axis of symmetry S1. For example, the feeding point 53A and the feeding point 54A may be line-symmetric with respect to the first axis of symmetry S1. The first feeder line 51 and the fourth feeder line 54 may have symmetry with respect to the second axis of symmetry S2. The second power supply line 52 and the third power supply line 53 may have symmetry with the second axis of symmetry S2 interposed therebetween. For example, the feeding point 51A and the feeding point 54A may be line-symmetric with respect to the second axis of symmetry S2. For example, the feeding point 52A and the feeding point 53A may be line-symmetric with respect to the second axis of symmetry S2.
 第1給電線51と第3給電線53とを結ぶ方向は、y方向に対して傾いている。第1給電線51および第3給電線53がy方向に対して傾いて並ぶことで、第1給電線51および第3給電線53は、放射導体30をx方向にも励振させることができる。第2給電線52と第4給電線54とを結ぶ方向は、x方向に対して傾いている。第2給電線52および第4給電線54がx方向に対して傾いて並ぶことで、第2給電線52および第4給電線54は、放射導体30をy方向にも励振させることができる。第1給電線51および第3給電線53の組み合わせ、ならびに、第2給電線52および第4給電線54の組み合わせは、放射導体30を2つの励振方向に励振させることができる。アンテナ10は、放射導体30を2つの励振方向に励振させることで、各方向のインピーダンス成分が給電線50に作用する。アンテナ10は、各方向のインピーダンス成分の相殺によって、入力時のインピーダンスを小さくしうる。入力時のインピーダンスが小さくなることにより、アンテナ10では、2つの偏波方向のアイソレーションを高めることができる。 The direction connecting the first power supply line 51 and the third power supply line 53 is inclined with respect to the y direction. By arranging the first power supply line 51 and the third power supply line 53 so as to be inclined with respect to the y direction, the first power supply line 51 and the third power supply line 53 can excite the radiation conductor 30 also in the x direction. The direction connecting the second power supply line 52 and the fourth power supply line 54 is inclined with respect to the x direction. By arranging the second power supply line 52 and the fourth power supply line 54 so as to be inclined with respect to the x direction, the second power supply line 52 and the fourth power supply line 54 can excite the radiation conductor 30 also in the y direction. The combination of the first power supply line 51 and the third power supply line 53 and the combination of the second power supply line 52 and the fourth power supply line 54 can excite the radiation conductor 30 in two excitation directions. The antenna 10 excites the radiation conductor 30 in two excitation directions, so that the impedance component in each direction acts on the feeder line 50. The antenna 10 can reduce the impedance at the time of input by canceling the impedance components in each direction. By reducing the impedance at the time of input, the antenna 10 can improve isolation in two polarization directions.
 図2に示すように、回路基板60は、グラウンド導体60Aを含む。図3に示すように、回路基板60は、第1給電回路61と、第2給電回路62とを含む。回路基板60は、第1給電回路61および第2給電回路62のいずれか一方を含んでもよい。 As shown in FIG. 2, the circuit board 60 includes a ground conductor 60A. As shown in FIG. 3, the circuit board 60 includes a first feeding circuit 61 and a second feeding circuit 62. The circuit board 60 may include one of the first feeding circuit 61 and the second feeding circuit 62.
 グラウンド導体60Aは、任意の導電性材料を含む。グラウンド導体60Aは、放射導体30およびグラウンド導体40と同じ材料を含んでよいし、放射導体30およびグラウンド導体40とは異なる材料を含んでよい。グラウンド導体60A、放射導体30、およびグラウンド導体40のいずれかの組合せが同じ材料を含んでよい。グラウンド導体60Aは、グラウンド導体140に接続されていてよい。グラウンド導体60Aは、グラウンド導体140と一体化されていてよい。 The ground conductor 60A includes any conductive material. The ground conductor 60A may include the same material as the radiation conductor 30 and the ground conductor 40, or may include a material different from the radiation conductor 30 and the ground conductor 40. Any combination of ground conductor 60A, radiating conductor 30, and ground conductor 40 may include the same material. The ground conductor 60A may be connected to the ground conductor 140. The ground conductor 60A may be integrated with the ground conductor 140.
 第1給電回路61は、第1給電線51および第3給電線53に電気的に接続されている。第1給電回路61は、互いの位相が略逆相となる逆相信号を第1給電線51および第3給電線53に供給するように構成されている。第1給電線51に供給される第1給電信号は、第3給電線53に供給される第3給電信号と位相が略逆相である。 The first power supply circuit 61 is electrically connected to the first power supply line 51 and the third power supply line 53. The 1st electric power feeding circuit 61 is comprised so that the mutually opposite phase signal may be supplied to the 1st electric power feeding line 51 and the 3rd electric power feeding line 53 in a reverse phase signal. The first power supply signal supplied to the first power supply line 51 has a phase substantially opposite to that of the third power supply signal supplied to the third power supply line 53.
 第1給電回路61は、第1反転回路63を含む。第1反転回路63は、入力された1つの電気信号に基づいて、互いに位相が逆相となる2つの電気信号を出力可能である。第1反転回路63は、共振周波数帯で、入力された1つの電気信号の位相を反転する回路であってよい。第1反転回路63は、入力された1つの電気信号から、互いの位相が略逆相となる逆相信号を出力する回路であってよい。第1反転回路63は、バラン(balun)、ならびに電力分配回路およびディレイライン(delay line memory)のいずれかであってよい。第1反転回路63は、第1給電線51および第3給電線53の一方に接続されているインダクタンス素子と、他方に接続されているキャパシタンス素子とを含みうる。 The first feeding circuit 61 includes a first inverting circuit 63. The first inverting circuit 63 can output two electric signals whose phases are opposite to each other, based on the inputted one electric signal. The first inverting circuit 63 may be a circuit that inverts the phase of one input electric signal in the resonance frequency band. The first inverting circuit 63 may be a circuit that outputs, from one input electric signal, negative-phase signals whose phases are substantially opposite to each other. The first inverting circuit 63 may be any one of a balun, a power distribution circuit and a delay line (delay line memory). The first inverting circuit 63 may include an inductance element connected to one of the first power supply line 51 and the third power supply line 53 and a capacitance element connected to the other.
 第2給電回路62は、第2給電線52および第4給電線54に電気的に接続されるように構成されている。第2給電回路62は、互いの位相が略逆相となる逆相信号を第2給電線52および第4給電線54に供給するように構成されている。第2給電線52に供給される第2給電信号は、第4給電線54に供給される第4給電信号と位相が略逆相である。 The second power supply circuit 62 is configured to be electrically connected to the second power supply line 52 and the fourth power supply line 54. The second power feeding circuit 62 is configured to supply a negative phase signal whose phases are substantially opposite to each other to the second power feeding line 52 and the fourth power feeding line 54. The second power supply signal supplied to the second power supply line 52 has a phase substantially opposite to that of the fourth power supply signal supplied to the fourth power supply line 54.
 第2給電回路62は、第2反転回路64を含む。第2反転回路64は、入力された1つの電気信号に基づいて、互いに位相が逆相となる2つの電気信号を出力可能である。第2反転回路64は、共振周波数帯で、入力された1つの電気信号の位相を反転する回路であってよい。第2反転回路64は、入力された1つの電気信号から、互いの位相が略逆相となる逆相信号を出力する回路であってよい。第2反転回路64は、バラン(balun)、ならびに電力分配回路およびディレイライン(delay line memory)、のいずれかであってよい。第2反転回路64は、第2給電線52および第4給電線54の一方に接続されているインダクタンス素子と、他方に接続されているキャパシタンス素子とを含みうる。 The second power feeding circuit 62 includes a second inverting circuit 64. The second inverting circuit 64 can output two electric signals whose phases are opposite to each other, based on the inputted one electric signal. The second inversion circuit 64 may be a circuit that inverts the phase of one input electric signal in the resonance frequency band. The second inverting circuit 64 may be a circuit that outputs, from one input electric signal, negative-phase signals whose phases are substantially opposite to each other. The second inversion circuit 64 may be any one of a balun, a power distribution circuit, and a delay line (delay line memory). The second inverting circuit 64 may include an inductance element connected to one of the second power supply line 52 and the fourth power supply line 54 and a capacitance element connected to the other.
 アンテナ10では、第1給電線51および第3給電線53に逆位相の電気信号が給電される。アンテナ10では、放射導体30がy方向に沿って共振する際に、放射導体30の中心O近傍での電位変動が小さくなる。アンテナ10は、中心О近傍を節として共振するように構成されている。アンテナ10では、第2給電線52および第4給電線54に逆位相の電気信号が給電される。アンテナ10では、放射導体30がy方向に沿って共振する際に、放射導体30の中心O近傍での電位変動が小さくなる。 In the antenna 10, electric signals of opposite phases are fed to the first feeding line 51 and the third feeding line 53. In the antenna 10, when the radiation conductor 30 resonates along the y direction, the potential fluctuation near the center O of the radiation conductor 30 becomes small. The antenna 10 is configured to resonate with a node near the center O. In the antenna 10, electric signals of opposite phases are fed to the second feeding line 52 and the fourth feeding line 54. In the antenna 10, when the radiation conductor 30 resonates along the y direction, the potential fluctuation near the center O of the radiation conductor 30 becomes small.
 図5は、アンテナ110の一実施形態を示す斜視図である。図6は、図5に示すL1-L1線に沿ったアンテナ110の断面図である。図7は、図5に示すアンテナ110の一部を分解した斜視図である。図8は、図5に示すアンテナ110のブロック図である。図9は、図5に示す放射導体130の構成を説明する平面図である。 FIG. 5 is a perspective view showing an embodiment of the antenna 110. FIG. 6 is a cross-sectional view of the antenna 110 taken along the line L1-L1 shown in FIG. FIG. 7 is an exploded perspective view of a part of the antenna 110 shown in FIG. FIG. 8 is a block diagram of the antenna 110 shown in FIG. FIG. 9 is a plan view illustrating the configuration of the radiation conductor 130 shown in FIG.
 図5および図6に示すように、アンテナ110は、基体120と、放射導体130と、グラウンド導体140と、第1接続導体155と、第2接続導体156と、第3接続導体157と、第4接続導体158とを含む。アンテナ110は、給電線150と、回路基板160とを含む。放射導体130、グラウンド導体140、および給電線150は、アンテナ素子111として機能する。給電線150は、第1給電線151と、第2給電線152と、第3給電線153と、第4給電線154とを含む。図5に示すアンテナ110が含む第1接続導体155~第4接続導体158の各々の数は、2つである。ただし、アンテナ110が含む第1接続導体155~第4接続導体158の各々の数は、1つであってよいし、3つ以上であってよい。 As shown in FIGS. 5 and 6, the antenna 110 includes a base 120, a radiation conductor 130, a ground conductor 140, a first connecting conductor 155, a second connecting conductor 156, a third connecting conductor 157, and a third connecting conductor 157. 4 connection conductors 158 are included. The antenna 110 includes a power supply line 150 and a circuit board 160. The radiation conductor 130, the ground conductor 140, and the feed line 150 function as the antenna element 111. The power supply line 150 includes a first power supply line 151, a second power supply line 152, a third power supply line 153, and a fourth power supply line 154. The number of each of the first connecting conductor 155 to the fourth connecting conductor 158 included in the antenna 110 shown in FIG. 5 is two. However, the number of each of the first connecting conductor 155 to the fourth connecting conductor 158 included in the antenna 110 may be one, or may be three or more.
 アンテナ素子111は、所定の共振周波数で発振可能に構成されている。アンテナ素子111が所定の共振周波数で発振することにより、アンテナ110は、電磁波を放射するように構成されうる。アンテナ110は、アンテナ素子111の少なくとも1つの共振周波数帯のうちの少なくとも1つを動作周波数としうる。アンテナ110は、動作周波数の電磁波を放射しうる。動作周波数の波長は、アンテナ110の動作周波数における電磁波の波長である動作波長となりうる。 The antenna element 111 is configured to be able to oscillate at a predetermined resonance frequency. The antenna 110 may be configured to radiate an electromagnetic wave when the antenna element 111 oscillates at a predetermined resonance frequency. The antenna 110 may have at least one of the at least one resonance frequency band of the antenna element 111 as an operating frequency. The antenna 110 can radiate an electromagnetic wave having an operating frequency. The wavelength of the operating frequency may be the operating wavelength that is the wavelength of the electromagnetic wave at the operating frequency of the antenna 110.
 アンテナ素子111は、z軸の正方向からアンテナ素子111のxy平面に略平行な面に入射する所定周波数の電磁波に対して、後述のように、人工磁気壁特性(Artificial Magnetic Conductor Character)を示す。本開示において「人工磁気壁特性」は、動作周波数における入射波と反射波との位相差が0度となる面の特性を意味する。人工磁気壁特性を有する面では、動作周波数帯において、入射波と反射波の位相差が-90度~+90度となる。動作周波数帯は、人工磁気壁特性を示す共振周波数と動作周波数とを含む。 The antenna element 111 exhibits an artificial magnetic wall characteristic (Artificial Magnetic Conductor Character), as described later, with respect to an electromagnetic wave of a predetermined frequency that is incident on a plane substantially parallel to the xy plane of the antenna element 111 from the positive direction of the z axis. .. In the present disclosure, “artificial magnetic wall characteristic” means a characteristic of a surface where the phase difference between the incident wave and the reflected wave at the operating frequency is 0 degree. On the surface having the artificial magnetic wall characteristic, the phase difference between the incident wave and the reflected wave is −90 degrees to +90 degrees in the operating frequency band. The operating frequency band includes a resonant frequency and an operating frequency that exhibit artificial magnetic wall characteristics.
 アンテナ素子111が上述の人工磁気壁特性を示すことにより、図5に示すように、アンテナ110のz軸の負方向側に回路基板160の後述のグラウンド導体165を位置させても、アンテナ110の放射効率が維持されうる。 Since the antenna element 111 exhibits the above-mentioned artificial magnetic wall characteristic, as shown in FIG. 5, even if the below-described ground conductor 165 of the circuit board 160 is located on the negative side of the z axis of the antenna 110, The radiation efficiency can be maintained.
 基体120は、図1に示す基体20と同じまたは類似の材料を含む。基体120は、放射導体130、グラウンド導体140、および給電線150と接する。基体120は、放射導体130の形状に応じた形状であってよい。基体120は、略正四角柱であってよい。基体120は、上面121および下面122を含む。上面121および下面122の各々は、略正四角柱である基体120の上面および底面の各々でありうる。上面121および下面122は、xy平面に略平行でありうる。上面121および下面122の各々は、略正方形でありうる。略正方形である上面121および下面122の2つの対角線のうちの一方の対角線は、x方向に沿う。当該2つの対角線のうちの他方の対角線は、y方向に沿う。上面121は、下面122よりも、z軸の正方向側に位置する。 The base body 120 includes the same or similar material as the base body 20 shown in FIG. The base body 120 contacts the radiation conductor 130, the ground conductor 140, and the power supply line 150. The base body 120 may have a shape corresponding to the shape of the radiation conductor 130. The base body 120 may be a substantially square prism. The base body 120 includes an upper surface 121 and a lower surface 122. Each of the upper surface 121 and the lower surface 122 may be each of an upper surface and a bottom surface of the base body 120 that is a substantially square prism. The upper surface 121 and the lower surface 122 may be substantially parallel to the xy plane. Each of the upper surface 121 and the lower surface 122 may have a substantially square shape. One of the two diagonal lines of the upper surface 121 and the lower surface 122, which are substantially square, runs along the x direction. The other diagonal line of the two diagonal lines is along the y direction. The upper surface 121 is located on the positive side of the z-axis than the lower surface 122.
 放射導体130は、共振器として機能するように構成されている。放射導体130は、図1に示す放射導体30と同じまたは類似の材料を含む。図6に示すように、放射導体130は、基体120の上面121に位置しうる。放射導体130は、xy平面に沿って広がる。放射導体130は、第1接続導体155~第4接続導体158を容量的に接続するように構成されている。放射導体130は、xy平面において周囲を第1接続導体155~第4接続導体158によって囲まれる。 The radiation conductor 130 is configured to function as a resonator. The radiation conductor 130 includes the same or similar material as the radiation conductor 30 shown in FIG. As shown in FIG. 6, the radiation conductor 130 may be located on the upper surface 121 of the base body 120. The radiation conductor 130 extends along the xy plane. The radiation conductor 130 is configured to capacitively connect the first connecting conductor 155 to the fourth connecting conductor 158. The radiation conductor 130 is surrounded by the first connecting conductor 155 to the fourth connecting conductor 158 on the xy plane.
 放射導体130は、例えば第1給電線151および第3給電線153の各々から互いに逆相の電気信号が供給されることにより、y方向に共振するように構成されうる。放射導体130がy方向に共振する際、放射導体130からは、第1接続導体155がy軸の負方向側に位置する電気壁として観え、第3接続導体157がy軸の正方向側に位置する電気壁として観える。放射導体130がy方向に共振する際、放射導体130からは、x軸の正方向側が磁気壁として観え、x軸の負方向側が磁気壁として観える。放射導体130がy方向に共振する際、放射導体130がこの2つの電気壁と2つの磁気壁とによって囲まれることにより、アンテナ110は、z軸の正方向側からアンテナ110に含まれるxy平面に入射する所定周波数の電磁波に対して人工磁気壁特性を示すように構成されうる。 The radiating conductor 130 can be configured to resonate in the y direction by being supplied with electric signals of mutually opposite phases from the first power feeding line 151 and the third power feeding line 153, for example. When the radiating conductor 130 resonates in the y direction, the first connecting conductor 155 can be seen from the radiating conductor 130 as an electric wall positioned on the negative side of the y axis, and the third connecting conductor 157 can be viewed on the positive side of the y axis. It can be seen as an electric wall located at. When the radiation conductor 130 resonates in the y direction, the positive side of the x axis can be seen as a magnetic wall and the negative side of the x axis can be seen as a magnetic wall from the radiation conductor 130. When the radiating conductor 130 resonates in the y direction, the radiating conductor 130 is surrounded by the two electric walls and the two magnetic walls, so that the antenna 110 is provided with an xy plane included in the antenna 110 from the positive side of the z axis. It can be configured to exhibit artificial magnetic wall characteristics for electromagnetic waves of a predetermined frequency incident on the.
 放射導体130は、例えば第2給電線152および第4給電線154の各々から互いに逆相の電気信号が供給されることにより、x方向に共振するように構成されうる。放射導体130がx方向に共振する際、放射導体130からは、第2接続導体156がx軸の正方向側に位置する電気壁として観え、第4接続導体158がx軸の負方向側に位置する電気壁として観える。放射導体130がx方向に共振する際、放射導体130からは、y軸の正方向側が磁気壁として観え、y軸の負方向側が磁気壁として観える。放射導体130がx方向に共振する際、放射導体130がこの2つの電気壁と2つの磁気壁とによって囲まれることにより、アンテナ110は、z軸の正方向側からアンテナ110に含まれるxy平面に入射する所定周波数の電磁波に対して、人工磁気壁特性を示すように構成されうる。 The radiating conductor 130 can be configured to resonate in the x direction by being supplied with electric signals having mutually opposite phases from the second power feeding line 152 and the fourth power feeding line 154, for example. When the radiation conductor 130 resonates in the x direction, the second connection conductor 156 can be seen from the radiation conductor 130 as an electric wall located on the positive side of the x axis, and the fourth connection conductor 158 can be viewed on the negative side of the x axis. It can be seen as an electric wall located at. When the radiation conductor 130 resonates in the x direction, the positive side of the y axis can be seen as a magnetic wall and the negative side of the y axis can be seen as a magnetic wall from the radiation conductor 130. When the radiation conductor 130 resonates in the x direction, the radiation conductor 130 is surrounded by the two electric walls and the two magnetic walls, so that the antenna 110 is provided with an xy plane included in the antenna 110 from the positive side of the z axis. It can be configured to exhibit artificial magnetic wall characteristics with respect to an electromagnetic wave having a predetermined frequency incident on the.
 図9に示すように、放射導体130は、中心О1を含む。中心O1は、放射導体130の、x方向およびy方向の両方の中心である。放射導体130は、xy平面に沿って延びる第1対称軸T1を含みうる。第1対称軸T1は、中心O1を通り、x方向およびy方向に交わる方向に延びている。第1対称軸T1は、y軸の正方向からx軸の負方向に向けて45度傾いた方向に沿って延びてよい。放射導体130は、xy平面に沿って延びる第2対称軸T2を含みうる。第2対称軸T2は、中心O1を通り、第1対称軸T1に交わる方向に延びている。第2対称軸T2は、y軸の正方向からx軸の正方向に向けて45度傾いた方向に沿って延びてよい。放射導体130は、動作波長の2分の1の大きさであってよい。例えば、放射導体130のx方向における長さ、および放射導体130のy方向における長さは、動作波長の2分の1であってよい。 As shown in FIG. 9, the radiation conductor 130 includes a center O1. The center O1 is the center of the radiation conductor 130 in both the x direction and the y direction. The radiation conductor 130 may include a first axis of symmetry T1 extending along the xy plane. The first axis of symmetry T1 passes through the center O1 and extends in a direction intersecting the x direction and the y direction. The first axis of symmetry T1 may extend along a direction inclined by 45 degrees from the positive direction of the y-axis toward the negative direction of the x-axis. The radiation conductor 130 may include a second axis of symmetry T2 extending along the xy plane. The second axis of symmetry T2 passes through the center O1 and extends in a direction intersecting with the first axis of symmetry T1. The second axis of symmetry T2 may extend along a direction inclined by 45 degrees from the positive direction of the y-axis toward the positive direction of the x-axis. The radiation conductor 130 may be one-half the size of the operating wavelength. For example, the length of the radiation conductor 130 in the x direction and the length of the radiation conductor 130 in the y direction may be one half of the operating wavelength.
 図7に示すように、放射導体130は、第1導体131と、第2導体132と、第3導体133と、第4導体134とを含む。放射導体130は、内導体135をさらに含んでよい。第1導体131~第4導体134、内導体135、グラウンド導体140、第1給電線151~第4給電線154、および第1接続導体155~第4接続導体158の全てが、同じ材料を含んでよいし、または異なる材料を含んでよい。第1導体131~第4導体134、内導体135、グラウンド導体140、第1給電線151~第4給電線154、および第1接続導体155~第4接続導体158のいずれかの組み合わせが同じ材料を含んでよい。 As shown in FIG. 7, the radiation conductor 130 includes a first conductor 131, a second conductor 132, a third conductor 133, and a fourth conductor 134. The radiation conductor 130 may further include an inner conductor 135. All of the first conductor 131 to the fourth conductor 134, the inner conductor 135, the ground conductor 140, the first feeding line 151 to the fourth feeding line 154, and the first connecting conductor 155 to the fourth connecting conductor 158 include the same material. Or may include different materials. The first conductor 131 to the fourth conductor 134, the inner conductor 135, the ground conductor 140, the first feeding line 151 to the fourth feeding line 154, and the first connecting conductor 155 to the fourth connecting conductor 158 are the same material in any combination. May be included.
 第1導体131~第4導体134の各々は、例えば同じ形状の、略正方形であってよい。略正方形である第1導体131の2つの対角線、および、略正方形である第3導体133の2つの対角線は、x方向およびy方向に沿う。第1導体131のy方向に沿う対角線の長さ、および、第3導体133のy方向に沿う対角線の長さは、動作波長の4分の1程度であってよい。略正方形である第2導体132の2つの対角線、および、略正方形である第4導体134の2つの対角線は、x方向およびy方向に沿う。第2導体132のx方向に沿う対角線の長さ、および、第4導体134のx方向に沿う対角線の長さは、動作波長の4分の1程度であってよい。 Each of the first conductor 131 to the fourth conductor 134 may have, for example, the same shape and a substantially square shape. The two diagonal lines of the substantially square first conductor 131 and the two diagonal lines of the substantially square third conductor 133 are along the x direction and the y direction. The length of the diagonal line of the first conductor 131 along the y direction and the length of the diagonal line of the third conductor 133 along the y direction may be about ¼ of the operating wavelength. Two diagonal lines of the substantially square second conductor 132 and two diagonal lines of the substantially square fourth conductor 134 are along the x direction and the y direction. The length of the diagonal line of the second conductor 132 along the x direction and the length of the diagonal line of the fourth conductor 134 along the x direction may be about a quarter of the operating wavelength.
 第1導体131~第4導体134の各々の少なくとも一部は、基体120の外側に露わになってよい。第1導体131~第4導体134の各々の一部は、基体120の中に位置してよい。第1導体131~第4導体134の各々の全体が、基体120の中に位置してよい。 At least a part of each of the first conductor 131 to the fourth conductor 134 may be exposed to the outside of the base body 120. A part of each of the first conductor 131 to the fourth conductor 134 may be located in the base body 120. The entirety of each of the first conductor 131 to the fourth conductor 134 may be located in the base body 120.
 第1導体131~第4導体134は、基体120の上面121に沿って広がる。一例として、第1導体131~第4導体134は、上面121上に、正方格子状に並んでよい。この場合、第1導体131と第4導体134とは、および、第2導体132と第3導体133とは、第1対称軸T1に沿って並んでよい。第1導体131と第2導体132とは、および、第4導体134と第3導体133とは、第2対称軸T2に沿って並んでよい。第1導体131~第4導体134が並ぶ正方格子の2つの対角方向は、x方向おおよびy方向に沿う。当該2つの対角方向のうち、y方向に沿う対角方向は、第1対角方向と記載する。当該2つの対角方向のうちの、x方向に沿う対角方向は、第2対角方向と記載する。第1対角方向と第2対角方向は、中心O1で交わりうる。 The first conductor 131 to the fourth conductor 134 spread along the upper surface 121 of the base 120. As an example, the first conductor 131 to the fourth conductor 134 may be arranged in a square lattice on the upper surface 121. In this case, the first conductor 131 and the fourth conductor 134, and the second conductor 132 and the third conductor 133 may be arranged along the first symmetry axis T1. The first conductor 131 and the second conductor 132, and the fourth conductor 134 and the third conductor 133 may be arranged along the second axis of symmetry T2. The two diagonal directions of the square lattice in which the first conductor 131 to the fourth conductor 134 are arranged are along the x direction and the y direction. Of the two diagonal directions, the diagonal direction along the y direction is referred to as the first diagonal direction. Of the two diagonal directions, the diagonal direction along the x direction is referred to as the second diagonal direction. The first diagonal direction and the second diagonal direction may intersect at the center O1.
 第1導体131~第4導体134は、所定間隔を置いて、互いに離れて位置する。例えば、図5に示すように、第1導体131と第2導体132とは、間隔t1を置いて離れて位置する。第3導体133と第4導体134とは、間隔t1を置いて離れて位置する。第1導体131と第4導体134とは、間隔t2を置いて離れて位置する。第2導体132と第3導体133とは、間隔t2を置いて離れて位置する。第1導体131~第4導体134は、所定間隔を置いて互いに離れて位置することにより、互いに容量的に接続されるように構成されている。 The first conductor 131 to the fourth conductor 134 are spaced apart from each other with a predetermined interval. For example, as shown in FIG. 5, the first conductor 131 and the second conductor 132 are located apart from each other with a space t1. The third conductor 133 and the fourth conductor 134 are located apart from each other with a space t1. The first conductor 131 and the fourth conductor 134 are located apart from each other with a space t2. The second conductor 132 and the third conductor 133 are located apart from each other with a space t2. The first conductor 131 to the fourth conductor 134 are configured to be capacitively connected to each other by being spaced apart from each other by a predetermined distance.
 図7に示すように、内導体135は、z方向において、第1導体131~134と対向している。内導体135は、第1導体131~第4導体134よりも、z軸の負方向側に位置する。内導体135は、図6に示すように、基体120の中に位置しうる。ただし、第1導体131~第4導体134の各々の全体が基体120の中に位置する場合、内導体135は、第1導体131~第4導体134よりも、z軸の正方向側に位置してよい。この場合、内導体135の少なくとも一部は、基体120の上面121から露わになってよい。 As shown in FIG. 7, the inner conductor 135 faces the first conductors 131 to 134 in the z direction. The inner conductor 135 is located on the negative side of the z-axis with respect to the first conductor 131 to the fourth conductor 134. The inner conductor 135 may be located within the substrate 120, as shown in FIG. However, when the entire first conductor 131 to the fourth conductor 134 are located inside the base body 120, the inner conductor 135 is located on the positive side in the z-axis direction than the first conductor 131 to the fourth conductor 134. You can do it. In this case, at least a part of the inner conductor 135 may be exposed from the upper surface 121 of the base 120.
 内導体135は、第1導体131~第4導体134の各々を容量的に接続するように構成されている。例えば、内導体135と第1導体131~第4導体134との間には、基体120の一部が位置しうる。内導体135と第1導体131~第4導体134との間には基体120の一部が位置することにより、内導体135は、第1導体131~第4導体134の各々を容量的に接続するように構成されうる。内導体135のxy平面における面積は、第1導体131~第4導体134と内導体135との間の所望の容量結合の大きさを考慮して、適宜調整されてよい。z方向における第1導体131~第4導体134と内導体135との間の距離は、第1導体131~第4導体134と内導体135との間の所望の容量結合の大きさを考慮して、適宜調整されてよい。 The inner conductor 135 is configured to capacitively connect each of the first conductor 131 to the fourth conductor 134. For example, a part of the base 120 may be located between the inner conductor 135 and the first conductor 131 to the fourth conductor 134. Since a part of the base body 120 is located between the inner conductor 135 and the first conductor 131 to the fourth conductor 134, the inner conductor 135 capacitively connects each of the first conductor 131 to the fourth conductor 134. Can be configured to. The area of the inner conductor 135 in the xy plane may be appropriately adjusted in consideration of a desired magnitude of capacitive coupling between the first conductor 131 to the fourth conductor 134 and the inner conductor 135. The distance between the first conductor 131 to the fourth conductor 134 and the inner conductor 135 in the z-direction is determined by considering the magnitude of the desired capacitive coupling between the first conductor 131 to the fourth conductor 134 and the inner conductor 135. Therefore, it may be appropriately adjusted.
 内導体135は、xy平面に略平行であってよい。内導体135は、略正方形状であってよい。略正方形である内導体135の中心は、第1導体131~第4導体134における中心О1と略一致してよい。略正方形である内導体135の2つの対角線のうちの一方の対角線は、第1対角方向に沿ってよい。略正方形である内導体135の2つの対角線のうちの他方の対角線は、第2対角方向に沿ってよい。 The inner conductor 135 may be substantially parallel to the xy plane. The inner conductor 135 may have a substantially square shape. The center of the substantially square inner conductor 135 may substantially coincide with the center O1 of the first conductor 131 to the fourth conductor 134. One of the two diagonal lines of the substantially square inner conductor 135 may extend along the first diagonal direction. The other diagonal line of the two diagonal lines of the inner conductor 135 having a substantially square shape may be along the second diagonal direction.
 グラウンド導体140は、図2に示すグラウンド導体40と同じまたは類似の材料を含む。グラウンド導体140は、アンテナ素子111のグラウンドとして機能するように構成されうる。図6に示すように、グラウンド導体140は、回路基板160の後述のグラウンド導体165に接続されるように構成されていてよい。この場合、グラウンド導体140は、回路基板160のグラウンド導体165と一体化されていてよい。グラウンド導体140は、平板状の導体となりうる。グラウンド導体140は、基体120の下面122に位置する。 Ground conductor 140 includes the same or similar material as ground conductor 40 shown in FIG. The ground conductor 140 may be configured to function as the ground of the antenna element 111. As shown in FIG. 6, the ground conductor 140 may be configured to be connected to the below-described ground conductor 165 of the circuit board 160. In this case, the ground conductor 140 may be integrated with the ground conductor 165 of the circuit board 160. The ground conductor 140 can be a flat conductor. The ground conductor 140 is located on the lower surface 122 of the base 120.
 図7に示すように、グラウンド導体140は、xy平面に沿って広がる。グラウンド導体140は、z方向において、放射導体130と対向している。グラウンド導体140と放射導体130との間には、基体120が介在する。グラウンド導体140は、放射導体130の形状に応じた形状でありうる。本実施形態では、グラウンド導体140は、略正方形状である放射導体130に応じた、略正方形状である。ただし、グラウンド導体140は、放射導体130に応じて、任意の形状であってよい。グラウンド導体140は、開口141,142,143,144を含む。開口141~144のxy平面における位置は、第1給電線151~第4給電線154のxy平面における位置に応じて、適宜調整されてよい。 As shown in FIG. 7, the ground conductor 140 extends along the xy plane. The ground conductor 140 faces the radiation conductor 130 in the z direction. The base body 120 is interposed between the ground conductor 140 and the radiation conductor 130. The ground conductor 140 may have a shape corresponding to the shape of the radiation conductor 130. In the present embodiment, the ground conductor 140 has a substantially square shape corresponding to the radiation conductor 130 having a substantially square shape. However, the ground conductor 140 may have any shape depending on the radiation conductor 130. The ground conductor 140 includes openings 141, 142, 143, 144. The positions of the openings 141 to 144 on the xy plane may be appropriately adjusted according to the positions of the first feeder line 151 to the fourth feeder line 154 on the xy plane.
 給電線150は、図1に示す給電線50と同じまたは類似の材料を含む。給電線150は、スルーホール導体またはビア導体等であってよい。給電線150は、アンテナ素子111からの電気信号を外部の回路基板160等に供給可能に構成されている。第1給電線151~第4給電線154の各々は、放射導体130の異なる位置に接する。例えば、図5に示すように、第1給電線151は、第1導体131に電気的に接続されるように構成されている。第2給電線152は、第2導体132に電気的に接続されるように構成されている。第3給電線153は、第3導体133に電気的に接続されるように構成されている。第4給電線154は、第4導体134に電気的に接続されるように構成されている。ただし、第1給電線151~第4給電線154の各々は、第1導体131~第4導体134の各々に磁気的に接続されるように構成されてよい。第1給電線151~第4給電線154の各々が第1導体131~第4導体134の各々に接続される箇所は、給電点151A、給電点152A、給電点153A、および給電点154Aとも記載する。図6に示すように、第1給電線151~第4給電線154の各々は、グラウンド導体140の開口141~144の各々を介して外部に通じている。第1給電線151~第4給電線154の各々は、z方向に沿って延びてよい。 The power supply line 150 includes the same or similar material as the power supply line 50 shown in FIG. The power supply line 150 may be a through-hole conductor, a via conductor, or the like. The power supply line 150 is configured to be able to supply the electric signal from the antenna element 111 to the external circuit board 160 or the like. The first feeder line 151 to the fourth feeder line 154 are in contact with different positions of the radiation conductor 130. For example, as shown in FIG. 5, the first power supply line 151 is configured to be electrically connected to the first conductor 131. The second power supply line 152 is configured to be electrically connected to the second conductor 132. The third power supply line 153 is configured to be electrically connected to the third conductor 133. The fourth power supply line 154 is configured to be electrically connected to the fourth conductor 134. However, each of the first feeder line 151 to the fourth feeder line 154 may be configured to be magnetically connected to each of the first conductor 131 to the fourth conductor 134. The points where the first feeder line 151 to the fourth feeder line 154 are connected to the first conductor 131 to the fourth conductor 134 are also described as the feeding point 151A, the feeding point 152A, the feeding point 153A, and the feeding point 154A. To do. As shown in FIG. 6, each of the first power supply line 151 to the fourth power supply line 154 communicates with the outside through each of the openings 141 to 144 of the ground conductor 140. Each of the first feeder line 151 to the fourth feeder line 154 may extend along the z direction.
 第1給電線151および第3給電線153は、放射導体130がy方向に共振した際の電気信号の外部への供給に少なくとも寄与するように構成されている。第2給電線152および第4給電線154は、放射導体130がx方向に共振した際の電気信号の外部への供給に少なくとも寄与するように構成されている。 The first power supply line 151 and the third power supply line 153 are configured to at least contribute to the supply of an electric signal to the outside when the radiation conductor 130 resonates in the y direction. The second feeder line 152 and the fourth feeder line 154 are configured to at least contribute to the supply of an electric signal to the outside when the radiation conductor 130 resonates in the x direction.
 第1給電線151および第3給電線153と、第2給電線152と第4給電線154とは、放射導体130を異なる方向に励振させるように構成されている。例えば、第1給電線151および第3給電線153は、放射導体130をy方向に励振させるように構成されている。第2給電線152および第4給電線154は、放射導体130をx方向に励振させるように構成されている。アンテナ110は、かかる給電線150を有することで、放射導体130を一方に励振させる際に放射導体130が他方に励振することを低減することができる。 The first feeder line 151 and the third feeder line 153, and the second feeder line 152 and the fourth feeder line 154 are configured to excite the radiation conductor 130 in different directions. For example, the first feeder line 151 and the third feeder line 153 are configured to excite the radiation conductor 130 in the y direction. The second feeder line 152 and the fourth feeder line 154 are configured to excite the radiation conductor 130 in the x direction. Since the antenna 110 has the power supply line 150, it is possible to reduce the excitation of the radiation conductor 130 to the other side when the radiation conductor 130 is excited to the one side.
 第1給電線151および第3給電線153は、差動電圧で放射導体130を励振させるように構成されている。第2給電線152および第4給電線154は、差動電圧で放射導体130を励振させるように構成されている。アンテナ110は、差動電圧で放射導体130を励振させることで、放射導体130が励振する際の電位中心の、放射導体130の中心О1からの揺らぎを小さくすることができる。 The first feeder line 151 and the third feeder line 153 are configured to excite the radiation conductor 130 with a differential voltage. The second feeder line 152 and the fourth feeder line 154 are configured to excite the radiation conductor 130 with a differential voltage. By exciting the radiation conductor 130 with a differential voltage, the antenna 110 can reduce fluctuation of the potential center when the radiation conductor 130 is excited from the center O1 of the radiation conductor 130.
 図9に示すように、y方向において、第1給電線151と第3給電線153との間には、放射導体130の中心О1が位置する。第1給電線151と中心О1との間の第1距離D1と、第3給電線153と中心O1との間の第3距離D3とは略等しい。 As shown in FIG. 9, the center O1 of the radiation conductor 130 is located between the first feeder line 151 and the third feeder line 153 in the y direction. The first distance D1 between the first power supply line 151 and the center O1 is substantially equal to the third distance D3 between the third power supply line 153 and the center O1.
 図9に示すように、x方向において、第2給電線152と第4給電線154との間には、放射導体130の中心O1が位置する。第2給電線152と中心O1との間の第2距離D2と、第4給電線154と中心O1との間の第4距離D4とは略等しい。本実施形態では、第2距離D2は、第1距離D1と略等しい。ただし、第2距離D2は、第1距離D1と異なってよい。 As shown in FIG. 9, the center O1 of the radiation conductor 130 is located between the second feeder line 152 and the fourth feeder line 154 in the x direction. The second distance D2 between the second power supply line 152 and the center O1 is substantially equal to the fourth distance D4 between the fourth power supply line 154 and the center O1. In this embodiment, the second distance D2 is substantially equal to the first distance D1. However, the second distance D2 may be different from the first distance D1.
 第1給電線151および第2給電線152は、第1対称軸T1を挟んで対称性を有してよい。第3給電線153および第4給電線154は、第1対称軸T1を挟んで対称性を有してよい。例えば、給電点151Aと給電点152Aとは、および給電点153Aと給電点154Aとは、第1対称軸T1と軸として線対称であってよい。 The first power supply line 151 and the second power supply line 152 may have symmetry with respect to the first axis of symmetry T1. The third feeder line 153 and the fourth feeder line 154 may have symmetry with the first axis of symmetry T1 interposed therebetween. For example, the feeding point 151A and the feeding point 152A, and the feeding point 153A and the feeding point 154A may be line-symmetric with respect to the first symmetry axis T1.
 第1給電線151および第4給電線154は、第2対称軸T2を挟んで対称性を有してよい。第2給電線152および第3給電線153は、第2対称軸T2を挟んで対称性を有してよい。例えば、給電点151Aと給電点154Aとは、および給電点152Aと給電点153Aとは、第2対称軸T2を軸として線対称であってよい。 The first power supply line 151 and the fourth power supply line 154 may have symmetry with the second axis of symmetry T2 in between. The second power supply line 152 and the third power supply line 153 may have symmetry with the second axis of symmetry T2 interposed therebetween. For example, the feeding point 151A and the feeding point 154A and the feeding point 152A and the feeding point 153A may be line-symmetric with respect to the second axis of symmetry T2.
 第1給電線151と第3給電線153とを結ぶ方向は、y方向に沿う。第1給電線151と第3給電線153とを結ぶ方向は、第1対角方向に沿う。第2給電線152と第4給電線154とを結ぶ方向は、x方向に沿う。第2給電線152と第4給電線154とを結ぶ方向は、第2対角方向に沿う。ただし、後述の図15に示すように、第1給電線151と第3給電線153とを結ぶ方向は、第1対角方向に対して傾いていてよい。第2給電線152と第4給電線154とを結ぶ方向は、第2対角方向に対して傾いていてよい。 The direction connecting the first power supply line 151 and the third power supply line 153 is along the y direction. The direction connecting the first power supply line 151 and the third power supply line 153 is along the first diagonal direction. The direction connecting the second power supply line 152 and the fourth power supply line 154 is along the x direction. The direction connecting the second power supply line 152 and the fourth power supply line 154 is along the second diagonal direction. However, as shown in FIG. 15 described later, the direction connecting the first power supply line 151 and the third power supply line 153 may be inclined with respect to the first diagonal direction. The direction connecting the second power supply line 152 and the fourth power supply line 154 may be inclined with respect to the second diagonal direction.
 図8に示すように、回路基板160は、第1給電回路61Aと、第2給電回路62Aとを含む。図6に示すように、回路基板160は、グラウンド導体165を含む。 As shown in FIG. 8, the circuit board 160 includes a first feeding circuit 61A and a second feeding circuit 62A. As shown in FIG. 6, the circuit board 160 includes a ground conductor 165.
 第1給電回路61Aは、第1給電線151および第3給電線153に電気的に接続されるように構成されている。第1給電回路61Aは、第1反転回路63と、第1配線161と、第3配線163とを含む。本実施形態では、第1反転回路63は、第1給電線151および第3給電線153の一方に接続されているインダクタンス素子と、他方に接続されているキャパシタンス素子とを含みうる。第1給電回路61Aは、互いの位相が略逆相となる逆相信号を第1給電線151および第3給電線153に供給するように構成されている。アンテナ110では、第1給電線151および第3給電線153に逆位相の電気信号が供給される。アンテナ110では、放射導体130がy方向に沿って共振する際に、第1導体131~第4導体134の中心O1近傍での電位変動が小さくなる。アンテナ110は、放射導体130がy方向に沿って共振する際、中心О1近傍を節として共振するように構成されている。 The first power supply circuit 61A is configured to be electrically connected to the first power supply line 151 and the third power supply line 153. The first feeding circuit 61A includes a first inverting circuit 63, a first wiring 161, and a third wiring 163. In the present embodiment, the first inverting circuit 63 may include an inductance element connected to one of the first feeding line 151 and the third feeding line 153 and a capacitance element connected to the other. 61 A of 1st electric power feeding circuits are comprised so that the mutually opposite phase signal may be supplied to the 1st electric power feeding line 151 and the 3rd electric power feeding line 153. In the antenna 110, electric signals of opposite phases are supplied to the first feeder line 151 and the third feeder line 153. In the antenna 110, when the radiation conductor 130 resonates along the y direction, potential fluctuations near the center O1 of the first conductor 131 to the fourth conductor 134 are reduced. The antenna 110 is configured to resonate with the node near the center O1 as a node when the radiation conductor 130 resonates along the y direction.
 第2給電回路62Aは、第2給電線152および第4給電線154に電気的に接続されるように構成されている。第2給電回路62Aは、第2反転回路64と、第2配線162と、第4配線164とを含む。本実施形態では、第2反転回路64は、第2給電線152および第4給電線154の一方に接続されているインダクタンス素子と、他方に接続されているキャパシタンス素子とを含みうる。第2給電回路62Aは、互いの位相が略逆相となる逆相信号を第2給電線152および第4給電線154に供給するように構成されている。アンテナ110では、第2給電線152および第4給電線154に逆位相の電気信号が供給される。アンテナ110では、放射導体130がx方向に沿って共振する際に、第1導体131~第4導体134の中心O1近傍での電位変動が小さくなる。アンテナ110は、放射導体130がx方向に沿って共振する際、中心О1近傍を節として共振するように構成されている。 The second power supply circuit 62A is configured to be electrically connected to the second power supply line 152 and the fourth power supply line 154. The second power feeding circuit 62A includes a second inverting circuit 64, a second wiring 162, and a fourth wiring 164. In the present embodiment, the second inverting circuit 64 may include an inductance element connected to one of the second feeding line 152 and the fourth feeding line 154 and a capacitance element connected to the other. The second power feeding circuit 62A is configured to supply a negative phase signal whose phases are substantially opposite to each other to the second power feeding line 152 and the fourth power feeding line 154. In the antenna 110, electric signals of opposite phases are supplied to the second power supply line 152 and the fourth power supply line 154. In the antenna 110, when the radiating conductor 130 resonates along the x direction, the potential fluctuation near the center O1 of the first conductor 131 to the fourth conductor 134 becomes small. The antenna 110 is configured to resonate with the node near the center O1 as a node when the radiation conductor 130 resonates along the x direction.
 第1配線161~第4配線164は、任意の導電性材料を含む。第1配線161~第4配線164は、後述のように、配線パターンとして形成されてよい。 The first wiring 161 to the fourth wiring 164 include any conductive material. The first wiring 161 to the fourth wiring 164 may be formed as a wiring pattern as described later.
 図8に示すように、第1配線161は、第1反転回路63と、第1給電線151とを電気的に接続するように構成されている。第2配線162は、第2反転回路64と、第2給電線152とを電気的に接続するように構成されている。第3配線163は、第1反転回路63と第3給電線153とを電気的に接続するように構成されている。第4配線164は、第2反転回路64と、第4給電線154とを電気的に接続するように構成されている。 As shown in FIG. 8, the first wiring 161 is configured to electrically connect the first inverting circuit 63 and the first power supply line 151. The second wiring 162 is configured to electrically connect the second inverting circuit 64 and the second power supply line 152. The third wiring 163 is configured to electrically connect the first inverting circuit 63 and the third power supply line 153. The fourth wiring 164 is configured to electrically connect the second inverting circuit 64 and the fourth power supply line 154.
 第1配線161の配線長および幅と、第3配線163の配線長および幅とは、略等しくてよい。第1配線161の配線長および幅と、第3配線163の配線長および幅とが、略等しくなることにより、第1配線161のインピーダンスと第3配線163のインピーダンスとが略等しくなりうる。 The wiring length and width of the first wiring 161 and the wiring length and width of the third wiring 163 may be substantially equal. Since the wiring length and width of the first wiring 161 and the wiring length and width of the third wiring 163 are substantially equal to each other, the impedance of the first wiring 161 and the impedance of the third wiring 163 can be substantially equal to each other.
 第2配線162の配線長および幅と、第4配線164の配線長および幅とは、略等しくてよい。第2配線162の配線長および幅と、第4配線164の配線長および幅とが、略等しくなることにより、第2配線162のインピーダンスと第4配線164のインピーダンスとが略等しくなりうる。 The wiring length and width of the second wiring 162 and the wiring length and width of the fourth wiring 164 may be substantially equal. Since the wiring length and width of the second wiring 162 and the wiring length and width of the fourth wiring 164 are substantially equal to each other, the impedance of the second wiring 162 and the impedance of the fourth wiring 164 can be substantially equal to each other.
 グラウンド導体165は、任意の導電性材料を含む。グラウンド導体165は、導体層であってよい。グラウンド導体165は、回路基板160に含まれるxy平面に略平行な2つの表面のうち、z軸の正方向側に位置する表面に位置する。 The ground conductor 165 includes any conductive material. The ground conductor 165 may be a conductor layer. The ground conductor 165 is located on the surface located on the positive side of the z-axis of the two surfaces substantially parallel to the xy plane included in the circuit board 160.
 図10は、アンテナ210の一実施形態を示す平面図である。図11は、図10に示すアンテナ210の一部を分解した斜視図である。以下、図10に示すアンテナ210と、図5に示すアンテナ110との間の主な相違点について説明する。 FIG. 10 is a plan view showing an embodiment of the antenna 210. FIG. 11 is a perspective view in which a part of the antenna 210 shown in FIG. 10 is disassembled. Hereinafter, the main difference between the antenna 210 shown in FIG. 10 and the antenna 110 shown in FIG. 5 will be described.
 図10および図11に示すように、アンテナ210は、基体120と、放射導体230と、グラウンド導体140と、第1接続導体155~第4接続導体158とを含む。アンテナ210は、第1給電線151と、第2給電線152と、第3給電線153と、第4給電線154と、回路基板160とを含む。放射導体230、グラウンド導体140、第1接続導体155~第4接続導体158、および給電線150は、アンテナ素子211として機能するように構成されている。 As shown in FIGS. 10 and 11, the antenna 210 includes a base body 120, a radiation conductor 230, a ground conductor 140, and first to fourth connection conductors 155 to 158. The antenna 210 includes a first feed line 151, a second feed line 152, a third feed line 153, a fourth feed line 154, and a circuit board 160. The radiating conductor 230, the ground conductor 140, the first connecting conductor 155 to the fourth connecting conductor 158, and the feed line 150 are configured to function as the antenna element 211.
 図11に示すように、放射導体230は、第1導体131~第4導体134と、内導体235を含む。内導体235は、図7に示す内導体135と同じまたは類似の材料を含んで構成されていてよい。内導体235は、第1枝部235aと、第2枝部235bと、第1内導体236と、第2内導体237と、第3内導体238と、第4内導体239とを含む。第1枝部235a、第2枝部235b、第1内導体236、第2内導体237、第3内導体238、および第4内導体239の、全てが同じ材料を含んでよいし、全てが異なる材料を含んでよい。第1枝部235a、第2枝部235b、第1内導体236、第2内導体237、第3内導体238、および第4内導体239のいずれかの組合せが同じ材料を含んでよい。 As shown in FIG. 11, the radiation conductor 230 includes a first conductor 131 to a fourth conductor 134 and an inner conductor 235. The inner conductor 235 may include the same or similar material as the inner conductor 135 shown in FIG. 7. The inner conductor 235 includes a first branch portion 235a, a second branch portion 235b, a first inner conductor 236, a second inner conductor 237, a third inner conductor 238, and a fourth inner conductor 239. All of the first branch portion 235a, the second branch portion 235b, the first inner conductor 236, the second inner conductor 237, the third inner conductor 238, and the fourth inner conductor 239 may include the same material, or all of them may include the same material. It may include different materials. Any combination of the first branch portion 235a, the second branch portion 235b, the first inner conductor 236, the second inner conductor 237, the third inner conductor 238, and the fourth inner conductor 239 may include the same material.
 第1内導体236は、z方向において、第1導体131と対向している。第1内導体236は、z方向において、第1導体131から離れて位置する。第1内導体236の全体が、xy平面において、第1導体131に重なってよい。第1内導体236のxy平面における面積は、第1導体131のxy平面における面積よりも、小さくてよい。第1内導体236は、第1導体131との間に基体120の一部が介在することにより、第1導体131に容量的に接続されるように構成されている。第1内導体236のxy平面における位置は、第1導体131のxy平面における位置に応じて、適宜調整されてよい。 The first inner conductor 236 faces the first conductor 131 in the z direction. The first inner conductor 236 is located away from the first conductor 131 in the z direction. The entire first inner conductor 236 may overlap the first conductor 131 in the xy plane. The area of the first inner conductor 236 in the xy plane may be smaller than the area of the first conductor 131 in the xy plane. The first inner conductor 236 is configured to be capacitively connected to the first conductor 131 by interposing a part of the base 120 between the first inner conductor 236 and the first conductor 131. The position of the first inner conductor 236 on the xy plane may be appropriately adjusted according to the position of the first conductor 131 on the xy plane.
 第2内導体237は、z方向において、第2導体132と対向している。第2内導体237は、z方向において、第2導体132から離れて位置する。第2内導体237の全体が、xy平面において、第2導体132に重なってよい。第2内導体237のxy平面における面積は、第2導体132のxy平面における面積よりも、小さくてよい。第2内導体237は、第2導体132との間に基体120の一部が介在することにより、第2導体132に容量的に接続されるように構成されている。第2内導体237のxy平面における位置は、第2導体132のxy平面における位置に応じて、適宜調整されてよい。 The second inner conductor 237 faces the second conductor 132 in the z direction. The second inner conductor 237 is located away from the second conductor 132 in the z direction. The entire second inner conductor 237 may overlap the second conductor 132 in the xy plane. The area of the second inner conductor 237 in the xy plane may be smaller than the area of the second conductor 132 in the xy plane. The second inner conductor 237 is configured to be capacitively connected to the second conductor 132 by interposing a part of the base body 120 with the second conductor 132. The position of the second inner conductor 237 on the xy plane may be appropriately adjusted according to the position of the second conductor 132 on the xy plane.
 第3内導体238は、z方向において、第3導体133と対向している。第3内導体238は、z方向において、第3導体133から離れて位置する。第3内導体238の全体が、xy平面において、第3導体133に重なってよい。第3内導体238のxy平面における面積は、第3導体133のxy平面における面積よりも、小さくてよい。第3内導体238は、第3導体133との間に基体120の一部が介在することにより、第3導体133に容量的に接続されるように構成されている。第3内導体238のxy平面における位置は、第3導体133のxy平面における位置に応じて、適宜調整されてよい。 The third inner conductor 238 faces the third conductor 133 in the z direction. The third inner conductor 238 is located away from the third conductor 133 in the z direction. The entire third inner conductor 238 may overlap the third conductor 133 in the xy plane. The area of the third inner conductor 238 in the xy plane may be smaller than the area of the third conductor 133 in the xy plane. The third inner conductor 238 is configured to be capacitively connected to the third conductor 133 by interposing a part of the base 120 between the third inner conductor 238 and the third conductor 133. The position of the third inner conductor 238 on the xy plane may be appropriately adjusted according to the position of the third conductor 133 on the xy plane.
 第4内導体239は、z方向において、第4導体134と対向している。第4内導体239は、z方向において、第4導体134から離れて位置する。第4内導体239の全体が、xy平面において、第4導体134に重なってよい。第4内導体239のxy平面における面積は、第4導体134のxy平面における面積よりも、小さくてよい。第4内導体239は、第4導体134との間に基体120の一部が介在することにより、第4導体134に容量的に接続されるように構成されている。第4内導体239のxy平面における位置は、第4導体134のxy平面における位置に応じて、適宜調整されてよい。 The fourth inner conductor 239 faces the fourth conductor 134 in the z direction. The fourth inner conductor 239 is located away from the fourth conductor 134 in the z direction. The entire fourth inner conductor 239 may overlap the fourth conductor 134 in the xy plane. The area of the fourth inner conductor 239 in the xy plane may be smaller than the area of the fourth conductor 134 in the xy plane. The fourth inner conductor 239 is configured to be capacitively connected to the fourth conductor 134 by interposing a part of the base 120 between the fourth inner conductor 239 and the fourth conductor 134. The position of the fourth inner conductor 239 on the xy plane may be appropriately adjusted according to the position of the fourth conductor 134 on the xy plane.
 第1内導体236~第4内導体239の各々は、平板状であってよい。第1内導体236~第4内導体239の各々は、略正方形であってよい。ただし、第1内導体236~第4内導体239の各々は、正方形に限定されない。例えば、第1内導体236~第4内導体239の各々は、円形であってよいし、楕円形であってよい。第1内導体236~第4内導体239の全てが同じ形状であってよいし、第1内導体236~第4内導体239の全てが異なる形状であってよい。 Each of the first inner conductor 236 to the fourth inner conductor 239 may have a flat plate shape. Each of the first inner conductor 236 to the fourth inner conductor 239 may be substantially square. However, each of the first inner conductor 236 to the fourth inner conductor 239 is not limited to a square. For example, each of the first inner conductor 236 to the fourth inner conductor 239 may be circular or elliptical. All of the first inner conductor 236 to the fourth inner conductor 239 may have the same shape, and all the first inner conductor 236 to the fourth inner conductor 239 may have different shapes.
 第1枝部235aは、第1内導体236と第3内導体238とを電気的に接続するように構成されている。第1枝部235aの一端は、第1内導体236の4つの角部のうちの1つの角部に電気的に接続されるように構成されている。第1枝部235aの他端は、第3内導体238の4つの角部のうちの1つの角部に電気的に接続されるように構成されている。第1枝部235aは、第1給電線151と第3給電線153とを結ぶ方向に沿って、延びてよい。第1枝部235aは、y方向に沿って延びてよい。第1枝部235aのx方向における幅は、第1内導体236と第3内導体238との間の機械的接続または電気的接続が維持できる程度に、細くてよい。 The first branch portion 235a is configured to electrically connect the first inner conductor 236 and the third inner conductor 238. One end of the first branch portion 235a is configured to be electrically connected to one of the four corner portions of the first inner conductor 236. The other end of the first branch portion 235a is configured to be electrically connected to one of the four corner portions of the third inner conductor 238. The first branch portion 235a may extend along the direction connecting the first power supply line 151 and the third power supply line 153. The first branch portion 235a may extend along the y direction. The width of the first branch portion 235a in the x direction may be thin enough to maintain mechanical or electrical connection between the first inner conductor 236 and the third inner conductor 238.
 第2枝部235bは、第2内導体237と第4内導体239とを電気的に接続するように構成されている。第2枝部235bの一端は、第2内導体237の4つの角部のうちの1つの角部に電気的に接続されるように構成されている。第2枝部235bの他端は、第4内導体239の4つの角部のうちの1つの角部に電気的に接続されるように構成されている。第2枝部235bは、第2給電線152と第4給電線154とを結ぶ方向に沿って、延びてよい。第2枝部235bは、x方向に沿って延びてよい。第2枝部235bのy方向における幅は、第2内導体237と第4内導体239との間の機械的接続または電気的接続が維持できる程度に、細くてよい。 The second branch portion 235b is configured to electrically connect the second inner conductor 237 and the fourth inner conductor 239. One end of the second branch portion 235b is configured to be electrically connected to one corner of the four corners of the second inner conductor 237. The other end of the second branch portion 235b is configured to be electrically connected to one corner of the four corners of the fourth inner conductor 239. The second branch portion 235b may extend along the direction connecting the second power supply line 152 and the fourth power supply line 154. The second branch portion 235b may extend along the x direction. The width of the second branch portion 235b in the y direction may be thin enough to maintain a mechanical connection or an electrical connection between the second inner conductor 237 and the fourth inner conductor 239.
 第1枝部235aと第2枝部235bとは、放射導体230の中心O1近傍で交わりうる。第1枝部235aと第2枝部235bとは、中心O1近傍の一部を共有しうる。第1枝部235aのx方向における幅と第2枝部235bのy方向における幅は、同じであってよいし、異なってよい。 The first branch portion 235a and the second branch portion 235b may intersect near the center O1 of the radiation conductor 230. The first branch portion 235a and the second branch portion 235b may share a part near the center O1. The width of the first branch portion 235a in the x direction and the width of the second branch portion 235b in the y direction may be the same or different.
 内導体235では、第1内導体236~第4内導体239と、第1導体131~第4導体134との間の容量結合の方が、第1枝部235aおよび第2枝部235bと、第1導体131~第4導体134との間の容量結合よりも、大きくなりうる。内導体235と第1導体131~第4導体134との間の容量結合において、第1内導体236~第4内導体239と、第1導体131~第4導体134との間の容量結合が、支配的となりうる。 In the inner conductor 235, the capacitive coupling between the first inner conductor 236 to the fourth inner conductor 239 and the first conductor 131 to the fourth conductor 134 is the first branch portion 235a and the second branch portion 235b. It may be larger than the capacitive coupling between the first conductor 131 to the fourth conductor 134. In the capacitive coupling between the inner conductor 235 and the first conductor 131 to the fourth conductor 134, the capacitive coupling between the first inner conductor 236 to the fourth inner conductor 239 and the first conductor 131 to the fourth conductor 134 is performed. , Can be dominant.
 例えばアンテナ210の組立工程において、第1導体131~第4導体134のxy平面における位置と、内導体235のxy平面における位置との間にずれが生じる場合がある。このようなずれが生じても、xy平面における、第1内導体236~第4内導体239の各々と、第1導体131~第4導体134の各々との間のずれ量は、小さくなりうる。このずれ量が小さくなることにより、内導体235と第1導体131~第4導体134との間の容量結合の大きさが設計値からずれてしまう蓋然性が低減されうる。このような構成により、アンテナ210において、内導体235と第1導体131~第4導体134との間の容量結合の大きさがばらつくことが低減されうる。 For example, in the assembly process of the antenna 210, there may be a gap between the positions of the first conductor 131 to the fourth conductor 134 on the xy plane and the positions of the inner conductor 235 on the xy plane. Even if such a shift occurs, the shift amount between each of the first inner conductor 236 to the fourth inner conductor 239 and each of the first conductor 131 to the fourth conductor 134 in the xy plane can be small. .. By reducing this shift amount, it is possible to reduce the probability that the magnitude of capacitive coupling between the inner conductor 235 and the first conductor 131 to the fourth conductor 134 deviates from the designed value. With such a configuration, in the antenna 210, it is possible to reduce variation in the magnitude of capacitive coupling between the inner conductor 235 and the first conductor 131 to the fourth conductor 134.
 図12は、アンテナ310の一実施形態を示す斜視図である。図13は、図12に示す回路基板360の一部を分解した斜視図である。図14は、図13に示すL2-L2線に沿った回路基板360の断面図である。図15は、図12に示す放射導体330の構成を説明する平面図である。以下、図12に示すアンテナ310と、図5に示すアンテナ110との間の主な相違点について説明する。 FIG. 12 is a perspective view showing an embodiment of the antenna 310. FIG. 13 is a perspective view in which a part of the circuit board 360 shown in FIG. 12 is disassembled. FIG. 14 is a cross-sectional view of the circuit board 360 taken along line L2-L2 shown in FIG. FIG. 15 is a plan view illustrating the configuration of the radiation conductor 330 shown in FIG. Hereinafter, the main differences between the antenna 310 shown in FIG. 12 and the antenna 110 shown in FIG. 5 will be described.
 図12および図14に示すように、アンテナ310は、基体120と、放射導体330と、グラウンド導体140と、第1接続導体155~第4接続導体158とを含む。図13に示すように、アンテナ310は、第1給電線151と、第2給電線152と、第3給電線153と、第4給電線154と、回路基板360(多層配線基板)とを含む。放射導体330、グラウンド導体140、第1接続導体155~第4接続導体158、および給電線150は、アンテナ素子311として機能するように構成されている。 As shown in FIGS. 12 and 14, the antenna 310 includes a base body 120, a radiation conductor 330, a ground conductor 140, and first to fourth connection conductors 155 to 158. As shown in FIG. 13, the antenna 310 includes a first power supply line 151, a second power supply line 152, a third power supply line 153, a fourth power supply line 154, and a circuit board 360 (multilayer wiring board). .. The radiating conductor 330, the ground conductor 140, the first connecting conductor 155 to the fourth connecting conductor 158, and the feeding line 150 are configured to function as the antenna element 311.
 図12に示すように、放射導体330は、第1導体131と、第2導体132と、第3導体133と、第4導体134とを含む。図15に示すように、放射導体330は、内導体135を含む。ただし、放射導体330は、内導体135の代わりに、図11に示す内導体235を含んでよい。 As shown in FIG. 12, the radiation conductor 330 includes a first conductor 131, a second conductor 132, a third conductor 133, and a fourth conductor 134. As shown in FIG. 15, the radiation conductor 330 includes an inner conductor 135. However, the radiation conductor 330 may include the inner conductor 235 shown in FIG. 11 instead of the inner conductor 135.
 図15に示すように、第1導体131~第4導体134は、図9に示す構成と同じまたは類似に、上面121上に、正方格子状に並ぶ。ただし、図15に示す構成では、第1導体131~第4導体134が並ぶ正方格子の第1対角方向は、y方向に対して傾いている。第1対角方向がy方向に対して傾くことにより、第1対角方向は、第1給電線151と第3給電線153とを結ぶ方向に、例えばy方向に、対して傾きうる。第1給電線151と第3給電線153とを結ぶ方向が第1対角方向に対して傾くことにより、第1給電線151および第3給電線153は、放射導体330をx方向にも励振させることができる。図15に示す構成では、第1導体131~第4導体134が並ぶ正方格子の第2対角方向は、x方向に対して傾いている。第2対角方向がx方向に対して傾くことにより、第2対角方向は、第2給電線152と第4給電線154とを結ぶ方向に、例えばx方向に、対して傾きうる。第2給電線152と第4給電線154とを結ぶ方向が第2対角方向に対して傾くことにより、第2給電線152および第4給電線154は、放射導体330をy方向にも励振させることができる。第1給電線151および第3給電線153の組み合わせ、ならびに、第2給電線152および第4給電線154の組み合わせは、放射導体330を2つの励振方向に励振させることができる。放射導体330を2つの励振方向に励振させることで、各方向のインピーダンス成分が給電線150に作用する。アンテナ310は、各方向のインピーダンス成分の相殺によって、入力時のインピーダンスを小さくしうる。入力時のインピーダンスが小さくなることにより、アンテナ310では、2つの偏波方向のアイソレーションを高めることができる。y方向に対する第1対角方向の傾きの角度、および、x方向に対する第2対角方向の傾きの角度は、アンテナ310の所望の利得を考慮して、適宜調整されてよい。 As shown in FIG. 15, the first conductor 131 to the fourth conductor 134 are arranged in a square lattice pattern on the upper surface 121 in the same or similar manner to the configuration shown in FIG. However, in the configuration shown in FIG. 15, the first diagonal direction of the square lattice in which the first conductor 131 to the fourth conductor 134 are arranged is inclined with respect to the y direction. By the first diagonal direction tilting with respect to the y direction, the first diagonal direction can tilt with respect to the direction connecting the first power feeding line 151 and the third power feeding line 153, for example, the y direction. Since the direction connecting the first power supply line 151 and the third power supply line 153 is inclined with respect to the first diagonal direction, the first power supply line 151 and the third power supply line 153 excite the radiation conductor 330 also in the x direction. Can be made In the configuration shown in FIG. 15, the second diagonal direction of the square lattice in which the first conductor 131 to the fourth conductor 134 are arranged is inclined with respect to the x direction. Since the second diagonal direction is inclined with respect to the x direction, the second diagonal direction can be inclined with respect to the direction connecting the second power feeding line 152 and the fourth power feeding line 154, for example, the x direction. Since the direction connecting the second power supply line 152 and the fourth power supply line 154 is inclined with respect to the second diagonal direction, the second power supply line 152 and the fourth power supply line 154 excite the radiation conductor 330 also in the y direction. Can be made The combination of the first feeding line 151 and the third feeding line 153 and the combination of the second feeding line 152 and the fourth feeding line 154 can excite the radiation conductor 330 in two excitation directions. By exciting the radiation conductor 330 in two exciting directions, the impedance component in each direction acts on the feeder 150. The antenna 310 can reduce the impedance at the time of input by canceling the impedance components in each direction. By reducing the impedance at the time of input, the antenna 310 can improve the isolation in the two polarization directions. The angle of inclination of the first diagonal direction with respect to the y direction and the angle of inclination of the second diagonal direction with respect to the x direction may be appropriately adjusted in consideration of the desired gain of the antenna 310.
 図15に示すように、略正方形である内導体135の2つの対角線のうちの一方の対角線は、第1対角方向に沿ってよい。略正方形である内導体135の2つの対角線のうちの一方の対角線は、第1対角方向と同じまたは類似に、y方向に対して傾いていてよい。略正方形である内導体135の2つの対角線のうちの他方の対角線は、第2対角方向に沿ってよい。略正方形である内導体135の2つの対角線のうちの他方の対角線は、第2対角方向と同じまたは類似に、x方向に対して傾いていてよい。 As shown in FIG. 15, one of the two diagonal lines of the substantially square inner conductor 135 may extend along the first diagonal direction. One of the two diagonal lines of the substantially square inner conductor 135 may be inclined with respect to the y direction in the same or similar manner as the first diagonal direction. The other diagonal line of the two diagonal lines of the inner conductor 135 having a substantially square shape may be along the second diagonal direction. The other diagonal of the two diagonals of the inner conductor 135, which is substantially square, may be tilted with respect to the x-direction, the same as or similar to the second diagonal.
 図14に示すように、回路基板360は、各層がz方向に沿って積層された構造を有する。回路基板360の積層方向は、z方向に対応しうる。回路基板360の各層において、アンテナ310とは反対側に位置する層は、下層という。回路基板360の各層において、アンテナ310側に位置する層は、上層という。 As shown in FIG. 14, the circuit board 360 has a structure in which each layer is stacked along the z direction. The stacking direction of the circuit board 360 may correspond to the z direction. In each layer of the circuit board 360, the layer located on the side opposite to the antenna 310 is referred to as a lower layer. In each layer of the circuit board 360, the layer located on the antenna 310 side is referred to as an upper layer.
 図12に示すように、回路基板360は、第1給電回路61Bと、第2給電回路62Bとを含む。第1給電回路61Bは、第1反転回路63Aを含む。第2給電回路62Bは、第2反転回路64Aを含む。第1反転回路63Aおよび第2反転回路64Aは、バランである。第1反転回路63Aは、図15に示すように、放射導体330の中心О1から、x方向に沿って離れて位置してよい。放射導体330の中心O1と、第1反転回路63Aとを結ぶ距離は、距離D5と記載する。第2反転回路64Aは、放射導体330の中心O1から、y方向に沿って離れて位置してよい。放射導体330の中心O1と第2反転回路64Aとを結ぶ距離は、距離D6と記載する。後述のように、距離D5と距離D6とは、異なってよい。 As shown in FIG. 12, the circuit board 360 includes a first feeding circuit 61B and a second feeding circuit 62B. The first power feeding circuit 61B includes a first inverting circuit 63A. The second feeding circuit 62B includes a second inverting circuit 64A. The first inversion circuit 63A and the second inversion circuit 64A are baluns. As shown in FIG. 15, the first inverting circuit 63A may be located away from the center O1 of the radiation conductor 330 along the x direction. A distance connecting the center O1 of the radiation conductor 330 and the first inverting circuit 63A is described as a distance D5. The second inverting circuit 64A may be located away from the center O1 of the radiation conductor 330 along the y direction. A distance connecting the center O1 of the radiation conductor 330 and the second inverting circuit 64A is described as a distance D6. As described below, the distance D5 and the distance D6 may be different.
 図13に示すように、回路基板360は、第1配線パターン361および誘電体層361Aと、第2配線パターン362および誘電体層362Aと、第3配線パターン363および誘電体層363Aと、第4配線パターン364および誘電体層364Aとを含む。図14に示すように、回路基板360は、グラウンド導体層365と、導体層366,367と、第1層368と、第2層369とを含む。 As shown in FIG. 13, the circuit board 360 includes a first wiring pattern 361 and a dielectric layer 361A, a second wiring pattern 362 and a dielectric layer 362A, a third wiring pattern 363 and a dielectric layer 363A, and a fourth wiring pattern 362. The wiring pattern 364 and the dielectric layer 364A are included. As shown in FIG. 14, the circuit board 360 includes a ground conductor layer 365, conductor layers 366 and 367, a first layer 368, and a second layer 369.
 第1配線パターン361~第4配線パターン364の各々は、図8に示す第1配線161~第4配線164の各々の配線パターンでありうる。第1配線パターン361は、第1反転回路63Aと第1給電線151とを電気的に接続するように構成されている。第2配線パターン362は、第2反転回路64Aと第2給電線152とを電気的に接続するように構成されている。第3配線パターン363は、第1反転回路63Aと第3給電線153とを電気的に接続するように構成されている。第4配線パターン364は、第2反転回路64Aと第4給電線154とを電気的に接続するように構成されている。第1給電線151~第4給電線154の各々が第1配線パターン361~第4配線パターン364の各々に接続される箇所は、接続点151B、接続点152B、接続点153B、および接続点154Bとも各々記載する。 Each of the first wiring pattern 361 to the fourth wiring pattern 364 may be the wiring pattern of each of the first wiring 161 to the fourth wiring 164. The first wiring pattern 361 is configured to electrically connect the first inverting circuit 63A and the first power supply line 151. The second wiring pattern 362 is configured to electrically connect the second inverting circuit 64A and the second power supply line 152. The third wiring pattern 363 is configured to electrically connect the first inverting circuit 63A and the third power supply line 153. The fourth wiring pattern 364 is configured to electrically connect the second inverting circuit 64A and the fourth power supply line 154. Connection points 151B, connection points 152B, connection points 153B, and 154B are points at which the first to fourth power supply lines 151 to 154 are connected to the first to fourth wiring patterns 361 to 364, respectively. Both are also described.
 第1配線パターン361および第3配線パターン363は、図14に示す第1層368に位置する。第1配線パターン361および第3配線パターン363は、第1層368の中において、xy平面に沿って延在してよい。図15に示すように、第1配線パターン361と第3配線パターン363とは、放射導体330の中心O1と第1反転回路63Aとを結ぶ方向を対称軸とする線対称であってよい。第1配線パターン361と第3配線パターン363が線対称となることにより、第1配線パターン361の幅および配線長と、第3配線パターン363の幅および配線長とは等しくなりうる。第1配線パターン361の配線長および第3配線パターン363の配線長は、図15に示す距離D5が長くなるほど長くなり、距離D5が短くなるほど短くなりうる。 The first wiring pattern 361 and the third wiring pattern 363 are located on the first layer 368 shown in FIG. The first wiring pattern 361 and the third wiring pattern 363 may extend along the xy plane in the first layer 368. As shown in FIG. 15, the first wiring pattern 361 and the third wiring pattern 363 may be line-symmetrical with the direction connecting the center O1 of the radiation conductor 330 and the first inverting circuit 63A as the axis of symmetry. Since the first wiring pattern 361 and the third wiring pattern 363 are line-symmetric, the width and wiring length of the first wiring pattern 361 can be equal to the width and wiring length of the third wiring pattern 363. The wiring length of the first wiring pattern 361 and the wiring length of the third wiring pattern 363 may be longer as the distance D5 shown in FIG. 15 is longer, and may be shorter as the distance D5 is shorter.
 第2配線パターン362および第4配線パターン364は、図14に示す第2層369に位置する。第2配線パターン362および第4配線パターン364は、第2層369の中において、xy平面に沿って延在してよい。図15に示すように、第2配線パターン362と第4配線パターン364とは、放射導体330の中心O1と第2反転回路64Aとを結ぶ方向を対称軸とする線対称であってよい。第2配線パターン362と第4配線パターン364が線対称であることにより、第2配線パターン362の幅および配線長と、第4配線パターン364の幅および配線長とは等しくなりうる。第2配線パターン362の配線長および第4配線パターン364の配線長は、図15に示す距離D6が長くなるほど長くなり、距離D6が短くなるほど短くなりうる。 The second wiring pattern 362 and the fourth wiring pattern 364 are located on the second layer 369 shown in FIG. The second wiring pattern 362 and the fourth wiring pattern 364 may extend along the xy plane in the second layer 369. As shown in FIG. 15, the second wiring pattern 362 and the fourth wiring pattern 364 may be line-symmetric with respect to the direction connecting the center O1 of the radiation conductor 330 and the second inverting circuit 64A. Since the second wiring pattern 362 and the fourth wiring pattern 364 are line-symmetrical, the width and wiring length of the second wiring pattern 362 can be equal to the width and wiring length of the fourth wiring pattern 364. The wiring length of the second wiring pattern 362 and the wiring length of the fourth wiring pattern 364 may be longer as the distance D6 shown in FIG. 15 is longer, and may be shorter as the distance D6 is shorter.
 第1配線パターン361および第3配線パターン363の配線長と、第2配線パターン362および第4配線パターン364の配線長とは、略等しくてよいし、異なってよい。図15に示す距離D5と距離D6が略等しい場合、第1配線パターン361および第3配線パターン363の配線長と、第2配線パターン362および第4配線パターン364の配線長とは、略等しくなりうる。距離D5と距離D6が異なる場合、第1配線パターン361および第3配線パターン363の配線長と、第2配線パターン362および第4配線パターン364の配線長とは、異なりうる。本実施形態では、距離D5と距離D6とを適宜調整することにより、第1配線パターン361および第3配線パターン363の配線長と、第2配線パターン362および第4配線パターン364の配線長との間の関係が調整されうる。 The wiring lengths of the first wiring pattern 361 and the third wiring pattern 363 and the wiring lengths of the second wiring pattern 362 and the fourth wiring pattern 364 may be substantially equal or different. When the distance D5 and the distance D6 shown in FIG. 15 are substantially equal to each other, the wiring lengths of the first wiring pattern 361 and the third wiring pattern 363 are substantially equal to the wiring lengths of the second wiring pattern 362 and the fourth wiring pattern 364. sell. When the distance D5 and the distance D6 are different, the wiring lengths of the first wiring pattern 361 and the third wiring pattern 363 and the wiring lengths of the second wiring pattern 362 and the fourth wiring pattern 364 may be different. In this embodiment, the wiring lengths of the first wiring pattern 361 and the third wiring pattern 363 and the wiring lengths of the second wiring pattern 362 and the fourth wiring pattern 364 are adjusted by appropriately adjusting the distance D5 and the distance D6. The relationship between can be adjusted.
 誘電体層361A~364Aの各々は、任意の誘電体材料を含む。誘電体層361A~364Aの各々は、第1配線パターン361~第4配線パターン364の各々の周囲を囲む。誘電体層361A~364Aの各々は、第1配線パターン361~第4配線パターン364の各々の形状に依拠した形状でありうる。誘電体層361Aおよび誘電体層363Aは、第1配線パターン361および第3配線パターン363と同じまたは類似に、第1層368に位置する。誘電体層362Aおよび誘電体層364Aは、第2配線パターン362および第4配線パターン364と同じまたは類似に、第2層369に位置する。 Each of the dielectric layers 361A to 364A includes any dielectric material. Each of the dielectric layers 361A to 364A surrounds the circumference of each of the first wiring pattern 361 to the fourth wiring pattern 364. Each of the dielectric layers 361A to 364A may have a shape depending on the shape of each of the first wiring pattern 361 to the fourth wiring pattern 364. The dielectric layer 361A and the dielectric layer 363A are located on the first layer 368 in the same or similar to the first wiring pattern 361 and the third wiring pattern 363. The dielectric layer 362A and the dielectric layer 364A are located in the second layer 369 in the same or similar to the second wiring pattern 362 and the fourth wiring pattern 364.
 グラウンド導体層365は、図6に示すグラウンド導体165と同じまたは類似の材料を含んでよい。グラウンド導体層365は、xy平面に沿って広がりうる。グラウンド導体層365は、回路基板360の最上層となりうる。グラウンド導体層365は、アンテナ310のグラウンド導体140に対向する。グラウンド導体層365とアンテナ310のグラウンド導体140とは、一体化されていてよい。 Ground conductor layer 365 may include the same or similar material as ground conductor 165 shown in FIG. The ground conductor layer 365 can extend along the xy plane. The ground conductor layer 365 may be the uppermost layer of the circuit board 360. The ground conductor layer 365 faces the ground conductor 140 of the antenna 310. The ground conductor layer 365 and the ground conductor 140 of the antenna 310 may be integrated.
 導体層366および導体層367の各々は、図6に示すグラウンド導体165と同じまたは類似の材料を含みうる。導体層366は、第1層366の下層となる。導体層367は、第1層368と第2層369との間に位置する。導体層366および導体層367の各々は、xy平面に沿って広がりうる。導体層366および導体層367の各々は、ビア等を介して、グラウンド導体層365と電気的に接続されるように構成されていてよい。 Each of the conductor layers 366 and 367 may include the same or similar material as the ground conductor 165 shown in FIG. The conductor layer 366 is a lower layer of the first layer 366. The conductor layer 367 is located between the first layer 368 and the second layer 369. Each of the conductor layers 366 and 367 can extend along the xy plane. Each of the conductor layer 366 and the conductor layer 367 may be configured to be electrically connected to the ground conductor layer 365 via a via or the like.
 導体層366および導体層377は、z方向において、第1配線パターン361および第3配線パターン363の各々をシールドするように構成されている。導体層367とグラウンド導体層365は、z方向において、第2配線パターン362および第4配線パターン364の各々をシールドするように構成されている。 The conductor layer 366 and the conductor layer 377 are configured to shield each of the first wiring pattern 361 and the third wiring pattern 363 in the z direction. The conductor layer 367 and the ground conductor layer 365 are configured to shield each of the second wiring pattern 362 and the fourth wiring pattern 364 in the z direction.
 第1層368は、第2層369よりも、下層となる。第1層368は、回路基板360の積層方向において、例えばz方向において、第2層369よりも、放射導体330から離れている。 The first layer 368 is a lower layer than the second layer 369. The first layer 368 is farther from the radiation conductor 330 than the second layer 369 in the stacking direction of the circuit boards 360, for example, in the z direction.
 第1層368は、第1配線パターン361および誘電体層361Aと、第3配線パターン363および誘電体層363Aと、導体層368Aとを含む。導体層368Aは、図6に示すグラウンド導体165と同じまたは類似の材料を含んでよい。導体層368Aは、ビア等によって、第1層368の下層である導体層366および第1層368の上層である導体層367に電気的に接続されるように構成されていてよい。導体層368Aは、第1層368において、誘電体層361Aおよび誘電体層363Aを除く箇所を、充填するように構成されていてよい。導体層368Aは、x方向およびy方向において、第1配線パターン361および第3配線パターン363の各々をシールドするように構成されている。 The first layer 368 includes a first wiring pattern 361 and a dielectric layer 361A, a third wiring pattern 363 and a dielectric layer 363A, and a conductor layer 368A. Conductor layer 368A may include the same or similar material as ground conductor 165 shown in FIG. The conductor layer 368A may be configured to be electrically connected to the conductor layer 366 below the first layer 368 and the conductor layer 367 above the first layer 368 by vias or the like. The conductor layer 368A may be configured to fill a portion of the first layer 368 excluding the dielectric layer 361A and the dielectric layer 363A. The conductor layer 368A is configured to shield each of the first wiring pattern 361 and the third wiring pattern 363 in the x direction and the y direction.
 第2層369は、第2配線パターン362および誘電体層362Aと、第4配線パターン364および誘電体層364Aと、導体層369Aとを含む。導体層369Aは、図6に示すグラウンド導体165と同じまたは類似の材料を含んでよい。導体層369Aは、ビア等によって、第2層369の上層であるグラウンド導体層365および第2層369の下層である導体層367に電気的に接続されるように構成されていてよい。導体層369Aは、第2層369において、誘電体層362Aおよび誘電体層364Aを除く箇所を、充填するように構成されていてよい。導体層369Aは、x方向およびy方向において、第2配線パターン362および第4配線パターン364の各々をシールドするように構成されている。 The second layer 369 includes a second wiring pattern 362 and a dielectric layer 362A, a fourth wiring pattern 364 and a dielectric layer 364A, and a conductor layer 369A. Conductor layer 369A may include the same or similar material as ground conductor 165 shown in FIG. The conductor layer 369A may be configured to be electrically connected to the ground conductor layer 365 that is the upper layer of the second layer 369 and the conductor layer 367 that is the lower layer of the second layer 369 by vias or the like. The conductor layer 369A may be configured to fill a portion of the second layer 369 excluding the dielectric layer 362A and the dielectric layer 364A. The conductor layer 369A is configured to shield each of the second wiring pattern 362 and the fourth wiring pattern 364 in the x direction and the y direction.
 図13に示すように、第1給電線151および第3給電線153の各々は、第1配線パターン361および第3配線パターン363の各々に電気的に接続されるように構成されている。上述のように、第1配線パターン361および第3配線パターン363の各々は、同じ第1層368に位置する。第1配線パターン361および第3配線パターン363の各々が同じ第1層368に位置することにより、接続点151Bおよび接続点153Bのz方向における位置は、略等しくなりうる。接続点151Bおよび接続点153Bのz方向における位置が略等しくなることにより、給電点151Aのz方向における位置および給電点153Aのz方向における位置は、略等しくなりうる。従って、第1給電線151のz方向における長さと、第3給電線153のz方向における長さは、略等しくなりうる。 As shown in FIG. 13, each of the first power supply line 151 and the third power supply line 153 is configured to be electrically connected to each of the first wiring pattern 361 and the third wiring pattern 363. As described above, each of the first wiring pattern 361 and the third wiring pattern 363 is located on the same first layer 368. Since the first wiring pattern 361 and the third wiring pattern 363 are located on the same first layer 368, the positions of the connection points 151B and 153B in the z direction can be substantially equal. Since the positions of the connection point 151B and the connection point 153B in the z direction are substantially equal, the position of the feeding point 151A in the z direction and the position of the feeding point 153A in the z direction can be substantially equal. Therefore, the length of the first power supply line 151 in the z direction and the length of the third power supply line 153 in the z direction can be substantially equal.
 図13に示すように、第2給電線152および第4給電線154の各々は、第2配線パターン362および第4配線パターン364の各々に電気的に接続されるように構成されている。上述のように、第2配線パターン362および第4配線パターン364の各々は、同じ第2層369に位置する。第2配線パターン362および第4配線パターン364の各々が同じ第2層369に位置することにより、接続点152Bおよび接続点154Bのz方向における位置は、略等しくなりうる。接続点152Bおよび接続点154Bのz方向における位置が略等しくなることにより、給電点152Aのz方向における位置および給電点154Aのz方向における位置は、略等しくなりうる。従って、第2給電線152のz方向における長さと、第4給電線154のz方向における長さは、略等しくなりうる。 As shown in FIG. 13, each of the second power supply line 152 and the fourth power supply line 154 is configured to be electrically connected to each of the second wiring pattern 362 and the fourth wiring pattern 364. As described above, each of the second wiring pattern 362 and the fourth wiring pattern 364 is located on the same second layer 369. Since the second wiring pattern 362 and the fourth wiring pattern 364 are located on the same second layer 369, the positions of the connection points 152B and 154B in the z direction can be substantially equal. Since the positions of the connection point 152B and the connection point 154B in the z direction are substantially equal, the position of the feeding point 152A in the z direction and the position of the feeding point 154A in the z direction can be substantially equal. Therefore, the length of the second power supply line 152 in the z direction and the length of the fourth power supply line 154 in the z direction can be substantially equal.
 上述のように、第1層368は、第2層369よりも下層となる。第1層368が第2層369よりも下層となることにより、第1層368に位置する接続点151Bおよび接続点153Bは、第2層に位置する接続点152Bおよび接続点154Bよりも、z軸の負方向側に位置する。図13に示すように、給電点151A、給電点152A、給電点153A、および給電点154Aの各々のz方向における位置は、略等しくなりうる。従って、第1給電線151のz方向における長さおよび第3給電線153のz方向における長さは、第2給電線152のz方向における長さおよび第4給電線154のz方向における長さよりも、長くなりうる。第1給電線151の抵抗値および第3給電線153の抵抗値は、第2給電線152の抵抗値および第4給電線154の抵抗値よりも、高くなりうる。 As described above, the first layer 368 is lower than the second layer 369. Since the first layer 368 is lower than the second layer 369, the connection points 151B and 153B located on the first layer 368 are more z than the connection points 152B and 154B located on the second layer. Located on the negative side of the axis. As shown in FIG. 13, the feed point 151A, the feed point 152A, the feed point 153A, and the feed point 154A can be substantially equal in position in the z direction. Therefore, the length of the first power supply line 151 in the z direction and the length of the third power supply line 153 in the z direction are greater than the length of the second power supply line 152 in the z direction and the length of the fourth power supply line 154 in the z direction. Can also be long. The resistance value of the first power supply line 151 and the resistance value of the third power supply line 153 may be higher than the resistance value of the second power supply line 152 and the resistance value of the fourth power supply line 154.
 第1給電線151の抵抗値および第3給電線153の抵抗値が第2給電線152の抵抗値および第4給電線の抵抗値よりも高くなる場合、図15に示すように、距離D6は、距離D5よりも、長くてよい。距離D6が距離D5よりも長くなることにより、第2配線パターン362および第4配線パターン364の配線長は、第1配線パターン361および第3配線パターン363の配線長よりも、長くなりうる。第2配線パターン362および第4配線パターン364の抵抗値は、第1配線パターン361および第3配線パターン363の抵抗値よりも、高くなりうる。このような構成により、第1反転回路63Aから給電点151Aおよび給電点153Aの各々までの抵抗値と、第2反転回路64Aから給電点152Aおよび給電点154Aの各々までの抵抗値とを略等しくすることができる。ただし、第1反転回路63Aおよび第2反転回路64Aの各々のバランの特性は、許容誤差の範囲でばらつく場合がある。この場合、第1反転回路63Aから出力される2つの電気信号の位相差、および、第2反転回路64Aから出力される2つの電気信号の位相差は、180°からずれる場合がある。これら2つの電気信号の位相差が180°からずれていると、第1配線パターン361~第4配線パターン364の間の干渉の度合いが、これら2つの電気信号の位相差が180°からずれていない場合と比べて、変化する場合がある。この場合、所望の周波数帯におけるアンテナ310の所望の利得を考慮して、距離D5および距離D6は、適宜調整されてよい。 When the resistance value of the first power supply line 151 and the resistance value of the third power supply line 153 are higher than the resistance value of the second power supply line 152 and the resistance value of the fourth power supply line 152, as shown in FIG. , And may be longer than the distance D5. Since the distance D6 is longer than the distance D5, the wiring lengths of the second wiring pattern 362 and the fourth wiring pattern 364 can be longer than the wiring lengths of the first wiring pattern 361 and the third wiring pattern 363. The resistance values of the second wiring pattern 362 and the fourth wiring pattern 364 may be higher than the resistance values of the first wiring pattern 361 and the third wiring pattern 363. With such a configuration, the resistance value from the first inverting circuit 63A to each of the feeding point 151A and the feeding point 153A and the resistance value from the second inverting circuit 64A to each of the feeding point 152A and the feeding point 154A are substantially equal. can do. However, the balun characteristics of each of the first inverting circuit 63A and the second inverting circuit 64A may vary within the allowable error range. In this case, the phase difference between the two electric signals output from the first inverting circuit 63A and the phase difference between the two electric signals output from the second inverting circuit 64A may deviate from 180 °. When the phase difference between these two electric signals deviates from 180 °, the degree of interference between the first wiring pattern 361 to the fourth wiring pattern 364 deviates from the 180 ° phase difference between these two electric signals. It may change as compared to the absence. In this case, the distance D5 and the distance D6 may be appropriately adjusted in consideration of the desired gain of the antenna 310 in the desired frequency band.
 第1反転回路63Aから出力される2つの電気信号の位相差に応じては、放射導体330の中心O1と第1反転回路63Aとを結ぶ方向は、x方向に対して傾いていてよい。例えば、給電点151Aにおける電気信号と、給電点153Aにおける電気信号との位相差が180°になるように、放射導体330の中心O1と第1反転回路63Aとを結ぶ方向をx方向に対して傾けてよい。 The direction connecting the center O1 of the radiation conductor 330 and the first inversion circuit 63A may be inclined with respect to the x direction depending on the phase difference between the two electric signals output from the first inversion circuit 63A. For example, the direction connecting the center O1 of the radiation conductor 330 and the first inverting circuit 63A to the x direction is such that the phase difference between the electric signal at the feeding point 151A and the electric signal at the feeding point 153A is 180 °. You can tilt it.
 第2反転回路64Aから出力される2つの電気信号の位相差に応じては、放射導体330の中心O1と第2反転回路64Aとを結ぶ方向は、y方向に対して傾いていてよい。例えば、給電点152Aにおける電気信号と、給電点154Aにおける電気信号との位相差が180°になるように、放射導体330の中心O1と第2反転回路64Aとを結ぶ方向をy方向に対して傾けてよい。 The direction connecting the center O1 of the radiation conductor 330 and the second inverting circuit 64A may be tilted with respect to the y direction depending on the phase difference between the two electric signals output from the second inverting circuit 64A. For example, the direction connecting the center O1 of the radiation conductor 330 and the second inverting circuit 64A to the y direction is such that the phase difference between the electric signal at the feeding point 152A and the electric signal at the feeding point 154A is 180 °. You can tilt it.
 図16は、アレイアンテナ12の一実施形態を示す平面図である。アレイアンテナ12は、複数のアンテナ素子11を含む。ただし、アレイアンテナ12は、アンテナ素子11の代わりに、図5に示すアンテナ素子111、図10に示すアンテナ素子211、および図12に示すアンテナ素子311のいずれかを含んでよい。アンテナ素子11は、y方向に沿って並びうる。アンテナ素子11は、y方向に配列されうる。アンテナ素子11は、x方向に沿って並びうる。アンテナ素子11は、x方向に配列されうる。アレイアンテナ12は、少なくとも1つの回路基板60を含む。回路基板60は、少なくとも1つの第1給電回路61、および少なくとも1つの第2給電回路62を含む。アレイアンテナ12は、少なくとも1つの第1給電回路61、および少なくとも1つの第2給電回路62を含む。 FIG. 16 is a plan view showing an embodiment of the array antenna 12. The array antenna 12 includes a plurality of antenna elements 11. However, the array antenna 12 may include any one of the antenna element 111 shown in FIG. 5, the antenna element 211 shown in FIG. 10, and the antenna element 311 shown in FIG. 12, instead of the antenna element 11. The antenna elements 11 can be arranged along the y direction. The antenna elements 11 can be arranged in the y direction. The antenna elements 11 can be arranged along the x direction. The antenna elements 11 can be arranged in the x direction. The array antenna 12 includes at least one circuit board 60. The circuit board 60 includes at least one first feeding circuit 61 and at least one second feeding circuit 62. The array antenna 12 includes at least one first feeding circuit 61 and at least one second feeding circuit 62.
 第1給電回路61は、1または複数のアンテナ素子11に接続されるように構成されうる。第1給電回路61は、複数のアンテナ素子11に給電する際に、全てのアンテナ素子11に同じ信号を供給するように構成されていてよい。第1給電回路61は、複数のアンテナ素子11に給電する際に、各アンテナ素子11の第1給電線51に同じ信号を供給するように構成されていてよい。第1給電回路61は、複数のアンテナ素子11に給電する際に、各アンテナ素子11の第1給電線51に位相の異なる信号を供給するように構成されていてよい。第1給電回路61は、複数のアンテナ素子11に給電する際に、各アンテナ素子11の第3給電線53に同じ信号を供給するように構成されていてよい。第1給電回路61は、複数のアンテナ素子11に給電する際に、各アンテナ素子11の第3給電線53に位相の異なる信号を供給するように構成されていてよい。 The first feeding circuit 61 may be configured to be connected to one or more antenna elements 11. The first feeding circuit 61 may be configured to supply the same signal to all the antenna elements 11 when feeding the plurality of antenna elements 11. The first feeding circuit 61 may be configured to supply the same signal to the first feeding line 51 of each antenna element 11 when feeding the plurality of antenna elements 11. The first feeding circuit 61 may be configured to supply signals having different phases to the first feeding line 51 of each antenna element 11 when feeding the plurality of antenna elements 11. The first feeding circuit 61 may be configured to supply the same signal to the third feeding line 53 of each antenna element 11 when feeding the plurality of antenna elements 11. The first feeding circuit 61 may be configured to supply signals having different phases to the third feeding line 53 of each antenna element 11 when feeding the plurality of antenna elements 11.
 第2給電回路62は、1または複数のアンテナ素子11に接続されるように構成されうる。第2給電回路62は、複数のアンテナ素子11に給電する際に、全てのアンテナ素子11に同じ信号を供給するように構成されていてよい。第2給電回路62は、複数のアンテナ素子11に給電する際に、各アンテナ素子11の第2給電線52に同じ信号を供給するように構成されていてよい。第2給電回路62は、複数のアンテナ素子11に給電する際に、各アンテナ素子11の第2給電線52に位相の異なる信号を供給するように構成されていてよい。第2給電回路62は、複数のアンテナ素子11に給電する際に、各アンテナ素子11の第4給電線54に同じ信号を供給するように構成されていてよい。第2給電回路62は、複数のアンテナ素子11に給電する際に、各アンテナ素子11の第4給電線54に位相の異なる信号を供給するように構成されていてよい。 The second feeding circuit 62 can be configured to be connected to one or more antenna elements 11. The second feeding circuit 62 may be configured to supply the same signal to all the antenna elements 11 when feeding the plurality of antenna elements 11. The second feeding circuit 62 may be configured to supply the same signal to the second feeding line 52 of each antenna element 11 when feeding the plurality of antenna elements 11. The second feeding circuit 62 may be configured to supply signals having different phases to the second feeding line 52 of each antenna element 11 when feeding the plurality of antenna elements 11. The second feeding circuit 62 may be configured to supply the same signal to the fourth feeding line 54 of each antenna element 11 when feeding the plurality of antenna elements 11. The second feeding circuit 62 may be configured to supply signals having different phases to the fourth feeding line 54 of each antenna element 11 when feeding the plurality of antenna elements 11.
 図17は、無線通信モジュール70の一実施形態を示す平面図である。無線通信モジュール70は、駆動回路71を含む。駆動回路71は、アンテナ素子11を駆動するように構成されている。ただし、駆動回路71は、図5に示すアンテナ素子111、図10に示すアンテナ素子211、および図12に示すアンテナ素子311のいずれかを駆動するように構成されていてよい。駆動回路71は、第1給電回路61および第2給電回路62の各々に直接的または間接的に接続されるように構成されている。駆動回路71は、第1給電回路61および第2給電回路62の少なくとも1つに送信信号を給電するように構成されうる。駆動回路71は、第1給電回路61および第2給電回路62の少なくとも1つから受信信号の給電を受けるように構成されうる。 FIG. 17 is a plan view showing an embodiment of the wireless communication module 70. The wireless communication module 70 includes a drive circuit 71. The drive circuit 71 is configured to drive the antenna element 11. However, the drive circuit 71 may be configured to drive any of the antenna element 111 shown in FIG. 5, the antenna element 211 shown in FIG. 10, and the antenna element 311 shown in FIG. The drive circuit 71 is configured to be directly or indirectly connected to each of the first power supply circuit 61 and the second power supply circuit 62. The drive circuit 71 can be configured to supply a transmission signal to at least one of the first power supply circuit 61 and the second power supply circuit 62. The drive circuit 71 can be configured to receive power of the received signal from at least one of the first power supply circuit 61 and the second power supply circuit 62.
 図18は、無線通信機器80の一実施形態を示す平面図である。無線通信機器80は、無線通信モジュール70と、センサ81と、バッテリ82とを含みうる。センサ81は、センシングを行う。バッテリ82は、無線通信機器80のいずれかに電力を供給するように構成されている。駆動回路71は、バッテリ82からの電力供給により、駆動するように構成されうる。 FIG. 18 is a plan view showing an embodiment of the wireless communication device 80. The wireless communication device 80 may include the wireless communication module 70, a sensor 81, and a battery 82. The sensor 81 performs sensing. The battery 82 is configured to supply power to any of the wireless communication devices 80. The drive circuit 71 can be configured to be driven by the power supply from the battery 82.
 図19は、無線通信システム90の一実施形態を示す平面図である。無線通信システム90は、無線通信機器80と、第2無線通信機器91とを含む。第2無線通信機器91は、無線通信機器80と無線通信するように構成されている。 FIG. 19 is a plan view showing an embodiment of the wireless communication system 90. The wireless communication system 90 includes a wireless communication device 80 and a second wireless communication device 91. The second wireless communication device 91 is configured to wirelessly communicate with the wireless communication device 80.
 よって、本開示によれば、新たな、アンテナ10,110,210,310、アレイアンテナ12、無線通信モジュール70、および無線通信機器80が提供されうる。 Therefore, according to the present disclosure, a new antenna 10, 110, 210, 310, array antenna 12, wireless communication module 70, and wireless communication device 80 can be provided.
 本開示に係る構成は、以上説明してきた実施形態にのみ限定されるものではなく、幾多の変形または変更が可能である。例えば、各構成部等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の構成部等を1つに組み合わせたり、或いは分割したりすることが可能である。 The configuration according to the present disclosure is not limited to the embodiments described above, and various modifications and changes are possible. For example, the functions and the like included in each component can be rearranged so as not to logically contradict each other, and a plurality of components can be combined into one or divided.
 本開示に係る構成を説明する図は、模式的なものである。図面上の寸法比率等は、現実のものと必ずしも一致しない。 The diagram illustrating the configuration according to the present disclosure is schematic. The dimensional ratios and the like on the drawings do not always match the actual ones.
 図1に示す実施形態では、アンテナ素子11として、パッチアンテナを採用した。ただし、アンテナ素子11は、パッチアンテナに限定されない。アンテナ素子11として、他のアンテナが採用されてよい。 In the embodiment shown in FIG. 1, a patch antenna is adopted as the antenna element 11. However, the antenna element 11 is not limited to the patch antenna. Other antennas may be used as the antenna element 11.
 図16に示す実施形態では、アレイアンテナ12において、複数のアンテナ素子11が同じ向きで並びうる。アレイアンテナ12において、隣り合う2つのアンテナ素子11の向きが異なってよい。隣り合う2つのアンテナ素子11の向きが異なる場合、アンテナ素子11は、同じ方向に励振される。 In the embodiment shown in FIG. 16, a plurality of antenna elements 11 can be arranged in the same direction in the array antenna 12. In the array antenna 12, two adjacent antenna elements 11 may have different directions. When the orientations of two adjacent antenna elements 11 are different, the antenna elements 11 are excited in the same direction.
 本開示において「第1」、「第2」、「第3」等の記載は、当該構成を区別するための識別子の一例である。本開示における「第1」および「第2」等の記載で区別された構成は、当該構成における番号を交換することができる。例えば、第1給電線は、第2給電線と識別子である「第1」と「第2」とを交換することができる。識別子の交換は同時に行われる。識別子の交換後も当該構成は区別される。識別子は削除してよい。識別子を削除した構成は、符号で区別される。例えば、第1給電線51は、給電線51としうる。本開示における「第1」および「第2」等の識別子の記載のみに基づいて、当該構成の順序の解釈、小さい番号の識別子が存在することの根拠、および大きい番号の識別子が存在することの根拠に利用してはなら      ない。本開示には、回路基板60が第2給電回路62を含むが、第1給電回路61を含まない構成が含まれる。 In the present disclosure, descriptions such as “first”, “second”, and “third” are examples of identifiers for distinguishing the configuration. The configurations distinguished by the description such as “first” and “second” in the present disclosure can exchange the numbers in the configurations. For example, the first power supply line can exchange the identifiers “first” and “second” with the second power supply line. The exchange of identifiers is done simultaneously. Even after exchanging the identifiers, the configurations are distinguished. The identifier may be deleted. The configuration in which the identifier is deleted is distinguished by the code. For example, the first power supply line 51 can be the power supply line 51. Based on only the description of the identifiers such as “first” and “second” in the present disclosure, the interpretation of the order of the configuration, the basis for the existence of the small numbered identifier, and the existence of the large numbered identifier If you do not use it as a basis, you do not. The present disclosure includes a configuration in which the circuit board 60 includes the second power supply circuit 62 but does not include the first power supply circuit 61.
 10,110,210,310 アンテナ
 11,111,211,311 アンテナ素子
 12 アレイアンテナ
 20,120 基体
 30,130,230,330 放射導体
 40,140 グラウンド導体
 40a,141,142,143,144 開口
 50,150 給電線
 51,151 第1給電線
 52,152 第2給電線
 53,153 第3給電線
 54,154 第4給電線
 51A,52A,53A,54A,151A,152A,153A,154A 給電点
 60,160,360 回路基板
 60A グラウンド導体
 61,61A,61B 第1給電回路
 62,62A,62B 第2給電回路
 63,63A 第1反転回路
 64,64A 第2反転回路
 70 無線通信モジュール
 71 駆動回路
 80 無線通信機器
 81 センサ
 82 バッテリ
 90 無線通信システム
 91 第2無線通信機器
 121 上面
 122 下面
 131 第1導体
 132 第2導体
 133 第3導体
 134 第4導体
 135,235 内導体
 151B,152B,153B,154B 接続点
 155 第1接続導体
 156 第2接続導体
 157 第3接続導体
 158 第4接続導体
 161 第1配線
 162 第2配線
 163 第3配線
 164 第4配線
 165 グラウンド導体
 235a 第1枝部
 235b 第2枝部
 236 第1内導体
 237 第2内導体
 238 第3内導体
 239 第4内導体
 361 第1配線パターン
 362 第2配線パターン
 363 第3配線パターン
 364 第4配線パターン
 361A,362A,363A,364A 誘電体層
 365 グラウンド導体層
 366,367,368A,369A 導体層
 368 第1層
 369 第2層
10, 110, 210, 310 antenna 11, 111, 211, 311 antenna element 12 array antenna 20, 120 substrate 30, 130, 230, 330 radiating conductor 40, 140 ground conductor 40a, 141, 142, 143, 144 opening 50, 150 feeder line 51,151 1st feeder line 52,152 2nd feeder line 53,153 3rd feeder line 54,154 4th feeder line 51A, 52A, 53A, 54A, 151A, 152A, 153A, 154A feeding point 60, 160, 360 Circuit board 60A Ground conductor 61, 61A, 61B First feeding circuit 62, 62A, 62B Second feeding circuit 63, 63A First inversion circuit 64, 64A Second inversion circuit 70 Wireless communication module 71 Driving circuit 80 Wireless communication Equipment 81 Sensor 82 Battery 90 None Line communication system 91 Second wireless communication device 121 Upper surface 122 Lower surface 131 First conductor 132 Second conductor 133 Third conductor 134 Fourth conductor 135,235 Inner conductor 151B, 152B, 153B, 154B Connection point 155 First connection conductor 156th 2 connection conductor 157 3rd connection conductor 158 4th connection conductor 161 1st wiring 162 2nd wiring 163 3rd wiring 164 4th wiring 165 ground conductor 235a 1st branch part 235b 2nd branch part 236 1st inner conductor 237 2nd Inner conductor 238 Third inner conductor 239 Fourth inner conductor 361 First wiring pattern 362 Second wiring pattern 363 Third wiring pattern 364 Fourth wiring pattern 361A, 362A, 363A, 364A Dielectric layer 365 Ground conductor layer 366, 367, 368A, 369A Conductor layer 368 First Layer 369 Second layer

Claims (27)

  1.  放射導体と、
     グラウンド導体と、
     前記放射導体に電磁気的に接続されるように構成されている第1給電線と、
     前記放射導体に電磁気的に接続されるように構成されている第2給電線と、
     前記放射導体に電磁気的に接続されるように構成されている第3給電線と、
     前記放射導体に電磁気的に接続されるように構成されている第4給電線と、
     前記第1給電線および前記第3給電線に互いに逆相な逆相信号を給電するように構成されている第1給電回路と、
     前記第2給電線および前記第4給電線に互いに逆相な逆相信号を給電するように構成されている第2給電回路と、を含み、
     前記放射導体は、
      前記第1給電線および前記第3給電線からの給電によって第1方向に励振するように構成されており、
      前記第2給電線および前記第4給電線からの給電によって第2方向に励振するように構成されており、
     前記第3給電線は、前記放射導体の中心から観て、前記第1方向において前記第1給電線と反対側に位置し、
     前記第4給電線は、前記放射導体の中心から観て、前記第2方向において前記第2給電線と反対側に位置する、
     アンテナ。
    A radiation conductor,
    A ground conductor,
    A first feed line configured to be electromagnetically connected to the radiation conductor;
    A second feed line configured to be electromagnetically connected to the radiation conductor;
    A third feeder configured to be electromagnetically connected to the radiating conductor;
    A fourth feed line configured to be electromagnetically connected to the radiation conductor;
    A first feeding circuit configured to feed opposite-phase signals having mutually opposite phases to the first feeding line and the third feeding line;
    A second power supply circuit configured to supply opposite-phase signals having opposite phases to the second power supply line and the fourth power supply line,
    The radiation conductor is
    It is configured to be excited in a first direction by power feeding from the first power feeding line and the third power feeding line,
    The second power supply line and the fourth power supply line are configured to excite in the second direction by power supply.
    The third feeder is located on the opposite side of the first feeder from the center of the radiation conductor in the first direction,
    The fourth power supply line is located on the opposite side of the second power supply line in the second direction when viewed from the center of the radiation conductor.
    antenna.
  2.  請求項1に記載のアンテナであって、
     前記第1給電線と前記第3給電線とを結ぶ方向は、前記第1方向に対して傾いており、
     前記第2給電線と前記第4給電線とを結ぶ方向は、前記第2方向に対して傾いている、アンテナ。
    The antenna according to claim 1, wherein
    The direction connecting the first power supply line and the third power supply line is inclined with respect to the first direction,
    An antenna in which a direction connecting the second power supply line and the fourth power supply line is inclined with respect to the second direction.
  3.  請求項1に記載のアンテナであって、
     前記放射導体は、第1導体と、第2導体と、第3導体と、第4導体とを含み、
     前記アンテナは、
      前記第1導体と前記グラウンド導体とを電気的に接続するように構成されている第1接続導体と、
      前記第2導体と前記グラウンド導体とを電気的に接続するように構成されている第2接続導体と、
      前記第3導体と前記グラウンド導体とを電気的に接続するように構成されている第3接続導体と、
      前記第4導体と前記グラウンド導体とを電気的に接続するように構成されている第4接続導体と、をさらに含み、
     前記第1給電線は、前記第1導体に電磁気的に接続されるように構成されており、
     前記第2給電線は、前記第2導体に電磁気的に接続されるように構成されており、
     前記第3給電線は、前記第3導体に電磁気的に接続されるように構成されており、
     前記第4給電線は、前記第4導体に電磁気的に接続されるように構成されている、
    アンテナ。
    The antenna according to claim 1, wherein
    The radiation conductor includes a first conductor, a second conductor, a third conductor, and a fourth conductor,
    The antenna is
    A first connection conductor configured to electrically connect the first conductor and the ground conductor;
    A second connection conductor configured to electrically connect the second conductor and the ground conductor;
    A third connection conductor configured to electrically connect the third conductor and the ground conductor;
    A fourth connecting conductor configured to electrically connect the fourth conductor and the ground conductor,
    The first power supply line is configured to be electromagnetically connected to the first conductor,
    The second power supply line is configured to be electromagnetically connected to the second conductor,
    The third power supply line is configured to be electromagnetically connected to the third conductor,
    The fourth feeder is configured to be electromagnetically connected to the fourth conductor,
    antenna.
  4.  請求項3に記載のアンテナであって、
     前記放射導体は、内導体をさらに含み、
     前記内導体は、
      前記第1方向および前記第2方向を含む第1平面と交わる第3方向において、前記第1導体、前記第2導体、前記第3導体、および前記第4導体から離れて位置し、
      前記第1導体と、前記第2導体と、前記第3導体と、前記第4導体とを容量的に接続するように構成されている、アンテナ。
    The antenna according to claim 3,
    The radiation conductor further includes an inner conductor,
    The inner conductor is
    In a third direction intersecting with a first plane that includes the first direction and the second direction, and is located away from the first conductor, the second conductor, the third conductor, and the fourth conductor,
    An antenna configured to capacitively connect the first conductor, the second conductor, the third conductor, and the fourth conductor.
  5.  請求項4に記載のアンテナであって、
     前記内導体は、
      前記第3方向において、前記第1導体に対向する第1内導体と、
      前記第3方向において、前記第2導体に対向する第2内導体と、
      前記第3方向において、前記第3導体に対向する第3内導体と、
      前記第3方向において、前記第4導体に対向する第4内導体と、
      前記第1内導体と前記第3内導体とを電気的に接続するように構成されている第1枝部と、
      前記第2内導体と前記第4内導体とを電気的に接続するように構成されている第2枝部と、を含む、アンテナ。
    The antenna according to claim 4, wherein
    The inner conductor is
    A first inner conductor facing the first conductor in the third direction;
    A second inner conductor facing the second conductor in the third direction;
    A third inner conductor facing the third conductor in the third direction,
    A fourth inner conductor facing the fourth conductor in the third direction;
    A first branch portion configured to electrically connect the first inner conductor and the third inner conductor;
    An antenna, comprising: a second branch portion configured to electrically connect the second inner conductor and the fourth inner conductor.
  6.  請求項3から5までのいずれかに記載のアンテナであって、
     前記第1導体、前記第2導体、前記第3導体、および前記第4導体は、正方格子状に並び、
     前記第1導体および前記第3導体は、前記正方格子の第1対角方向に並び、
     前記第2導体および前記第4導体は、前記正方格子の第2対角方向に並び、
     前記第1対角方向は、前記第1方向に対して傾いており、
      前記第2対角方向は、前記第2方向に対して傾いている、アンテナ。
    The antenna according to any one of claims 3 to 5,
    The first conductor, the second conductor, the third conductor, and the fourth conductor are arranged in a square lattice,
    The first conductor and the third conductor are arranged in a first diagonal direction of the square lattice,
    The second conductor and the fourth conductor are arranged in a second diagonal direction of the square lattice,
    The first diagonal direction is inclined with respect to the first direction,
    The antenna, wherein the second diagonal direction is inclined with respect to the second direction.
  7.   請求項1から6までのいずれかに記載のアンテナであって、
     前記第1給電回路は、
      バランを含む第1反転回路と、
      前記第1反転回路と前記第1給電線とを電気的に接続するように構成されている第1配線と、
      前記第1反転回路と前記第3給電線とを電気的に接続するように構成されている第3配線と、
    を含み、
      前記第1配線および前記第3配線から共振周波数帯で位相が反転した逆相信号を、前記第1給電線および前記第3給電線に給電するように構成されており、
     前記第2給電回路は、
      バランを含む第2反転回路と、
      前記第2反転回路と前記第2給電線とを電気的に接続する第2配線と、
      前記第2反転回路と前記第4給電線とを電気的に接続する第4配線と、を含み、
      前記第2配線および前記第4配線から共振周波数帯で位相が反転した逆相信号を、前記第2給電線および前記第4給電線に給電するように構成されている、アンテナ。
    The antenna according to any one of claims 1 to 6,
    The first power supply circuit,
    A first inverting circuit including a balun,
    A first wiring configured to electrically connect the first inverting circuit and the first power supply line;
    A third wiring configured to electrically connect the first inverting circuit and the third power supply line;
    Including,
    The first wiring and the third wiring are configured to feed an anti-phase signal whose phase is inverted in a resonance frequency band to the first power feeding line and the third power feeding line,
    The second power supply circuit,
    A second inverting circuit including a balun,
    A second wiring electrically connecting the second inverting circuit and the second power supply line;
    A fourth wiring electrically connecting the second inverting circuit and the fourth power supply line,
    An antenna configured to feed a negative phase signal, the phase of which is inverted in the resonance frequency band, from the second wiring and the fourth wiring to the second feeding line and the fourth feeding line.
  8.  請求項7に記載のアンテナであって、
     多層配線基板をさらに含み、
     前記多層配線基板は、
      第1配線パターンとしての前記第1配線と、
      第2配線パターンとしての前記第2配線と、
      第3配線パターンとしての前記第3配線と、
      第4配線パターンとしての前記第4配線と、を含み、
     前記第1配線パターンと前記第3配線パターンとは、
      前記多層配線基板の第1層に位置し、且つ
      前記放射導体の中心と前記第1反転回路とを結ぶ方向を対称軸として線対称であり、
     前記第2配線パターンと前記第4配線パターンとは、
      前記多層配線基板の第1層とは異なる第2層に位置し、且つ
      前記放射導体の中心と前記第2反転回路とを結ぶ方向を対称軸として線対称であり、
     前記放射導体の中心と前記第1反転回路とを結ぶ距離と、前記放射導体の中心と前記第2反転回路とを結ぶ距離とは異なる、アンテナ。
    The antenna according to claim 7,
    Further including a multilayer wiring board,
    The multilayer wiring board,
    The first wiring as a first wiring pattern,
    The second wiring as a second wiring pattern,
    The third wiring as a third wiring pattern,
    And a fourth wiring as a fourth wiring pattern,
    The first wiring pattern and the third wiring pattern are
    It is located in the first layer of the multilayer wiring board and is line-symmetrical with the direction connecting the center of the radiation conductor and the first inverting circuit as the axis of symmetry.
    The second wiring pattern and the fourth wiring pattern are
    It is located in a second layer different from the first layer of the multilayer wiring board, and is line-symmetrical with the direction connecting the center of the radiation conductor and the second inverting circuit as the axis of symmetry.
    An antenna in which a distance connecting a center of the radiation conductor and the first inverting circuit is different from a distance connecting a center of the radiation conductor and the second inverting circuit.
  9.  請求項8に記載のアンテナであって、
     前記第1層は、前記多層配線基板の積層方向において、前記第2層よりも前記放射導体から離れており、
     前記第1反転回路は、前記放射導体の中心から前記第2方向に沿って離れて位置し、
     前記第2反転回路は、前記放射導体の中心から前記第1方向に沿って離れて位置し、
     前記第1方向における前記放射導体の中心と前記第2反転回路との間の距離は、前記第2方向における前記放射導体の中心と前記第1反転回路との間の距離よりも、長い、アンテナ。
    The antenna according to claim 8,
    The first layer is farther from the radiation conductor than the second layer in the stacking direction of the multilayer wiring board,
    The first inverting circuit is located away from the center of the radiation conductor along the second direction,
    The second inverting circuit is located away from the center of the radiation conductor along the first direction,
    An antenna in which the distance between the center of the radiation conductor and the second inverting circuit in the first direction is longer than the distance between the center of the radiation conductor and the first inverting circuit in the second direction. ..
  10.  請求項1から6までのいずれかに記載のアンテナであって、
     前記第1給電回路は、共振周波数帯で位相を反転する第1反転回路を含む、アンテナ。
    The antenna according to any one of claims 1 to 6,
    The first feeding circuit includes an antenna that includes a first inverting circuit that inverts a phase in a resonance frequency band.
  11.  請求項10に記載のアンテナであって、
     前記第1反転回路は、バランおよびディレイラインのいずれかである、アンテナ。
    The antenna according to claim 10, wherein
    The first inverting circuit is an antenna, which is either a balun or a delay line.
  12.  請求項10または11に記載のアンテナであって、
     前記第2給電回路は、共振周波数帯で位相を反転する第2反転回路を含む、アンテナ。
    The antenna according to claim 10 or 11, wherein:
    The antenna, wherein the second feeding circuit includes a second inverting circuit that inverts a phase in a resonance frequency band.
  13.  請求項12に記載のアンテナであって、
     前記第2反転回路は、バランおよびディレイラインのいずれかである、アンテナ。
    The antenna according to claim 12,
    An antenna in which the second inverting circuit is one of a balun and a delay line.
  14.  請求項1から13までのいずれかに記載のアンテナであって、
     前記第1給電回路は、
      前記第1給電線に接続されるインダクタンス素子と、
      前記第3給電線に接続されるキャパシタンス素子と、を含む、アンテナ。
    The antenna according to any one of claims 1 to 13,
    The first power supply circuit,
    An inductance element connected to the first power supply line,
    A capacitance element connected to the third power supply line.
  15.  請求項1から14までのいずれかに記載のアンテナであって、
     前記第2給電回路は、
      前記第2給電線に接続されるインダクタンス素子と、
      前記第4給電線に接続されるキャパシタンス素子と、を含む、アンテナ。
    The antenna according to any one of claims 1 to 14,
    The second power supply circuit,
    An inductance element connected to the second power supply line,
    A capacitance element connected to the fourth feed line.
  16.  請求項1から15までのいずれかに記載のアンテナであって、
     前記アンテナは、前記放射導体の中心近傍を節として共振するように構成されている、アンテナ。
    The antenna according to any one of claims 1 to 15,
    The antenna is configured to resonate with a node near a center of the radiation conductor as a node.
  17.  請求項1から16までのいずれかに記載のアンテナであって、
     前記第1給電線および第2給電線は、前記放射導体の中心を通る第1対称軸を挟んで対称性を有し、
     前記第3給電線および第4給電線は、前記第1対称軸を挟んで対称性を有する、アンテナ。
    The antenna according to any one of claims 1 to 16,
    The first power supply line and the second power supply line have symmetry with a first axis of symmetry passing through the center of the radiation conductor interposed therebetween.
    An antenna in which the third feeder line and the fourth feeder line have symmetry with respect to the first axis of symmetry.
  18.  請求項1から17までのいずれかに記載のアンテナであって、
     前記第1給電線および第4給電線は、前記放射導体の中心を通る第2対称軸を挟んで対称性を有し、
     前記第2給電線および第3給電線は、前記第2対称軸を挟んで対称性を有する、アンテナ。
    The antenna according to any one of claims 1 to 17,
    The first power supply line and the fourth power supply line have symmetry with a second axis of symmetry passing through the center of the radiation conductor interposed therebetween.
    An antenna in which the second feeder line and the third feeder line have symmetry with respect to the second axis of symmetry.
  19.  請求項1から18までのいずれかに記載のアンテナであって、
     前記第1方向は、前記第2方向と直交する、アンテナ。
    The antenna according to any one of claims 1 to 18,
    An antenna in which the first direction is orthogonal to the second direction.
  20.  請求項1から19までのいずれかに記載のアンテナであって、
     前記放射導体は、動作波長の2分の1の大きさである、アンテナ。
    The antenna according to any one of claims 1 to 19,
    An antenna, wherein the radiating conductor is one-half the size of an operating wavelength.
  21.  請求項1から20までのいずれかに記載のアンテナであるアンテナ素子を複数含み、
     複数の前記アンテナ素子が前記第1方向に配列される、アレイアンテナ。
    A plurality of antenna elements, each of which is the antenna according to any one of claims 1 to 20,
    An array antenna in which a plurality of the antenna elements are arranged in the first direction.
  22.  請求項21に記載のアレイアンテナであって、
     複数の前記アンテナ素子が前記第1方向および前記第2方向に配列される、アレイアンテナ。
    The array antenna according to claim 21, wherein:
    An array antenna in which a plurality of the antenna elements are arranged in the first direction and the second direction.
  23.  請求項1から20までのいずれかに記載のアンテナであるアンテナ素子と、
     前記第1給電回路および前記第2給電回路の各々に直接的または間接的に接続されるように構成されている駆動回路と、を含む、
     無線通信モジュール。
    An antenna element which is the antenna according to any one of claims 1 to 20,
    A drive circuit configured to be directly or indirectly connected to each of the first power supply circuit and the second power supply circuit.
    Wireless communication module.
  24.  請求項23に記載の無線通信モジュールであって、
     前記駆動回路は、前記第1給電回路に送信信号を給電し、前記第2給電回路から受信信号の給電を受けるように構成されている、
     無線通信モジュール。
    The wireless communication module according to claim 23,
    The drive circuit is configured to supply a transmission signal to the first power supply circuit and receive a reception signal from the second power supply circuit.
    Wireless communication module.
  25.  請求項21または22に記載のアレイアンテナと、
     前記第1給電回路および前記第2給電回路の各々に直接的または間接的に接続されるように構成されている駆動回路と、を含む、
     無線通信モジュール。
    An array antenna according to claim 21 or 22,
    A drive circuit configured to be directly or indirectly connected to each of the first power supply circuit and the second power supply circuit.
    Wireless communication module.
  26.  請求項25に記載の無線通信モジュールであって、
     前記駆動回路は、
      前記第1給電回路および前記第2給電回路の少なくとも1つに送信信号を給電するように構成されており、
      前記第1給電回路および前記第2給電回路の少なくとも1つから受信信号の給電を受けるように構成されている、
     無線通信モジュール。
    The wireless communication module according to claim 25,
    The drive circuit is
    It is configured to supply a transmission signal to at least one of the first power supply circuit and the second power supply circuit,
    It is configured to receive a reception signal from at least one of the first power supply circuit and the second power supply circuit.
    Wireless communication module.
  27.  請求項23から26までのいずれかに記載の無線通信モジュールと、
     前記駆動回路を駆動するように構成されているバッテリと、を含む、
     無線通信機器。
    The wireless communication module according to any one of claims 23 to 26,
    A battery configured to drive the drive circuit,
    Wireless communication equipment.
PCT/JP2019/042426 2018-11-02 2019-10-29 Antenna, array antenna, wireless communication module, and wireless communication device WO2020090838A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/290,776 US11862878B2 (en) 2018-11-02 2019-10-29 Antenna, array antenna, radio communication module, and radio communication device
CN201980073047.1A CN112997358A (en) 2018-11-02 2019-10-29 Antenna, array antenna, wireless communication module, and wireless communication device
EP19879002.4A EP3876344A4 (en) 2018-11-02 2019-10-29 Antenna, array antenna, wireless communication module, and wireless communication device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018207477 2018-11-02
JP2018-207477 2018-11-02
JP2019148850A JP7328070B2 (en) 2018-11-02 2019-08-14 Antennas, array antennas, wireless communication modules, and wireless communication equipment
JP2019-148850 2019-08-14

Publications (1)

Publication Number Publication Date
WO2020090838A1 true WO2020090838A1 (en) 2020-05-07

Family

ID=70463693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042426 WO2020090838A1 (en) 2018-11-02 2019-10-29 Antenna, array antenna, wireless communication module, and wireless communication device

Country Status (1)

Country Link
WO (1) WO2020090838A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054293A (en) * 2020-10-21 2020-12-08 北京字节跳动网络技术有限公司 Electronic device
US20230128565A1 (en) * 2020-02-26 2023-04-27 Kyocera Corporation Antenna
WO2023149479A1 (en) * 2022-02-03 2023-08-10 京セラ株式会社 Antenna element and array antenna
WO2023149489A1 (en) * 2022-02-03 2023-08-10 京セラ株式会社 Antenna element and array antenna
WO2023149478A1 (en) * 2022-02-03 2023-08-10 京セラ株式会社 Antenna

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859605A (en) * 1981-10-05 1983-04-08 Toshiba Corp Microstrip antenna
JP2003224416A (en) * 2002-01-31 2003-08-08 Mitsubishi Electric Corp Antenna
US20080204327A1 (en) * 2006-08-30 2008-08-28 The Regents Of The University Of California Compact dual-band resonator using anisotropic metamaterial
JP2014027416A (en) * 2012-07-25 2014-02-06 Denso Wave Inc Antenna device
JP2016105583A (en) 2014-11-19 2016-06-09 パナソニックIpマネジメント株式会社 Antenna device, radio communication device and rader device
JP2016115990A (en) * 2014-12-11 2016-06-23 日本無線株式会社 Target identification system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859605A (en) * 1981-10-05 1983-04-08 Toshiba Corp Microstrip antenna
JP2003224416A (en) * 2002-01-31 2003-08-08 Mitsubishi Electric Corp Antenna
US20080204327A1 (en) * 2006-08-30 2008-08-28 The Regents Of The University Of California Compact dual-band resonator using anisotropic metamaterial
JP2014027416A (en) * 2012-07-25 2014-02-06 Denso Wave Inc Antenna device
JP2016105583A (en) 2014-11-19 2016-06-09 パナソニックIpマネジメント株式会社 Antenna device, radio communication device and rader device
JP2016115990A (en) * 2014-12-11 2016-06-23 日本無線株式会社 Target identification system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230128565A1 (en) * 2020-02-26 2023-04-27 Kyocera Corporation Antenna
CN112054293A (en) * 2020-10-21 2020-12-08 北京字节跳动网络技术有限公司 Electronic device
CN112054293B (en) * 2020-10-21 2023-03-24 北京字节跳动网络技术有限公司 Electronic device
WO2023149479A1 (en) * 2022-02-03 2023-08-10 京セラ株式会社 Antenna element and array antenna
WO2023149489A1 (en) * 2022-02-03 2023-08-10 京セラ株式会社 Antenna element and array antenna
WO2023149478A1 (en) * 2022-02-03 2023-08-10 京セラ株式会社 Antenna

Similar Documents

Publication Publication Date Title
WO2020090838A1 (en) Antenna, array antenna, wireless communication module, and wireless communication device
JP6678722B1 (en) Antenna, wireless communication module and wireless communication device
JP7328070B2 (en) Antennas, array antennas, wireless communication modules, and wireless communication equipment
JP6678723B1 (en) Antenna, wireless communication module and wireless communication device
JP2021158589A (en) Communication module, communication system, and control method of the communication module
JP7122378B2 (en) Antenna elements, array antennas, communication units, mobiles, and base stations
JP7309033B2 (en) antenna
CN112585812A (en) Structure, antenna, wireless communication module, and wireless communication device
US11909131B2 (en) Structure, antenna, communication module, and wireless communication device
US7456798B2 (en) Stacked loop antenna
US11876297B2 (en) Structure, antenna, wireless communication module, and wireless communication device
US11637383B2 (en) Structure, antenna, wireless communication module, and wireless communication device
JP7122389B2 (en) Antennas, array antennas, wireless communication modules, and wireless communication equipment
JPWO2020040258A1 (en) Structures, antennas, wireless communication modules and wireless communication equipment
JP7312800B2 (en) Resonant structures and antennas
US11784402B2 (en) Antenna, wireless communication module, and wireless communication device
JP2021087062A (en) Antenna, radio communication module, and radio communication apparatus
JP7072725B2 (en) Antennas, wireless communication modules and wireless communication devices
WO2019142937A1 (en) Relay device
JP2020096380A (en) Antenna, radio communication module, and radio communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019879002

Country of ref document: EP

Effective date: 20210602