JP4029957B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP4029957B2
JP4029957B2 JP2001034038A JP2001034038A JP4029957B2 JP 4029957 B2 JP4029957 B2 JP 4029957B2 JP 2001034038 A JP2001034038 A JP 2001034038A JP 2001034038 A JP2001034038 A JP 2001034038A JP 4029957 B2 JP4029957 B2 JP 4029957B2
Authority
JP
Japan
Prior art keywords
hot water
water
temperature
water storage
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001034038A
Other languages
Japanese (ja)
Other versions
JP2002235953A (en
Inventor
永治 桑原
靖二 大越
勇司 松本
一寿 明神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2001034038A priority Critical patent/JP4029957B2/en
Publication of JP2002235953A publication Critical patent/JP2002235953A/en
Application granted granted Critical
Publication of JP4029957B2 publication Critical patent/JP4029957B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプ式冷凍サイクルにより貯湯タンク内の水を加熱して高温水の給湯が可能なヒートポンプ給湯器に係り、特に、貯湯タンク内に残湯がある場合でも貯湯全体の温度を設定値でほぼ均等化できるヒートポンプ給湯器に関する。
【0002】
【従来の技術】
従来、この種のヒートポンプ給湯器の一例としては、例えば図5に示すように冷媒を循環させるヒートポンプ式冷凍サイクル1と、この冷凍サイクル1により加熱される水を給湯タンク12に供給する水回路10と、を具備したものがある。
【0003】
冷凍サイクル1は、圧縮機2、水熱交換器3の一次側熱交換管3a、膨張弁5、室外空気熱交換器6を冷媒配管7によりこの順に順次接続して冷媒を循環させる閉じたループを構成している。なお、図5中符号8は除霜運転時に制御器9により開弁される除霜二方弁であり、17は各種温度センサである。
【0004】
一方、水回路10は、上記水熱交換器3の一次側熱交換管3aと熱交換自在の二次側熱交換管3b、補助ヒータ11、給湯タンク12、ポンプ13をこの順に順次水配管14により接続して、水(または温水)を循環させる閉じたループを構成している。
【0005】
貯湯タンク12はその上部に、補助ヒータ11からの温水が供給される湯入口と給湯口を兼用する湯出入口12aを設け、この湯出入口12aに接続された二股分岐管の一端を補助ヒータ11側の水路に接続する一方、他方の分岐管端部を給湯ライン15に接続している。一方、給湯タンク12の底部には、給水を受ける水入口12bと水出口12cとを設け、水入口12bには給水ライン16を接続している。
【0006】
そして、貯湯運転時には、冷媒が図5中矢印で示す方向に循環して水熱交換器3が凝縮器として作用する一方、空気熱交換器6が蒸発器として作用する。このために、貯湯タンク12の底部の水出口12cからポンプ13により汲み出され水は水熱交換器3の二次側熱交換管3b内を通水する際に、一次側熱交換管4bを通る高温高圧のガス状冷媒の凝縮熱により加熱されて温水になり、この温水がポンプ13の送水により水配管14を介して貯湯タンク12内に、その上部の湯出入口12aから供給される。
【0007】
この貯湯タンク12内ではその上部の貯湯層とこの貯湯よりも温度の低い水が溜まる下部の貯水層とが殆ど混合することがなく分布し、しかも、水熱交換器3により加熱された湯が貯湯タンク12内には、その上部の湯出入口12aから供給されるので、その給湯が上部の貯湯層へ蓄えられて行くと共に、漸次下方の貯水層側へ降下して行き、最終的には昇温した湯が水熱交換器3へ流入するので、この水熱交換器3の入口水温が設定温度(例えば約30℃)に達したときに、貯湯タンク12内の貯湯温度が所定値(例えば85℃)に達したものと制御器9により判断して貯湯運転を終了させ、給湯運転に待機させる。
【0008】
すなわち、貯湯タンク12内の貯湯層の貯湯温度は、水熱交換器3の入口水温により決定され、貯湯運転中、この設定温度になるように圧縮機2の回転数が制御される。また、ポンプ13の吐出流量は例えば電力料金が安くなる深夜電力時間帯(一般に8時間)のうちに貯湯タンク12内の水が全て一巡する流量に設定されている。この貯湯運転後は、給湯運転が行なわれ、貯湯タンク12内の貯湯が貯湯タンク12の上部の湯出入口12aから給湯ライン15を経て図示しない被給湯部に給湯され、その給湯量とほぼ同量の水が給水ライン16により貯湯タンク12内に補給される。
【0009】
【発明が解決しようとする課題】
しかしながら、このような従来のヒートポンプ給湯器では、給湯運転後、図6に示すように貯湯タンク12内の上部に蓄積されている貯湯の残湯層Aの残湯量が多い場合には、上記貯湯運転と給湯運転の繰り返しにより、残湯層Aの残湯が常に使用されないまま熱ロスにより温度が低下し、全体の蓄熱量が減少する、つまり所定の蓄熱量が蓄えられないという課題がある。
【0010】
すなわち、図6に示すように例えば電力料金の安い深夜時間帯等において貯湯運転を開始する前には、貯湯タンク12内では、熱ロスで温度低下した残湯層Aがこれより温度の低い貯水層Bの上方に分布するので、これら両層A,Bの湯水は殆ど混合しない状態で分布しており、図7に示すように、深夜電力時間帯での貯湯運転の終了時には、その残湯層Aの残湯がさらに熱ロスにより低下(例えば70℃)しつつ貯湯タンク12内を漸次降下して行き、この残湯層Aの上には残湯が水熱交換器3により加熱されて目標温度(例えば85℃)に達した高温の貯湯層Cが分布され、しかも、これら両層A,Cの湯も上層の貯湯の方が下層の貯湯よりも温度が高いので、両層は殆ど分離されたままで殆ど混合されない。
【0011】
このために、貯湯タンク12の水出口12cから水熱交換器3へ供給される湯としては熱ロスにより温度が低下しても、比較的温度の高い残湯が供給されるので、残湯層Aの残湯が目標温度に達する前に水熱交換器3の入口水温が設定温度(例えば30℃)に達してしまって貯湯運転が終了してしまう。このために、貯湯タンク12内では、その上部にて所定の目標温度(例えば85℃)に達した高温湯層Cとこれよりも温度の低い残湯層Aとが上下で分布するので、これら両層A,Cの貯湯同士は混合せずに殆ど分離したままの状態であるので、貯湯タンク12内全体の貯湯温度が均一でなくなる。
【0012】
したがって、図8に示すように貯湯運転が終了した時点(深夜電力貯湯前)では、貯湯タンク12内の貯湯の熱ロスによりさらに温度が低下(例えば70℃から65℃まで低下)した残湯層Aが貯湯タンク12内上部に残る。すなわち、これの毎日の繰返しにより残湯層Aが熱ロスにより日に日に温度低下して行き、この残湯層Aの残湯が給湯されるので、給湯温度を目標温度まで昇温できないという課題になる。
【0013】
ところで、このように貯湯タンク12内に残湯があるということは蓄熱量が少なくてよいという考え方もできるが、急に目標温度の給湯が多量に必要になる場合もあるので、所定の蓄熱量は毎日確保する必要がある。すなわち、貯湯タンク12内の貯湯量のほぼ全体を目標温度でほぼ均一に貯湯(蓄熱)する必要がある。
【0014】
本発明はこのような事情を考慮してなされたもので、その目的は、貯湯タンク内に残湯がある場合でもいつでも貯湯タンク内全体の貯湯を目標温度でほぼ均一に貯湯(蓄熱)することができるヒートポンプ給湯器を提供することにある。
【0015】
【課題を解決するための手段】
請求項1の発明は、圧縮機、水熱交換器の第1の熱交換管、膨張弁、空気熱交換器を順次接続して冷媒を循環させる冷凍サイクルと、上記水熱交換器の第1の熱交換管と熱交換自在の第2の熱交換管、この第2の熱交換管からの湯を受ける湯入口と給湯口を上部に設ける一方、給水を受水する給水入口と水出口を下部に設けた貯湯タンク、ポンプを順次接続して水を循環させる主回路およびこのポンプの水吐出側と上記貯湯タンクの湯入口側とを連通するバイパス路およびこのバイパス路の途中に介在された開閉弁を備えた水回路と、上記貯湯タンク内の水を上記水回路に循環させて、この水を上記水熱交換器の入口水温の設定値まで昇温させる貯湯運転の前に、上記貯湯タンク内の残湯を検出したときに、その残湯量に応じて上記水熱交換器の入口水温設定値よりも所定値高く予め設定された設定値に、この入口水温設定値を補正して貯湯運転をする貯湯温制御手段と、この貯湯温制御手段による貯湯運転の終了後、上記開閉弁を所定時間開弁すると共に上記ポンプを運転する貯湯温均等化手段と、を具備していることを特徴とするヒートポンプ給湯器である。
【0016】
この発明によれば、給湯運転後かつ貯湯運転の開始前、貯湯タンク内の残湯を検出すると、水熱交換器の第2の熱交換管の入口水温の設定値(貯湯温度の設定値)を、貯湯温制御手段により残湯量に応じてその設定値よりも所定値高い温度に補正して、貯湯運転する。このために、貯湯タンク内では熱ロスにより温度が低下した温度の低い残湯層の上に、水熱交換器により加熱された温度の高い貯湯が所定の流量で供給され、水熱交換器の入口水温度が補正設定値に達したときに貯湯運転が終了する。
【0017】
この貯湯運転の終了後は、貯湯温均等化手段によりバイパス路の開閉弁が開弁されると共にポンプが所定時間運転される。このために、貯湯タンク内の下部にあって温度の低い残湯がポンプにより昇圧されて、水熱交換器をバイパスして開弁中の開閉弁とバイパス路を通って貯湯タンク内へ、その上部の湯入口から直接供給される。
【0018】
このために、貯湯タンク内では、温度の高い貯湯層の上にこれよりも温度の低い残湯等の湯ないし水が供給されるので、自然対流により混合され、貯湯タンク内全体の湯の温度分布が高温度で均一化される。したがって、貯湯タンク内に残湯があっても所定温度で貯湯できる。しかも、このとき、貯湯タンク内の残湯を流路抵抗の大きい水熱交換器をバイパスさせて貯湯タンク内上部へ直接戻すので、その還流量の増大を図ることができる。このために、貯湯タンク内の温度の異なる貯湯同士の混合を促進することができるので、この温度均等化運転時間の短縮を図ることができる。
【0019】
請求項2の発明は、上記貯湯温均等化手段は、上記開閉弁を開弁して運転する上記ポンプの運転時間を、上記残湯量に応じて予め設定し、または上記水熱交換器の入口水温が所定の貯湯温度に対応する設定値に達したときに上記ポンプの運転を停止するように構成されていることを特徴とする請求項1記載のヒートポンプ給湯器である。
【0020】
この発明によれば、バイパス路の開閉弁を開弁してのポンプの運転時間は貯湯タンク内の残湯量に応じて設定されるので、貯湯タンク内の貯湯温度を、残湯量の多少に拘らず常にほぼ一定に保持することができる。また、水熱交換器の入口水温が貯湯タンク内の貯湯温度に対応する水熱交換器の入口温度に達したときに、貯湯温均等化手段によりポンプの運転が停止されるので、貯湯タンク内の残湯量の多少に拘らず貯湯温度を常にほぼ一定に保持することができる。
【0021】
【発明の実施の形態】
以下、本発明の実施形態を図1〜図4に基づいて説明する。これらの図中、同一または相当部分には同一符号を付している。
【0022】
図1は本発明の一実施形態に係るヒートポンプ給湯器21の全体構成を示すブロック図である。このヒートポンプ給湯器21は水を図中矢印方向に循環させる水回路31と、この水回路31の水を加熱する加熱媒体としての冷媒を図中矢印方向に循環させるヒートポンプ式冷凍サイクル41とを備えている。
【0023】
冷凍サイクル41は、図示しないインバータにより運転周波数を制御することにより単位時間当りの回転数(回転速度)が制御自在の圧縮機42、水熱交換器43の第1(一次側)の熱交換管43a、電動弁等よりなる流量調整自在の膨張弁44、室外等に設置される空気熱交換器45を冷媒配管46によりこの順に順次接続して冷媒を循環させる閉じたループを構成している。圧縮機42の吐出側と空気熱交換器45の冷媒入口側とは除霜バイパス路47により連通させており、この除霜バイパス路47の途中には電磁二方弁等よりなる除霜バイパス弁48を介装している。
【0024】
また、水熱交換器43と空気熱交換器45には水と空気または冷媒との熱交換を促進させるための図示しないファンをそれぞれ設ける一方、水熱交換器43に、冷媒の凝縮温度を検出する凝縮温度センサ49を設け、膨張弁44の下流側に冷媒の蒸発温度を検出する蒸発温度センサ50を設け、さらに、圧縮機42には、その吸込側温度を検出する吸込側温度センサ51と吐出側温度を検出する吐出側温度センサ52を設けている。
【0025】
そして、これら吸込側,吐出側温度センサ51,52、蒸発温度センサ50、凝縮温度センサ49、膨張弁44、除霜バイパス弁48、図示しない熱交換用ファンを図示しない信号線により制御器53に電気的に接続している。
【0026】
一方、水回路31は上記水熱交換器43の冷媒を通す一次側熱交換管43aと熱交換自在の水を通す二次側熱交換管43b、補助ヒータ32、貯湯タンクである給湯タンク33、流量可変のポンプ34を水配管35によりこの順に順次接続して水を図中矢印方向に循環させる閉じたループの主回路を構成している。ポンプ34は、貯湯運転中は例えば電力料金が割安の深夜時間帯の約8時間で貯湯タンク33内の貯湯(水)を一巡させる能力を備えていればよく、水熱交換器43も低温量の能力を備えていればよい。
【0027】
貯湯タンク33は、その上部に、補助ヒータ32からの温水(湯)を受水する受水口と、図示しない被給湯部に給湯する給湯口とを兼用する湯出入口33aを設け、この湯出入口33aに接続された二股分岐管の一分岐端を補助ヒータ11の出口水路側に接続する一方、他の分岐端を給湯管38に接続している。一方、貯湯タンク33の下部には、給水管39に接続された受水口33bと、貯湯タンク33内の貯水ないし貯湯を供給する水出口33cとを形成している。
【0028】
そして、ポンプ34の吐出側と水熱交換器43の水出口側とを連通して水熱交換器43をバイパスさせる熱交バイパス路36と、この熱交バイパス路36の途中に介装された熱交バイパス弁37と、水熱交換器43の二次側熱交換管43bからの出湯の温度を検出する湯温センサ40aと、貯湯タンク33の水出口33cからの水の温度を検出する水温センサ40bと、貯湯タンク33内の水温を検出して残湯を検出するための第2の水温センサとを備えている。これら第2の水温センサ、補助ヒータ32、ポンプ34、熱交バイパス弁37は図示しない信号線により制御器53に電気的に接続されている。
【0029】
制御器53は例えばマイクロプロセッサ等よりなり、残湯量検出手段、貯湯温制御手段、貯湯温均等化手段、着霜検出手段、除霜完了検出手段、膨張弁開度制御手段、流量可変のポンプ34の回転速度(単位時間当りの回転数)を制御するポンプ制御手段および圧縮機制御手段を備えている。
【0030】
上記残湯量検出手段は、給湯運転後かつ貯湯運転前、貯湯タンク33内の図示しない第2の水温センサにより検出された温度検出値に基づいて貯湯タンク33内の残湯量を検出する手段である。
【0031】
貯湯温制御手段は、水熱交換器43の二次側熱交換管43bの入口水温を所定値に設定することにより、貯湯タンク33内へ供給される貯湯温の目標値を設定する一方、上記残湯を検出したときに、水熱交換器43の入口水温設定値を、残湯量に応じて所定値高くするように補正して貯湯運転するものである。貯湯運転の電力は例えば電力料金の安い深夜の時間帯の電力を使用して行なわれる。
【0032】
貯湯運転は冷凍サイクル41については除霜用二方弁である除霜バイパス弁48を閉弁して貯湯運転すると共に、水回路31の熱交バイパス弁37を閉弁し、ポンプ34を運転して貯湯タンク33内の貯水ないし貯湯を水熱交換器43の二次側熱交換管43bへ送水し、ここで一次側熱交換管43a内を通る高温高圧のガス状冷媒の凝縮熱により加熱して貯湯温度が設定値(目標値)に達するまで、すなわち、水熱交換器43の2次側熱交換管43aの入口水温が所定の設定温度(例えば約30度)に達したことを水温センサ40bにより検出するまで、運転される。給湯運転はこの貯湯運転後、給湯管38の図示しない給水弁の開弁と給水ポンプの運転により、貯湯タンク33内の貯湯を給水管38により図示しない被給湯部に給湯する運転である。
【0033】
そして、貯湯温均等化手段は、給湯後かつ貯湯運転前に、貯湯タンク33内に残湯が残存する場合でも貯湯タンク33内に蓄えられている貯湯の全体の温度を均等化するものであり、上記貯湯温制御手段により水熱交換器43の入口水温設定値を補正して行なった貯湯運転の終了後、熱交バイパス弁37を開弁すると共に、ポンプ34を所定時間運転することにより貯湯タンク33内の温度の異なる貯湯同士を自然対流により混合させて貯湯全体の湯温をほぼ均等化するものであり、これら熱交バイパス弁37の開弁時間とポンプ34の運転時間は共に貯湯タンク33内の残湯量に対応して予め設定されている設定値を使用する。
【0034】
着霜検出手段は冷凍サイクル41の貯湯運転により蒸発器(冷却器)として作用する空気熱交換器45に発生する着霜を検出するものであり、この貯湯運転時間と、蒸発温度センサ50により検出した空気熱交換器45の入口温度最低値等に基づいて、その着霜を検出し、その着霜を検出したときは除霜バイパス弁48を開弁し、圧縮機42から吐出された高温高圧のガス状冷媒を水熱交換器43と膨張弁44をバイパスさせて除霜バイパス路47を通して直接空気熱交換器45に導入し、ここで凝縮液化する冷媒の凝縮熱により空気熱交換器45を加熱し、着霜を加熱融霜して除霜するようになっている。この除霜運転は除霜完了検出手段により除霜の完了を検出するまで続行される。
【0035】
この除霜完了検出手段は吸込側温度センサ51により検出した圧縮機42の吸込側温度の検知温度が、例えば2.5℃以上で80秒継続するか、または、その検知温度が5℃以上になるか、または、除霜運転が10分以上継続した場合に、除霜運転が完了したものと判断し、その判断後、除霜バイパス弁48を図1に示すように再び閉弁して除霜運転から再び貯湯運転へ復帰させるように構成されている。
【0036】
圧縮機制御手段は、図示しないインバータを制御して圧縮機42の運転周波数を制御することにより、回転速度を制御し、冷凍サイクル41を循環する冷媒の循環流量を制御させることにより水熱交換器43の一次側熱交換管43aの凝縮熱(放熱)量を制御し、その二次側熱交換管43bの通水への与熱量を制御させることにより、この水熱交換器43の水出口温を制御するようになっている。
【0037】
次に、このように構成されたヒートポンプ給湯器21の作用を説明する。
【0038】
まず、図1に示すように冷凍サイクル41側を貯湯運転すると、圧縮機42により圧縮された高温高圧のガス状冷媒が水熱交換器43の一次側熱交換管43a内を通ることにより凝縮液化して放熱し、この凝縮熱(放熱)により水熱交換器44の二次側熱交換管44b内を通水する水が加熱される。
【0039】
一方、この水熱交換器43で凝縮液化した液冷媒は所定開度の膨張弁44を通る際に減圧されると共に、冷媒流量が適宜流量に制御されて空気熱交換器45内に流入し、ここで蒸発して外気から吸熱してガス状冷媒の状態で再び圧縮機42内へ、その吸込側から戻され、再び圧縮機42で圧縮されて水熱交換器43内へ流入して凝縮液化し、その凝縮熱により二次側熱交換管43bの通水を加熱し、以下これの繰返しにより水熱交換器43の二次側熱交換管43bの通水が漸次高温水に加熱される。
【0040】
この水熱交換器43で加熱された温水(湯)は、その水出口から出て補助ヒータ32によりさらに加熱されてから給湯タンク33内へ、その上部の水出入口33aから供給され貯蔵される。
【0041】
さらに、この給湯タンク33内の貯湯は、その底部の水出口33cから流量可変のポンプ34内へ吸い込まれ、ここで昇圧されてから再び水熱交換器43の二次側熱交換管43b内を通水し、その通水の際に、再び一次側熱交換管43a内を通る高温高圧のガス状冷媒の凝縮熱により加熱されて温水温度をさらに高めて補助ヒータ32によりさらにまた加熱されて給湯タンク33内へ、その上部の湯出入口33aから供給される。以下、これの繰返しにより貯湯タンク33内の貯湯温度が漸次目標温度まで昇温されたときに貯湯運転が停止され、給湯運転に備える。そして、給湯運転時には、給湯タンク33内の給湯が給湯管38を介して被給湯部へ給湯される。
【0042】
そして、このような貯湯運転中は空気熱交換器45が室外に設置されるうえに蒸発器(冷却器)として作用するので、この空気熱交換器45に着霜が発生する場合がある。この着霜は制御器53の着霜検出手段により検出される。着霜検出手段はこの空気熱交換器45の着霜を検出すると、除霜バイパス弁48を開弁して貯湯運転から除霜運転に切り換える。
【0043】
すると、圧縮機42からの高温高圧のガス状冷媒が水熱交換器43をバイパスして空気熱交換器45内に直接流入して凝縮液化して放熱するので、その放熱により空気熱交換器45の着霜を加熱し、ここで融霜することにより除霜することができる。
【0044】
さらに、この空気熱交換器45で凝縮した冷媒は、圧縮機42へ、その吸込側から戻され、以下、これの繰返しにより空気熱交換器45の着霜が除霜される。この除霜が完了すると、その除霜完了を制御器53の除霜完了手段が吸込側温度センサ51からの検出温度等に基づいて検出し、除霜バイパス弁48を閉じて除霜運転を終了させ、冷凍サイクル41を再び貯湯運転に復帰させる。
【0045】
この貯湯運転への復帰により、上記貯湯運転が再び繰り返され、貯湯タンク33内の貯湯の温度が所定値に達すると、水熱交換器43の入口水温を検出する水温センサ40bにより所定の設定温度(例えば30℃)を検出するので、貯湯タンク33内の貯湯が所定の設定温度(例えば85℃)に達したものと判断して圧縮機42やポンプ34、補助ヒータ32、熱交換器用ファン等の運転を停止させて貯湯運転を終了させ、給湯運転に備えて待機する。
【0046】
そして、図2に示すように給湯運転後、かつ貯湯運転前、貯湯タンク33内の残湯層Aを制御器53の上記残湯検出手段により検出した場合には、貯湯温制御手段により前回の貯湯運転時に設定された水熱交換器43の入口水温の設定値を、残湯量に応じて入口水温の前回設定値よりも予め高い設定値に補正し、湯温センサ40aにより検出される貯湯温度が貯湯運転時の設定値(例えば85℃)よりも所定値高い補正設定値(例えば90℃)に補正して貯湯運転を開始する。
【0047】
これにより、図3に示すように貯湯タンク33内では、その上部に、設定温度よりも所定値高い温度(例えば90℃)に達した高温湯層Cが分布する一方、この高温湯層の下方には熱ロス等により例えば約70℃程度に降温した残湯の低温湯層が分布し、これら両湯層C,Aは高温湯層が低温湯層の上に分布するために殆ど混合されずに分離される。
【0048】
そこで、図4に示すように制御器53の貯湯温均等化手段は熱交バイパス弁37を所定時間開弁すると共にポンプ34を運転し、貯湯タンク33の水出口33cからの水を流路抵抗の大きい水熱交換器43をバイパス路37によりバイパスさせてポンプ34により大流量で水回路31を循環させる。このポンプ34の運転時間と熱交バイパス弁37の開弁時間は制御器53の湯温均等化手段により予め残湯量に応じて設定されている。
【0049】
これにより、貯湯タンク33内の低温湯層の比較的温度の低い残湯が貯湯タンク33内の高温湯層Cの上から大流量で供給されるので、貯湯タンク33内では低温湯層Aと高温湯層Cとが自然対流により混合され、その全体を例えば約85℃程度の所定の設定温度に均等化することができる。
【0050】
したがって、給湯運転後、貯湯タンク33内に残湯がある場合でも、次回の貯湯運転により貯湯タンク33内の貯湯全体を所定の設定温度でほぼ均等化することができるので、湯温がほぼ一定の貯湯を給湯することができる。
【0051】
しかも、この貯湯均等化運転のときには、熱交バイパス弁37を開弁することにより水回路31を循環する水に水熱交換器43をバイパスさせるので、貯湯タンク33内の低温湯層Aの貯湯を高温湯層Cの貯湯の上に大流量で供給することができるので、これら低温湯層Aと高温湯層Cとの混合効率を向上させることができる。このために、貯湯均等化運転時間の短縮を図ることができると共に、ポンプ34の大型化を抑制することができる。
【0052】
【発明の効果】
以上説明したように本発明は、給湯運転後かつ貯湯運転の開始前、貯湯タンク内の残湯を検出すると、水熱交換器の第2の熱交換管の入口水温の設定値(貯湯温度の設定値)を、貯湯温制御手段により残湯量に応じてその設定値よりも所定値高い温度に補正して、貯湯運転する。このために、貯湯タンク内では熱ロスにより温度が低下した温度の低い残湯層の上に、水熱交換器により加熱された温度の高い貯湯が所定の流量で供給され、水熱交換器の入口水温度が補正設定値に達したときに貯湯運転が終了する。
【0053】
この貯湯運転の終了後は、貯湯温均等化手段によりバイパス路の開閉弁が開弁されると共にポンプが所定時間運転される。このために、貯湯タンク内の下部にあって温度の低い残湯がポンプにより昇圧されて、水熱交換器をバイパスして開弁中の開閉弁とバイパス路を通って貯湯タンク内へ、その上部の湯入口から直接供給される。
【0054】
このために、貯湯タンク内では、温度の高い貯湯層の上にこれよりも温度の低い残湯等の湯ないし水が供給されるので、自然対流により混合され、貯湯タンク内全体の湯の温度分布が高温度で均一化される。したがって、貯湯タンク内に残湯があっても所定温度で貯湯できる。しかも、このとき、貯湯タンク内の残湯を流路抵抗の大きい水熱交換器をバイパスさせて貯湯タンク内上部へ直接戻すので、その還流量の増大を図ることができる。このために、貯湯タンク内の温度の異なる貯湯同士の混合を促進することができるので、この温度均等化運転時間の短縮を図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係るヒートポンプ給湯器の全体構成を示すブロック図。
【図2】図1で示すヒートポンプ給湯器において、貯湯運転前に貯湯タンク内に残湯が存在する場合のブロック図。
【図3】図1で示すヒートポンプ給湯器において、貯湯温制御運転を行なったときのブロック図。
【図4】図1で示すヒートポンプ給湯器において、貯湯温均等化運転を行なったときのブロック図。
【図5】従来のヒートポンプ給湯器の全体構成を示すブロック図。
【図6】図5で示す従来のヒートポンプ給湯器の貯湯運転前に貯湯タンク内に残湯が存在する場合のブロック図。
【図7】図5で示す従来のヒートポンプ給湯器の貯湯運転時の状態を示すブロック図。
【図8】図5で示す従来のヒートポンプ給湯器の給湯運転後かつ貯湯運転前の状態を示すブロック図。
【符号の説明】
21 ヒートポンプ給湯器
31 水回路
32 補助ヒータ
33 給湯タンク
33a 湯出入口
33b 受水口
33c 水出口
34 ポンプ
35 水配管
36 熱交バイパス路
37 熱交バイパス弁
38 給湯管
39 給水管
40a 湯温センサ
40b 水温センサ
41 冷凍サイクル
42 圧縮機
43 水熱交換器
44 膨張弁
45 空気熱交換器
46 冷媒配管
47 除霜バイパス路
48 除霜バイパス弁
49 凝縮温度センサ
50 蒸発温度センサ
51 吸込側温度センサ
52 吐出側温度センサ
53 制御器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump water heater capable of supplying hot water by heating water in a hot water storage tank by a heat pump refrigeration cycle, and in particular, even if there is residual hot water in the hot water storage tank, the temperature of the entire hot water storage is set It is related with the heat pump water heater which can be almost equalized.
[0002]
[Prior art]
Conventionally, as an example of this type of heat pump water heater, for example, as shown in FIG. 5, a heat pump refrigeration cycle 1 that circulates a refrigerant, and a water circuit 10 that supplies water heated by the refrigeration cycle 1 to a hot water supply tank 12. There is a thing equipped with.
[0003]
The refrigeration cycle 1 is a closed loop in which a refrigerant is circulated by sequentially connecting a compressor 2, a primary heat exchange pipe 3a of a water heat exchanger 3, an expansion valve 5, and an outdoor air heat exchanger 6 in this order by a refrigerant pipe 7. Is configured. In addition, the code | symbol 8 in FIG. 5 is a defrost two-way valve opened by the controller 9 at the time of a defrost operation, and 17 is various temperature sensors.
[0004]
On the other hand, the water circuit 10 sequentially connects the primary heat exchange pipe 3a with the primary heat exchange pipe 3a of the water heat exchanger 3 to the secondary heat exchange pipe 3b, the auxiliary heater 11, the hot water supply tank 12, and the pump 13 in this order. To form a closed loop for circulating water (or hot water).
[0005]
The hot water storage tank 12 is provided with a hot water inlet / outlet 12a serving both as a hot water inlet and a hot water inlet through which hot water from the auxiliary heater 11 is supplied, and one end of a bifurcated branch pipe connected to the hot water inlet / outlet 12a is connected to the auxiliary heater 11 side. One end of the other branch pipe is connected to the hot water supply line 15. On the other hand, a water inlet 12b and a water outlet 12c for receiving water are provided at the bottom of the hot water supply tank 12, and a water supply line 16 is connected to the water inlet 12b.
[0006]
During the hot water storage operation, the refrigerant circulates in the direction indicated by the arrow in FIG. 5 and the water heat exchanger 3 acts as a condenser, while the air heat exchanger 6 acts as an evaporator. For this purpose, when the water pumped out from the water outlet 12c at the bottom of the hot water storage tank 12 by the pump 13 passes through the secondary heat exchange pipe 3b of the water heat exchanger 3, the primary heat exchange pipe 4b passes through the secondary heat exchange pipe 4b. The hot water is heated by the condensation heat of the high-temperature and high-pressure gaseous refrigerant that passes therethrough, and becomes hot water. The hot water is fed into the hot water storage tank 12 through the water pipe 14 from the hot water inlet / outlet 12 a by the water pipe 14.
[0007]
In the hot water storage tank 12, the upper hot water storage layer and the lower water storage layer in which water having a lower temperature than the hot water storage is distributed with little mixing, and the hot water heated by the water heat exchanger 3 is distributed. The hot water tank 12 is supplied from the upper hot water inlet / outlet 12a, so that the hot water is stored in the upper hot water reservoir and gradually descends to the lower hot water reservoir, and finally rises. Since the hot water flows into the water heat exchanger 3, when the inlet water temperature of the water heat exchanger 3 reaches a set temperature (for example, about 30 ° C.), the hot water storage temperature in the hot water storage tank 12 is a predetermined value (for example, The controller 9 determines that the temperature has reached 85 ° C.), ends the hot water storage operation, and waits for the hot water supply operation.
[0008]
That is, the hot water storage temperature of the hot water storage layer in the hot water storage tank 12 is determined by the inlet water temperature of the water heat exchanger 3, and the rotational speed of the compressor 2 is controlled so as to reach this set temperature during the hot water storage operation. Further, the discharge flow rate of the pump 13 is set to a flow rate at which all of the water in the hot water storage tank 12 makes a round in the late-night power time period (generally 8 hours) when the power rate is reduced. After this hot water storage operation, the hot water supply operation is performed, and the hot water in the hot water storage tank 12 is supplied from the hot water inlet / outlet 12a to the hot water supply portion (not shown) via the hot water supply line 15 and is approximately the same amount as the hot water supply amount. Is supplied to the hot water storage tank 12 through the water supply line 16.
[0009]
[Problems to be solved by the invention]
However, in such a conventional heat pump water heater, after the hot water supply operation, as shown in FIG. 6, when the remaining hot water amount of the hot water storage layer A accumulated in the upper portion of the hot water storage tank 12 is large, By repeating the operation and the hot water supply operation, there is a problem in that the temperature of the remaining hot water layer A is not always used and the temperature is lowered due to heat loss, and the total heat storage amount is reduced, that is, the predetermined heat storage amount cannot be stored.
[0010]
That is, as shown in FIG. 6, before the hot water storage operation is started, for example, in the midnight time zone when the power rate is low, the remaining hot water layer A whose temperature is lowered due to heat loss is stored in the hot water storage tank 12 at a lower temperature. Since it is distributed above the layer B, the hot water in these layers A and B is distributed in a state of being hardly mixed. As shown in FIG. 7, at the end of the hot water storage operation in the midnight power hours, the remaining hot water The remaining hot water in the layer A is gradually lowered in the hot water storage tank 12 while being further reduced due to heat loss (for example, 70 ° C.), and the remaining hot water is heated on the remaining hot water layer A by the water heat exchanger 3. The hot water storage layer C that has reached the target temperature (for example, 85 ° C.) is distributed, and the hot water of these layers A and C is higher in the hot water in the upper layer than in the lower layer. It remains separated and hardly mixed.
[0011]
For this reason, as the hot water supplied from the water outlet 12c of the hot water storage tank 12 to the hydrothermal exchanger 3, even if the temperature is lowered due to heat loss, a relatively hot remaining hot water is supplied. Before the remaining hot water of A reaches the target temperature, the inlet water temperature of the water heat exchanger 3 reaches a set temperature (for example, 30 ° C.), and the hot water storage operation ends. For this reason, in the hot water storage tank 12, the hot water layer C that has reached a predetermined target temperature (for example, 85 ° C.) and the remaining hot water layer A having a temperature lower than this are distributed vertically. Since the hot water storages of both layers A and C are not mixed and are almost separated, the hot water storage temperature in the entire hot water storage tank 12 is not uniform.
[0012]
Therefore, as shown in FIG. 8, when the hot water storage operation is completed (before midnight electric power hot water storage), the remaining hot water layer in which the temperature is further lowered (for example, lowered from 70 ° C. to 65 ° C.) due to the heat loss of the hot water in the hot water storage tank 12. A remains in the upper part of the hot water storage tank 12. In other words, the daily hot water layer A is reduced in temperature day by day by heat loss, and the hot water of the residual hot water layer A is supplied hot water, so that the hot water supply temperature cannot be raised to the target temperature. It becomes a challenge.
[0013]
By the way, although there is a remaining hot water in the hot water storage tank 12 in this way, it is possible to think that the amount of heat storage may be small, but there is a case where a large amount of hot water supply at the target temperature is suddenly required. Need to be secured every day. That is, it is necessary to store hot water (heat storage) almost uniformly at the target temperature over almost the entire amount of hot water stored in the hot water storage tank 12.
[0014]
The present invention has been made in consideration of such circumstances, and its purpose is to store hot water in the hot water storage tank almost uniformly at a target temperature (heat storage) at any time even when there is remaining hot water in the hot water storage tank. It is in providing the heat pump water heater which can do.
[0015]
[Means for Solving the Problems]
The invention of claim 1 includes a refrigeration cycle in which a refrigerant is circulated by sequentially connecting a compressor, a first heat exchange pipe of a water heat exchanger, an expansion valve, and an air heat exchanger, and the first of the water heat exchanger. A heat exchange pipe and a second heat exchange pipe capable of exchanging heat, a hot water inlet and a hot water inlet for receiving hot water from the second heat exchange pipe are provided in the upper portion, and a water supply inlet and a water outlet for receiving water are provided. A hot water storage tank provided in the lower part, a main circuit for sequentially circulating water by connecting a pump, a bypass path connecting the water discharge side of the pump and the hot water inlet side of the hot water storage tank, and an intermediate part of the bypass path Before the hot water storage operation for circulating the water in the hot water storage tank with the on-off valve and the water in the hot water storage tank to the water circuit and raising the temperature of the water to the set value of the inlet water temperature of the water heat exchanger, When the remaining hot water in the tank is detected, the above water heat exchange is performed according to the remaining hot water amount. After the end of the hot water storage operation by the hot water storage temperature control means, the hot water storage temperature control means for correcting the inlet water temperature setting value to a preset value higher than the inlet water temperature set value of And a hot water storage temperature equalizing means for operating the pump while opening and closing the on-off valve for a predetermined time.
[0016]
According to this invention, after the hot water supply operation and before the start of the hot water storage operation, when the remaining hot water in the hot water storage tank is detected, the set value of the inlet water temperature of the second heat exchange pipe of the water heat exchanger (the set value of the hot water temperature) Is corrected to a temperature higher than the set value by the hot water storage temperature control means in accordance with the amount of remaining hot water, and the hot water storage operation is performed. For this purpose, hot water storage hot water heated by a water heat exchanger is supplied at a predetermined flow rate on a low temperature remaining hot water layer whose temperature has been reduced due to heat loss in the hot water storage tank. When the inlet water temperature reaches the correction set value, the hot water storage operation ends.
[0017]
After completion of this hot water storage operation, the hot water storage temperature equalizing means opens the bypass passage opening and closing valve and operates the pump for a predetermined time. For this purpose, the low-temperature remaining hot water at the bottom of the hot water tank is boosted by the pump, bypasses the water heat exchanger, passes through the open / close valve and bypass passage, and enters the hot water tank. It is supplied directly from the upper hot water inlet.
[0018]
For this reason, in the hot water storage tank, hot water such as residual hot water or water having a lower temperature is supplied onto the hot water storage layer, so that it is mixed by natural convection and the temperature of the hot water in the hot water storage tank as a whole. Distribution is made uniform at high temperatures. Therefore, even if there is remaining hot water in the hot water storage tank, hot water can be stored at a predetermined temperature. In addition, at this time, since the remaining hot water in the hot water storage tank is directly returned to the upper part of the hot water storage tank by bypassing the hydrothermal exchanger having a large flow path resistance, the amount of the recirculation can be increased. For this reason, since mixing of hot water having different temperatures in the hot water storage tank can be promoted, the temperature equalizing operation time can be shortened.
[0019]
According to the invention of claim 2, the hot water storage temperature equalizing means sets in advance the operation time of the pump operated by opening the on-off valve in accordance with the amount of remaining hot water, or the inlet of the water heat exchanger 2. The heat pump water heater according to claim 1, wherein the pump is stopped when the water temperature reaches a set value corresponding to a predetermined hot water storage temperature.
[0020]
According to the present invention, since the pump operation time after opening the on-off valve of the bypass passage is set according to the amount of remaining hot water in the hot water storage tank, the hot water storage temperature in the hot water storage tank is determined regardless of the amount of remaining hot water. It can always be kept almost constant. Also, when the water temperature at the inlet of the water heat exchanger reaches the inlet temperature of the water heat exchanger corresponding to the temperature of the hot water stored in the hot water storage tank, the operation of the pump is stopped by the hot water temperature equalizing means. Regardless of the amount of remaining hot water, the hot water storage temperature can always be kept substantially constant.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. In these drawings, the same or corresponding parts are denoted by the same reference numerals.
[0022]
FIG. 1 is a block diagram showing an overall configuration of a heat pump water heater 21 according to an embodiment of the present invention. The heat pump water heater 21 includes a water circuit 31 that circulates water in the arrow direction in the figure, and a heat pump refrigeration cycle 41 that circulates a refrigerant as a heating medium for heating the water in the water circuit 31 in the arrow direction in the figure. ing.
[0023]
The refrigeration cycle 41 includes a compressor 42 whose rotation speed per unit time (rotational speed) can be controlled by controlling an operation frequency by an inverter (not shown), and a first (primary side) heat exchange pipe of the water heat exchanger 43. 43a, a flow rate adjustable expansion valve 44 including an electric valve, etc., and an air heat exchanger 45 installed outside the room are sequentially connected by a refrigerant pipe 46 in this order to constitute a closed loop for circulating the refrigerant. The discharge side of the compressor 42 and the refrigerant inlet side of the air heat exchanger 45 are communicated with each other by a defrost bypass passage 47, and a defrost bypass valve made up of an electromagnetic two-way valve or the like is provided in the middle of the defrost bypass passage 47. 48 is interposed.
[0024]
The water heat exchanger 43 and the air heat exchanger 45 are each provided with a fan (not shown) for promoting heat exchange between water and air or the refrigerant, while the water heat exchanger 43 detects the refrigerant condensation temperature. A condensing temperature sensor 49 is provided, an evaporating temperature sensor 50 for detecting the evaporating temperature of the refrigerant is provided on the downstream side of the expansion valve 44, and the compressor 42 further includes a suction side temperature sensor 51 for detecting the suction side temperature. A discharge side temperature sensor 52 for detecting the discharge side temperature is provided.
[0025]
The suction side and discharge side temperature sensors 51 and 52, the evaporation temperature sensor 50, the condensation temperature sensor 49, the expansion valve 44, the defrost bypass valve 48, and a heat exchange fan (not shown) are connected to the controller 53 by a signal line (not shown). Electrically connected.
[0026]
On the other hand, the water circuit 31 includes a primary side heat exchange pipe 43a through which the refrigerant of the water heat exchanger 43 passes, a secondary side heat exchange pipe 43b through which heat exchangeable water passes, an auxiliary heater 32, a hot water supply tank 33 which is a hot water storage tank, The main circuit of the closed loop which circulates water in the direction of the arrow in the figure by sequentially connecting the pump 34 with variable flow rate in this order by the water pipe 35 is configured. During the hot water storage operation, the pump 34 only needs to have the capability of making a round of hot water (water) in the hot water storage tank 33 in about 8 hours in the midnight hours when the electricity rate is cheap, and the water heat exchanger 43 also has a low temperature amount. It only has to have the ability of.
[0027]
The hot water storage tank 33 is provided with a hot water inlet / outlet 33a that serves both as a water inlet for receiving hot water (hot water) from the auxiliary heater 32 and a hot water outlet for supplying hot water to a hot water supply unit (not shown). One branch end of the bifurcated branch pipe connected to is connected to the outlet water channel side of the auxiliary heater 11, while the other branch end is connected to the hot water supply pipe 38. On the other hand, at the lower part of the hot water storage tank 33, a water receiving port 33b connected to the water supply pipe 39 and a water outlet 33c for supplying water in the hot water storage tank 33 or supplying hot water are formed.
[0028]
Then, the heat exchange bypass passage 36 that connects the discharge side of the pump 34 and the water outlet side of the water heat exchanger 43 to bypass the water heat exchanger 43 and the heat exchange bypass passage 36 are interposed in the middle. Water temperature sensor 40a for detecting the temperature of the hot water from the heat exchanger bypass valve 37, the secondary heat exchange pipe 43b of the water heat exchanger 43, and the water temperature for detecting the temperature of the water from the water outlet 33c of the hot water storage tank 33 The sensor 40b and the 2nd water temperature sensor for detecting the water temperature in the hot water storage tank 33, and detecting remaining hot water are provided. The second water temperature sensor, the auxiliary heater 32, the pump 34, and the heat exchange bypass valve 37 are electrically connected to the controller 53 through a signal line (not shown).
[0029]
The controller 53 comprises, for example, a microprocessor or the like, and includes a remaining hot water amount detection means, a hot water storage temperature control means, a hot water storage temperature equalization means, a frost detection means, a defrost completion detection means, an expansion valve opening control means, and a variable flow rate pump 34. Are provided with pump control means and compressor control means for controlling the rotation speed (the number of revolutions per unit time).
[0030]
The remaining hot water amount detecting means is a means for detecting the remaining hot water amount in the hot water storage tank 33 based on a temperature detection value detected by a second water temperature sensor (not shown) in the hot water storage tank 33 after the hot water supply operation and before the hot water storage operation. .
[0031]
The hot water storage temperature control means sets a target value of the hot water temperature supplied into the hot water storage tank 33 by setting the inlet water temperature of the secondary side heat exchange pipe 43b of the water heat exchanger 43 to a predetermined value. When the remaining hot water is detected, the inlet water temperature set value of the water heat exchanger 43 is corrected so as to increase by a predetermined value according to the remaining hot water amount, and the hot water storage operation is performed. Electricity for hot water storage operation is performed using, for example, electric power in the midnight time zone where the electric power charge is low.
[0032]
In the hot water storage operation, for the refrigeration cycle 41, the defrosting bypass valve 48, which is a two-way valve for defrosting, is closed and the hot water storage operation is performed, the heat exchange bypass valve 37 of the water circuit 31 is closed, and the pump 34 is operated. The stored water or hot water in the hot water storage tank 33 is sent to the secondary heat exchange pipe 43b of the water heat exchanger 43, where it is heated by the condensation heat of the high-temperature and high-pressure gaseous refrigerant passing through the primary heat exchange pipe 43a. Until the hot water storage temperature reaches a set value (target value), that is, the water temperature sensor indicates that the inlet water temperature of the secondary heat exchange pipe 43a of the water heat exchanger 43 has reached a predetermined set temperature (for example, about 30 degrees). It is operated until it is detected by 40b. The hot water supply operation is an operation of supplying hot water in the hot water storage tank 33 to a hot water supply portion (not shown) through the water supply pipe 38 by opening a water supply valve (not shown) of the hot water supply pipe 38 and operating a water supply pump after the hot water storage operation.
[0033]
The hot water storage temperature equalizing means equalizes the overall temperature of the hot water stored in the hot water storage tank 33 even when hot water remains in the hot water storage tank 33 after the hot water supply and before the hot water storage operation. After the hot water storage operation performed by correcting the set value of the inlet water temperature of the water heat exchanger 43 by the hot water storage temperature control means, the heat exchange bypass valve 37 is opened and the pump 34 is operated for a predetermined time. The hot water stored in the tank 33 is mixed by natural convection so that the hot water temperature of the entire hot water is almost equalized. The opening time of the heat exchange bypass valve 37 and the operation time of the pump 34 are both hot water storage tanks. A set value set in advance corresponding to the amount of remaining hot water in 33 is used.
[0034]
The frost detection means detects frost generated in the air heat exchanger 45 acting as an evaporator (cooler) by the hot water storage operation of the refrigeration cycle 41, and is detected by the hot water storage operation time and the evaporation temperature sensor 50. The frost formation is detected based on the lowest inlet temperature of the air heat exchanger 45, and when the frost formation is detected, the defrost bypass valve 48 is opened and the high temperature and pressure discharged from the compressor 42 is detected. The gaseous refrigerant is bypassed by the water heat exchanger 43 and the expansion valve 44 and directly introduced into the air heat exchanger 45 through the defrost bypass passage 47, where the air heat exchanger 45 is caused by the condensation heat of the refrigerant to be condensed and liquefied. It heats and defrosts by heating and frosting the frost. This defrosting operation is continued until the completion of defrosting is detected by the defrosting completion detecting means.
[0035]
This defrosting completion detection means continues the detection temperature of the suction side temperature of the compressor 42 detected by the suction side temperature sensor 51 at, for example, 2.5 ° C. or more for 80 seconds, or the detection temperature becomes 5 ° C. or more. Or if the defrosting operation has continued for 10 minutes or more, it is determined that the defrosting operation has been completed, and after that determination, the defrosting bypass valve 48 is closed again as shown in FIG. It is configured to return from the frost operation to the hot water storage operation again.
[0036]
The compressor control means controls an inverter (not shown) to control the operating frequency of the compressor 42, thereby controlling the rotational speed, and controlling the circulation flow rate of the refrigerant circulating in the refrigeration cycle 41, thereby making the water heat exchanger The water outlet temperature of the water heat exchanger 43 is controlled by controlling the amount of heat of condensation (radiation) of the primary side heat exchange pipe 43a of 43 and controlling the amount of heat supplied to the water passing through the secondary side heat exchange pipe 43b. Is to control.
[0037]
Next, the operation of the heat pump water heater 21 configured as described above will be described.
[0038]
First, when the hot water storage operation is performed on the refrigeration cycle 41 side as shown in FIG. 1, the high-temperature and high-pressure gaseous refrigerant compressed by the compressor 42 passes through the primary heat exchange pipe 43 a of the water heat exchanger 43 to condense and liquefy. The water that passes through the secondary heat exchange pipe 44b of the water heat exchanger 44 is heated by this heat of condensation (heat radiation).
[0039]
On the other hand, the liquid refrigerant condensed and liquefied by the water heat exchanger 43 is decompressed when passing through the expansion valve 44 having a predetermined opening, and the refrigerant flow rate is appropriately controlled to flow into the air heat exchanger 45, Here, it evaporates and absorbs heat from the outside air, and in the form of a gaseous refrigerant, is again returned to the compressor 42 and returned from the suction side, compressed again by the compressor 42 and flows into the water heat exchanger 43 to condense and liquefy. Then, the water passing through the secondary heat exchange pipe 43b is heated by the condensation heat, and the water passing through the secondary heat exchange pipe 43b of the water heat exchanger 43 is gradually heated to high temperature water by repeating this operation.
[0040]
The hot water (hot water) heated by the water heat exchanger 43 comes out from the water outlet, is further heated by the auxiliary heater 32, and then is supplied to the hot water supply tank 33 from the upper water outlet 33a and stored.
[0041]
Further, the hot water in the hot water supply tank 33 is sucked into the variable flow rate pump 34 from the water outlet 33c at the bottom thereof, and after the pressure is increased here, the hot water is again passed through the secondary side heat exchange pipe 43b of the water heat exchanger 43. When the water is passed, it is heated again by the condensation heat of the high-temperature and high-pressure gaseous refrigerant passing through the primary side heat exchange pipe 43a to further increase the temperature of the hot water and further heated by the auxiliary heater 32 to supply hot water. It is supplied into the tank 33 from the hot water inlet / outlet 33a at the upper part thereof. Thereafter, the hot water storage operation is stopped when the hot water storage temperature in the hot water storage tank 33 is gradually raised to the target temperature by repeating this, and the hot water supply operation is prepared. During the hot water supply operation, hot water in the hot water supply tank 33 is supplied to the hot water supply portion via the hot water supply pipe 38.
[0042]
During the hot water storage operation, the air heat exchanger 45 is installed outside and acts as an evaporator (cooler), so that frost formation may occur in the air heat exchanger 45. This frost formation is detected by the frost detection means of the controller 53. When the frost detection means detects the frost formation of the air heat exchanger 45, the defrost bypass valve 48 is opened to switch from the hot water storage operation to the defrost operation.
[0043]
Then, the high-temperature and high-pressure gaseous refrigerant from the compressor 42 bypasses the water heat exchanger 43 and flows directly into the air heat exchanger 45 to be condensed and liquefied, and radiates heat. The frost can be defrosted by heating and thawing.
[0044]
Further, the refrigerant condensed in the air heat exchanger 45 is returned to the compressor 42 from the suction side, and the frost formation of the air heat exchanger 45 is defrosted by repeating this operation. When this defrosting is completed, the defrosting completion means of the controller 53 detects the completion of the defrosting based on the detected temperature from the suction side temperature sensor 51 and the like, and the defrosting bypass valve 48 is closed to complete the defrosting operation. The refrigeration cycle 41 is returned to the hot water storage operation.
[0045]
By returning to the hot water storage operation, the hot water storage operation is repeated again, and when the temperature of the hot water in the hot water storage tank 33 reaches a predetermined value, the water temperature sensor 40b that detects the inlet water temperature of the water heat exchanger 43 has a predetermined set temperature. (For example, 30 ° C.) is detected, so it is determined that the hot water in the hot water storage tank 33 has reached a predetermined set temperature (for example, 85 ° C.), and the compressor 42, pump 34, auxiliary heater 32, heat exchanger fan, etc. The hot water storage operation is terminated by stopping the operation, and waiting for the hot water supply operation.
[0046]
As shown in FIG. 2, after the hot water supply operation and before the hot water storage operation, when the remaining hot water layer A in the hot water storage tank 33 is detected by the remaining hot water detection means of the controller 53, the hot water storage temperature control means performs the previous time. The set value of the inlet water temperature of the water heat exchanger 43 set during the hot water storage operation is corrected to a preset value higher than the previous set value of the inlet water temperature according to the amount of remaining hot water, and the stored hot water temperature detected by the hot water temperature sensor 40a. Is corrected to a correction set value (for example, 90 ° C.) that is higher by a predetermined value than the set value (for example, 85 ° C.) during the hot water storage operation.
[0047]
As a result, as shown in FIG. 3, in the hot water storage tank 33, a high temperature hot water layer C that reaches a temperature (for example, 90 ° C.) higher than a set temperature is distributed in the upper portion thereof, while The low temperature hot water layer of the remaining hot water, which has been cooled to about 70 ° C. due to heat loss or the like, is distributed, and these hot water layers C and A are hardly mixed because the high temperature hot water layer is distributed over the low temperature hot water layer. Separated.
[0048]
Therefore, as shown in FIG. 4, the hot water storage temperature equalizing means of the controller 53 opens the heat exchange bypass valve 37 for a predetermined time and operates the pump 34, and the water from the water outlet 33 c of the hot water storage tank 33 flows into the channel resistance. The large water heat exchanger 43 is bypassed by the bypass passage 37 and the water circuit 31 is circulated by the pump 34 at a large flow rate. The operation time of the pump 34 and the valve opening time of the heat exchange bypass valve 37 are set in advance by the hot water temperature equalizing means of the controller 53 according to the remaining hot water amount.
[0049]
As a result, the remaining hot water having a relatively low temperature in the hot water storage tank 33 is supplied at a large flow rate from above the high temperature hot water layer C in the hot water storage tank 33. The high temperature hot water layer C is mixed by natural convection, and the whole can be equalized to a predetermined set temperature of about 85 ° C., for example.
[0050]
Therefore, even if there is hot water in the hot water storage tank 33 after the hot water supply operation, the entire hot water storage in the hot water storage tank 33 can be substantially equalized at a predetermined set temperature by the next hot water storage operation, so the hot water temperature is substantially constant. Hot water can be supplied.
[0051]
In addition, during the hot water storage equalization operation, the water heat exchanger 43 is bypassed by the water circulating in the water circuit 31 by opening the heat exchange bypass valve 37, so that the hot water stored in the low temperature hot water A in the hot water storage tank 33 is stored. Can be supplied at a high flow rate onto the hot water storage of the high temperature hot water layer C, so that the mixing efficiency of the low temperature hot water layer A and the high temperature hot water layer C can be improved. For this reason, while shortening hot water equalization operation time can be aimed at, the enlargement of the pump 34 can be suppressed.
[0052]
【The invention's effect】
As described above, the present invention detects the remaining hot water in the hot water storage tank after the hot water supply operation and before the start of the hot water storage operation, and the set value of the inlet water temperature (the hot water temperature of the second heat exchange pipe of the water heat exchanger). The hot water storage operation is performed by correcting the set value) to a temperature higher than the set value by the hot water storage temperature control means in accordance with the remaining hot water amount. For this purpose, hot water storage hot water heated by a water heat exchanger is supplied at a predetermined flow rate on a low temperature remaining hot water layer whose temperature has been reduced due to heat loss in the hot water storage tank. When the inlet water temperature reaches the correction set value, the hot water storage operation ends.
[0053]
After completion of this hot water storage operation, the hot water storage temperature equalizing means opens the bypass passage opening and closing valve and operates the pump for a predetermined time. For this purpose, the low-temperature remaining hot water at the bottom of the hot water tank is boosted by the pump, bypasses the water heat exchanger, passes through the open / close valve and bypass passage, and enters the hot water tank. It is supplied directly from the upper hot water inlet.
[0054]
For this reason, in the hot water storage tank, hot water such as residual hot water or water having a lower temperature is supplied onto the hot water storage layer, so that it is mixed by natural convection and the temperature of the hot water in the hot water storage tank as a whole. Distribution is made uniform at high temperatures. Therefore, even if there is remaining hot water in the hot water storage tank, hot water can be stored at a predetermined temperature. In addition, at this time, since the remaining hot water in the hot water storage tank is directly returned to the upper part of the hot water storage tank by bypassing the hydrothermal exchanger having a large flow path resistance, the amount of the recirculation can be increased. For this reason, since mixing of hot water having different temperatures in the hot water storage tank can be promoted, the temperature equalizing operation time can be shortened.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the overall configuration of a heat pump water heater according to an embodiment of the present invention.
FIG. 2 is a block diagram of the heat pump water heater shown in FIG. 1 when there is residual hot water in the hot water storage tank before the hot water storage operation.
FIG. 3 is a block diagram when a hot water storage temperature control operation is performed in the heat pump water heater shown in FIG.
4 is a block diagram when a hot water storage temperature equalizing operation is performed in the heat pump water heater shown in FIG. 1. FIG.
FIG. 5 is a block diagram showing an overall configuration of a conventional heat pump water heater.
6 is a block diagram in the case where residual hot water exists in the hot water storage tank before the hot water storage operation of the conventional heat pump water heater shown in FIG.
7 is a block diagram showing a state of the conventional heat pump water heater shown in FIG. 5 during a hot water storage operation.
8 is a block diagram showing a state after the hot water supply operation and before the hot water storage operation of the conventional heat pump water heater shown in FIG.
[Explanation of symbols]
21 Heat pump water heater
31 Water circuit
32 Auxiliary heater
33 Hot water tank
33a Hot spring entrance
33b Receiving port
33c Water outlet
34 Pump
35 Water piping
36 Heat Exchange Bypass
37 Heat Exchange Bypass Valve
38 Hot water pipe
39 Water supply pipe
40a Hot water temperature sensor
40b Water temperature sensor
41 Refrigeration cycle
42 Compressor
43 Water heat exchanger
44 Expansion valve
45 Air heat exchanger
46 Refrigerant piping
47 Defrost bypass path
48 Defrost bypass valve
49 Condensation temperature sensor
50 Evaporation temperature sensor
51 Suction side temperature sensor
52 Discharge temperature sensor
53 Controller

Claims (2)

圧縮機、水熱交換器の第1の熱交換管、膨張弁、空気熱交換器を順次接続して冷媒を循環させる冷凍サイクルと、
上記水熱交換器の第1の熱交換管と熱交換自在の第2の熱交換管、この第2の熱交換管からの湯を受ける湯入口と給湯口を上部に設ける一方、給水を受水する給水入口と水出口を下部に設けた貯湯タンク、ポンプを順次接続して水を循環させる主回路およびこのポンプの水吐出側と上記貯湯タンクの湯入口側とを連通するバイパス路およびこのバイパス路の途中に介在された開閉弁を備えた水回路と、
上記貯湯タンク内の水を上記水回路に循環させて、この水を上記水熱交換器の入口水温の設定値まで昇温させる貯湯運転の前に、上記貯湯タンク内の残湯を検出したときに、その残湯量に応じて上記水熱交換器の入口水温設定値よりも所定値高く予め設定された設定値に、この入口水温設定値を補正して貯湯運転をする貯湯温制御手段と、
この貯湯温制御手段による貯湯運転の終了後、上記開閉弁を所定時間開弁すると共に上記ポンプを運転する貯湯温均等化手段と、
を具備していることを特徴とするヒートポンプ給湯器。
A refrigeration cycle for circulating a refrigerant by sequentially connecting a compressor, a first heat exchange pipe of a water heat exchanger, an expansion valve, and an air heat exchanger;
A first heat exchange pipe of the water heat exchanger and a second heat exchange pipe capable of exchanging heat, a hot water inlet and a hot water inlet for receiving hot water from the second heat exchange pipe are provided on the upper side, while receiving water. A hot water storage tank provided with a water supply inlet and a water outlet at the lower part, a main circuit for circulating water by sequentially connecting a pump, a bypass passage for connecting the water discharge side of the pump and the hot water inlet side of the hot water storage tank, and this A water circuit having an on-off valve interposed in the middle of the bypass path;
When the remaining hot water in the hot water storage tank is detected before the hot water storage operation for circulating the water in the hot water storage tank to the water circuit and raising the temperature of the water to the set value of the inlet water temperature of the water heat exchanger. In addition, hot water storage temperature control means for correcting the inlet water temperature setting value to a preset value higher than the inlet water temperature setting value of the water heat exchanger by a predetermined value according to the amount of remaining hot water, and performing hot water storage operation,
After the hot water storage operation by the hot water temperature control means, the hot water storage temperature equalizing means for opening the on-off valve for a predetermined time and operating the pump;
The heat pump water heater characterized by comprising.
上記貯湯温均等化手段は、上記開閉弁を開弁して運転する上記ポンプの運転時間を、上記残湯量に応じて予め設定し、または上記水熱交換器の入口水温が所定の貯湯温度に対応する設定値に達したときに上記ポンプの運転を停止するように構成されていることを特徴とする請求項1記載のヒートポンプ給湯器。The hot water storage temperature equalizing means sets the operation time of the pump that operates by opening the on-off valve in advance according to the amount of remaining hot water, or the water temperature at the inlet of the water heat exchanger becomes a predetermined hot water storage temperature. The heat pump water heater according to claim 1, wherein the pump is stopped when the corresponding set value is reached.
JP2001034038A 2001-02-09 2001-02-09 Heat pump water heater Expired - Fee Related JP4029957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001034038A JP4029957B2 (en) 2001-02-09 2001-02-09 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001034038A JP4029957B2 (en) 2001-02-09 2001-02-09 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2002235953A JP2002235953A (en) 2002-08-23
JP4029957B2 true JP4029957B2 (en) 2008-01-09

Family

ID=18897708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001034038A Expired - Fee Related JP4029957B2 (en) 2001-02-09 2001-02-09 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4029957B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415749A (en) * 2011-03-09 2013-11-27 东芝开利株式会社 Binary refrigeration cycle device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626793B2 (en) * 2001-08-10 2011-02-09 株式会社ノーリツ Heating method of hot water supply device using external heat source
JP3918786B2 (en) * 2003-07-30 2007-05-23 株式会社デンソー Hot water storage type heat pump water heater
JP3894190B2 (en) * 2003-11-19 2007-03-14 松下電器産業株式会社 Heat pump water heater
JP4329732B2 (en) * 2005-06-10 2009-09-09 パナソニック株式会社 Heat pump water heater
JP2007057148A (en) * 2005-08-24 2007-03-08 Matsushita Electric Ind Co Ltd Heat pump water heater
KR101507438B1 (en) 2008-02-04 2015-03-31 엘지전자 주식회사 Heat pump heating apparatus and Control method of the same
JP5573757B2 (en) * 2011-03-30 2014-08-20 三菱電機株式会社 Hot water heater
KR101470891B1 (en) * 2012-02-22 2014-12-09 한라비스테온공조 주식회사 Heat pump system for vehicle
DE102012024347A1 (en) * 2012-12-13 2014-06-18 Robert Bosch Gmbh Heating device and method for its operation
CN103528188B (en) * 2013-11-04 2016-09-21 Tcl空调器(中山)有限公司 air source hot water machine system and control method thereof
KR101538609B1 (en) * 2015-04-01 2015-07-22 대성히트펌프 주식회사 Heat pump system using bypass valve and method thereof
JP7249876B2 (en) * 2019-05-24 2023-03-31 三菱電機株式会社 water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415749A (en) * 2011-03-09 2013-11-27 东芝开利株式会社 Binary refrigeration cycle device
CN103415749B (en) * 2011-03-09 2015-09-09 东芝开利株式会社 Binary refrigeration cycle device

Also Published As

Publication number Publication date
JP2002235953A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
JP5427428B2 (en) Heat pump type hot water supply / air conditioner
JP4078034B2 (en) Heat pump water heater
US8991202B2 (en) Air-conditioning hot-water supply complex system
JP4029957B2 (en) Heat pump water heater
JP4078036B2 (en) Heat pump water heater
JP5860700B2 (en) System for providing a vapor compression cycle and method for controlling a vapor compression cycle
KR101387541B1 (en) Air conditioner and Defrosting driving method of the same
US20110259025A1 (en) Heat pump type speed heating apparatus
JP5341622B2 (en) Air conditioner
JP3759724B2 (en) refrigerator
JP2012007800A (en) Heat pump type hot-water supply and air-conditioning system
WO2010137120A1 (en) Heat pump type hot water supply device
US7481067B2 (en) Freezer
WO2022267886A1 (en) Anti-frost control method for air conditioner and air conditioner
JP2003090653A (en) Heat pump type hot water supply apparatus
JP2007333340A (en) Heat pump type hot water supply apparatus
JP5581354B2 (en) Thermal equipment
JP3316444B2 (en) Heat pump water heater
JP2526716B2 (en) Air conditioner
JP3289373B2 (en) Heat pump water heater
JP2906508B2 (en) Heat pump water heater
JPH0686958B2 (en) Solar water heater
JP2004205116A (en) Cold/hot water generator and its control method
JP2912811B2 (en) Air conditioner
JP2004239539A (en) Heat pump type water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071010

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees