JP4029213B2 - Method for manufacturing piezoelectric sound producing component - Google Patents

Method for manufacturing piezoelectric sound producing component Download PDF

Info

Publication number
JP4029213B2
JP4029213B2 JP2003131033A JP2003131033A JP4029213B2 JP 4029213 B2 JP4029213 B2 JP 4029213B2 JP 2003131033 A JP2003131033 A JP 2003131033A JP 2003131033 A JP2003131033 A JP 2003131033A JP 4029213 B2 JP4029213 B2 JP 4029213B2
Authority
JP
Japan
Prior art keywords
sound pressure
piezoelectric
silicone adhesive
curing
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003131033A
Other languages
Japanese (ja)
Other versions
JP2004336506A (en
Inventor
修 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003131033A priority Critical patent/JP4029213B2/en
Publication of JP2004336506A publication Critical patent/JP2004336506A/en
Application granted granted Critical
Publication of JP4029213B2 publication Critical patent/JP4029213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は圧電ブザーや圧電サウンダなどの圧電発音部品の製造方法に関するものである。
【0002】
【従来の技術】
【特許文献1】
特開平7−274299号公報
従来、電子機器、家電製品、携帯電話機などにおいて、警報音や動作音を発生する圧電サウンダあるいは圧電ブザーとして圧電発音部品が広く用いられている。圧電発音部品は、特許文献1のように、振動板を筐体の中に収納するとともに、振動板の周囲と筐体の内壁とをシリコーン接着剤を塗布し硬化させることで、接着固定したものが多い。振動板としては、金属板の片面に圧電板を貼り付けてユニモルフ型振動板を構成したものや、複数の圧電セラミックス層を積層したバイモルフ型振動板などがある。
【0003】
図1は圧電発音部品の一例であり、1は筐体、2は振動板、3は端子である。振動板2の周縁部が筐体1の支持台1a上に支持され、シリコーン接着剤4によって固定されている。
【0004】
図2は、上記のような圧電発音部品の一般的な製造工程を示す。すなわち、筐体1の中に振動板2を収納し(ステップS1)、端子3を組み付けた後(ステップS2)、シリコーン接着剤4を塗布する(ステップS3)。次に、オーブンなどの硬化装置でシリコーン接着剤4を硬化させる(ステップS4)。その後、振動板2に所定の周波数信号を印加し、鳴動音を発生させて音圧選別を行う(ステップS5)。
【0005】
【発明が解決しようとする課題】
ところが、硬化工程は他の工程に比べて格段に時間(例えば60分)がかかる工程であるから、硬化工程のみがバッチ処理となり、設備の自動ライン化が困難であった。その結果、製造ラインが硬化工程で分断され、オペレータによる補助作業が必要になるという問題があった。
【0006】
また、圧電ブザーや圧電サウンダのような単一周波数で鳴動音を発生する発音部品の音圧測定は、無響室と呼ばれる音が反射しない室で実施するのが標準方式である。しかし、無響室は1つの大型部屋であり、これを電子部品の製造設備の中に組み入れることは不可能である。そのため、振動板の収納から接着剤の塗布までを実施する設備と、音圧測定を行う設備とを別に設ける必要があり、設備費が嵩むという欠点があった。
【0007】
そこで、本発明の目的は、製造ラインの自動化を図り、工程途中でオペレータによる補助作業をなくすことができる圧電発音部品の製造方法を提供することにある。
他の目的は、振動板の収納から接着剤の塗布までを実施する設備と、音圧測定を行う設備とを1つの製造設備内に設けることが可能な圧電発音部品の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するため、請求項1に係る発明は、筐体の内部に圧電振動板を収納し、上記圧電振動板の周囲と筐体の内周部との間に、非流動性のシリコーン接着剤を塗布し、硬化させる圧電発音部品の製造方法において、いくつかのサンプル品について、上記シリコーン接着剤の硬化前と硬化後とで上記圧電振動板に所定の周波数信号を印加してその音圧を測定し、音圧値の相関関係を求める前工程と、実際の製品について実施する本工程とからなり、上記本工程は、上記シリコーン接着剤が硬化する前に、上記圧電振動板に所定の周波数信号を印加してその音圧を測定し、上記相関関係から良否を選別する第1の工程と、上記選別工程の後、良品と判別された製品について上記シリコーン接着剤を硬化させる第2の工程と、を有する圧電発音部品の製造方法を提供する。
【0009】
本発明では、時間を要する硬化工程を最終工程とすることで、それ以前の工程(振動板の収納、シリコーン接着剤の塗布、音圧選別など)を連続ライン化することができ、設備費のコストダウンを図るとともに、工程途中でのオペレータによる補助作業をなくすことができる。
また、音圧選別工程の後で硬化工程を実施するので、音圧選別で良品と判定された製品についてのみ硬化処理を行えばよく、硬化処理を効率よく実施することができる。つまり、不良品と判定された製品に対しては硬化処理を省略できるので、無駄を省くことができる。
本発明で使用するシリコーン接着剤は、非流動性であることが必要である。流動性のあるシリコーン接着剤を使用した場合、音圧測定・選別のために圧電振動板を駆動したとき、シリコーン接着剤が流動してしまい、振動板が移動したり、音圧が不安定になるという問題が生じるからである。
なお、シリコーン接着剤の硬化方法としては、例えば吸湿硬化や加熱硬化などの公知の方法を用いることができる。
【0010】
請求項2のように、シリコーン接着剤の硬化前の粘度が500Pa・s以上のものを使用するのがよい。
硬化前の粘度が500Pa・s以下のシリコーン接着剤を使用すると、シリコーン接着剤が流動性を持つので、硬化前に音圧選別を行おうとすると、本来の音圧が得られなかったり、接着剤が流動してしまう。
硬化前の粘度が500Pa・s以上のシリコーン接着剤を使用することで、音圧選別時に接着剤が流動せず、本来の音圧を得ることができる。
【0011】
本発明では、シリコーン接着剤の硬化前と硬化後との音圧を測定し、その音圧値の相関関係がある圧電発音部品に本発明の製造方法を適用する。
圧電発音部品によっては、シリコーン接着剤の硬化前と硬化後との音圧値に相関関係がないものがある。このような圧電発音部品に本発明を適用した場合、硬化前に良品と判定されても、硬化後の音圧特性が不良品になることがあり、硬化前の音圧選別の信頼性が低下する。
そこで、本発明を実施する前に、前工程としてシリコーン接着剤の硬化前と硬化後との音圧を測定し、その音圧値の相関関係の有無を求め、相関関係がある(例えば硬化前後の音圧がほぼ比例関係にある)圧電発音部品に対してのみ、本発明を実施することで、硬化前の音圧選別の信頼性を確保することができる。
【0012】
請求項3のように、圧電振動板に所定の周波数信号を印加してその音圧を測定する工程は、無響室における圧電発音部品の音圧特性と相関関係を持つ簡易音圧測定装置により測定するのがよい。
このように無響室での測定と相関関係の高い簡易音圧測定装置を用いて音圧を測定すれば、設備寸法を小さくでき、振動板の収納から接着剤の塗布までを実施する設備と、音圧測定を行う設備とを1つの製造設備内に設けることができ、製造設備を連続ライン化できると同時に、測定時間を短縮できるため、製造効率を向上させることができる。
簡易な音圧測定装置としては、例えば本願出願人が先に提案した音圧測定装置(特願2002−112987号)を用いてもよい。この装置は、マイクロホンを内装した音圧測定用人工耳に、測定音の指向性を有し、内部に圧電発音部品の測定周波数より大きな共振周波数を持つ気室を有するアダプタの一端部を取り付け、上記気室と連通する上記アダプタの他端部の着座面に圧電発音部品を押しつけた状態で圧電発音部品を鳴動させることにより、その鳴動音をアダプタを介して人工耳で測定するものである。また、鳴動音が反響しない小型の防音箱の中に圧電発音部品を収容し、これを鳴動させた時の音圧特性が、無響室における圧電発音部品の鳴動音の音圧特性と相関関係を持つ装置を用いてもよい。
いずれの装置も小型であり、かつ製造ラインに組み込むことが可能である。
【0013】
【発明の実施の形態】
図3は本発明にかかる圧電発音部品の製造工程を示す。
ここで用いる圧電発音部品は、図1に示すものと同様であるため、重複説明を省略する。
図3の(a)は前工程であり、サンプル品である複数の圧電発音部品について、シリコーン接着剤の硬化前と硬化後との音圧を測定し、その音圧値の相関関係を調べる。
すなわち、筐体1の中に振動板2を収納し(ステップS1)、端子3を組み付けた後(ステップS2)、シリコーン接着剤4を塗布する(ステップS3)。塗布作業は、ディスペンサなどの塗布装置を用いて自動的に行うことができる。シリコーン接着剤4としては、硬化前の粘度が500Pa・s以上のもの、つまり非流動性のものを使用する。そして、シリコーン接着剤4が硬化する前に振動板2に交流信号を印加し、その音圧−周波数特性を測定する(ステップS4)。振動板2を振動させたとき、シリコーン接着剤4は非流動性であるから、振動板2が位置ずれを起こしたり、シリコーン接着剤4が塗布位置から外部へ流れるという問題がない。次に、オーブンなどの硬化装置でシリコーン接着剤4を硬化させ(ステップS5)、硬化後の振動板2に再び交流信号を印加し、その音圧−周波数特性を測定する(ステップS6)。上記のように測定した音圧−周波数特性から硬化前と硬化後の相互相関関係を調べる(ステップS7)。
【0014】
図4はシリコーン接着剤の硬化前後の音圧−周波数特性図の一例である。ここでは、4kHzにおける所定音圧を要求する圧電サウンダの例を示す。
図4は硬化前後の相関関係が取れている圧電発音部品の例であり、硬化前では、破線で示すように周波数3.3kHz付近で音圧のピークが生じているが、硬化後では音圧のピークがほぼ0.2kHzだけ高周波側へ平行移動している。そして、硬化前と硬化後での4.0kHzでの音圧差はほぼ4dB程度である。
【0015】
図5の(a)は、音圧値の相関関係が取れている複数の例において、所定周波数における硬化前後の音圧値の測定結果を表したものである。
図5の(a)から明らかなように、相関関係が取れている圧電発音部品では、硬化前の音圧値と硬化後の音圧値はほぼ比例関係にあり、この例では相関係数は0.9以上であった。
図5の(b)は硬化前後の相関関係が取れていない例であり、このように相関関係の取れない圧電発音部品の場合には、硬化前の音圧を測定しても、硬化後の音圧を類推できない。
【0016】
上記のような相関関係が取れている圧電発音部品に対し、図3の(b)に示す本工程を実施する。
すなわち、筐体1の中に振動板2を収納し(ステップS1)、端子3を組み付けた後(ステップS2)、シリコーン接着剤4を塗布する(ステップS3)。ここで使用する筐体1、振動板2、端子3およびシリコーン接着剤4は前工程で用いたサンプル品と同様である。シリコーン接着剤4が硬化する前に振動板2に所定の周波数信号を印加し、鳴動音を発生させて音圧選別を行う(ステップS8)。上記ステップS1〜S3およびS8は1つの設備で連続ラインとして実施することができる。ステップS8での音圧選別によって、良品と不良品とに選別する。
次に、良品についてのみオーブンなどの硬化装置へ運び、シリコーン接着剤4を硬化させる(ステップS5)。この硬化工程は、60分程度の長時間を要するので、バッチ処理で実施する。
以上のようにしてシリコーン接着剤4が硬化された圧電発音部品は、前工程において硬化前後の音圧の相関関係が取れていることが予め分かっているので、改めて音圧選別を実施するまでもなく良品としての音圧特性を有する。
【0017】
圧電ブザーや圧電サウンダのような単一周波数で鳴動音を発生する発音部品の音圧測定は、無響室と呼ばれる音が反射しない室で実施するのが標準方式であるが、設備寸法が大きくなるとともに、測定時間がかかり、振動板の組付や端子の組付、接着剤の塗布などの他の工程とともに1つの設備で実施することが難しい。本願出願人は、小型で無響室での測定と相関関係の高い簡易な音圧測定装置を開発している(特願2002−112987号)。
【0018】
図6はこのような簡易な音圧測定装置の一例である。
10は公知の音圧測定用人工耳である。この人工耳10は、マイクロホン11を内装しており、人工耳10の一端部に円筒形のイヤーピース取付部12が突設されている。このイヤーピース取付部12の内側にマイクロホン11の受信部が臨んでいる。
イヤーピース取付部12には、アダプタ20の一端開口部27が嵌合され、ネジなどで適宜固定されている。アダプタ20は銅合金などの金属材料で円筒形状に形成されており、アダプタ20の他端部には圧電サウンダSを押し付けるための着座面21が形成されている。この着座面21の中央部に連通穴23が形成されている。アダプタ20の内部には、連通穴23と通じる気室24が形成されており、この気室24の側壁には外部へ開口した開口穴25が形成されている。この実施例の開口穴25は、軸方向に長孔状に形成されており、合計12個設けられている。上記気室24の寸法は、その軸方向長さLが直径dより大きく設定されている。望ましくは、2d≧L>dがよい。その理由は、圧電サウンダSの鳴動音が約90°の放射角で放射されたと仮定すると、気室24の内側壁で反射した反射波がマイクロホン11で直接受信されるのを防止し、指向性を高めるためである。
【0019】
図7は、無響室を用いた従来の測定方法Aと、上記簡易音圧測定装置を用いた測定方法Bとの圧電サウンダSの音圧比較データを示す。
従来方法Aは無響室内に圧電サウンダSとマイクロホンとを配置し、その音圧を測定したものであり、測定方法Bは図6に示す音圧測定装置を用いて圧電サウンダSの音圧を測定したものである。AではサウンダSとマイクロホンとを10cm離して測定し、BではサウンダSとマイクロホンとを5cm離して測定した。図7から明らかなように、測定方法Bでは従来方法Aに比べて10dB程度音圧が大きくなるが、サウンダSの共振周波数4kHzを含む1〜5kHzにおいて、両者の相関係数は0.95以上あり、測定方法Bによる測定レベルは基準レベルAと同等レベルである。そのため、アダプタ20を用いても、無響室を用いた方法との測定精度に大差がないことが確認された。
このような簡易の音圧測定装置を用いて音圧を測定すれば、設備寸法を小さくできるとともに、測定時間を短縮できるため、他の工程と共に1つの設備で実施することができ、連続ライン化することができる。
【0020】
本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で変更可能である。
例えばシリコーン接着剤の硬化前後での音圧測定の周波数を一定にしたが、硬化前後での音圧測定周波数をそのシフト量を見越して相違させてもよい。
上記実施形態では、シリコーン接着剤を塗布した後、端子を組み付ける例について説明したが、端子に代えてリード線を振動板に予めはんだ付などによって接続したものを用いてもよい。この場合には、振動板を筐体に収納する際にリード線も筐体に組み込まれる。
また、簡易な音圧測定装置としては、図6に示されるものに限らず、1つの製造ラインに組み込むことができ、無響室における圧電発音部品の音圧特性と相関関係を持つものであれば、使用可能である。
【0021】
【発明の効果】
以上の説明で明らかなように、請求項1に記載の発明によれば、シリコーン接着剤の硬化前に音圧選別を行うようにしたので、時間を要するシリコーン接着剤の硬化工程を音圧選別の後に実施することができる。そのため、振動板の収納、端子の組付け、シリコーン接着剤の塗布、音圧選別などを連続ライン化することができ、設備費のコストダウンを図るとともに、工程途中でのオペレータによる補助作業をなくすことができる。
また、音圧選別工程の後で硬化工程を実施するので、音圧選別で良品と判定された製品についてのみ硬化処理を行えばよく、硬化処理を効率よく実施することができる。
【図面の簡単な説明】
【図1】一般的な圧電発音部品の一例の断面図である。
【図2】従来の圧電発音部品の製造方法を示す工程図である。
【図3】本発明にかかる圧電発音部品の製造方法を示す工程図である。
【図4】シリコーン接着剤の硬化前後の相関関係を示す音圧特性図である。
【図5】(a)は相関関係がある場合の硬化前後の音圧比較図、(b)は相関関係がない場合の硬化前後の音圧比較図である。
【図6】簡易音圧測定装置の一例の断面図である。
【図7】無響室を用いた場合と簡易音圧測定装置を用いた場合との圧電サウンダの音圧比較図である。
【符号の説明】
1 筐体
2 圧電振動板
3 端子
4 シリコーン接着剤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a piezoelectric sound producing part such as a piezoelectric buzzer or a piezoelectric sounder.
[0002]
[Prior art]
[Patent Document 1]
JP, 7-274299, A Conventionally, in electronic equipment, household appliances, cellular phones, etc., piezoelectric sounding parts have been widely used as piezoelectric sounders or piezoelectric buzzers that generate alarm sounds and operation sounds. The piezoelectric sound producing component is, as in Patent Document 1, housed in a casing, and bonded and fixed by applying a silicone adhesive and curing the periphery of the diaphragm and the inner wall of the casing. There are many. Examples of the vibration plate include a unimorph type vibration plate in which a piezoelectric plate is attached to one side of a metal plate, and a bimorph type vibration plate in which a plurality of piezoelectric ceramic layers are stacked.
[0003]
FIG. 1 shows an example of a piezoelectric sound producing component, where 1 is a housing, 2 is a diaphragm, and 3 is a terminal. The peripheral edge of the diaphragm 2 is supported on the support 1 a of the housing 1 and fixed by the silicone adhesive 4.
[0004]
FIG. 2 shows a general manufacturing process of the piezoelectric sound producing component as described above. That is, the diaphragm 2 is accommodated in the housing 1 (step S1), the terminals 3 are assembled (step S2), and then the silicone adhesive 4 is applied (step S3). Next, the silicone adhesive 4 is cured by a curing device such as an oven (step S4). Thereafter, a predetermined frequency signal is applied to the diaphragm 2 to generate a ringing sound and perform sound pressure selection (step S5).
[0005]
[Problems to be solved by the invention]
However, since the curing process takes a much longer time (for example, 60 minutes) than the other processes, only the curing process is a batch process, making it difficult to make automatic equipment lines. As a result, there was a problem that the production line was divided in the curing process, and an auxiliary work by the operator was required.
[0006]
In addition, sound pressure measurement of a sound generating component that generates a ringing sound at a single frequency, such as a piezoelectric buzzer or a piezoelectric sounder, is performed in a room called an anechoic room where no sound is reflected. However, the anechoic chamber is one large room, and it is impossible to incorporate this into an electronic component manufacturing facility. For this reason, it is necessary to separately provide equipment for carrying out the process from housing of the diaphragm to application of the adhesive and equipment for measuring the sound pressure, resulting in a disadvantage that the equipment cost increases.
[0007]
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a piezoelectric sounding part that can automate a manufacturing line and eliminate an auxiliary operation by an operator during the process.
Another object of the present invention is to provide a method for manufacturing a piezoelectric sounding part capable of providing, in one manufacturing facility, equipment for carrying out from storage of a diaphragm to application of an adhesive and equipment for measuring sound pressure. It is in.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is characterized in that a piezoelectric diaphragm is housed in a housing, and non-flowable silicone is provided between the periphery of the piezoelectric diaphragm and the inner peripheral portion of the housing. In a method for manufacturing a piezoelectric sound producing part in which an adhesive is applied and cured, a predetermined frequency signal is applied to the piezoelectric diaphragm before and after the silicone adhesive is cured for some sample products. This process consists of a pre-process for measuring pressure and obtaining a correlation between sound pressure values, and a main process to be performed on an actual product. The main process is performed on the piezoelectric diaphragm before the silicone adhesive is cured. the sound pressure measured by the frequency signal application, a first step of selecting the quality of the correlation, after the selecting step, the second curing the silicone adhesive for non-defective discriminated product piezoelectric having between steps, the To provide a method of manufacturing a sound parts.
[0009]
In the present invention, by setting the time-consuming curing step as the final step, the previous steps (housing of diaphragm, application of silicone adhesive, sound pressure selection, etc.) can be made into a continuous line, and the equipment cost is reduced. In addition to cost reduction, it is possible to eliminate auxiliary work by the operator during the process.
In addition, since the curing process is performed after the sound pressure selection process, it is only necessary to perform the curing process for products determined to be non-defective by the sound pressure selection, and the curing process can be performed efficiently. That is, since the curing process can be omitted for a product determined to be defective, waste can be eliminated.
The silicone adhesive used in the present invention must be non-flowable. When a fluid silicone adhesive is used, when the piezoelectric diaphragm is driven for sound pressure measurement / selection, the silicone adhesive will flow and the diaphragm will move or the sound pressure will become unstable. This is because the problem of
As a method for curing the silicone adhesive, known methods such as moisture absorption curing and heat curing can be used.
[0010]
As in claim 2, it is preferable to use a silicone adhesive having a viscosity before curing of 500 Pa · s or more.
If a silicone adhesive with a viscosity before curing of 500 Pa · s or less is used, the silicone adhesive has fluidity, so if you try to sort the sound pressure before curing, the original sound pressure may not be obtained or the adhesive Will flow.
By using a silicone adhesive having a viscosity of 500 Pa · s or higher before curing, the adhesive does not flow during sound pressure selection, and the original sound pressure can be obtained.
[0011]
In the present invention, the sound pressure before and after curing of the silicone adhesive is measured, and the manufacturing method of the present invention is applied to a piezoelectric sound producing component having a correlation between the sound pressure values .
Some piezoelectric sound producing parts have no correlation between the sound pressure values before and after curing of the silicone adhesive. When the present invention is applied to such a piezoelectric sound generating component, even if it is determined to be a good product before curing, the sound pressure characteristics after curing may be defective, and the reliability of sound pressure selection before curing is reduced. To do.
Therefore, before carrying out the present invention, the sound pressure before and after curing of the silicone adhesive is measured as a pre-process, and the presence / absence of correlation between the sound pressure values is determined and correlated (for example, before and after curing). By implementing the present invention only for the piezoelectric sound producing parts (the sound pressure of which is substantially proportional), it is possible to ensure the reliability of the sound pressure selection before curing.
[0012]
As in claim 3 , the step of applying a predetermined frequency signal to the piezoelectric diaphragm and measuring the sound pressure is performed by a simple sound pressure measuring device having a correlation with the sound pressure characteristics of the piezoelectric sound producing component in the anechoic chamber. It is better to measure.
If the sound pressure is measured using a simple sound pressure measuring device that has a high correlation with the measurement in the anechoic chamber, the equipment size can be reduced, and the equipment from the storage of the diaphragm to the application of the adhesive can be reduced. The facility for measuring the sound pressure can be provided in one manufacturing facility, and the manufacturing facility can be made continuous, and at the same time the measurement time can be shortened, so that the manufacturing efficiency can be improved.
As a simple sound pressure measuring device, for example, a sound pressure measuring device (Japanese Patent Application No. 2002-112987) previously proposed by the applicant of the present application may be used. This device attaches one end of an adapter having a directivity of measurement sound to the sound pressure measurement artificial ear with a built-in microphone, and an air chamber having a resonance frequency larger than the measurement frequency of the piezoelectric sound producing part inside, The ringing sound is measured with an artificial ear through the adapter by ringing the piezoelectric sounding part while pressing the piezoelectric sounding part against the seating surface of the other end of the adapter communicating with the air chamber. In addition, a piezoelectric sounding part is housed in a small soundproof box that does not reverberate, and the sound pressure characteristics when it is sounded are correlated with the sound pressure characteristics of the sounding sound of the piezoelectric sounding part in an anechoic chamber. You may use the apparatus which has.
Both devices are small and can be incorporated into a production line.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 3 shows a manufacturing process of the piezoelectric sound producing component according to the present invention.
The piezoelectric sound producing component used here is the same as that shown in FIG.
(A) of FIG. 3 is a pre-process, and for a plurality of piezoelectric sound producing parts as sample products, the sound pressure before and after curing of the silicone adhesive is measured, and the correlation between the sound pressure values is examined.
That is, the diaphragm 2 is accommodated in the housing 1 (step S1), the terminals 3 are assembled (step S2), and then the silicone adhesive 4 is applied (step S3). The coating operation can be automatically performed using a coating apparatus such as a dispenser. As the silicone adhesive 4, one having a viscosity before curing of 500 Pa · s or more, that is, a non-flowable one is used. And before the silicone adhesive 4 hardens | cures, an alternating current signal is applied to the diaphragm 2, and the sound pressure-frequency characteristic is measured (step S4). When the diaphragm 2 is vibrated, the silicone adhesive 4 is non-flowable, so there is no problem that the diaphragm 2 is displaced or the silicone adhesive 4 flows from the application position to the outside. Next, the silicone adhesive 4 is cured by a curing device such as an oven (step S5), an AC signal is again applied to the cured diaphragm 2, and its sound pressure-frequency characteristics are measured (step S6). The cross correlation between before and after curing is examined from the sound pressure-frequency characteristics measured as described above (step S7).
[0014]
FIG. 4 is an example of a sound pressure-frequency characteristic diagram before and after curing of the silicone adhesive. Here, an example of a piezoelectric sounder that requires a predetermined sound pressure at 4 kHz is shown.
FIG. 4 shows an example of a piezoelectric sound producing part having a correlation before and after curing. Before curing, a sound pressure peak occurs near a frequency of 3.3 kHz as shown by a broken line. The peak of is shifted to the high frequency side by approximately 0.2 kHz. The sound pressure difference at 4.0 kHz before and after curing is about 4 dB.
[0015]
FIG. 5A shows the measurement results of the sound pressure values before and after curing at a predetermined frequency in a plurality of examples in which the sound pressure values are correlated.
As is clear from FIG. 5 (a), in the piezoelectric sound producing component having a correlation, the sound pressure value before curing and the sound pressure value after curing are approximately proportional to each other. In this example, the correlation coefficient is It was 0.9 or more.
FIG. 5B is an example in which there is no correlation between before and after curing, and in the case of a piezoelectric sounding component that cannot be correlated in this way, even if the sound pressure before curing is measured, Sound pressure cannot be inferred.
[0016]
The step shown in FIG. 3B is performed on the piezoelectric sound producing component having the above correlation.
That is, the diaphragm 2 is accommodated in the housing 1 (step S1), the terminals 3 are assembled (step S2), and then the silicone adhesive 4 is applied (step S3). The casing 1, the diaphragm 2, the terminals 3, and the silicone adhesive 4 used here are the same as the sample products used in the previous step. A predetermined frequency signal is applied to the diaphragm 2 before the silicone adhesive 4 is cured, and a sound is generated to perform sound pressure selection (step S8). The above steps S1 to S3 and S8 can be implemented as a continuous line with one piece of equipment. By sound pressure selection in step S8, selection is made into non-defective products and defective products.
Next, only good products are carried to a curing device such as an oven to cure the silicone adhesive 4 (step S5). Since this curing process takes a long time of about 60 minutes, it is carried out by batch processing.
Since it has been known in advance that the piezoelectric sound generating part having the silicone adhesive 4 cured as described above has a correlation between the sound pressure before and after the curing in the previous process, the sound pressure selection is performed again. It has a sound pressure characteristic as a non-defective product.
[0017]
Sound pressure measurement of sounding parts that generate ringing sound at a single frequency, such as a piezoelectric buzzer or a piezoelectric sounder, is performed in a room called an anechoic room where no sound is reflected, but the equipment size is large. In addition, measurement time is required, and it is difficult to implement with one facility together with other processes such as vibration plate assembly, terminal assembly, and adhesive application. The applicant of the present application has developed a simple sound pressure measurement device that is small and highly correlated with measurement in an anechoic chamber (Japanese Patent Application No. 2002-112987).
[0018]
FIG. 6 shows an example of such a simple sound pressure measuring device.
Reference numeral 10 is a known artificial ear for measuring sound pressure. The artificial ear 10 includes a microphone 11, and a cylindrical earpiece mounting portion 12 projects from one end of the artificial ear 10. The receiving part of the microphone 11 faces the inside of the earpiece mounting part 12.
One end opening portion 27 of the adapter 20 is fitted to the earpiece mounting portion 12 and is appropriately fixed with a screw or the like. The adapter 20 is formed in a cylindrical shape with a metal material such as a copper alloy, and a seating surface 21 for pressing the piezoelectric sounder S is formed on the other end of the adapter 20. A communication hole 23 is formed at the center of the seating surface 21. An air chamber 24 communicating with the communication hole 23 is formed inside the adapter 20, and an opening hole 25 opened to the outside is formed on the side wall of the air chamber 24. The opening hole 25 of this embodiment is formed in a long hole shape in the axial direction, and a total of 12 opening holes are provided. The dimension of the air chamber 24 is set such that its axial length L is larger than the diameter d. Desirably, 2d ≧ L> d. The reason is that, assuming that the sounding sound of the piezoelectric sounder S is radiated at a radiation angle of about 90 °, the reflected wave reflected by the inner wall of the air chamber 24 is prevented from being directly received by the microphone 11 and directivity is improved. Is to increase
[0019]
FIG. 7 shows the sound pressure comparison data of the piezoelectric sounder S between the conventional measurement method A using an anechoic chamber and the measurement method B using the simple sound pressure measurement device.
In the conventional method A, a piezoelectric sounder S and a microphone are arranged in an anechoic chamber and the sound pressure thereof is measured. In the measuring method B, the sound pressure of the piezoelectric sounder S is measured using the sound pressure measuring device shown in FIG. It is measured. In A, the sounder S and the microphone were measured 10 cm apart, and in B, the sounder S and the microphone were measured 5 cm apart. As is apparent from FIG. 7, the sound pressure is increased by about 10 dB in the measurement method B compared to the conventional method A, but the correlation coefficient between both is 0.95 or more at 1 to 5 kHz including the resonance frequency 4 kHz of the sounder S. Yes, the measurement level by the measurement method B is equivalent to the reference level A. Therefore, it was confirmed that even if the adapter 20 was used, there was no great difference in measurement accuracy with the method using the anechoic chamber.
If the sound pressure is measured using such a simple sound pressure measuring device, the equipment size can be reduced and the measurement time can be shortened. can do.
[0020]
The present invention is not limited to the embodiment described above, and can be modified without departing from the spirit of the present invention.
For example, although the frequency of sound pressure measurement before and after curing of the silicone adhesive is made constant, the sound pressure measurement frequency before and after curing may be made different in anticipation of the shift amount.
In the above-described embodiment, an example in which the terminal is assembled after the silicone adhesive is applied has been described. However, instead of the terminal, a lead wire connected to the diaphragm in advance by soldering or the like may be used. In this case, when the diaphragm is housed in the housing, the lead wire is also incorporated into the housing.
Further, a simple sound pressure measuring device is not limited to the one shown in FIG. 6 and can be incorporated in one production line and has a correlation with the sound pressure characteristics of piezoelectric sound producing parts in an anechoic chamber. Can be used.
[0021]
【The invention's effect】
As is apparent from the above description, according to the invention described in claim 1, since the sound pressure selection is performed before the silicone adhesive is cured, the time-consuming process for curing the silicone adhesive is selected. Can be implemented after. For this reason, diaphragm storage, terminal assembly, silicone adhesive application, sound pressure selection, etc. can be made into a continuous line, reducing equipment costs and eliminating operator assistance during the process. be able to.
In addition, since the curing process is performed after the sound pressure selection process, it is only necessary to perform the curing process for products determined to be non-defective by the sound pressure selection, and the curing process can be performed efficiently.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an example of a general piezoelectric sound producing component.
FIG. 2 is a process diagram showing a conventional method of manufacturing a piezoelectric sound producing part.
FIG. 3 is a process diagram showing a method for manufacturing a piezoelectric sound producing component according to the present invention.
FIG. 4 is a sound pressure characteristic diagram showing a correlation between before and after curing of the silicone adhesive.
5A is a comparison diagram of sound pressure before and after curing when there is a correlation, and FIG. 5B is a comparison diagram of sound pressure before and after curing when there is no correlation.
FIG. 6 is a cross-sectional view of an example of a simple sound pressure measuring device.
FIG. 7 is a sound pressure comparison diagram of a piezoelectric sounder when an anechoic chamber is used and when a simple sound pressure measuring device is used.
[Explanation of symbols]
1 Housing 2 Piezoelectric diaphragm 3 Terminal 4 Silicone adhesive

Claims (3)

筐体の内部に圧電振動板を収納し、上記圧電振動板の周囲と筐体の内周部との間に、非流動性のシリコーン接着剤を塗布し、硬化させる圧電発音部品の製造方法において、
いくつかのサンプル品について、上記シリコーン接着剤の硬化前と硬化後とで上記圧電振動板に所定の周波数信号を印加してその音圧を測定し、音圧値の相関関係を求める前工程と、
実際の製品について実施する本工程とからなり、
上記本工程は、
上記シリコーン接着剤が硬化する前に、上記圧電振動板に所定の周波数信号を印加してその音圧を測定し、上記相関関係から良否を選別する第1の工程と、
上記選別工程の後、良品と判別された製品について上記シリコーン接着剤を硬化させる第2の工程と、を有する圧電発音部品の製造方法。
In a method for manufacturing a piezoelectric sound producing part, in which a piezoelectric diaphragm is housed inside a casing, and a non-flowable silicone adhesive is applied between the periphery of the piezoelectric diaphragm and the inner peripheral portion of the casing and cured. ,
For some sample products, before the silicone adhesive is cured and after it is cured, a predetermined frequency signal is applied to the piezoelectric diaphragm, the sound pressure is measured, and a correlation between the sound pressure values is obtained. ,
It consists of this process to be performed on the actual product,
The above process
A first step of applying a predetermined frequency signal to the piezoelectric diaphragm and measuring its sound pressure before the silicone adhesive is cured, and selecting pass / fail from the correlation ;
A second step of curing the silicone adhesive for a product determined to be non-defective after the selection step;
上記シリコーン接着剤は、硬化前の粘度が500Pa・s以上であることを特徴とする請求項1に記載の圧電発音部品の製造方法。The method for manufacturing a piezoelectric sound producing component according to claim 1, wherein the silicone adhesive has a viscosity before curing of 500 Pa · s or more. 上記圧電振動板に所定の周波数信号を印加してその音圧を測定する工程は、無響室における圧電発音部品の音圧特性と相関関係を持つ簡易音圧測定装置により測定するものであることを特徴とする請求項1又は2に記載の圧電発音部品の製造方法。The step of applying a predetermined frequency signal to the piezoelectric diaphragm and measuring the sound pressure thereof is performed by a simple sound pressure measuring device having a correlation with the sound pressure characteristics of the piezoelectric sound producing component in the anechoic chamber. The method of manufacturing a piezoelectric sound producing component according to claim 1 or 2 .
JP2003131033A 2003-05-09 2003-05-09 Method for manufacturing piezoelectric sound producing component Expired - Fee Related JP4029213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131033A JP4029213B2 (en) 2003-05-09 2003-05-09 Method for manufacturing piezoelectric sound producing component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131033A JP4029213B2 (en) 2003-05-09 2003-05-09 Method for manufacturing piezoelectric sound producing component

Publications (2)

Publication Number Publication Date
JP2004336506A JP2004336506A (en) 2004-11-25
JP4029213B2 true JP4029213B2 (en) 2008-01-09

Family

ID=33506315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131033A Expired - Fee Related JP4029213B2 (en) 2003-05-09 2003-05-09 Method for manufacturing piezoelectric sound producing component

Country Status (1)

Country Link
JP (1) JP4029213B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103747411B (en) * 2013-12-23 2016-10-19 惠州市三协精密有限公司 A kind of speaker assembly production chain
CN103731790B (en) * 2013-12-23 2016-08-24 惠州市三协精密有限公司 A kind of sound film of loudspeaker assembling components equipment
CN103747412B (en) * 2013-12-31 2017-02-15 东莞市凯誉自动化设备有限公司 Full-automatic voice film voice coil combination machine
CN105282675B (en) * 2014-07-01 2018-11-23 东莞市纳声电子设备科技有限公司 A kind of loudspeaker automatic assembly line
CN105578377A (en) * 2016-03-03 2016-05-11 东莞市纳声电子设备科技有限公司 Automatic double magnetic circuit magnetic assembly device for miniature loudspeaker, and production technique adopted by device
BE1026930B1 (en) * 2018-12-28 2020-07-28 Sonitron Nv IMPROVED PROCEDURE FOR MANUFACTURING A PIEZO-ELECTRIC BUZZER AND PIEZO-ELECTRIC BUZZER BY PROCEDURE

Also Published As

Publication number Publication date
JP2004336506A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
US20020176584A1 (en) Apparatus and methods for hearing aid performance measurment, fitting, and initialization
JPH04336799A (en) Manufacture of ultrasonic converter
US8625831B2 (en) Hearing aid earpiece and a method of manufacturing a hearing aid earpiece
EP2373066B1 (en) Microelectromechanical system testing device
WO2004012476A2 (en) Electrical impedance based audio compensation in audio devices and methods therefor
CN100518384C (en) Passive electroacoustic apparatus and its playing method
JP4029213B2 (en) Method for manufacturing piezoelectric sound producing component
CN211089887U (en) Microphone structure and electronic equipment
US20150172839A1 (en) Method of fitting a hearing aid and a hearing aid
JPH0643044A (en) Generation converter of compounded force, distortion and sound
Stevens et al. Calibration of ear canals for audiometry at high frequencies
JP5281968B2 (en) Measuring method of acoustic characteristics of dynamic microphone unit
EP1482761A2 (en) Speaker and manufacturing method for the same
CN105050010A (en) Electro-acoustic transducer, coil block used for electro-acoustic transducer and audio device
CN207531080U (en) Mems microphone
Parrini New techniques for the design of advanced ultrasonic transducers for wire bonding
Smith An investigation of the air chamber of horn type loudspeakers
JPH07222284A (en) Horn-shaped piezoelectric ceramic speaker
JPS58223031A (en) Measuring device for nonintrusion pressure
KR101757362B1 (en) Pink noise output method for inspected of acoustic apparatus
JP5423295B2 (en) Ultrasonic transducer
CN111083605A (en) Audio information playing method and device, electronic equipment and storage medium
JP4032995B2 (en) Speaker manufacturing method
US8141675B2 (en) Micro-speaker
Gupta et al. Data-Over-Sound With PMUTs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4029213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees