JP4026528B2 - Stave cooler - Google Patents

Stave cooler Download PDF

Info

Publication number
JP4026528B2
JP4026528B2 JP2003100440A JP2003100440A JP4026528B2 JP 4026528 B2 JP4026528 B2 JP 4026528B2 JP 2003100440 A JP2003100440 A JP 2003100440A JP 2003100440 A JP2003100440 A JP 2003100440A JP 4026528 B2 JP4026528 B2 JP 4026528B2
Authority
JP
Japan
Prior art keywords
refractory material
casting
base metal
furnace
stave cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003100440A
Other languages
Japanese (ja)
Other versions
JP2004307899A (en
Inventor
敬朋 片岸
誠一郎 林田
隆光 簑輪
光弘 浦丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003100440A priority Critical patent/JP4026528B2/en
Publication of JP2004307899A publication Critical patent/JP2004307899A/en
Application granted granted Critical
Publication of JP4026528B2 publication Critical patent/JP4026528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、高炉等の冶金炉において炉体の保護や炉命の延長のために炉壁の内部に配置されて使用される、ステーブクーラに関する。
【0002】
【従来の技術】
例えば、高炉等の冶金炉の炉体の保護や炉命の延長のために、炉壁の内部にはステーブクーラが配置される。図4は、従来のステーブクーラ10の説明図であり、図4(a) は正面図、図4(b) は側断面及び側面図である。
【0003】
図4(a) 及び図4(b) に示すように、従来のステーブクーラ10は、例えば球状黒鉛鋳鉄等の母材金属の鋳物からなりその本体をなす鋳物1と、この鋳物1の炉体鉄皮6側に鋳ぐるまれて冷却水を流通させる冷却パイプ5と、鋳物1の炉内側に鋳物1の肉厚方向 (図4(b) の紙面に直交する方向) に1段又は2段 (図示例は2段) 鋳ぐるまれた耐火材料(耐火煉瓦)2とにより、構成される。
【0004】
このステーブクーラ10は、冷却パイプ5に冷却水を流して、炉内側の鋳物1及び耐火材料2を冷却して温度を下げ、高温の炉内原料による損耗を抑制する。そして、耐火材料2は、炉内熱量の過剰な奪熱により熱効率が低下することを防止するため、断熱性が要求される。
【0005】
従来の耐火材料2には、図4(b) に示すように、母材金属の鋳物1からの抜け落ちを防止するために、炉外側の厚さt0 よりも炉内側の厚さt1 が小さくなるように、楔状にテーパが設けられていた。また、鋳造時の熱衝撃による耐火材料2の割れを防止するために少なくとも鋳込まれた母材金属と接する面に緩衝材を設けていた。
【0006】
しかし、母材金属の鋳物1のリブ3による耐火材料2の保持機能は、この耐火材料2の上下2面にしか有効に作用しないため、耐火材料2の保持力は不充分であった。このため、炉内の熱負荷を受けてリブ3の間隔が変動すると、耐火材料2が早期に脱落し、ステーブクーラ10の断熱性を目標通りに維持できなかった。耐火材料2が脱落すると、奪熱熱量が増え高炉操業が不安定になるとともに鋳物1が直接熱負荷を受けていた。このため、鋳物1に縦方向や横方向へのクラックが入り、小ブロック化して耐火材料2がさらに脱落してしまい、炉命が大幅に短くなる傾向にあった。
【0007】
このように、耐火材料2の脱落は、円滑な高炉操業や高炉の延命化にとって深刻な問題である。このため、これまでにも、ステーブクーラ10の耐火材料2の保持力を向上させるための技術が多数提案されている。
【0008】
例えば特許文献1には、耐火材料の略中央部に設けたテーパ状貫通孔に支持アンカを一体的に嵌着し、この支持アンカに耐火材料を支持させたステーブクーラが、また特許文献2には、断面形状が円形又は多角形の柱状の耐火材料をステーブクーラの表面に垂直に、かつ相互に間隔を設けて配して鋳ぐまれたステーブクーラが、それぞれ開示されている。
【0009】
しかし、特許文献1や特許文献2により開示されたステーブクーラでは、耐火材料の一面が炉内側に不可避的に露出することとなるため、ステーブクーラ本体が熱変形するとこの耐火材料の割損や剥落を解消できない。
【0010】
そこで、特許文献3には、耐火材料を母材金属の鋳物に内蔵して鋳ぐるんだステーブクーラが開示されている。このステーブクーラでは、耐火材料は母材金属の鋳物によりその全面が完全に鋳ぐるまれることとなるため、耐火材料の保持力は確かに優れる。
【0011】
【特許文献1】
特開平5−320727号公報
【特許文献2】
特開平8−120313号公報
【特許文献3】
特開2001−123209号公報
【0012】
【発明が解決しようとする課題】
しかし、特許文献3により開示されたステーブクーラは、断熱性を有する耐火材料を母材金属の鋳物により鋳ぐるんで完全に内蔵する構造であるため、内蔵された耐火材料によりステーブクーラの伝熱性が阻害されて、冷却パイプによる冷却効果が不充分となる。このため、耐火材料を介した炉内側の鋳物は従来のステーブクーラよりも高温となる。これにより、鉄皮側と炉内側との温度差が大きくなるために鋳物に割れを生じる。
【0013】
鋳物の炉内側の表層部に割れが生じる程度であれば致命的な問題とはならないものの、耐火材料を内蔵するために耐火材料の周辺の鋳物に応力集中が発生し、内蔵された耐火材料の炉内面側に沿った方向へ割れが生じる可能性が高い。この部分に割れが生じると、内蔵された耐火材料の炉内面側に沿って鋳物の炉内側の表層部が剥離し、耐火材料を保護できなくなる。
【0014】
このように、特許文献3により開示されたステーブクーラは、使用初期における耐火材料の保持力は優れるものの、母材金属の鋳物が使用開始後早期に損傷するため、結果的にステーブクーラを長期間にわたって継続して使用できないという課題を有していた。
【0015】
本発明の目的は、耐火材料の保持力の向上と、母材金属の鋳物の損傷の抑制とをともに高レベルで達成でき、これにより、長期間にわたって継続して使用できるステーブクーラを提供することである。
【0016】
【課題を解決するための手段】
本発明は、互いに離間して配設され、それぞれの一の表面が露出する複数の耐火材料と、これら複数の耐火材料の一の表面以外の残余の表面を全て包囲しながら支持する母材金属の鋳物とを備え、母材金属の鋳物が、一の表面が存在する側の端部に、使用時における母材金属の熱変形に起因する耐火材料の脱落を防止することができる脱落防止部を有し、この脱落防止部が、端部に形成された、隣接する耐火材料それぞれの一の表面の縁部にともに掛止する掛止部を、少なくとも一つ有することを特徴とするステーブクーラである。
【0017】
この本発明にかかるステーブクーラでは、脱落防止部が、使用時における端部の応力を割れ許容値以下に抑制することによって、鋳物の割れを防止することが例示される。
【0019】
これらの本発明にかかるステーブクーラでは、耐火材料が縦方向又は横方向の一方又は双方に隣接することが例示される。
これらの本発明にかかるステーブクーラでは、耐火材料が、(i) 一の表面が矩形又は多角形であるとともに一の表面の面積が最小となる角錐台状の外形を有すること、又は(ii)一の表面が円形であるとともに一の表面の面積が最小となる円錐台状の外形を有することが、例示される。
【0020】
【発明の実施の形態】
(第1の実施の形態)
以下、本発明にかかるステーブクーラの実施の形態を、添付図面を参照しながら詳細に説明する。
[基礎的知見事項]
本発明者らは、母材金属の鋳物からの耐火材料の脱落を防止するために種々の試験を行った結果、以下に説明する知見を得た。
【0021】
上述した図4に例示されるように、耐火材料2を2段鋳包んだ従来のステーブクーラ10の加熱試験を行った結果、試験炉内の温度が 700〜1200℃であると、母材金属の鋳物1の炉内面側の温度は 600〜900 ℃まで上昇するのに対し、耐火材料2の反炉内面側の母材金属の鋳物1との境界付近の温度は 250〜350 ℃程度であり、母材金属の鋳物1の炉内面側とは350 〜550 ℃程度の温度差が生じることが判明した。このため、耐火材料2の炉内面側と反炉内面側との間の温度差はさらに大きいものと推定される。これらの結果から、耐火材料2の割れは、耐火材料2の炉内面側と反炉内面側との間の温度差により発生し、耐火材料2の母材金属の鋳物1からの脱落は、ステーブクーラ10が変形して隣接するリブ3、3の間隔が変化するために発生すると考えられる。
【0022】
そこで、ステーブクーラ10の変形による耐火材料の脱落や抜け落ちを防止するために、耐火材料2の表面に設けられる楔状のテーパを大きく設定すること、及び鋳造時の熱衝撃による耐火材料2の割れを防止するためにセラミックスファイバ等からなる緩衝材の厚みを薄くすることが考えられる。
【0023】
しかし、耐火材料2のテーパを大きく確保するために、炉内側の耐火材料2の厚みをより小さく設定すると、隣接する耐火材料2の間に存在する母材金属の鋳物1のリブ3の厚みの差が、炉内側と鉄皮側とで大きくなる。このため、炉内側の母材金属の鋳物1のリブ3がより高温となり、耐火材料2を保持する母材金属の鋳物1のリブ3の強度の低下を招き、耐火材料2の割れや脱落が助長される。
【0024】
一方、緩衝材の厚みを薄くすると、鋳造時の熱衝撃や鋳造時の母材金属の鋳物1の収縮に耐え切れなくなり耐火材料2に割れを生じる。さらに、鋳造時の熱衝撃を緩和させる緩衝材は鋳込んだ後も残存しているが、鋳ぐるまれた緩衝材には耐火材料2を強力に保持する効果はなく、耐火材料2のテーパ量と緩衝材の残存する厚み量とに応じて、炉内側への耐火材料2のせり出しを生じる。
【0025】
そこで、本発明者らはさらに検討を重ねた結果、耐火材料2を母材金属の鋳物1により強固に保持させるには、図4(b) において上下方向に隣接する耐火材料2、それぞれの一の表面の縁部に、母材金属の鋳物1のリブ3を拡大して形成した掛止部4(図4(b) における破線部参照) を用いて、ともに掛止させることが有効であることを、知見した。
【0026】
このように、耐火材料2、2それぞれの一の表面の縁部に掛止部4を用いてともに掛止させれば、掛止部4が掛止している部分の鋳物1に極端な温度差を発生しなくなるためにこの部分での割れを生じ難くなるとともに、耐火材料2、2を掛止部4により掛止するためにこの部分の鋳物1に圧縮応力を発生し難くなり、炉内側への耐火材料1の脱落を掛止部4により物理的に防止できる。なお、掛止部4の寸法は、鋳込み時に湯流れを確保でき、かつ鋳込み後の収縮により母材金属の鋳物1と耐火材料2との間に隙間を生じないように、適宜選定すればよい。
【0027】
隣接する耐火材料2、2の炉内面側の一部に掛止部4を掛止させるため、炉内面には、掛止部4が並列することによる凹凸が形成される。ここで、炉内面は装入原料・ガス等の流れを考慮すると平滑であることが理想であるというのが、一般的に技術常識である。しかし、本発明による凹凸量は軽微であるため、何ら操業悪化をきたさない。
【0028】
本発明は、かかる基礎的知見事項に基づいてなされたものであり、略述すると、隣接する耐火材料2、2の炉内面側の一部に掛止部4を掛止させることによって、耐火材料2の保護及び脱落防止を図るものである。
【0029】
[本実施の形態のステーブクーラ0]
次に、本実施の形態のステーブクーラについて説明する。なお、以降の説明は、母材金属の鋳物1に球状黒鉛鋳鉄を用いるとともに耐火材料2にアルミナ系煉瓦を用いる場合を例にとる。
【0030】
図1は、本実施の形態のステーブクーラ0の設置状況を模式的に示す説明図である。また、図2は、このステーブクーラ0の二面図であり、図2(a) は正面図、図2(b) は側断面及び側面図である。図1及び図2に示すように、本実施の形態のステーブクーラ0は、耐火材料2と母材金属の鋳物1とを有する。このため、ステーブクーラ0のこれらの構成要素を順次説明する。
【0031】
(a)耐火材料2
本実施の形態では、複数個の耐火材料 (アルミナ系耐火煉瓦) 2は、水平方向に2段配列される。これにより、複数個の耐火材料2は、それぞれの一の端面2aが二次元の面状をなして、互いに離間して配設される。なお、本実施の形態とは異なり、複数の耐火材料2は、一次元の線状をなして配設されていてもよい。
【0032】
また、本実施の形態では、各耐火材料2は、一の端面2aが矩形であるとともに一の端面2aの面積が最小となる角錐台状の外形を有する。しかし、本実施の形態とは異なり、一の端面2aは多角形であってもよい。さらに、各耐火材料2は、一の端面2aが円形であるとともに一の端面2aの面積が最小となる円錐台状の外形を有していてもよい。
【0033】
このように、本実施の形態では、耐火材料2は、四角形、多角形又は円形の横断面形状を有するとともに炉外側へ向けた楔状のテーパを有する柱状体である。これにより、耐火材料2は、母材金属の鋳物1への保持力が高められ、母材金属の鋳物1から脱落し難い。
【0034】
この耐火材料2の配置、配列さらには形状等の細部は、母材金属の鋳物1と耐火材料2の熱伝導特性、体積比率あるいは冷却パイプ5による冷却効果等を勘案して、ステーブクーラ0の使用部位により要求される断熱性によって適宜決定すればよい。
【0035】
耐火材料2の鋳込み時の位置決めは、所望の鋳物1の外形に合うように造型された鋳型 (図示しない) の所定の位置に一の端面2aを貼り付けることにより、行われる。このように、本実施の形態のステーブクーラ0の製作時、耐火材料2の炉内面側の位置決めを、位置決め治具を用いずに、行うことができる。このため、ステーブクーラ0の寸法精度および製造効率がともに向上する。
【0036】
なお、鋳込み時に耐火材料2の割れが懸念される場合には、耐火材料2の側面に割れ防止のための緩衝材(セラミックウール等)を用いることが望ましいが、一の端面2a側には用いない。すなわち、上述したように、母材金属の鋳物1は、鋳型内に耐火材料2を固定配置した状態で鋳込むことにより設けられるが、鋳込みの際には、従来と同様に耐火材料2の鋳造時の割れを防止するために緩衝材等を使用してもよい。しかし、炉内側の耐火材料2を母材金属の鋳物1で鋳ぐるむ一の端面2aには、緩衝材等を用いないで直接母材金属の鋳物1を接触させるほうが、耐火材料2を強固に保持するために望ましい。なお、耐火材料2が鋳造時に割れない材質であれば、より強固に保持する目的で緩衝材等を一切用いないで直接、母材金属の鋳物1で鋳ぐるむことが望ましい。
【0037】
本実施の形態における耐火材料2は、以上のように構成される。
(b)母材金属の鋳物1
図1及び図2に示すように、上述した複数の耐火材料2は、球状黒鉛鋳鉄からなる母材金属の鋳物1により、一の表面2a以外の残余の表面を全て包囲されながら支持される。
【0038】
母材金属の鋳物1は、一の表面2aが存在する側の端部7に、使用時における母材金属の熱変形に起因する耐火材料2の脱落を防止することができる脱落防止部4を有する。
【0039】
本実施の形態における脱落防止部4は、使用時における端部7の応力を割れ許容値以下に抑制することによって脱落防止部4の割れを防止するものである。
具体的には、端部7に形成された、上下方向に隣接する耐火材料2、2それぞれの一の表面2a、2aの縁部にともに掛止する多数の掛止部4により、構成する。
【0040】
掛止部4は、鋳物1のリブ3と一体的に形成される。掛止部4は、一の表面2a、2aの縁部に掛止するため、一の表面2a、2aの縁部を除く中央部は炉内側に向けて露出する。すなわち、母材金属の鋳物1は、ステーブクーラ0の両側面及び上下面を完全に覆い隠すが、炉内側は、耐火材料2の一の端面2aの一部を露出させる。これにより、掛止部4が掛止している部分の鋳物1に極端な温度差を発生しなくなるためにこの部分での割れを生じ難くなるとともに、各耐火材料2を掛止部4により掛止するためにこの部分の鋳物1に圧縮応力を発生し難くなり、炉内側への耐火材料1の脱落を掛止部4により物理的に防止できる。
【0041】
掛止部4の寸法は、冷却水を通水する冷却パイプ5による冷却効果が及び、かつ母材金属の鋳物1の割れを助長しないものとし、鋳込み後に母材金属が収縮しても耐火材料2との間で隙間を生じない寸法とする。かかる観点から、本実施の形態では、掛止部4の寸法A、Bは、一の端面2aより各々略5、10mmとした。なお、寸法Aは母材金属1の鋳造湯流れ時の最小寸法により決定し、寸法Bは小さいと鋳造後の疑固収縮による影響で母材金属の鋳物1と耐火材料2との間に隙間を生じ、鋳物欠落を起こし易くなる隙間を生じない寸法とした。
【0042】
本実施の形態では、掛止部4はそれぞれを水平方向に7列形成したが、割れ脱落の発生の可能性の高低等を勘案して、少なくとも一つ以上形成すればよい。また、本実施の形態では、掛止部4を水平方向に延設させて形成構成したが、これとは異なり、掛止部を垂直方向に延設させて構成してもよく、または掛止部を水平方向及び垂直方向の2方向に延設させて構成してもよい。
【0043】
通常、用いられる母材金属1としては球状黒鉛鋳鉄、片状黒鉛鋳鉄鋳物さらには銅鋳物等が例示され、また耐火材料2としては耐火煉瓦等の非金属無機質材料が例示されるが、母材金属と耐火材料の両者の組み合わせにより断熱性を満足する特性を有する材料であれば上記組合せに限定されるものではない。
【0044】
本実施の形態における母材金属の鋳物1は、以上のように構成される。
耐火材料2と母材金属の鋳物1とを有する、本実施の形態のステーブクーラ0は、以上のように構成される。
【0045】
この本実施の形態のステーブクーラ0は、端部7に形成された、上下方向に隣接する耐火材料2、2それぞれの一の表面2a、2aの縁部にともに掛止する多数の掛止部4を有するため、従来のステーブクーラによっては得られない優れた効果が得られる。
【0046】
(1)炉内側への耐火材料2の抜け落ち及び早期脱落を防止することができる。すなわち、従来の耐火材料として用いられる鋳ぐるみ煉瓦は、鋳造時の熱衝撃による割れ防止のために緩衝材を耐火材料2の周囲に張り付け、かつ、少なくともその炉内面側は完全に露出していた。このため、母材金属の鋳物1に熱変形が生じると容易に剥落していた。しかし、本実施の形態のステーブクーラ0は、端部7に形成された、上下方向に隣接する耐火材料2、2それぞれの一の表面2a、2aの縁部にともに掛止する多数の掛止部4を有するため、掛止部4が掛止している部分の鋳物1に極端な温度差を発生しなくなるためにこの部分での割れを生じ難くなるとともに、各耐火材料2を掛止部4により掛止するためにこの部分の鋳物1に圧縮応力を発生し難くなり、炉内側への耐火材料1の脱落を掛止部4により物理的に防止できる。このため、耐火材料2の早期の脱落を防止することができる。
【0047】
(2)ステーブクーラ0の機能が高まることにより高炉操業の安定性が維持でき、高炉延命が図られる。すなわち、高炉ダストには、アルカリや塩素が含まれることが知られており、母材金属の鋳物1の熱変形により緩衝材が境界目地部として作用し、境界目地部に高炉ダストが滞留して濃化し、母材金属の鋳物1及び耐火材料2に化学的損耗を引き起こす。その結果、目地部が拡がり、隙間を形成して耐火材料2の早期の脱落が助長される。これに対し、本実施の形態のステーブクーラ0では、掛止部4には緩衝材等は使用しないで耐火材料2を直接母材金属1で鋳ぐるむため、緩衝材により形成される境界目地部が存在せず、高炉ダストによる隙間の拡大を生じない。
【0048】
(3)ステーブクーラ製作時の鋳造工数の低減、製作工期短縮が可能となる。
このため、本実施の形態により、耐火材料2の保持力の向上と、母材金属の鋳物1の損傷の抑制とをともに高レベルで達成でき、これにより、長期間にわたって継続して使用できるステーブクーラ0を提供できた。
【0049】
(第2の実施の形態)
次に、本発明の第2の実施の形態を説明する。なお、以降の説明では、上述した第1の実施の形態と相違する部分を説明し、同一の部分は同じ符合を付することにより重複する説明を省略する。
【0050】
図3は、第2の実施の形態のステーブクーラ9の二面図であり、図3(a) は正面図、図3(b) は側断面及び側面図である。
本実施の形態のステーブクーラ9は、円柱状の耐火材料2' を相互に間隔を開けて千鳥格子状に配置したもので、炉内側の目地部全てを母材金属の鋳物1により掛止した構造である。さらに、耐火材料2は、炉外側に向けて外径が拡大された形状とし、母材金属の鋳物1への保持力を高めてある。
【0051】
なお、第1の実施の形態と同様の方法により耐火材料2は位置決めされて母材金属を鋳込まれて鋳物1により支持される。また、本実施の形態とは異なり、耐火材料2' は多角形の柱状としてもよい。
【0052】
【発明の効果】
以上詳細に説明したように、本発明により、耐火材料の保持力の向上と、母材金属の損傷の抑制とをともに高レベルで達成できるステーブクーラを提供することができた。
【図面の簡単な説明】
【図1】第1の実施の形態のステーブクーラの設置状況を模式的に示す説明図である。
【図2】第1の実施の形態のステーブクーラの二面図であり、図2(a) は正面図、図2(b) は側断面及び側面図である。
【図3】第2の実施の形態のステーブクーラの二面図であり、図3(a) は正面図、図3(b) は側断面及び側面図である。
【図4】従来のステーブクーラの説明図であり、図4(a) は正面図、図4(b) は側断面及び側面図である。
【符号の説明】
0 ステーブクーラ
1 母材金属の鋳物
2 耐火材料
2a 表面
4 掛止部
7 端部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stave cooler that is used in a metallurgical furnace such as a blast furnace and disposed inside a furnace wall in order to protect the furnace body and extend the life of the furnace.
[0002]
[Prior art]
For example, a stave cooler is disposed inside the furnace wall in order to protect the furnace body of a metallurgical furnace such as a blast furnace and to extend the life of the furnace. 4A and 4B are explanatory views of a conventional stave cooler 10, in which FIG. 4A is a front view, and FIG. 4B is a side sectional view and a side view.
[0003]
As shown in FIGS. 4 (a) and 4 (b), a conventional stave cooler 10 is composed of a casting 1 made of a base metal such as spheroidal graphite cast iron and the like, and a furnace body of the casting 1. One or two stages in the thickness direction of the casting 1 (in the direction perpendicular to the paper surface of FIG. 4 (b)) inside the furnace of the casting 1 and the cooling pipe 5 that is cast on the iron shell 6 side to distribute the cooling water. (The example of illustration is two steps) It is comprised with the refractory material (refractory brick) 2 cast-in.
[0004]
The stave cooler 10 causes cooling water to flow through the cooling pipe 5 to cool the casting 1 and the refractory material 2 inside the furnace to lower the temperature, and suppress wear due to the high-temperature furnace raw material. The refractory material 2 is required to have heat insulation properties in order to prevent thermal efficiency from being lowered due to excessive heat removal from the furnace.
[0005]
In the conventional refractory material 2, as shown in FIG. 4 (b), the thickness t 1 inside the furnace is smaller than the thickness t 0 outside the furnace in order to prevent the base metal from falling off the casting 1. A taper was provided in a wedge shape so as to be small. Further, in order to prevent cracking of the refractory material 2 due to thermal shock during casting, a buffer material is provided at least on the surface in contact with the cast base metal.
[0006]
However, since the holding function of the refractory material 2 by the ribs 3 of the base metal casting 1 is effective only on the upper and lower surfaces of the refractory material 2, the holding force of the refractory material 2 is insufficient. For this reason, when the interval between the ribs 3 fluctuates due to the heat load in the furnace, the refractory material 2 falls off early, and the heat insulation of the stave cooler 10 cannot be maintained as intended. When the refractory material 2 dropped out, the amount of heat lost increased, the blast furnace operation became unstable, and the casting 1 was directly subjected to a heat load. For this reason, cracks in the vertical direction and the horizontal direction are formed in the casting 1, and the refractory material 2 further falls off due to a small block, and the furnace life tends to be significantly shortened.
[0007]
Thus, dropping off of the refractory material 2 is a serious problem for smooth blast furnace operation and extending the life of the blast furnace. For this reason, many techniques for improving the holding power of the refractory material 2 of the stave cooler 10 have been proposed so far.
[0008]
For example, Patent Document 1 discloses a stave cooler in which a support anchor is integrally fitted in a tapered through hole provided in a substantially central portion of a fireproof material, and the fireproof material is supported by the support anchor. Discloses a stave cooler in which a column-shaped refractory material having a circular or polygonal cross section is cast perpendicularly to the surface of the stave cooler and spaced from each other.
[0009]
However, in the stave cooler disclosed in Patent Document 1 and Patent Document 2, since one surface of the refractory material is unavoidably exposed to the inside of the furnace, the refractory material is damaged or peeled off when the stave cooler body is thermally deformed. Cannot be resolved.
[0010]
Therefore, Patent Document 3 discloses a stave cooler in which a refractory material is built in a base metal casting and cast. In this stave cooler, since the entire surface of the refractory material is completely cast by the base metal casting, the holding power of the refractory material is certainly excellent.
[0011]
[Patent Document 1]
Japanese Patent Laid-Open No. 5-320727 [Patent Document 2]
JP-A-8-120313 [Patent Document 3]
JP 2001-123209 A [0012]
[Problems to be solved by the invention]
However, the stave cooler disclosed in Patent Document 3 has a structure in which a heat-resistant refractory material is completely incorporated by casting a base metal casting, so that the heat conductivity of the stave cooler is improved by the built-in refractory material. The cooling effect by the cooling pipe becomes insufficient due to the hindrance. For this reason, the casting inside the furnace through the refractory material is hotter than the conventional stave cooler. As a result, the temperature difference between the iron skin side and the furnace inner side becomes large, so that the casting is cracked.
[0013]
Although it is not a fatal problem as long as the surface layer inside the furnace of the casting is cracked, stress concentration occurs in the casting around the refractory material to incorporate the refractory material. There is a high possibility of cracking in the direction along the inner surface of the furnace. If cracking occurs in this portion, the surface layer inside the furnace of the casting peels off along the furnace inner surface side of the built-in refractory material, and the refractory material cannot be protected.
[0014]
Thus, although the stave cooler disclosed by patent document 3 has excellent holding power of the refractory material in the initial stage of use, the casting of the base metal is damaged early after the start of use. The problem was that it could not be used continuously.
[0015]
An object of the present invention is to provide a stave cooler that can achieve both a high level of holding power of a refractory material and a suppression of damage to a casting of a base metal, and thereby can be used continuously over a long period of time. It is.
[0016]
[Means for Solving the Problems]
The present invention relates to a plurality of refractory materials that are spaced apart from each other and from which one surface is exposed, and a base metal that surrounds and supports all the remaining surfaces other than one surface of the plurality of refractory materials A cast-off prevention part capable of preventing the refractory material from falling off due to thermal deformation of the base metal during use at the end where the surface of the base metal exists. have a, the disengagement prevention part, formed on the end portion, the engaging portion that together hooked on the edge of the refractory material adjacent each of the first surface, characterized by at least one perforated staves It is a cooler.
[0017]
In the stave cooler according to the present invention, the drop-off prevention portion is exemplified to prevent cracking of the casting by suppressing the stress of the end portion during use to a crack allowable value or less.
[0019]
In the stave cooler according to the present invention, it is exemplified that the refractory material is adjacent to one or both of the vertical direction and the horizontal direction.
In these stave coolers according to the present invention, the refractory material has (i) a truncated pyramid shape in which one surface is rectangular or polygonal and the area of one surface is minimized, or (ii) It is exemplified that one surface is circular and has a frustoconical outer shape that minimizes the area of one surface.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
Embodiments of a stave cooler according to the present invention will be described below in detail with reference to the accompanying drawings.
[Basic knowledge]
As a result of conducting various tests in order to prevent the refractory material from falling off from the base metal casting, the present inventors have obtained the following knowledge.
[0021]
As illustrated in FIG. 4 described above, when the heat test of the conventional stave cooler 10 in which the refractory material 2 is cast in two stages is performed, the temperature of the test furnace is 700 to 1200 ° C. While the temperature of the casting 1 of the furnace rises to 600-900 ° C, the temperature near the boundary of the base metal with the casting 1 of the base metal on the inner side of the anti-furnace of the refractory material 2 is about 250-350 ° C. It has been found that a temperature difference of about 350 to 550 ° C. occurs between the base metal casting 1 and the furnace inner surface side. For this reason, it is estimated that the temperature difference between the furnace inner surface side and the counter-furnace inner surface side of the refractory material 2 is larger. From these results, cracking of the refractory material 2 occurs due to a temperature difference between the furnace inner surface side and the counter-furnace inner surface side of the refractory material 2, and the falling of the base metal of the refractory material 2 from the casting 1 is stave. It is considered that this occurs because the cooler 10 is deformed and the interval between the adjacent ribs 3 and 3 changes.
[0022]
Therefore, in order to prevent the refractory material from falling off or falling off due to the deformation of the stave cooler 10, the wedge-shaped taper provided on the surface of the refractory material 2 is set large, and cracking of the refractory material 2 due to thermal shock during casting is prevented. In order to prevent this, it is conceivable to reduce the thickness of the buffer material made of ceramic fiber or the like.
[0023]
However, if the thickness of the refractory material 2 inside the furnace is set to be smaller in order to ensure a large taper of the refractory material 2, the thickness of the rib 3 of the base metal casting 1 existing between the adjacent refractory materials 2 is reduced. The difference increases between the furnace inner side and the iron skin side. For this reason, the rib 3 of the base metal casting 1 inside the furnace becomes higher in temperature, causing the strength of the rib 3 of the base metal casting 1 holding the refractory material 2 to decrease, and the refractory material 2 is cracked or dropped off. Be encouraged.
[0024]
On the other hand, if the thickness of the buffer material is reduced, the fireproof material 2 is cracked because it cannot withstand the thermal shock during casting and the shrinkage of the base metal casting 1 during casting. Furthermore, although the shock absorbing material that relieves the thermal shock during casting remains after casting, the shock absorbing material has no effect of strongly holding the fire resistant material 2 and the taper amount of the fire resistant material 2 Depending on the thickness of the buffer material remaining, the refractory material 2 sticks out to the inside of the furnace.
[0025]
Therefore, as a result of further studies, the present inventors have determined that in order to firmly hold the refractory material 2 by the base metal casting 1, one refractory material 2 adjacent in the vertical direction in FIG. It is effective to use the latching portion 4 (see the broken line portion in FIG. 4 (b)) formed by enlarging the rib 3 of the base metal casting 1 at the edge of the surface of the base metal. I found out.
[0026]
In this way, if both the refractory materials 2 and 2 are hooked together on the edge of one surface using the hooking portion 4, an extreme temperature is applied to the casting 1 where the hooking portion 4 is hooked. Since the difference is not generated, it is difficult to cause cracks in this portion, and since the refractory materials 2 and 2 are hooked by the hook portion 4, it is difficult to generate compressive stress in the casting 1 in this portion. The refractory material 1 can be physically prevented from falling off by the latching portion 4. The dimensions of the latching portion 4 may be selected as appropriate so that a molten metal flow can be ensured during casting and a gap is not formed between the base metal casting 1 and the refractory material 2 due to shrinkage after casting. .
[0027]
Since the latching portion 4 is latched to a part of the furnace inner surface side of the adjacent refractory materials 2 and 2, irregularities are formed on the furnace inner surface due to the latching portions 4 being juxtaposed. Here, it is generally common technical knowledge that the furnace inner surface is ideally smooth in consideration of the flow of the charged raw materials and gases. However, since the unevenness amount according to the present invention is slight, there is no deterioration in operation.
[0028]
The present invention has been made on the basis of such basic findings. Briefly, the fire-resistant material is obtained by hooking the latching portion 4 to a part of the furnace inner surface side of the adjacent fire-resistant materials 2 and 2. 2 is intended to protect and prevent dropout.
[0029]
[Stave cooler 0 of this embodiment]
Next, the stave cooler of this embodiment will be described. In the following description, a case where spheroidal graphite cast iron is used for the base metal casting 1 and alumina brick is used for the refractory material 2 is taken as an example.
[0030]
FIG. 1 is an explanatory diagram schematically showing the installation status of the stave cooler 0 of the present embodiment. 2 is a two-side view of the stave cooler 0. FIG. 2 (a) is a front view, and FIG. 2 (b) is a side cross-sectional view and a side view. As shown in FIG.1 and FIG.2, the stave cooler 0 of this Embodiment has the refractory material 2 and the casting 1 of a base metal. For this reason, these components of the stave cooler 0 will be described sequentially.
[0031]
(a) Refractory material 2
In the present embodiment, a plurality of refractory materials (alumina-based refractory bricks) 2 are arranged in two stages in the horizontal direction. Thus, the plurality of refractory materials 2 are arranged so that each one end face 2a forms a two-dimensional surface and is separated from each other. Note that unlike the present embodiment, the plurality of refractory materials 2 may be arranged in a one-dimensional line shape.
[0032]
In the present embodiment, each refractory material 2 has a truncated pyramid shape in which one end face 2a is rectangular and the area of one end face 2a is minimized. However, unlike the present embodiment, the one end face 2a may be a polygon. Furthermore, each refractory material 2 may have a circular truncated conical outer shape in which one end face 2a is circular and the area of one end face 2a is minimized.
[0033]
Thus, in the present embodiment, the refractory material 2 is a columnar body having a rectangular, polygonal, or circular cross-sectional shape and having a wedge-shaped taper toward the outside of the furnace. Thereby, the retention strength to the casting 1 of a base metal is heightened, and the refractory material 2 is hard to drop off from the casting 1 of the base metal.
[0034]
The details of the arrangement, arrangement, and shape of the refractory material 2 are determined by taking into consideration the heat conduction characteristics of the base metal casting 1 and the refractory material 2, the volume ratio, the cooling effect of the cooling pipe 5, and the like. What is necessary is just to determine suitably with the heat insulation requested | required by the use site | part.
[0035]
Positioning at the time of casting of the refractory material 2 is performed by attaching one end face 2a to a predetermined position of a mold (not shown) formed so as to match the outer shape of the desired casting 1. Thus, when manufacturing the stave cooler 0 of the present embodiment, the positioning of the refractory material 2 on the furnace inner surface side can be performed without using a positioning jig. For this reason, both the dimensional accuracy and manufacturing efficiency of the stave cooler 0 are improved.
[0036]
If there is a concern about cracking of the refractory material 2 at the time of casting, it is desirable to use a cushioning material (ceramic wool or the like) for preventing cracking on the side of the refractory material 2, but for the one end face 2a side. Not in. That is, as described above, the base metal casting 1 is provided by casting with the refractory material 2 fixedly arranged in the mold. When casting, the casting of the refractory material 2 is performed in the same manner as in the prior art. A buffer material or the like may be used to prevent cracking at times. However, the refractory material 2 is stronger when the base metal casting 1 is directly brought into contact with the end surface 2a where the refractory material 2 inside the furnace is cast with the base metal casting 1 without using a buffer material or the like. Desirable to hold on. If the refractory material 2 is a material that does not break during casting, it is desirable to cast directly with the base metal casting 1 without using any buffer material or the like for the purpose of holding it stronger.
[0037]
The refractory material 2 in the present embodiment is configured as described above.
(b) Base metal casting 1
As shown in FIGS. 1 and 2, the plurality of refractory materials 2 described above are supported by the base metal casting 1 made of spheroidal graphite cast iron while all remaining surfaces other than the one surface 2 a are surrounded.
[0038]
The base metal casting 1 has a drop-off prevention part 4 that can prevent the fire-resistant material 2 from falling off due to thermal deformation of the base metal during use at the end 7 on the side where one surface 2a exists. Have.
[0039]
The drop-off prevention part 4 in the present embodiment prevents the drop-off prevention part 4 from cracking by suppressing the stress of the end part 7 during use to a crack allowable value or less.
Specifically, the refractory material 2 and 2 adjacent to each other in the vertical direction formed on the end portion 7 are constituted by a large number of latching portions 4 that latch on the edges of the respective surfaces 2a and 2a.
[0040]
The latching portion 4 is formed integrally with the rib 3 of the casting 1. Since the latching part 4 latches on the edge part of the one surface 2a, 2a, the center part except the edge part of the one surface 2a, 2a is exposed toward the furnace inner side. That is, the base metal casting 1 completely covers the both side surfaces and the upper and lower surfaces of the stave cooler 0, but the inside of the furnace exposes a part of one end surface 2a of the refractory material 2. As a result, an extreme temperature difference does not occur in the casting 1 where the latching portion 4 is latched, so that cracking in this portion is difficult to occur, and each refractory material 2 is latched by the latching portion 4. In order to stop, it becomes difficult to generate a compressive stress in the casting 1 of this part, and the dropping of the refractory material 1 to the inside of the furnace can be physically prevented by the latching portion 4.
[0041]
The dimension of the latching portion 4 is such that the cooling effect by the cooling pipe 5 through which the cooling water is passed and that the cracking of the base metal casting 1 is not promoted, and the refractory material even if the base metal shrinks after casting. It is set as the dimension which does not produce a clearance gap between 2. From this point of view, in the present embodiment, the dimensions A and B of the latching portion 4 are approximately 5 and 10 mm, respectively, from one end face 2a. Note that the dimension A is determined by the minimum dimension of the base metal 1 when the casting metal flows, and if the dimension B is small, there is a gap between the base metal casting 1 and the refractory material 2 due to the effect of stubborn shrinkage after casting. The dimension was set so as not to cause a gap that would easily cause casting loss.
[0042]
In the present embodiment, each of the latching portions 4 is formed in seven rows in the horizontal direction, but at least one or more may be formed in consideration of the possibility of occurrence of cracking and dropping. Further, in the present embodiment, the latching portion 4 is formed to extend in the horizontal direction. However, unlike this, the latching portion may be configured to extend in the vertical direction. The portion may be configured to extend in two directions, the horizontal direction and the vertical direction.
[0043]
Usually, the base metal 1 used is exemplified by spheroidal graphite cast iron, flake graphite cast iron casting and further copper casting, and the refractory material 2 is exemplified by non-metallic inorganic materials such as refractory bricks. The combination is not limited to the above as long as the material has a characteristic that satisfies heat insulation properties by a combination of both a metal and a refractory material.
[0044]
The base metal casting 1 in the present embodiment is configured as described above.
The stave cooler 0 of the present embodiment having the refractory material 2 and the base metal casting 1 is configured as described above.
[0045]
The stave cooler 0 of this embodiment has a large number of latching portions formed on the end portion 7 and latched together on the edges of the surfaces 2a and 2a of the refractory materials 2 and 2 adjacent to each other in the vertical direction. 4 has an excellent effect that cannot be obtained by a conventional stave cooler.
[0046]
(1) It is possible to prevent the refractory material 2 from falling into the furnace and falling off early. That is, the cast-in brick used as a conventional refractory material has a buffer material pasted around the refractory material 2 to prevent cracking due to thermal shock during casting, and at least the furnace inner surface side is completely exposed. . For this reason, when the base metal casting 1 was thermally deformed, it was easily peeled off. However, the stave cooler 0 of the present embodiment has a large number of latches that are latched together on the edges of the surfaces 2a and 2a of the refractory materials 2 and 2 adjacent to each other in the vertical direction. Since the portion 4 is included, an extreme temperature difference is not generated in the casting 1 where the hooking portion 4 is hooked, so that it is difficult to cause cracks in this portion, and each refractory material 2 is attached to the hooking portion. Therefore, it is difficult to generate a compressive stress on the casting 1 in this portion, and the refractory material 1 can be physically prevented from falling off the inside of the furnace. For this reason, early drop-off of the refractory material 2 can be prevented.
[0047]
(2) The stability of the blast furnace operation can be maintained by increasing the function of the stave cooler 0, and the life of the blast furnace can be extended. That is, it is known that blast furnace dust contains alkali and chlorine, and the buffer material acts as a boundary joint portion due to thermal deformation of the casting 1 of the base metal, and the blast furnace dust stays in the boundary joint portion. Concentration causes chemical wear on the base metal casting 1 and refractory material 2. As a result, the joint portion expands and a gap is formed to facilitate early dropout of the refractory material 2. On the other hand, in the stave cooler 0 of the present embodiment, since the refractory material 2 is cast directly with the base metal 1 without using a buffer material or the like for the hooking portion 4, the boundary joint formed by the buffer material is used. There is no part, and no gap expansion due to blast furnace dust occurs.
[0048]
(3) It is possible to reduce the casting man-hours and shorten the production period when producing the stave cooler.
For this reason, according to the present embodiment, it is possible to achieve both the improvement of the holding power of the refractory material 2 and the suppression of the damage of the base metal casting 1 at a high level. Cooler 0 could be provided.
[0049]
(Second embodiment)
Next, a second embodiment of the present invention will be described. In the following description, portions that are different from the first embodiment described above will be described, and the same portions will be denoted by the same reference numerals, and redundant description will be omitted.
[0050]
3A and 3B are two views of the stave cooler 9 according to the second embodiment, in which FIG. 3A is a front view, and FIG. 3B is a side cross-sectional view and a side view.
The stave cooler 9 according to the present embodiment is a columnar refractory material 2 'arranged in a staggered pattern with a space between each other, and all the joints inside the furnace are hooked by a casting 1 of a base metal. This is the structure. Furthermore, the refractory material 2 has a shape in which the outer diameter is increased toward the outside of the furnace, and the holding power of the base metal to the casting 1 is enhanced.
[0051]
The refractory material 2 is positioned by a method similar to that of the first embodiment, and the base metal is cast and supported by the casting 1. Unlike the present embodiment, the refractory material 2 ′ may be a polygonal column.
[0052]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to provide a stave cooler that can achieve both the improvement of the holding power of the refractory material and the suppression of damage to the base metal at a high level.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing an installation state of a stave cooler according to a first embodiment.
2A and 2B are two views of the stave cooler according to the first embodiment, in which FIG. 2A is a front view, and FIG. 2B is a side cross-sectional view and a side view.
3A and 3B are two views of a stave cooler according to a second embodiment, in which FIG. 3A is a front view, and FIG. 3B is a side cross-sectional view and a side view.
4A and 4B are explanatory diagrams of a conventional stave cooler, in which FIG. 4A is a front view, and FIG. 4B is a side cross-sectional view and a side view.
[Explanation of symbols]
0 Stave cooler 1 Base metal casting 2 Refractory material
2a Surface 4 Hook 7 End

Claims (3)

互いに離間して配設され、それぞれの一の表面が露出する複数の耐火材料と、該複数の耐火材料の前記一の表面以外の残余の表面を全て包囲しながら支持する母材金属の鋳物とを備え、
該母材金属の鋳物は、前記一の表面が存在する側の端部に、使用時における母材金属の熱変形に起因する耐火材料の脱落を防止することができる脱落防止部を有し、該脱落防止部は、前記端部に形成された、隣接する耐火材料それぞれの前記一の表面の縁部にともに掛止する掛止部を、少なくとも一つ有すること
を特徴とするステーブクーラ。
A plurality of refractory materials that are spaced apart from each other and expose one surface of each, and a base metal casting that surrounds and supports all the remaining surfaces other than the one surface of the plurality of refractory materials; With
Casting base material metal, possess the end on the side of the one surface is present, the disengagement prevention part which can be prevented from falling off of the refractory material due to thermal deformation of the base metal at the time of use, the disengagement prevention part, the end portion formed in the both hooking portion for hooking the edge of the adjacent refractory material each of said first surface, stave coolers, characterized in that at least one perforated.
前記脱落防止部は、使用時における前記端部の応力を割れ許容値以下に抑制することによって、前記鋳物の割れを防止する請求項1に記載されたステーブクーラ。  2. The stave cooler according to claim 1, wherein the drop-off prevention portion prevents cracking of the casting by suppressing stress at the end portion during use to a crack allowable value or less. 前記耐火材料は、縦方向及び/又は横方向に隣接する請求項1又は請求項2に記載されたステーブクーラ。 The stave cooler according to claim 1 or 2, wherein the refractory material is adjacent in a longitudinal direction and / or a lateral direction .
JP2003100440A 2003-04-03 2003-04-03 Stave cooler Expired - Fee Related JP4026528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003100440A JP4026528B2 (en) 2003-04-03 2003-04-03 Stave cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003100440A JP4026528B2 (en) 2003-04-03 2003-04-03 Stave cooler

Publications (2)

Publication Number Publication Date
JP2004307899A JP2004307899A (en) 2004-11-04
JP4026528B2 true JP4026528B2 (en) 2007-12-26

Family

ID=33464576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003100440A Expired - Fee Related JP4026528B2 (en) 2003-04-03 2003-04-03 Stave cooler

Country Status (1)

Country Link
JP (1) JP4026528B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093420B2 (en) * 2010-02-23 2012-12-12 新日本製鐵株式会社 Stave and blast furnace

Also Published As

Publication number Publication date
JP2004307899A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
WO2014119632A1 (en) Monolithic refractory structure
JP3397113B2 (en) Furnace structural members for vertical metallurgical furnaces
JP4026528B2 (en) Stave cooler
JP2000248305A (en) Stave cooler
JP6672986B2 (en) Lining structure of molten metal holding container and method of construction
JP2000256716A (en) Structure for holding refractory in furnace body
US7793503B2 (en) Heat shield block for lining a combustion chamber wall, combustion chamber and gas turbine
JP6528593B2 (en) Glass melting furnace, method of raising temperature thereof and method of manufacturing glass article
JP2713023B2 (en) Furnace body protection wall for metallurgical furnace and repair method thereof
JP6394912B2 (en) Furnace protection stave
JPH09192822A (en) Tundish cover
JP7192360B2 (en) converter
JP2778339B2 (en) Stave cooler with thermal stress relaxation type functionally gradient material
JP7269464B2 (en) converter
JP2014169490A (en) Skid button
JP3133811U (en) Unfixed refractory anchor device
JP2009166110A (en) Tundish for continuous casting, and method for preventing penetration of metal into refractory thereof
JP2000256715A (en) Structure for holding refractory in furnace
JP3201582U (en) High temperature processing furnace
JPH06158130A (en) Stave cooler
JP5477234B2 (en) Molten metal transfer rod
JP2003183712A (en) Structural member of furnace body for vertical metallurgical furnace
JPH09314286A (en) Charge tube for bottom charging steel ingot
JP2019168189A (en) Grate bar for pallet truck of sintering machine
JP2005298872A (en) Mass brick integral type gas blowing plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4026528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees