JP4026458B2 - Gain equalizer and WDM optical repeater system - Google Patents

Gain equalizer and WDM optical repeater system Download PDF

Info

Publication number
JP4026458B2
JP4026458B2 JP2002273223A JP2002273223A JP4026458B2 JP 4026458 B2 JP4026458 B2 JP 4026458B2 JP 2002273223 A JP2002273223 A JP 2002273223A JP 2002273223 A JP2002273223 A JP 2002273223A JP 4026458 B2 JP4026458 B2 JP 4026458B2
Authority
JP
Japan
Prior art keywords
optical
gain
amount
gain tilt
wdm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002273223A
Other languages
Japanese (ja)
Other versions
JP2004112437A (en
Inventor
竜二 間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2002273223A priority Critical patent/JP4026458B2/en
Publication of JP2004112437A publication Critical patent/JP2004112437A/en
Application granted granted Critical
Publication of JP4026458B2 publication Critical patent/JP4026458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、波長多重(WDM)信号の利得特性を等化する利得等化装置と、この利得等化装置を利用したWDM光中継システムに関する。
【0002】
【従来の技術】
従来、WDM光中継システムにおいて、その利得特性は、中継器製造時の特性バラツキやケーブルの製造時の特性バラツキに起因して、伝送路毎、あるいは、伝送区間毎に異なる。特に、海底光ケーブルシステムでは、海底での温度変化による中継器とケーブルの特性変化および経年劣化による特性変化により、システムの利得特性が変動する。これに対処するため、これらの諸特性を均一になるように管理したり、システムマージンを見込んだ設計により固定の利得等化器により、この利得特性の変動に対処してきた。また、これに対処するため、出力されるWDM信号光の利得平坦度が変化しないように光増幅器を励起する光源を制御する利得等化器がある。(例えば、特許文献1参照)
【特許文献1】
特開2001−268014号公報(第3−4頁、図1)
【0003】
【発明が解決しようとする課題】
このような、システムマージンを見込んでの固定の利得等化器による、利得特性の変動を対処する方法では、マージンを十分にとるので、伝送路の設計が困難であるとともに、伝送路の経済性が欠けるという課題を有している。
【0004】
また、特開平2001−268014号公報に開示されている利得等化器は、光増幅器の出力側で2波長を監視して利得傾斜を求め、この利得傾斜を無くするようフィードバック制御するもので、更なる制御の簡単化が望まれるという課題を有する。
【0005】
本発明の目的は、従来のこの様な課題を解決するため、簡単な自動制御によりWDM光中継システムの利得特性を変更して最適化する技術を提供することにある。
【0006】
【課題を解決するための手段】
本発明のWDM光中継システムの利得等化装置は、WDM光信号を光増幅器により光増幅して中継伝送するWDM光中継システムの利得等化装置であって、
入力される入力WDM光信号から、利得傾斜量を検出する利得傾斜量検出手段と、
前記入力WDM光信号を、前記利得傾斜量検出手段により検出される利得傾斜量と同値でしかも反対符号の反転利得傾斜量を有するWDM光信号に変更する可変利得等化手段とを有することを特徴とする。
【0007】
また、本発明のWDM光中継システムの利得等化装置は、WDM光信号を光増幅器により光増幅して中継伝送するWDM光中継システムの利得等化装置であって、
入力される入力WDM光信号から、利得傾斜量を検出する利得傾斜量検出手段と、
前記入力WDM光信号から、後段に接続される光増幅器の利得傾斜変化量を検出する利得傾斜変化量検出手段と、
前記入力WDM光信号を、前記利得傾斜量検出手段により検出される利得傾斜量と同値でしかも反対符号を有する反転利得傾斜量と前記利得傾斜変化量検出手段により検出される利得傾斜変化量と同値でしかも反対符号を有する相殺利得傾斜変化量との和の利得傾斜量を有するWDM光信号に変更する可変利得等化手段とを有することを特徴とする。
【0008】
さらに、本発明のWDM光中継システムの利得等化装置は、WDM光信号を光増幅器により光増幅して中継伝送するWDM光中継システムの利得等化装置であって、
光伝送路から入力される複数波長が多重された入力WDM光信号から、波長当たりの平均光パワーを検出する平均光パワー検出手段と、
前記入力WDM光信号から、予め定められた監視波長の光の監視波長光パワーを検出する監視波長光パワー検出手段と、
前記監視波長光パワー検出手段により検出される監視波長光パワーと前記平均光パワー検出手段により検出される平均光パワーとの差をとり、この差から、前記入力WDM光信号の利得傾斜量を検出する利得傾斜量検出手段と、
前記平均光パワー検出部により検出される平均光パワーと光増幅器の標準利得傾斜量を与える標準平均光パワーとの差と光増幅器の標準利得傾斜量からの変化量である利得傾斜変化量との関係を示す光増幅器利得傾斜変化量テーブルを記憶して有し、前記平均光パワーと前記標準平均光パワーとの差をとり、この差から、この光増幅器利得傾斜変化量テーブルに基づいて光増幅器の利得傾斜変化量を検出する利得傾斜変化量検出手段と、
前記入力WDM光信号を、前記利得傾斜量検出手段により検出される利得傾斜量と同値でしかも反対符号を有する反転利得傾斜量と前記利得傾斜変化量検出手段により検出される利得傾斜変化量と同値でしかも反対符号を有する相殺利得傾斜変化量との和の利得傾斜量を有するWDM光信号に変更する可変利得等化手段とを有することを特徴とする。
【0009】
また、本発明のWDM光中継システムの利得等化装置は、WDM光信号を光増幅器により光増幅して光伝送路により中継伝送するWDM光中継システムの利得等化装置であって、
可変利得等化器を備え、
光伝送路から入力される複数波長が多重された入力WDM光信号からモニタWDM光信号を分岐するとともに前記入力WDM光信号を前記可変利得等化器へ送る第1光分岐カプラと、
前記第1光分岐カプラからのモニタWDM光信号を2分岐する第2光分岐カプラと、
前記第2光分岐カプラにより2分岐されるモニタWDM光信号の一方を受け、このモニタWDM光信号を電気信号に変換して複数波長全体の全光パワーを求める第1フォトダイオードと、前記第1フォトダイオードからの全光パワーを波長数で割り算して平均光パワーを求める平均光パワー演算部とを有する平均光パワー検出部と、
前記第2光分岐カプラにより2分岐されるモニタWDM光信号のもう一方を受け、このモニタWDM光信号に含まれる複数波長の光のうちから、予め定められた監視波長の光のみを選択して透過する波長フィルタと、前記波長フィルタにより選択され透過される監視波長の光を受け、この監視波長の光を電気信号に変換して監視波長光パワーを求める第2フォトダイオードとを有する監視波長光パワー検出部と、
前記監視波長光パワー検出部により検出される監視波長光パワーと前記平均光パワー検出部により検出される平均光パワーとの差をとり、この差から前記入力WDM光信号の利得傾斜量を検出する利得傾斜量検出部と、
前記平均光パワー検出部により検出される平均光パワーと、後段に接続される光増幅器の標準利得傾斜量を与える標準平均光パワーとの差をとり、この差から、この光増幅器の、標準利得傾斜量からの変化量である利得傾斜変化量を検出する利得傾斜変化量検出部とを備え、
前記可変利得等化器は、前記第1光分岐カプラからの入力WDM光信号を、前記利得傾斜量検出部により検出される利得傾斜量と同値でしかも反対符号を有する反転利得傾斜量と前記利得傾斜変化量検出部により検出される利得傾斜変化量と同値でしかも反対符号を有する相殺利得傾斜変化量との和の利得傾斜量を有するWDM光信号に変更し、このWDM光信号を後段に接続される光増幅器に出力することを特徴とする。
【0010】
さらに、本発明のWDM光中継システムの利得等化装置は、WDM光信号を光増幅器により光増幅して光伝送路により中継伝送するWDM光中継システムの利得等化装置であって、
可変利得等化器を備え、
光伝送路から入力される複数波長が多重された入力WDM光信号からモニタWDM光信号を分岐するとともに前記入力WDM光信号を前記可変利得等化器へ送る第1光分岐カプラと、
前記第1光分岐カプラからのモニタWDM光信号を2分岐する第2光分岐カプラと、
前記第2光分岐カプラにより2分岐されるモニタWDM光信号の一方を受け、このモニタWDM光信号を電気信号に変換して複数波長全体の全光パワーを求める第1フォトダイオードと、前記第1フォトダイオードからの全光パワーを波長数で割り算して平均光パワーを求める平均光パワー演算部とを有する平均光パワー検出部と、
前記第2光分岐カプラにより2分岐されるモニタWDM光信号のもう一方を受け、このモニタWDM光信号に含まれる複数波長の光のうちから、予め定められた監視波長の光のみを選択して透過する波長フィルタと、前記波長フィルタにより選択され透過される監視波長の光を受け、この監視波長の光を電気信号に変換して監視波長光パワーを求める第2フォトダイオードとを有する監視波長光パワー検出部と、
前記監視波長光パワー検出部により検出される監視波長光パワーと前記平均光パワー検出部により検出される平均光パワーとの差をとり、この差から前記入力WDM光信号の利得傾斜量を検出する利得傾斜量検出部と、
前記平均光パワー検出部により検出される平均光パワーと、後段に接続される光増幅器の標準利得傾斜量を与える標準光平均パワーとの差をとり、この差から、この光増幅器の、標準利得傾斜量からの変化量である利得傾斜変化量を検出する利得傾斜変化量検出部と、
前記利得傾斜量検出部により検出される利得傾斜量に反転係数−2を掛け、前記利得傾斜変化量検出部により検出される利得傾斜変化量に相殺係数−1を掛け、両者を加算して等化器傾斜量を決定する等化器傾斜量決定部とを備え、
前記可変利得等化器は、前記等化器傾斜量決定部により決定される等化器傾斜量が得られるように各波長に対する減衰量を変更することにより、前記第1光分岐カプラからの入力WDM光信号を、前記利得傾斜量検出部により検出される利得傾斜量と同値でしかも反対符号を有する反転利得傾斜量と前記利得傾斜変化量検出部により検出される利得傾斜変化量と同値でしかも反対符号を有する相殺利得傾斜変化量との和の利得傾斜量を有するWDM光信号に変更し、このWDM光信号を後段に接続される光増幅器に出力することを特徴とする。
【0011】
また、本発明のWDM光中継システムの利得等化装置は、前記利得傾斜変化量検出部は、前記平均光パワー検出部により検出される平均光パワーと光増幅器の標準利得傾斜量を与える標準平均光パワーとの差と光増幅器の標準利得傾斜量からの変化量である利得傾斜変化量との関係を示す光増幅器利得傾斜変化量テーブルを記憶して有し、前記平均光パワーと前記標準平均光パワーとの差をとり、この差から、この光増幅器利得傾斜変化量テーブルに基づいて、この光増幅器の利得傾斜変化量を検出することを特徴とする。
【0012】
さらに、本発明のWDM光中継システムの利得等化装置は、前記波長フィルタは、透過型の波長選択グレーティングであることを特徴とする。
【0013】
また、本発明のWDM光中継システムは、入力光伝送路と利得等化装置と光増幅器と出力光伝送路が縦続に接続されて構成されるWDM光中継システムであって、
前記利得等化装置が、
可変利得等化器を備え、
入力光伝送路から入力される複数波長が多重された入力WDM光信号からモニタWDM光信号を分岐するとともに前記入力WDM光信号を前記可変利得等化器へ送る第1光分岐カプラと、
前記第1光分岐カプラからのモニタWDM光信号を2分岐する第2光分岐カプラと、
前記第2光分岐カプラにより2分岐されるモニタWDM光信号の一方を受け、このモニタWDM光信号を電気信号に変換して複数波長全体の全光パワーを求める第1フォトダイオードと、前記第1フォトダイオードからの全光パワーを波長数で割り算して平均光パワーを求める平均光パワー演算部とを有する平均光パワー検出部と、
前記第2光分岐カプラにより2分岐されるモニタWDM光信号のもう一方を受け、このモニタWDM光信号に含まれる複数波長の光のうちから、予め定められた監視波長の光のみを選択して透過する波長フィルタと、前記波長フィルタにより選択され透過される監視波長の光を受け、この監視波長の光を電気信号に変換して監視波長光パワーを求める第2フォトダイオードとを有する監視波長光パワー検出部と、
前記監視波長光パワー検出部により検出される監視波長光パワーと前記平均光パワー検出部により検出される平均光パワーとの差をとり、この差から前記入力WDM光信号の利得傾斜量を検出する利得傾斜量検出部と、
前記平均光パワー検出部により検出される平均光パワーと後段に接続される前記光増幅器の標準利得傾斜量を与える標準平均光パワーとの差と前記光増幅器の標準利得傾斜量からの変化量である利得傾斜変化量との関係を示す光増幅器利得傾斜変化量テーブルを記憶して有し、前記平均光パワーと前記標準平均光パワーとの差をとり、この差から、この光増幅器利得傾斜変化量テーブルに基づいて、前記光増幅器の利得傾斜変化量を検出する利得傾斜変化量検出部と、
前記利得傾斜量検出部により検出される利得傾斜量に反転係数−2を掛け、前記利得傾斜変化量検出部により検出される利得傾斜変化量に相殺係数−1を掛け、両者を加算して等化器傾斜量を決定する等化器傾斜量決定部とを備え、
前記可変利得等化器は、前記等化器傾斜量決定部により決定される等化器傾斜量が得られるように各波長に対する減衰量を変更することにより、前記第1光分岐カプラからの入力WDM光信号を、前記利得傾斜量検出部により検出される利得傾斜量と同値でしかも反対符号を有する反転利得傾斜量と前記利得傾斜変化量検出部により検出される利得傾斜変化量と同値でしかも反対符号を有する相殺利得傾斜変化量との和の利得傾斜量を有するWDM光信号に変更し、このWDM光信号を後段に接続される前記光増幅器に送り、
前記光増幅器は、前記利得等化装置から利得傾斜量が変更されたWDM光信号を受けて、このWDM光信号を増幅して出力伝送路へ出力することを特徴とする。
【0014】
【発明の実施の形態】
次に、本発明の実施の形態について図面を参照して詳細に説明する。
【0015】
図1は、本発明による利得等化装置と、この利得等化装置によるWDM光中継システムとの、実施形態の構成ブロック図である。
【0016】
図1を参照して、本発明の実施形態によるWDM光中継システムは、光伝送路200と、光伝送路200から、波長数n個の波長λ1、〜、λnが多重された波長多重光信号(以降、WDM光信号)を入力して利得等化しWDM光信号を出力する利得等化装置1と、利得等化装置1からのWDM光信号を伝送する光伝送路201と、光伝送路201からのWDM光信号を光増幅して出力する光増幅器2と、光増幅器2からWDM光信号を伝送する光伝送路202とを有す。
【0017】
利得等化装置1は、第1光分岐カプラ10と、第2光分岐カプラ20と、平均光パワー検出部30と、監視波長光パワー検出部40と、傾斜量検出部50と、傾斜変化量検出部60と、比較回路70と、ゲート80と、等化器傾斜量決定部90と、制御回路100と、可変利得等化器110とを有して構成される。
【0018】
第1光分岐カプラ10は、光伝送路200から、波長数n個の波長λ1、〜、λnが多重されたWDM光信号が入力されると、このWDM光信号の一部を分岐してモニタWDM光信号として第2光分岐カプラ20へ送るとともに、このWDM光信号の大部を可変利得等化器110へ送る。
【0019】
第2光分岐カプラ20は、第1光分岐カプラ10からのモニタWDM光信号を2分岐し、2分岐されたモニタWDM光信号の一方を平均光パワー検出部30に送り、もう一方を監視波長光パワー検出部40に送る。
【0020】
平均光パワー検出部30は、第1フォトダイオード31と、平均光パワー演算部32とを有して構成される。
【0021】
第1フォトダイオード31は、第2光分岐カプラ20で2分岐されたモニタWDM光信号の一方を受け、このモニタWDM光信号を電気信号に変換し、波長数n個の波長λ1、〜、λ1nの各々の光パワー値を合わせた全光パワー値を求め、この全光パワー値を平均光パワー演算部32に送る。
【0022】
平均光パワー演算部32は、第1フォトダイオード31からの全光パワー値を波長数nで割り算して平均光パワー値Pavを求め、この平均光パワー値Pavを傾斜量検出部50と傾斜変化量検出部60と比較回路70に送る。
【0023】
監視波長光パワー検出部40は、波長フィルタ41と第2フォトダイオード42と有して構成される。
【0024】
波長フィルタ41は、第2光分岐カプラ20で2分岐されたモニタWDM光信号のもう一方を受け、このモニタWDM光信号に含まれる波長λ1、〜、λnの光のうちから、予め定められた監視波長λsの光のみを選択して透過し第2フォトダイオード42に送る。波長フィルタ41は、例えば、透過型の波長選択グレーティングである。
【0025】
第2フォトダイオード42は、波長フィルタ41により選択された監視波長λsの光を受け、この監視波長λsの光を電気信号に変換して監視波長λsの光パワー値Ps(以降、監視波長光パワー値Psと呼ぶ)を求め、この監視波長光パワー値Psを傾斜量検出部50に送る。
【0026】
傾斜量検出部50は、第1差分回路51と傾斜量演算部52とを有して構成される。
【0027】
傾斜量検出部50の第1差分回路51は、監視波長光パワー検出部40からの監視波長光パワー値Psと平均光パワー検出部30からの平均光パワー値Pavとの差を演算し第1差値ΔPsav(=Ps−Pav)を求め、この第1差値ΔPsavを傾斜量演算部52に送る。
【0028】
傾斜量演算部52は、第1差分回路51からの第1差値ΔPsavにより、WDM光信号の、波長に対する利得傾斜量KIを演算し、この利得傾斜量KIを等化器傾斜量決定部90に送る。
【0029】
傾斜変化量検出部60は、第2差分回路61と、傾斜変化量演算部62とを有して構成される
傾斜変化量検出部60の第2差分回路61は、平均光パワー検出部30からの平均光パワー値Pavと参照のための予め定められた標準平均光パワー値Prとの差を演算し第2差値ΔPavr(=Pav−Pr)を求め、この第2差値ΔPavrを傾斜変化量演算部62に送る。ここで、標準平均光パワー値Prは、光増幅器2へ入力するWDM光信号の平均光パワー値Pavに対する参照基準である。
【0030】
傾斜変化量演算部62は、後述する光増幅器利得傾斜変化量テーブルを記憶して有し、第2差分回路61から第2差値ΔPavrを受けると、この光増幅器利得傾斜変化量テーブルを参照して、光増幅器利得傾斜変化量Δkrを求め、この光増幅器利得傾斜変化量Δkrをゲート80に送る。
【0031】
比較回路70は、平均光パワー検出部30からの平均光パワー値Pavと標準平均光パワー値Prとを比較し、両者が不一致のとき、ゲート80を開けるための開信号を生成しゲート80に送るとともに、両者が一致のとき、ゲート80を閉じるための閉信号を生成しゲート80に送る。
【0032】
ゲート80は、比較回路70からの開信号により、ゲートを開け、傾斜変化量演算部62からの光増幅器利得傾斜変化量Δkrを等化器傾斜量決定部90に送る。また、ゲート80は、比較回路70からの閉信号により、ゲートを閉じ、傾斜変化量演算部62からの等化器傾斜量決定部90への入力を禁止する。
【0033】
等化器傾斜量決定部90は、平均光パワー値Pavと標準平均光パワー値Prとの両者が一致のとき、傾斜量演算部51からの利得傾斜量KIのみを受け、この利得傾斜量KIから、可変利得等化器110に設定される等化器損失傾斜量KEを求め、この等化器損失傾斜量KEを制御回路100に送るとともに、平均光パワー値Pavと標準平均光パワー値Prとが不一致のとき、傾斜量演算部51からの利得傾斜量KIと、傾斜変化量演算部62からの光増幅器利得傾斜変化量Δkrとを受け、利得傾斜量KIと光増幅器利得傾斜変化量Δkrとから、可変利得等化器110に設定される等化器損失傾斜量KEを求め、この等化器損失傾斜量KEを制御回路100に送る。
【0034】
制御回路100は、等化器傾斜量決定部90からの等化器損失傾斜量KEに基づいて、可変利得等化器110を制御する制御信号を可変利得等化器110に送る。
【0035】
可変利得等化器110は、制御回路100からの制御信号に基づき、第1光分岐カプラ10から入力されるWDM光信号の各波長に対する光減衰量を可変し、波長に対する損失傾斜特性を変更する。そして、可変利得等化器110は損失傾斜特性が変更されたWDM光信号を光増幅器2に送る。
【0036】
光増幅器2は、WDM光信号を増幅するもので、可変利得等化器110により損失傾斜特性が変更されたWDM光信号を増幅して、伝送路202に送信する。光増幅器2は、例えば、希土類添加光ファイバ増幅器で構成される。この光増幅器は、図4(a)に示されるように、入力されるWDM光信号の平均光パワー値Pavに依存する利得傾斜特性を有す。すなわち、平均光パワー値Pavが、標準平均光パワー値PrからΔPavrだけ変化すると、光増幅器の利得傾斜量KAがkrからkr+Δkrに変化する。ここで、krは、標準平均光パワー値PrのWDM光信号が光増幅器へ入力されるときの光増幅器の標準利得傾斜量で、Δkrは、増幅器の利得傾斜量の変化量(以降、利得傾斜変化量)である。
図4(b)は、光増幅器利得傾斜変化特性を示す図で、増幅器の利得傾斜変化量Δkrと、標準平均光パワー値Prからの平均光パワー値Pavの差である第2差値ΔPavr(=Pav−Pr)との関係を示す。傾斜変化量演算部62の光増幅器利得傾斜変化量テーブルは、この光増幅器利得傾斜変化特性がテーブル化されている。
【0037】
次に、本発明の実施形態の動作について図面を参照して詳細に説明する。
【0038】
まず、利得等化装置1に入力されるWDM光信号と、監視波長λsについて説明する。
【0039】
説明の便宜上、入力されるWDM光信号は、波長数n個の波長λ1、〜、λnが多重された光信号で、波長λ1、〜、λnの添え字の順番に波長が長くなると仮定する。監視波長λsは、波長λ1、〜、λnの内のいづれの波長でもよいが、ここでは、波長λnであるように予め定められている。このため、フィルタ41は、監視波長λs=λnのみを通過するようバンド幅が設定されている。
【0040】
次に、動作の説明を図2と、図3を参照して説明する。
【0041】
図2は、動作を説明するための図で、図3は、各部の傾斜特性を示す図である。
【0042】
WDM光信号の平均光パワー値Pavが標準平均光パワー値Prに一致している場合と不一致の場合とに分けて動作を説明する。
【0043】
<平均光パワー値Pavと標準平均光パワー値Prとが一致する場合>
利得等化装置1に、図3(a)の特性▲1▼−1で示されるような、波長λ1、〜、λnが多重されたWDM光信号が入力される。このWDM光信号の平均光パワー値Pavが標準平均光パワー値Prと一致している。
【0044】
第1光分岐カプラ10は、このWDM光信号が入力されると、このWDM光信号の一部を分岐してモニタWDM光信号として第2光分岐カプラ20へ送るとともに、このWDM光信号の大部を可変利得等化器110へ送る。
【0045】
第2光分岐カプラ20は、第1光分岐カプラ10からのモニタWDM光信号を2分岐し、2分岐されたモニタWDM光信号の一方を平均光パワー検出部30に送り、もう一方を監視波長光パワー検出部40に送る。
【0046】
平均光パワー検出部30の第1フォトダイオード31は、第2光分岐カプラ20で2分岐されたモニタWDM光信号の一方を受け、このモニタWDM光信号を電気信号に変換し、波長数n個の波長λ1、〜、λ1nの各々の光パワー値を合わせた全光パワー値を求め、この全光パワー値を平均光パワー演算部32に送る。
【0047】
平均光パワー演算部32は、第1フォトダイオード31からの全光パワー値を波長数nで割り算して平均光パワー値Pavを求め、この平均光パワー値Pavを傾斜量検出部50と傾斜変化量検出部60と比較回路70に送る。
【0048】
一方、監視波長光パワー検出部40の波長フィルタ41は、第2光分岐カプラ20で2分岐されたモニタWDM光信号のもう一方を受け、このモニタWDM光信号に含まれる波長λ1、〜、λnの光のうちから、波長λnの光、すなわち監視波長λs=λnの光、のみを選択して透過し第2フォトダイオード42に送る。
【0049】
第2フォトダイオード42は、波長フィルタ41により選択された監視波長λs=λnの光を受け、この監視波長λsの光を電気信号に変換して監視波長λsの監視波長光パワー値Psを求め、この監視波長光パワー値Psを傾斜量検出部50に送る。
【0050】
傾斜量検出部50の第1差分回路51は、監視波長光パワー検出部40からの監視波長光パワー値Psと平均光パワー検出部30からの平均光パワー値Pavとの差を演算し第1差値ΔPsav(=Ps−Pav)を求め、この第1差値ΔPsavを傾斜量演算部52に送る。
【0051】
傾斜量演算部52は、第1差分回路50からの第1差値ΔPsavを使い、WDM光信号の、波長に対する利得傾斜量KI=kを演算し、この利得傾斜量KI=kを等化器傾斜量決定部90に送る。ここで、傾斜量演算部52は、WDM光信号の利得波長特性が、波長の増加とともに利得傾斜量が線形に変化する場合には、正確な利得傾斜量を演算し、一方、WDM光信号の利得波長特性が、波長の増加とともに利得傾斜量が略線形で変化する場合には、近似の利得傾斜量を演算する。
【0052】
比較回路70は、平均光パワー検出部30からの平均光パワー値Pavと標準平均光パワー値Prとを比較する。比較した結果、ここでは、両者が一致しているので、ゲート80を閉じるための閉信号を生成しゲート80に送る。
【0053】
ゲート80は、比較回路70からの閉信号により、ゲートを閉じ、傾斜変化量演算部62からの等化器傾斜量決定部90への入力を禁止する。
【0054】
等化器傾斜量決定部90は、傾斜変化量演算部62からの入力はないので、傾斜量演算部52からの利得傾斜量KI=kのみを受け、この利得傾斜量KI=kに、予め定められた傾斜反転係数C=−2を掛けて、可変利得等化器110に設定される等化器損失傾斜量KE=−2×kを求め、この等化器損失傾斜量KE=−2×kを制御回路100に送る。
【0055】
制御回路100は、等化器傾斜量決定部90から等化器損失傾斜量KE=−2×kを受け、可変利得等化器110に等化器損失傾斜量KE=−2×kを持たせるように各波長に対する光減衰量を変更するための制御信号を生成し、この制御信号を可変利得等化器110に送る。
【0056】
可変利得等化器110は、制御回路100からの制御信号に基づき、各波長に対する光減衰量を変えて、損失波長特性を変更する。このとき、可変利得等化器110は、図3(a)の特性▲2▼−1に示されるように、等化器損失傾斜量KE=−2×kの損失波長特性を有するよう制御される。そして、可変利得等化器110は、第1光分岐カプラ10からの利得傾斜量KI=kのWDM光信号を入力し、この利得傾斜量KI=kを変更して、図3(a)の特性▲3▼−1に示されるような利得傾斜量KEO=−kを有するWDM光信を出力し光増幅器2に送る。ここで、利得傾斜量KEOは、入力されるWDM光信号の利得傾斜量KI=kに、可変利得等化器110の等化器損失傾斜量KE=−2×kを加算した値=−kである。したがって、可変利得等化器110は、入力されるWDM光信号の利得傾斜量KI=kを反転して得られる利得傾斜量KEO=−kのWDM光信号を出力する。
【0057】
すなわち、可変利得等化器110は、入力されるWDM光信号の利得傾斜量と同値でしかも反対符号を有する利得傾斜量のWDM光信号を出力する。
【0058】
光増幅器2は、可変利得等化器110から、利得傾斜量KEO=−kのWDM光信号を受け、光増幅して伝送路に出力する。このとき、光増幅器2へ入力するWDM光信号の平均パワー値Pavは、光増幅器2の標準平均光パワー値Prと一致しているので、光増幅器2の利得傾斜量KAは、図3(a)の特性▲4▼−1に示されるように、標準平均光パワー値PrのWDM光が光増幅器2に入力するときの標準利得傾斜量krである。したがって、光増幅器2は、入力される利得傾斜量KEO=−kのWDM光信号を光増幅して、図3(a)の特性▲5▼−1に示されるような利得傾斜量KO=−k+krのWDM光信号を伝送路に出力する。
【0059】
<平均光パワー値Pavと標準平均光パワー値Prとが不一致する場合>
利得等化装置1に、図3(b)の特性▲1▼−2で示されるような、波長λ1、〜、λnが多重されたWDM光信号が入力される。このWDM光信号の平均光パワー値Pavが標準平均光パワー値Prと不一致である。
【0060】
第1光分岐カプラ10は、このWDM光信号が入力されると、このWDM光信号の一部を分岐してモニタWDM光信号として第2光分岐カプラ20へ送るとともに、このWDM光信号の大部を可変利得等化器110へ送る。
【0061】
第2光分岐カプラ20は、第1光分岐カプラ10からのモニタWDM光信号を2分岐し、2分岐されたモニタWDM光信号の一方を平均光パワー検出部30に送り、もう一方を監視波長光パワー検出部40に送る。
【0062】
平均光パワー検出部30の第1フォトダイオード31は、第2光分岐カプラ20で2分岐されたモニタWDM光信号の一方を受け、このモニタWDM光信号を電気信号に変換し、波長数n個の波長λ1、〜、λ1nの各々の光パワー値を合わせた全光パワー値を求め、この全光パワー値を平均光パワー演算部32に送る。
【0063】
平均光パワー演算部32は、第1フォトダイオード31からの全光パワー値を波長数nで割り算して平均光パワー値Pavを求め、この平均光パワー値Pavを傾斜量検出部50と傾斜変化量検出部60と比較回路70に送る。
【0064】
一方、監視波長光パワー検出部40の波長フィルタ41は、第2光分岐カプラ20で2分岐されたモニタWDM光信号のもう一方を受け、このモニタWDM光信号に含まれる波長λ1、〜、λnの光のうちから、監視波長λs=λnの光のみを選択して透過し第2フォトダイオード42に送る。
【0065】
第2フォトダイオード42は、波長フィルタ41により選択された監視波長λs=λnの光を受け、この監視波長λsの光を電気信号に変換して監視波長λsの監視波長光パワー値Psを求め、この監視波長光パワー値Psを傾斜量検出部50に送る。
【0066】
傾斜量検出部50の第1差分回路51は、監視波長光パワー検出部40からの監視波長光パワー値Psと平均光パワー検出部30からの平均光パワー値Pavとの差を演算し第1差値ΔPsav(=Ps−Pav)を求め、この第1差値ΔPsavを傾斜量演算部52に送る。
【0067】
傾斜量演算部52は、第1差分回路51からの第1差値ΔPsavを使い、WDM光信号の、波長に対する利得傾斜量KI=kを演算し、この利得傾斜量KI=kを等化器傾斜量決定部90に送る。
【0068】
比較回路70は、平均光パワー検出部30からの平均光パワー値Pavと標準平均光パワー値Prとを比較し、両者が不一致であるので、ゲート80を開くための開信号を生成しゲート80に送る。
【0069】
傾斜変化量検出部60の第2差分回路61は、平均光パワー検出部30からの平均光パワー値Pavと標準平均光パワー値Prとの差を演算し第2差値ΔPavr(=Pav−Pr)を求め、この第2差値Pavrを傾斜変化量演算部62に送る。
【0070】
傾斜変化量演算部62は、第2差分回路61から第2差値ΔPavrを受けると、光増幅器利得傾斜変化量テーブルを参照して、光増幅器利得傾斜変化量Δkrを求め、この光増幅器利得傾斜変化量Δkrをゲート80に送る。
【0071】
ゲート80は、比較回路70からの開信号により、ゲートを開け、傾斜変化量演算部62からの光増幅器利得傾斜変化量Δkrを等化器傾斜量決定部90に送る。
【0072】
等化器傾斜量決定部90は、傾斜量演算部52から利得傾斜量KI=kを受け、そして、傾斜変化量演算部62から光増幅器利得傾斜変化量Δkrを受けると、利得傾斜量KI=kに、傾斜反転係数C=−2を掛けて−2×kを求め、そして、光増幅器利得傾斜変化量Δkrに、予め定められた傾斜変化量相殺係数CR=−1を掛けて−1×Δkrを求め、両者を加算して可変利得等化器110に設定される等化器損失傾斜量KE=−2×k+(−1×Δkr)を求め、この等化器損失傾斜量KE=−2×k+(−1×Δkr)を制御回路100に送る。
【0073】
制御回路100は、等化器傾斜量決定部90から等化器損失傾斜量KE=−2×k+(−1×Δkr)を受け、可変利得等化器110に等化器損失傾斜量KE=−2×k+(−1×Δkr)を持たせるように各波長に対する光減衰量を変更するための制御信号を生成し、この制御信号を可変利得等化器110に送る。
【0074】
可変利得等化器110は、制御回路100からの制御信号に基づき、各波長に対する光減衰量を変えて、損失波長特性を変更する。このとき、可変利得等化器110は、図3(b)の特性▲2▼−2に示されるように、等化器損失傾斜量KE=−2×k+(−1×Δkr)の損失波長特性を有するよう制御される。そして、可変利得等化器110は、第1光分岐カプラ10からの利得傾斜量KI=kのWDM光信号を入力し、この利得傾斜量KI=kを変更して、図3(b)の特性▲3▼−2に示されるような利得傾斜量KEO=−k−Δkrを有するWDM光信を出力し光増幅器2に送る。ここで、利得傾斜量KEOは、入力されるWDM光信号の利得傾斜量KI=kに、可変利得等化器110の等化器損失傾斜量KE=−2×k+(−1×Δkr)を加算した値=−k−Δkrである。
【0075】
光増幅器2は、可変利得等化器110から、利得傾斜量KEO=−k−ΔkrのWDM光信号を受け、光増幅して伝送路202に出力する。このとき、光増幅器2へ入力するWDM光信号の平均パワー値Pavは、光増幅器2の標準平均光パワー値PrよりΔPavrだけ大きいので、光増幅器2の利得傾斜量KAは、図3(b)の特性▲4▼−2に示されるように、標準平均光パワー値PrのWDM光が光増幅器2に入力するときの標準利得傾斜量krに、ΔPavrによる光増幅器利得傾斜変化量Δkrを加算した値kr+Δkrとなる。
したがって、光増幅器2は、入力される利得傾斜量KEO=−k−Δkrの主WDM光信号を光増幅して、図3(b)の特性▲5▼−2に示されるような利得傾斜量KO=−k+krのWDM光信号を伝送路202に出力する。この利得傾斜量KO=−k+krは、WDM光信号の平均光パワー値Pavが標準平均光パワー値Prに一致するときの、光増幅器2から出力するWDM光信号の利得傾斜量KOと同値である。
【0076】
このように、可変利得等化器110は、入力される主WDM光信号の利得傾斜量を反転するとともに、光増幅器利得傾斜変化量を相殺する。
【0077】
以上のように、利得等化装置1は、入力されるWDM光信号の平均光パワー値Pavと標準平均光パワー値Prとの一致と不一致に関係なく、すなわち、後段の光増幅器の利得傾斜変化に依存しないで、常に一定の利得傾斜量を有するWDM光信号を、光増幅器から出力するよう可変利得等化器11の損失傾斜量を制御している。
【0078】
【発明の効果】
以上説明したように、本発明は、入力されるWDM光信号の利得傾斜量を検出し、検出される利得傾斜量と同値でしかも反対符号を有する利得傾斜量のWDM光信号を出力するよう構成されているので、波長ごとの光パワーが常に一定に保たれ、波長ごとの伝送特性が均一なWDM光中継システムを実現できるという効果がある。
【0079】
また、本発明は、光増幅器の利得傾斜変化量を検出し、検出される利得傾斜変化量を相殺するよう構成されているので、光増幅器に入力されるWDM光の光パワーによる利得傾斜変化を無くすことができ、光パワーに無関係に伝送特性を均一できるという効果がある。
【0080】
【図面の簡単な説明】
【図1】本発明による実施形態の構成ブロック図である。
【図2】動作を説明するための図である。
【図3】各部の傾斜特性を示す図である。
【図4】光光増幅器の利得特性を示す図である。
【符号の説明】
1 利得等化装置
10 第1光分岐カプラ
20 第2光分岐カプラ
30 平均光パワー検出部
31 第1フォトダイオード
32 平均光パワー演算部
40 監視波長光パワー検出部
41 波長フィルタ
42 第2フォトダイオード
50 傾斜量検出部
51 第1差分回路
52 傾斜量演算部
60 傾斜変化量検出部
61 第2差分回路
62 傾斜変化量演算部
70 比較回路
80 ゲート
90 等化器傾斜量決定部
100 制御回路
110 可変利得等化器
2 光増幅器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gain equalization apparatus that equalizes gain characteristics of wavelength division multiplexing (WDM) signals, and a WDM optical repeater system that uses the gain equalization apparatus.
[0002]
[Prior art]
Conventionally, in a WDM optical repeater system, the gain characteristic differs from transmission line to transmission line or transmission section due to characteristic variation at the time of manufacturing a repeater or characteristic variation at the time of manufacturing a cable. In particular, in a submarine optical cable system, the gain characteristics of the system fluctuate due to changes in characteristics of repeaters and cables due to temperature changes at the bottom of the sea and changes in characteristics due to aging. In order to cope with this, the fluctuations in the gain characteristics have been dealt with by managing these characteristics to be uniform or by using a fixed gain equalizer with a design that allows for a system margin. In order to cope with this, there is a gain equalizer that controls a light source that excites the optical amplifier so that the gain flatness of the output WDM signal light does not change. (For example, see Patent Document 1)
[Patent Document 1]
JP 2001-268014 A (page 3-4, FIG. 1)
[0003]
[Problems to be solved by the invention]
In such a method of dealing with fluctuations in gain characteristics using a fixed gain equalizer with a system margin in mind, it is difficult to design a transmission line because the margin is sufficient, and the economics of the transmission line Has the problem of lacking.
[0004]
Further, the gain equalizer disclosed in Japanese Patent Laid-Open No. 2001-268014 is for monitoring the two wavelengths on the output side of the optical amplifier to obtain a gain slope, and performing feedback control so as to eliminate the gain slope. There is a problem that further simplification of control is desired.
[0005]
An object of the present invention is to provide a technique for changing and optimizing the gain characteristic of a WDM optical repeater system by simple automatic control in order to solve such a conventional problem.
[0006]
[Means for Solving the Problems]
A gain equalization apparatus for a WDM optical repeater system according to the present invention is a gain equalizer for a WDM optical repeater system that optically amplifies a WDM optical signal using an optical amplifier and relays it.
A gain tilt amount detecting means for detecting a gain tilt amount from an input WDM optical signal;
Variable gain equalizing means for changing the input WDM optical signal to a WDM optical signal having the same value as the gain tilt amount detected by the gain tilt amount detecting means and having an inverted gain tilt amount of the opposite sign. And
[0007]
A gain equalization apparatus for a WDM optical repeater system according to the present invention is a gain equalization apparatus for a WDM optical repeater system that optically amplifies a WDM optical signal using an optical amplifier and relays it.
A gain tilt amount detecting means for detecting a gain tilt amount from an input WDM optical signal;
A gain tilt change amount detecting means for detecting a gain tilt change amount of an optical amplifier connected to a subsequent stage from the input WDM optical signal;
The input WDM optical signal has the same value as the gain tilt amount detected by the gain tilt amount detecting means and the reverse gain tilt amount having the opposite sign and the same value as the gain tilt change amount detected by the gain tilt change amount detecting means. In addition, it has variable gain equalization means for changing to a WDM optical signal having a gain tilt amount that is the sum of the canceling gain tilt change amount having the opposite sign.
[0008]
Furthermore, a gain equalization apparatus for a WDM optical repeater system according to the present invention is a gain equalization apparatus for a WDM optical repeater system that optically amplifies a WDM optical signal with an optical amplifier and relays it.
Average optical power detection means for detecting average optical power per wavelength from an input WDM optical signal multiplexed with a plurality of wavelengths input from an optical transmission line;
Monitoring wavelength optical power detection means for detecting a monitoring wavelength optical power of light having a predetermined monitoring wavelength from the input WDM optical signal;
The difference between the monitoring wavelength optical power detected by the monitoring wavelength optical power detection means and the average optical power detected by the average optical power detection means is taken, and the gain tilt amount of the input WDM optical signal is detected from this difference. Means for detecting the amount of gain tilt;
The difference between the average optical power detected by the average optical power detector and the standard average optical power that gives the standard gain tilt amount of the optical amplifier, and the gain tilt change amount that is the change amount from the standard gain tilt amount of the optical amplifier. An optical amplifier gain tilt change amount table indicating the relationship is stored, and the difference between the average optical power and the standard average optical power is obtained, and based on this difference, the optical amplifier is based on the optical amplifier gain tilt change amount table. Gain tilt change amount detecting means for detecting the gain tilt change amount of
The input WDM optical signal has the same value as the gain tilt amount detected by the gain tilt amount detecting means and the reverse gain tilt amount having the opposite sign and the same value as the gain tilt change amount detected by the gain tilt change amount detecting means. In addition, it has variable gain equalization means for changing to a WDM optical signal having a gain tilt amount that is the sum of the canceling gain tilt change amount having the opposite sign.
[0009]
A gain equalization apparatus for a WDM optical repeater system according to the present invention is a gain equalizer for a WDM optical repeater system that optically amplifies a WDM optical signal using an optical amplifier and relays the signal using an optical transmission line.
With a variable gain equalizer,
A first optical branching coupler for branching a monitor WDM optical signal from an input WDM optical signal multiplexed with a plurality of wavelengths input from an optical transmission line and sending the input WDM optical signal to the variable gain equalizer;
A second optical branching coupler for branching the monitor WDM optical signal from the first optical branching coupler into two;
A first photodiode that receives one of the monitor WDM optical signals branched into two by the second optical branching coupler, converts the monitor WDM optical signal into an electrical signal, and obtains the total optical power of all of a plurality of wavelengths; An average optical power detector having an average optical power calculator that calculates the average optical power by dividing the total optical power from the photodiode by the number of wavelengths;
The other one of the monitor WDM optical signals branched by the second optical branching coupler is received, and only the light having a predetermined monitoring wavelength is selected from the light of a plurality of wavelengths included in the monitor WDM optical signal. Monitoring wavelength light having a wavelength filter that transmits, and a second photodiode that receives the monitoring wavelength light selected and transmitted by the wavelength filter and converts the monitoring wavelength light into an electrical signal to obtain the monitoring wavelength light power A power detector;
The difference between the monitoring wavelength optical power detected by the monitoring wavelength optical power detection unit and the average optical power detected by the average optical power detection unit is taken, and the gain tilt amount of the input WDM optical signal is detected from this difference. A gain tilt amount detection unit;
The difference between the average optical power detected by the average optical power detector and the standard average optical power that gives the standard gain tilt amount of the optical amplifier connected in the subsequent stage is taken, and from this difference, the standard gain of this optical amplifier is determined. A gain inclination change amount detection unit for detecting a gain inclination change amount that is a change amount from the inclination amount;
The variable gain equalizer has an inverting gain tilt amount equal to a gain tilt amount detected by the gain tilt amount detecting unit and having an opposite sign to the input WDM optical signal from the first optical branch coupler and the gain. Change to a WDM optical signal having a gain tilt amount equal to the gain tilt change amount detected by the tilt change amount detecting unit and the sum of the offset gain tilt change amount having the opposite sign, and connect this WDM optical signal to the subsequent stage Output to an optical amplifier.
[0010]
Further, the gain equalization apparatus of the WDM optical repeater system according to the present invention is a gain equalization apparatus of a WDM optical repeater system that optically amplifies a WDM optical signal by an optical amplifier and relays it by an optical transmission line,
With a variable gain equalizer,
A first optical branching coupler for branching a monitor WDM optical signal from an input WDM optical signal multiplexed with a plurality of wavelengths input from an optical transmission line and sending the input WDM optical signal to the variable gain equalizer;
A second optical branching coupler for branching the monitor WDM optical signal from the first optical branching coupler into two;
A first photodiode that receives one of the monitor WDM optical signals branched into two by the second optical branching coupler, converts the monitor WDM optical signal into an electrical signal, and obtains the total optical power of all of a plurality of wavelengths; An average optical power detector having an average optical power calculator that calculates the average optical power by dividing the total optical power from the photodiode by the number of wavelengths;
The other one of the monitor WDM optical signals branched by the second optical branching coupler is received, and only the light having a predetermined monitoring wavelength is selected from the light of a plurality of wavelengths included in the monitor WDM optical signal. Monitoring wavelength light having a wavelength filter that transmits, and a second photodiode that receives the monitoring wavelength light selected and transmitted by the wavelength filter and converts the monitoring wavelength light into an electrical signal to obtain the monitoring wavelength light power A power detector;
The difference between the monitoring wavelength optical power detected by the monitoring wavelength optical power detection unit and the average optical power detected by the average optical power detection unit is taken, and the gain tilt amount of the input WDM optical signal is detected from this difference. A gain tilt amount detection unit;
The difference between the average optical power detected by the average optical power detection unit and the standard optical average power that gives the standard gain tilt amount of the optical amplifier connected in the subsequent stage is taken, and from this difference, the standard gain of the optical amplifier is determined. A gain tilt change amount detection unit for detecting a gain tilt change amount that is a change amount from the tilt amount;
The gain tilt amount detected by the gain tilt amount detection unit is multiplied by an inversion coefficient -2, the gain tilt change amount detected by the gain tilt change amount detection unit is multiplied by an offset coefficient -1, and both are added. And an equalizer inclination amount determination unit for determining an equalizer inclination amount,
The variable gain equalizer changes the attenuation amount for each wavelength so as to obtain an equalizer inclination amount determined by the equalizer inclination amount determination unit, thereby providing an input from the first optical branching coupler. The WDM optical signal has the same value as the gain tilt amount detected by the gain tilt amount detecting unit and the same value as the inverted gain tilt amount having the opposite sign and the gain tilt change amount detected by the gain tilt change amount detecting unit. The WDM optical signal is changed to a WDM optical signal having a gain tilt amount that is the sum of the canceling gain tilt change amount having the opposite sign, and the WDM optical signal is output to an optical amplifier connected in a subsequent stage.
[0011]
Further, in the gain equalization apparatus for a WDM optical repeater system according to the present invention, the gain tilt change amount detection unit provides a standard average that gives an average optical power detected by the average optical power detection unit and a standard gain tilt amount of the optical amplifier. An optical amplifier gain tilt change amount table indicating a relationship between a difference between the optical power and a gain tilt change amount that is a change amount from the standard gain tilt amount of the optical amplifier is stored, and the average optical power and the standard average are stored. It is characterized in that a difference from the optical power is taken, and from this difference, the gain inclination change amount of the optical amplifier is detected based on the optical amplifier gain inclination change amount table.
[0012]
Furthermore, the gain equalization apparatus of the WDM optical repeater system according to the present invention is characterized in that the wavelength filter is a transmissive wavelength selective grating.
[0013]
The WDM optical repeater system according to the present invention is a WDM optical repeater system configured by connecting an input optical transmission line, a gain equalization device, an optical amplifier, and an output optical transmission line in cascade,
The gain equalization device comprises:
With a variable gain equalizer,
A first optical branching coupler for branching a monitor WDM optical signal from an input WDM optical signal multiplexed with a plurality of wavelengths input from an input optical transmission line and sending the input WDM optical signal to the variable gain equalizer;
A second optical branching coupler for branching the monitor WDM optical signal from the first optical branching coupler into two;
A first photodiode that receives one of the monitor WDM optical signals branched into two by the second optical branching coupler, converts the monitor WDM optical signal into an electrical signal, and obtains the total optical power of all of a plurality of wavelengths; An average optical power detector having an average optical power calculator that calculates the average optical power by dividing the total optical power from the photodiode by the number of wavelengths;
The other one of the monitor WDM optical signals branched by the second optical branching coupler is received, and only the light having a predetermined monitoring wavelength is selected from the light of a plurality of wavelengths included in the monitor WDM optical signal. Monitoring wavelength light having a wavelength filter that transmits, and a second photodiode that receives the monitoring wavelength light selected and transmitted by the wavelength filter and converts the monitoring wavelength light into an electrical signal to obtain the monitoring wavelength light power A power detector;
The difference between the monitoring wavelength optical power detected by the monitoring wavelength optical power detection unit and the average optical power detected by the average optical power detection unit is taken, and the gain tilt amount of the input WDM optical signal is detected from this difference. A gain tilt amount detection unit;
The difference between the average optical power detected by the average optical power detector and the standard average optical power giving the standard gain tilt amount of the optical amplifier connected in the subsequent stage, and the amount of change from the standard gain tilt amount of the optical amplifier An optical amplifier gain inclination change amount table showing a relationship with a certain gain inclination change amount is stored, and a difference between the average optical power and the standard average optical power is obtained, and from this difference, the optical amplifier gain inclination change is obtained. A gain tilt change amount detecting unit for detecting a gain tilt change amount of the optical amplifier based on a quantity table;
The gain tilt amount detected by the gain tilt amount detection unit is multiplied by an inversion coefficient -2, the gain tilt change amount detected by the gain tilt change amount detection unit is multiplied by an offset coefficient -1, and both are added. And an equalizer inclination amount determination unit for determining an equalizer inclination amount,
The variable gain equalizer changes the attenuation amount for each wavelength so as to obtain an equalizer inclination amount determined by the equalizer inclination amount determination unit, thereby providing an input from the first optical branching coupler. The WDM optical signal has the same value as the gain tilt amount detected by the gain tilt amount detecting unit and the same value as the inverted gain tilt amount having the opposite sign and the gain tilt change amount detected by the gain tilt change amount detecting unit. Change to a WDM optical signal having a gain tilt amount that is the sum of the offset gain tilt change amount having the opposite sign, and send this WDM optical signal to the optical amplifier connected to the subsequent stage,
The optical amplifier receives a WDM optical signal whose gain tilt amount has been changed from the gain equalizer, amplifies the WDM optical signal, and outputs the amplified WDM optical signal to an output transmission line.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 is a block diagram showing the configuration of an embodiment of a gain equalization apparatus according to the present invention and a WDM optical repeater system using the gain equalization apparatus.
[0016]
Referring to FIG. 1, a WDM optical repeater system according to an embodiment of the present invention includes an optical transmission line 200, and a wavelength-multiplexed optical signal in which wavelengths λ1,. (Hereinafter referred to as WDM optical signal), gain equalization apparatus 1 for gain equalization and output of the WDM optical signal, optical transmission line 201 for transmitting the WDM optical signal from gain equalization apparatus 1, and optical transmission line 201 The optical amplifier 2 that amplifies and outputs the WDM optical signal from the optical amplifier 2 and the optical transmission line 202 that transmits the WDM optical signal from the optical amplifier 2 are provided.
[0017]
The gain equalizing apparatus 1 includes a first optical branching coupler 10, a second optical branching coupler 20, an average optical power detection unit 30, a monitoring wavelength optical power detection unit 40, a tilt amount detection unit 50, and a tilt change amount. The detection unit 60, the comparison circuit 70, the gate 80, the equalizer tilt amount determination unit 90, the control circuit 100, and the variable gain equalizer 110 are configured.
[0018]
The first optical branching coupler 10 branches and monitors a part of the WDM optical signal when the WDM optical signal in which the wavelengths λ1 to λn of n wavelengths are multiplexed is input from the optical transmission line 200. While being sent to the second optical branching coupler 20 as a WDM optical signal, most of the WDM optical signal is sent to the variable gain equalizer 110.
[0019]
The second optical branching coupler 20 splits the monitor WDM optical signal from the first optical branching coupler 10 into two branches, sends one of the two split monitor WDM optical signals to the average optical power detection unit 30, and sends the other to the monitoring wavelength. This is sent to the optical power detector 40.
[0020]
The average optical power detection unit 30 includes a first photodiode 31 and an average optical power calculation unit 32.
[0021]
The first photodiode 31 receives one of the monitor WDM optical signals branched into two by the second optical branching coupler 20, converts the monitor WDM optical signal into an electric signal, and has wavelengths λ1,. The total optical power value obtained by combining the respective optical power values is obtained, and this total optical power value is sent to the average optical power calculation unit 32.
[0022]
The average optical power calculation unit 32 obtains an average optical power value Pav by dividing the total optical power value from the first photodiode 31 by the number of wavelengths n, and the average optical power value Pav is changed between the inclination amount detection unit 50 and the inclination change. This is sent to the quantity detection unit 60 and the comparison circuit 70.
[0023]
The monitoring wavelength light power detection unit 40 includes a wavelength filter 41 and a second photodiode 42.
[0024]
The wavelength filter 41 receives the other of the monitor WDM optical signals branched into two by the second optical branching coupler 20, and is determined in advance from light of wavelengths λ1 to λn included in the monitor WDM optical signal. Only the light having the monitoring wavelength λs is selected and transmitted and sent to the second photodiode 42. The wavelength filter 41 is, for example, a transmissive wavelength selection grating.
[0025]
The second photodiode 42 receives the light of the monitoring wavelength λs selected by the wavelength filter 41, converts the light of the monitoring wavelength λs into an electrical signal, and outputs the optical power value Ps of the monitoring wavelength λs (hereinafter, the monitoring wavelength optical power). The monitoring wavelength light power value Ps is sent to the tilt amount detection unit 50.
[0026]
The tilt amount detection unit 50 includes a first difference circuit 51 and a tilt amount calculation unit 52.
[0027]
The first difference circuit 51 of the inclination amount detection unit 50 calculates the difference between the monitoring wavelength light power value Ps from the monitoring wavelength light power detection unit 40 and the average light power value Pav from the average light power detection unit 30 to calculate the first difference circuit 51. The difference value ΔPsav (= Ps−Pav) is obtained, and the first difference value ΔPsav is sent to the tilt amount calculation unit 52.
[0028]
The tilt amount calculation unit 52 calculates the gain tilt amount KI with respect to the wavelength of the WDM optical signal based on the first difference value ΔPsav from the first difference circuit 51, and this gain tilt amount KI is used as the equalizer tilt amount determination unit 90. Send to.
[0029]
The inclination change amount detection unit 60 includes a second difference circuit 61 and an inclination change amount calculation unit 62.
The second difference circuit 61 of the inclination change amount detection unit 60 calculates a difference between the average optical power value Pav from the average optical power detection unit 30 and a predetermined standard average optical power value Pr for reference. A difference value ΔPavr (= Pav−Pr) is obtained, and this second difference value ΔPavr is sent to the inclination change amount calculation unit 62. Here, the standard average optical power value Pr is a reference standard for the average optical power value Pav of the WDM optical signal input to the optical amplifier 2.
[0030]
The inclination change amount calculation unit 62 stores an optical amplifier gain inclination change amount table to be described later. When receiving the second difference value ΔPavr from the second difference circuit 61, the inclination change amount calculating unit 62 refers to the optical amplifier gain inclination change amount table. Thus, the optical amplifier gain tilt change amount Δkr is obtained, and this optical amplifier gain tilt change amount Δkr is sent to the gate 80.
[0031]
The comparison circuit 70 compares the average optical power value Pav from the average optical power detection unit 30 with the standard average optical power value Pr, and generates an open signal for opening the gate 80 when the two do not coincide with each other. At the same time, when the two match, a close signal for closing the gate 80 is generated and sent to the gate 80.
[0032]
The gate 80 opens the gate according to the open signal from the comparison circuit 70, and sends the optical amplifier gain tilt change amount Δkr from the tilt change amount calculation unit 62 to the equalizer tilt amount determination unit 90. Further, the gate 80 is closed by the closing signal from the comparison circuit 70, and the input to the equalizer inclination amount determination unit 90 from the inclination change amount calculation unit 62 is prohibited.
[0033]
The equalizer tilt amount determination unit 90 receives only the gain tilt amount KI from the tilt amount calculation unit 51 when both the average optical power value Pav and the standard average optical power value Pr match, and this gain tilt amount KI. From this, the equalizer loss inclination amount KE set in the variable gain equalizer 110 is obtained, and the equalizer loss inclination amount KE is sent to the control circuit 100, and the average optical power value Pav and the standard average optical power value Pr. Are received, the gain tilt amount KI from the tilt amount calculation unit 51 and the optical amplifier gain tilt change amount Δkr from the tilt change amount calculation unit 62 are received, and the gain tilt amount KI and the optical amplifier gain tilt change amount Δkr are received. Thus, the equalizer loss slope KE set in the variable gain equalizer 110 is obtained, and this equalizer loss slope KE is sent to the control circuit 100.
[0034]
The control circuit 100 sends a control signal for controlling the variable gain equalizer 110 to the variable gain equalizer 110 based on the equalizer loss inclination amount KE from the equalizer inclination amount determining unit 90.
[0035]
The variable gain equalizer 110 varies the optical attenuation amount for each wavelength of the WDM optical signal input from the first optical branching coupler 10 based on the control signal from the control circuit 100, and changes the loss slope characteristic with respect to the wavelength. . Then, the variable gain equalizer 110 sends the WDM optical signal whose loss slope characteristic is changed to the optical amplifier 2.
[0036]
The optical amplifier 2 amplifies the WDM optical signal, amplifies the WDM optical signal whose loss slope characteristic has been changed by the variable gain equalizer 110, and transmits the amplified WDM optical signal to the transmission path 202. The optical amplifier 2 is composed of, for example, a rare earth-doped optical fiber amplifier. As shown in FIG. 4A, this optical amplifier has a gain tilt characteristic that depends on the average optical power value Pav of the input WDM optical signal. That is, when the average optical power value Pav changes from the standard average optical power value Pr by ΔPavr, the gain inclination amount KA of the optical amplifier changes from kr to kr + Δkr. Here, kr is a standard gain tilt amount of the optical amplifier when a WDM optical signal having a standard average optical power value Pr is input to the optical amplifier, and Δkr is a change amount of the gain tilt amount of the amplifier (hereinafter referred to as gain tilt). Change amount).
FIG. 4B is a diagram illustrating the optical amplifier gain tilt change characteristic. The gain tilt change amount Δkr of the amplifier and the second difference value ΔPavr (which is the difference between the standard average optical power value Pr and the average optical power value Pav). = Pav-Pr). The optical amplifier gain inclination change amount table of the inclination change amount calculation unit 62 is a table of the optical amplifier gain inclination change characteristics.
[0037]
Next, the operation of the embodiment of the present invention will be described in detail with reference to the drawings.
[0038]
First, the WDM optical signal input to the gain equalization apparatus 1 and the monitoring wavelength λs will be described.
[0039]
For convenience of explanation, it is assumed that the input WDM optical signal is an optical signal in which the wavelengths λ1,..., Λn of n wavelengths are multiplexed, and the wavelengths increase in the order of the subscripts of the wavelengths λ1,. The monitoring wavelength λs may be any of the wavelengths λ1 to λn, but is set in advance to be the wavelength λn here. Therefore, the bandwidth of the filter 41 is set so as to pass only the monitoring wavelength λs = λn.
[0040]
Next, the operation will be described with reference to FIG. 2 and FIG.
[0041]
FIG. 2 is a diagram for explaining the operation, and FIG. 3 is a diagram showing the inclination characteristics of each part.
[0042]
The operation will be described separately for the case where the average optical power value Pav of the WDM optical signal matches the standard average optical power value Pr and the case where they do not match.
[0043]
<When Average Optical Power Value Pav and Standard Average Optical Power Value Pr>
A WDM optical signal in which the wavelengths λ1 to λn are multiplexed is input to the gain equalization apparatus 1 as indicated by the characteristic (1) -1 in FIG. The average optical power value Pav of the WDM optical signal matches the standard average optical power value Pr.
[0044]
When this WDM optical signal is input, the first optical branching coupler 10 branches a part of the WDM optical signal and sends it to the second optical branching coupler 20 as a monitor WDM optical signal. Part to the variable gain equalizer 110.
[0045]
The second optical branching coupler 20 splits the monitor WDM optical signal from the first optical branching coupler 10 into two branches, sends one of the two split monitor WDM optical signals to the average optical power detection unit 30, and sends the other to the monitoring wavelength. This is sent to the optical power detector 40.
[0046]
The first photodiode 31 of the average optical power detection unit 30 receives one of the monitor WDM optical signals branched by the second optical branching coupler 20, converts the monitor WDM optical signal into an electrical signal, and has a wavelength number n. The total optical power values obtained by combining the optical power values of the wavelengths λ1 to λ1n are obtained, and the total optical power values are sent to the average optical power calculation unit 32.
[0047]
The average optical power calculation unit 32 obtains an average optical power value Pav by dividing the total optical power value from the first photodiode 31 by the number of wavelengths n, and the average optical power value Pav is changed between the inclination amount detection unit 50 and the inclination change. This is sent to the quantity detection unit 60 and the comparison circuit 70.
[0048]
On the other hand, the wavelength filter 41 of the monitoring wavelength optical power detector 40 receives the other of the monitor WDM optical signals branched into two by the second optical branching coupler 20, and receives the wavelengths λ1,..., Λn included in the monitor WDM optical signal. The light having the wavelength λn, that is, the light having the monitoring wavelength λs = λn is selected and transmitted to the second photodiode 42.
[0049]
The second photodiode 42 receives the light of the monitoring wavelength λs = λn selected by the wavelength filter 41, converts the light of the monitoring wavelength λs into an electric signal, and obtains the monitoring wavelength light power value Ps of the monitoring wavelength λs, The monitoring wavelength light power value Ps is sent to the tilt amount detection unit 50.
[0050]
The first difference circuit 51 of the inclination amount detection unit 50 calculates the difference between the monitoring wavelength light power value Ps from the monitoring wavelength light power detection unit 40 and the average light power value Pav from the average light power detection unit 30 to calculate the first difference circuit 51. The difference value ΔPsav (= Ps−Pav) is obtained, and the first difference value ΔPsav is sent to the tilt amount calculation unit 52.
[0051]
The tilt amount calculation unit 52 uses the first difference value ΔPsav from the first difference circuit 50 to calculate the gain tilt amount KI = k with respect to the wavelength of the WDM optical signal, and this gain tilt amount KI = k is an equalizer. This is sent to the tilt amount determination unit 90. Here, the tilt amount calculation unit 52 calculates an accurate gain tilt amount when the gain wavelength characteristic of the WDM optical signal changes linearly as the wavelength increases, and on the other hand, the WDM optical signal When the gain wavelength characteristic changes approximately linearly with the increase in wavelength, the approximate gain tilt amount is calculated.
[0052]
The comparison circuit 70 compares the average optical power value Pav from the average optical power detection unit 30 with the standard average optical power value Pr. As a result of the comparison, the two match here, so a close signal for closing the gate 80 is generated and sent to the gate 80.
[0053]
The gate 80 is closed by the closing signal from the comparison circuit 70, and the input to the equalizer inclination amount determination unit 90 from the inclination change amount calculation unit 62 is prohibited.
[0054]
Since there is no input from the inclination change amount calculation unit 62, the equalizer inclination amount determination unit 90 receives only the gain inclination amount KI = k from the inclination amount calculation unit 52, and the gain inclination amount KI = k is set in advance. By multiplying the determined slope inversion coefficient C = −2, an equalizer loss slope amount KE = −2 × k set in the variable gain equalizer 110 is obtained, and this equalizer loss slope amount KE = −2. Send xk to the control circuit 100.
[0055]
The control circuit 100 receives the equalizer loss inclination amount KE = −2 × k from the equalizer inclination amount determination unit 90, and the variable gain equalizer 110 has the equalizer loss inclination amount KE = −2 × k. A control signal for changing the optical attenuation for each wavelength is generated so as to cause the variable gain equalizer 110 to transmit the control signal.
[0056]
The variable gain equalizer 110 changes the loss wavelength characteristic by changing the optical attenuation amount for each wavelength based on the control signal from the control circuit 100. At this time, the variable gain equalizer 110 is controlled to have a loss wavelength characteristic of an equalizer loss inclination amount KE = −2 × k, as indicated by characteristic (2) -1 in FIG. The Then, the variable gain equalizer 110 receives the WDM optical signal having the gain tilt amount KI = k from the first optical branching coupler 10, changes the gain tilt amount KI = k, and changes the gain tilt amount KI = k as shown in FIG. A WDM optical signal having a gain tilt amount KEO = −k as indicated by the characteristic (3) -1 is output and sent to the optical amplifier 2. Here, the gain inclination amount KEO is a value obtained by adding the equalizer loss inclination amount KE = −2 × k of the variable gain equalizer 110 to the gain inclination amount KI = k of the input WDM optical signal = −k. It is. Therefore, the variable gain equalizer 110 outputs a WDM optical signal having a gain tilt amount KEO = −k obtained by inverting the gain tilt amount KI = k of the input WDM optical signal.
[0057]
That is, the variable gain equalizer 110 outputs a WDM optical signal having a gain tilt amount that is the same as the gain tilt amount of the input WDM optical signal and has the opposite sign.
[0058]
The optical amplifier 2 receives the WDM optical signal with the gain tilt amount KEO = −k from the variable gain equalizer 110, optically amplifies it, and outputs it to the transmission line. At this time, since the average power value Pav of the WDM optical signal input to the optical amplifier 2 matches the standard average optical power value Pr of the optical amplifier 2, the gain inclination amount KA of the optical amplifier 2 is as shown in FIG. ) Is the standard gain tilt amount kr when the WDM light having the standard average optical power value Pr is input to the optical amplifier 2 as indicated by the characteristic (4) -1. Therefore, the optical amplifier 2 optically amplifies the input WDM optical signal with the gain tilt amount KEO = −k, and the gain tilt amount KO = − as shown by the characteristic (5) -1 in FIG. A k + kr WDM optical signal is output to the transmission line.
[0059]
<When Average Optical Power Value Pav and Standard Average Optical Power Value Pr Do Not Match>
A WDM optical signal in which wavelengths λ1 to λn are multiplexed is input to the gain equalization apparatus 1 as indicated by the characteristic (1) -2 in FIG. 3B. The average optical power value Pav of this WDM optical signal does not match the standard average optical power value Pr.
[0060]
When this WDM optical signal is input, the first optical branching coupler 10 branches a part of the WDM optical signal and sends it to the second optical branching coupler 20 as a monitor WDM optical signal. Part to the variable gain equalizer 110.
[0061]
The second optical branching coupler 20 splits the monitor WDM optical signal from the first optical branching coupler 10 into two branches, sends one of the two split monitor WDM optical signals to the average optical power detection unit 30, and sends the other to the monitoring wavelength. This is sent to the optical power detector 40.
[0062]
The first photodiode 31 of the average optical power detection unit 30 receives one of the monitor WDM optical signals branched by the second optical branching coupler 20, converts the monitor WDM optical signal into an electrical signal, and has a wavelength number n. The total optical power values obtained by combining the optical power values of the wavelengths λ1 to λ1n are obtained, and the total optical power values are sent to the average optical power calculation unit 32.
[0063]
The average optical power calculation unit 32 obtains an average optical power value Pav by dividing the total optical power value from the first photodiode 31 by the number of wavelengths n, and the average optical power value Pav is changed between the inclination amount detection unit 50 and the inclination change. This is sent to the quantity detection unit 60 and the comparison circuit 70.
[0064]
On the other hand, the wavelength filter 41 of the monitoring wavelength optical power detector 40 receives the other of the monitor WDM optical signals branched into two by the second optical branching coupler 20, and receives the wavelengths λ1,..., Λn included in the monitor WDM optical signal. Then, only the light having the monitoring wavelength λs = λn is selected and transmitted and sent to the second photodiode 42.
[0065]
The second photodiode 42 receives the light of the monitoring wavelength λs = λn selected by the wavelength filter 41, converts the light of the monitoring wavelength λs into an electric signal, and obtains the monitoring wavelength light power value Ps of the monitoring wavelength λs, The monitoring wavelength light power value Ps is sent to the tilt amount detection unit 50.
[0066]
The first difference circuit 51 of the inclination amount detection unit 50 calculates the difference between the monitoring wavelength light power value Ps from the monitoring wavelength light power detection unit 40 and the average light power value Pav from the average light power detection unit 30 to calculate the first difference circuit 51. The difference value ΔPsav (= Ps−Pav) is obtained, and the first difference value ΔPsav is sent to the tilt amount calculation unit 52.
[0067]
The tilt amount calculation unit 52 uses the first difference value ΔPsav from the first difference circuit 51 to calculate the gain tilt amount KI = k with respect to the wavelength of the WDM optical signal, and equalizes the gain tilt amount KI = k. This is sent to the tilt amount determination unit 90.
[0068]
The comparison circuit 70 compares the average optical power value Pav from the average optical power detection unit 30 with the standard average optical power value Pr, and since they do not match, generates an open signal for opening the gate 80 to generate the gate 80. Send to.
[0069]
The second difference circuit 61 of the inclination change amount detection unit 60 calculates a difference between the average optical power value Pav from the average optical power detection unit 30 and the standard average optical power value Pr, and calculates a second difference value ΔPavr (= Pav−Pr). ) And the second difference value Pavr is sent to the inclination change amount calculation unit 62.
[0070]
Upon receiving the second difference value ΔPavr from the second difference circuit 61, the tilt change amount calculation unit 62 refers to the optical amplifier gain tilt change amount table to obtain the optical amplifier gain tilt change amount Δkr, and this optical amplifier gain tilt The change amount Δkr is sent to the gate 80.
[0071]
The gate 80 opens the gate according to the open signal from the comparison circuit 70, and sends the optical amplifier gain tilt change amount Δkr from the tilt change amount calculation unit 62 to the equalizer tilt amount determination unit 90.
[0072]
When the equalizer tilt amount determination unit 90 receives the gain tilt amount KI = k from the tilt amount calculation unit 52 and receives the optical amplifier gain tilt change amount Δkr from the tilt change amount calculation unit 62, the gain tilt amount KI = k is multiplied by the inclination inversion coefficient C = −2 to obtain −2 × k, and the optical amplifier gain inclination change amount Δkr is multiplied by a predetermined inclination change amount cancellation coefficient CR = −1 to −1 ×. Δkr is obtained, and both are added to obtain an equalizer loss slope amount KE = −2 × k + (− 1 × Δkr) set in the variable gain equalizer 110, and this equalizer loss slope amount KE = −. 2 × k + (− 1 × Δkr) is sent to the control circuit 100.
[0073]
The control circuit 100 receives the equalizer loss inclination amount KE = −2 × k + (− 1 × Δkr) from the equalizer inclination amount determination unit 90 and supplies the equalizer gain inclination amount KE = to the variable gain equalizer 110. A control signal for changing the optical attenuation for each wavelength is generated so as to have −2 × k + (− 1 × Δkr), and this control signal is sent to the variable gain equalizer 110.
[0074]
The variable gain equalizer 110 changes the loss wavelength characteristic by changing the optical attenuation amount for each wavelength based on the control signal from the control circuit 100. At this time, the variable gain equalizer 110 has a loss wavelength of the equalizer loss inclination amount KE = −2 × k + (− 1 × Δkr) as shown by the characteristic (2) -2 in FIG. Controlled to have characteristics. The variable gain equalizer 110 receives the WDM optical signal with the gain tilt amount KI = k from the first optical branching coupler 10, changes the gain tilt amount KI = k, and changes the gain tilt amount KI = k as shown in FIG. A WDM optical signal having a gain tilt amount KEO = −k−Δkr as indicated by characteristic (3) -2 is output and sent to the optical amplifier 2. Here, as the gain tilt amount KEO, the gain tilt amount KI = −2 × k + (− 1 × Δkr) of the variable gain equalizer 110 is set to the gain tilt amount KI = k of the input WDM optical signal. The added value = −k−Δkr.
[0075]
The optical amplifier 2 receives the WDM optical signal with the gain tilt amount KEO = −k−Δkr from the variable gain equalizer 110, optically amplifies it, and outputs it to the transmission line 202. At this time, since the average power value Pav of the WDM optical signal input to the optical amplifier 2 is larger than the standard average optical power value Pr of the optical amplifier 2 by ΔPavr, the gain inclination amount KA of the optical amplifier 2 is shown in FIG. As shown in characteristic (4) -2, the optical amplifier gain inclination change amount Δkr due to ΔPavr is added to the standard gain inclination amount kr when the WDM light having the standard average optical power value Pr is input to the optical amplifier 2. The value kr + Δkr.
Accordingly, the optical amplifier 2 optically amplifies the input main WDM optical signal with the gain tilt amount KEO = −k−Δkr, and the gain tilt amount as shown by the characteristic (5) -2 in FIG. A WDM optical signal of KO = −k + kr is output to the transmission line 202. This gain tilt amount KO = −k + kr is the same value as the gain tilt amount KO of the WDM optical signal output from the optical amplifier 2 when the average optical power value Pav of the WDM optical signal matches the standard average optical power value Pr. .
[0076]
Thus, the variable gain equalizer 110 inverts the gain tilt amount of the input main WDM optical signal and cancels the optical amplifier gain tilt change amount.
[0077]
As described above, the gain equalization apparatus 1 does not depend on whether or not the average optical power value Pav of the input WDM optical signal matches the standard average optical power value Pr, that is, the gain inclination change of the optical amplifier at the subsequent stage. The loss tilt amount of the variable gain equalizer 11 is controlled so that a WDM optical signal having a constant gain tilt amount is always output from the optical amplifier.
[0078]
【The invention's effect】
As described above, the present invention is configured to detect a gain tilt amount of an input WDM optical signal and output a WDM optical signal having a gain tilt amount that is the same value as the detected gain tilt amount and has the opposite sign. Therefore, there is an effect that it is possible to realize a WDM optical repeater system in which the optical power for each wavelength is always kept constant and the transmission characteristics for each wavelength are uniform.
[0079]
Further, the present invention is configured to detect the gain tilt change amount of the optical amplifier and cancel the detected gain tilt change amount, so that the gain tilt change due to the optical power of the WDM light input to the optical amplifier is reduced. The transmission characteristics can be made uniform regardless of the optical power.
[0080]
[Brief description of the drawings]
FIG. 1 is a configuration block diagram of an embodiment according to the present invention.
FIG. 2 is a diagram for explaining an operation;
FIG. 3 is a diagram showing a slope characteristic of each part.
FIG. 4 is a diagram illustrating gain characteristics of an optical optical amplifier.
[Explanation of symbols]
1 Gain equalizer
10 First optical branching coupler
20 Second optical branching coupler
30 Average optical power detector
31 First photodiode
32 Average optical power calculator
40 Monitoring wavelength optical power detector
41 Wavelength filter
42 Second photodiode
50 Inclination amount detector
51 First difference circuit
52 Inclination amount calculator
60 Inclination change detection unit
61 Second difference circuit
62 Inclination change calculation unit
70 Comparison circuit
80 gate
90 Equalizer inclination amount determination unit
100 Control circuit
110 Variable Gain Equalizer
2 Optical amplifier

Claims (8)

WDM光信号を光増幅器により光増幅して中継伝送するWDM光中継システムの利得等化装置であって、
入力される入力WDM光信号から、利得傾斜量を検出する利得傾斜量検出手段と、
前記入力WDM光信号を、前記利得傾斜量検出手段により検出される利得傾斜量と同値でしかも反対符号の反転利得傾斜量を有するWDM光信号に変更する可変利得等化手段とを有することを特徴とするWDM光中継システムの利得等化装置。
A gain equalization apparatus of a WDM optical repeater system for optically amplifying and relaying a WDM optical signal by an optical amplifier,
A gain tilt amount detecting means for detecting a gain tilt amount from an input WDM optical signal;
Variable gain equalizing means for changing the input WDM optical signal to a WDM optical signal having the same value as the gain tilt amount detected by the gain tilt amount detecting means and having an inverted gain tilt amount of the opposite sign. A gain equalization apparatus for a WDM optical repeater system.
WDM光信号を光増幅器により光増幅して中継伝送するWDM光中継システムの利得等化装置であって、
入力される入力WDM光信号から、利得傾斜量を検出する利得傾斜量検出手段と、
前記入力WDM光信号から、後段に接続される光増幅器の利得傾斜変化量を検出する利得傾斜変化量検出手段と、
前記入力WDM光信号を、前記利得傾斜量検出手段により検出される利得傾斜量と同値でしかも反対符号を有する反転利得傾斜量と前記利得傾斜変化量検出手段により検出される利得傾斜変化量と同値でしかも反対符号を有する相殺利得傾斜変化量との和の利得傾斜量を有するWDM光信号に変更する可変利得等化手段とを有することを特徴とするWDM光中継システムの利得等化装置。
A gain equalization apparatus of a WDM optical repeater system for optically amplifying and relaying a WDM optical signal by an optical amplifier,
A gain tilt amount detecting means for detecting a gain tilt amount from an input WDM optical signal;
A gain tilt change amount detecting means for detecting a gain tilt change amount of an optical amplifier connected to a subsequent stage from the input WDM optical signal;
The input WDM optical signal has the same value as the gain tilt amount detected by the gain tilt amount detecting means and the reverse gain tilt amount having the opposite sign and the same value as the gain tilt change amount detected by the gain tilt change amount detecting means. A gain equalization apparatus for a WDM optical repeater system, comprising: variable gain equalization means for changing to a WDM optical signal having a gain tilt amount that is the sum of cancellation gain tilt change amounts having opposite signs.
WDM光信号を光増幅器により光増幅して光伝送路により中継伝送するWDM光中継システムの利得等化装置であって、
光伝送路から入力される複数波長が多重された入力WDM光信号から、波長当たりの平均光パワーを検出する平均光パワー検出手段と、
前記入力WDM光信号から、予め定められた監視波長の光の監視波長光パワーを検出する監視波長光パワー検出手段と、
前記監視波長光パワー検出手段により検出される監視波長光パワーと前記平均光パワー検出手段により検出される平均光パワーとの差をとり、この差から、前記入力WDM光信号の利得傾斜量を検出する利得傾斜量検出手段と、
前記平均光パワー検出部により検出される平均光パワーと光増幅器の標準利得傾斜量を与える標準平均光パワーとの差と光増幅器の標準利得傾斜量からの変化量である利得傾斜変化量との関係を示す光増幅器利得傾斜変化量テーブルを記憶して有し、前記平均光パワーと前記標準平均光パワーとの差をとり、この差から、この光増幅器利得傾斜変化量テーブルに基づいて光増幅器の利得傾斜変化量を検出する利得傾斜変化量検出手段と、
前記入力WDM光信号を、前記利得傾斜量検出手段により検出される利得傾斜量と同値でしかも反対符号を有する反転利得傾斜量と前記利得傾斜変化量検出手段により検出される利得傾斜変化量と同値でしかも反対符号を有する相殺利得傾斜変化量との和の利得傾斜量を有するWDM光信号に変更する可変利得等化手段とを有することを特徴とするWDM光中継システムの利得等化装置。
A gain equalization apparatus for a WDM optical repeater system for optically amplifying a WDM optical signal by an optical amplifier and relaying the optical signal through an optical transmission line,
Average optical power detection means for detecting average optical power per wavelength from an input WDM optical signal multiplexed with a plurality of wavelengths input from an optical transmission line;
Monitoring wavelength optical power detection means for detecting a monitoring wavelength optical power of light having a predetermined monitoring wavelength from the input WDM optical signal;
The difference between the monitoring wavelength optical power detected by the monitoring wavelength optical power detection means and the average optical power detected by the average optical power detection means is taken, and the gain tilt amount of the input WDM optical signal is detected from this difference. Means for detecting the amount of gain tilt;
The difference between the average optical power detected by the average optical power detector and the standard average optical power that gives the standard gain tilt amount of the optical amplifier, and the gain tilt change amount that is the change amount from the standard gain tilt amount of the optical amplifier. An optical amplifier gain tilt change amount table indicating the relationship is stored, and the difference between the average optical power and the standard average optical power is obtained, and based on this difference, the optical amplifier is based on the optical amplifier gain tilt change amount table. Gain tilt change amount detecting means for detecting the gain tilt change amount of
The input WDM optical signal has the same value as the gain tilt amount detected by the gain tilt amount detecting means and the reverse gain tilt amount having the opposite sign and the same value as the gain tilt change amount detected by the gain tilt change amount detecting means. A gain equalization apparatus for a WDM optical repeater system, comprising: variable gain equalization means for changing to a WDM optical signal having a gain tilt amount that is the sum of cancellation gain tilt change amounts having opposite signs.
WDM光信号を光増幅器により光増幅して光伝送路により中継伝送するWDM光中継システムの利得等化装置であって、
可変利得等化器を備え、
光伝送路から入力される複数波長が多重された入力WDM光信号からモニタWDM光信号を分岐するとともに前記入力WDM光信号を前記可変利得等化器へ送る第1光分岐カプラと、
前記第1光分岐カプラからのモニタWDM光信号を2分岐する第2光分岐カプラと、
前記第2光分岐カプラにより2分岐されるモニタWDM光信号の一方を受け、このモニタWDM光信号を電気信号に変換して複数波長全体の全光パワーを求める第1フォトダイオードと、前記第1フォトダイオードからの全光パワーを波長数で割り算して平均光パワーを求める平均光パワー演算部とを有する平均光パワー検出部と、
前記第2光分岐カプラにより2分岐されるモニタWDM光信号のもう一方を受け、このモニタWDM光信号に含まれる複数波長の光のうちから、予め定められた監視波長の光のみを選択して透過する波長フィルタと、前記波長フィルタにより選択され透過される監視波長の光を受け、この監視波長の光を電気信号に変換して監視波長光パワーを求める第2フォトダイオードとを有する監視波長光パワー検出部と、
前記監視波長光パワー検出部により検出される監視波長光パワーと前記平均光パワー検出部により検出される平均光パワーとの差をとり、この差から前記入力WDM光信号の利得傾斜量を検出する利得傾斜量検出部と、
前記平均光パワー検出部により検出される平均光パワーと、後段に接続される光増幅器の標準利得傾斜量を与える標準平均光パワーとの差をとり、この差から、この光増幅器の、標準利得傾斜量からの変化量である利得傾斜変化量を検出する利得傾斜変化量検出部とを備え、
前記可変利得等化器は、前記第1光分岐カプラからの入力WDM光信号を、前記利得傾斜量検出部により検出される利得傾斜量と同値でしかも反対符号を有する反転利得傾斜量と前記利得傾斜変化量検出部により検出される利得傾斜変化量と同値でしかも反対符号を有する相殺利得傾斜変化量との和の利得傾斜量を有するWDM光信号に変更し、このWDM光信号を後段に接続される光増幅器に出力することを特徴とするWDM光中継システムの利得等化装置。
A gain equalization apparatus for a WDM optical repeater system for optically amplifying a WDM optical signal by an optical amplifier and relaying the optical signal through an optical transmission line,
With a variable gain equalizer,
A first optical branching coupler for branching a monitor WDM optical signal from an input WDM optical signal multiplexed with a plurality of wavelengths input from an optical transmission line and sending the input WDM optical signal to the variable gain equalizer;
A second optical branching coupler for branching the monitor WDM optical signal from the first optical branching coupler into two;
A first photodiode that receives one of the monitor WDM optical signals branched into two by the second optical branching coupler, converts the monitor WDM optical signal into an electrical signal, and obtains the total optical power of all of a plurality of wavelengths; An average optical power detector having an average optical power calculator that calculates the average optical power by dividing the total optical power from the photodiode by the number of wavelengths;
The other one of the monitor WDM optical signals branched by the second optical branching coupler is received, and only the light having a predetermined monitoring wavelength is selected from the light of a plurality of wavelengths included in the monitor WDM optical signal. Monitoring wavelength light having a wavelength filter that transmits, and a second photodiode that receives the monitoring wavelength light selected and transmitted by the wavelength filter and converts the monitoring wavelength light into an electrical signal to obtain the monitoring wavelength light power A power detector;
The difference between the monitoring wavelength optical power detected by the monitoring wavelength optical power detection unit and the average optical power detected by the average optical power detection unit is taken, and the gain tilt amount of the input WDM optical signal is detected from this difference. A gain tilt amount detection unit;
The difference between the average optical power detected by the average optical power detector and the standard average optical power that gives the standard gain tilt amount of the optical amplifier connected in the subsequent stage is taken, and from this difference, the standard gain of this optical amplifier is determined. A gain inclination change amount detection unit for detecting a gain inclination change amount that is a change amount from the inclination amount;
The variable gain equalizer has an inverting gain tilt amount equal to a gain tilt amount detected by the gain tilt amount detecting unit and having an opposite sign to the input WDM optical signal from the first optical branch coupler and the gain. Change to a WDM optical signal having a gain tilt amount equal to the gain tilt change amount detected by the tilt change amount detecting unit and the sum of the offset gain tilt change amount having the opposite sign, and connect this WDM optical signal to the subsequent stage A gain equalization apparatus for a WDM optical repeater system, characterized in that the output is output to an optical amplifier.
WDM光信号を光増幅器により光増幅して光伝送路により中継伝送するWDM光中継システムの利得等化装置であって、
可変利得等化器を備え、
光伝送路から入力される複数波長が多重された入力WDM光信号からモニタWDM光信号を分岐するとともに前記入力WDM光信号を前記可変利得等化器へ送る第1光分岐カプラと、
前記第1光分岐カプラからのモニタWDM光信号を2分岐する第2光分岐カプラと、
前記第2光分岐カプラにより2分岐されるモニタWDM光信号の一方を受け、このモニタWDM光信号を電気信号に変換して複数波長全体の全光パワーを求める第1フォトダイオードと、前記第1フォトダイオードからの全光パワーを波長数で割り算して平均光パワーを求める平均光パワー演算部とを有する平均光パワー検出部と、
前記第2光分岐カプラにより2分岐されるモニタWDM光信号のもう一方を受け、このモニタWDM光信号に含まれる複数波長の光のうちから、予め定められた監視波長の光のみを選択して透過する波長フィルタと、前記波長フィルタにより選択され透過される監視波長の光を受け、この監視波長の光を電気信号に変換して監視波長光パワーを求める第2フォトダイオードとを有する監視波長光パワー検出部と、
前記監視波長光パワー検出部により検出される監視波長光パワーと前記平均光パワー検出部により検出される平均光パワーとの差をとり、この差から前記入力WDM光信号の利得傾斜量を検出する利得傾斜量検出部と、
前記平均光パワー検出部により検出される平均光パワーと、後段に接続される光増幅器の標準利得傾斜量を与える標準光平均パワーとの差をとり、この差から、この光増幅器の、標準利得傾斜量からの変化量である利得傾斜変化量を検出する利得傾斜変化量検出部と、
前記利得傾斜量検出部により検出される利得傾斜量に反転係数−2を掛け、前記利得傾斜変化量検出部により検出される利得傾斜変化量に相殺係数−1を掛け、両者を加算して等化器傾斜量を決定する等化器傾斜量決定部とを備え、
前記可変利得等化器は、前記等化器傾斜量決定部により決定される等化器傾斜量が得られるように各波長に対する減衰量を変更することにより、前記第1光分岐カプラからの入力WDM光信号を、前記利得傾斜量検出部により検出される利得傾斜量と同値でしかも反対符号を有する反転利得傾斜量と前記利得傾斜変化量検出部により検出される利得傾斜変化量と同値でしかも反対符号を有する相殺利得傾斜変化量との和の利得傾斜量を有するWDM光信号に変更し、このWDM光信号を後段に接続される光増幅器に出力することを特徴とするWDM光中継システムの利得等化装置。
A gain equalization apparatus for a WDM optical repeater system for optically amplifying a WDM optical signal by an optical amplifier and relaying the optical signal through an optical transmission line,
With a variable gain equalizer,
A first optical branching coupler for branching a monitor WDM optical signal from an input WDM optical signal multiplexed with a plurality of wavelengths input from an optical transmission line and sending the input WDM optical signal to the variable gain equalizer;
A second optical branching coupler for branching the monitor WDM optical signal from the first optical branching coupler into two;
A first photodiode that receives one of the monitor WDM optical signals branched into two by the second optical branching coupler, converts the monitor WDM optical signal into an electrical signal, and obtains the total optical power of all of a plurality of wavelengths; An average optical power detector having an average optical power calculator that calculates the average optical power by dividing the total optical power from the photodiode by the number of wavelengths;
The other one of the monitor WDM optical signals branched by the second optical branching coupler is received, and only the light having a predetermined monitoring wavelength is selected from the light of a plurality of wavelengths included in the monitor WDM optical signal. Monitoring wavelength light having a wavelength filter that transmits, and a second photodiode that receives the monitoring wavelength light selected and transmitted by the wavelength filter and converts the monitoring wavelength light into an electrical signal to obtain the monitoring wavelength light power A power detector;
The difference between the monitoring wavelength optical power detected by the monitoring wavelength optical power detection unit and the average optical power detected by the average optical power detection unit is taken, and the gain tilt amount of the input WDM optical signal is detected from this difference. A gain tilt amount detection unit;
The difference between the average optical power detected by the average optical power detection unit and the standard optical average power that gives the standard gain tilt amount of the optical amplifier connected in the subsequent stage is taken, and from this difference, the standard gain of the optical amplifier is determined. A gain tilt change amount detection unit for detecting a gain tilt change amount that is a change amount from the tilt amount;
The gain tilt amount detected by the gain tilt amount detection unit is multiplied by an inversion coefficient -2, the gain tilt change amount detected by the gain tilt change amount detection unit is multiplied by an offset coefficient -1, and both are added. And an equalizer inclination amount determination unit for determining an equalizer inclination amount,
The variable gain equalizer changes the attenuation amount for each wavelength so as to obtain an equalizer inclination amount determined by the equalizer inclination amount determination unit, thereby providing an input from the first optical branching coupler. The WDM optical signal has the same value as the gain tilt amount detected by the gain tilt amount detecting unit and the same value as the inverted gain tilt amount having the opposite sign and the gain tilt change amount detected by the gain tilt change amount detecting unit. A WDM optical repeater system characterized by changing to a WDM optical signal having a gain tilt amount that is the sum of cancellation gain tilt change amounts having opposite signs, and outputting the WDM optical signal to an optical amplifier connected in a subsequent stage. Gain equalizer.
前記利得傾斜変化量検出部は、前記平均光パワー検出部により検出される平均光パワーと光増幅器の標準利得傾斜量を与える標準平均光パワーとの差と光増幅器の標準利得傾斜量からの変化量である利得傾斜変化量との関係を示す光増幅器利得傾斜変化量テーブルを記憶して有し、前記平均光パワーと前記標準平均光パワーとの差をとり、この差から、この光増幅器利得傾斜変化量テーブルに基づいて、この光増幅器の利得傾斜変化量を検出することを特徴とする請求項4または5記載のWDM光中継システムの利得等化装置。The gain tilt change amount detection unit includes a difference between the average optical power detected by the average optical power detection unit and a standard average optical power giving a standard gain tilt amount of the optical amplifier, and a change from the standard gain tilt amount of the optical amplifier. An optical amplifier gain inclination change amount table showing a relationship with a gain inclination change amount that is a quantity is stored, and a difference between the average optical power and the standard average optical power is obtained, and from this difference, the optical amplifier gain is obtained. 6. The gain equalization apparatus for a WDM optical repeater system according to claim 4, wherein a gain tilt change amount of the optical amplifier is detected based on a tilt change table. 前記波長フィルタは、透過型の波長選択グレーティングであることを特徴とする請求項5記載のWDM光中継システムの利得等化装置。6. The gain equalization apparatus for a WDM optical repeater system according to claim 5, wherein the wavelength filter is a transmission type wavelength selective grating. 入力光伝送路と利得等化装置と光増幅器と出力光伝送路が縦続に接続されて構成されるWDM光中継システムであって、
前記利得等化装置は、
可変利得等化器を備え、
入力光伝送路から入力される複数波長が多重された入力WDM光信号からモニタWDM光信号を分岐するとともに前記入力WDM光信号を前記可変利得等化器へ送る第1光分岐カプラと、
前記第1光分岐カプラからのモニタWDM光信号を2分岐する第2光分岐カプラと、
前記第2光分岐カプラにより2分岐されるモニタWDM光信号の一方を受け、このモニタWDM光信号を電気信号に変換して複数波長全体の全光パワーを求める第1フォトダイオードと、前記第1フォトダイオードからの全光パワーを波長数で割り算して平均光パワーを求める平均光パワー演算部とを有する平均光パワー検出部と、
前記第2光分岐カプラにより2分岐されるモニタWDM光信号のもう一方を受け、このモニタWDM光信号に含まれる複数波長の光のうちから、予め定められた監視波長の光のみを選択して透過する波長フィルタと、前記波長フィルタにより選択され透過される監視波長の光を受け、この監視波長の光を電気信号に変換して監視波長光パワーを求める第2フォトダイオードとを有する監視波長光パワー検出部と、
前記監視波長光パワー検出部により検出される監視波長光パワーと前記平均光パワー検出部により検出される平均光パワーとの差をとり、この差から前記入力WDM光信号の利得傾斜量を検出する利得傾斜量検出部と、
前記平均光パワー検出部により検出される平均光パワーと後段に接続される前記光増幅器の標準利得傾斜量を与える標準平均光パワーとの差と前記光増幅器の標準利得傾斜量からの変化量である利得傾斜変化量との関係を示す光増幅器利得傾斜変化量テーブルを記憶して有し、前記平均光パワーと前記標準平均光パワーとの差をとり、この差から、この光増幅器利得傾斜変化量テーブルに基づいて、前記光増幅器の利得傾斜変化量を検出する利得傾斜変化量検出部と、
前記利得傾斜量検出部により検出される利得傾斜量に反転係数−2を掛け、前記利得傾斜変化量検出部により検出される利得傾斜変化量に相殺係数−1を掛け、両者を加算して等化器傾斜量を決定する等化器傾斜量決定部とを備え、
前記可変利得等化器は、前記等化器傾斜量決定部により決定される等化器傾斜量が得られるように各波長に対する減衰量を変更することにより、前記第1光分岐カプラからの入力WDM光信号を、前記利得傾斜量検出部により検出される利得傾斜量と同値でしかも反対符号を有する反転利得傾斜量と前記利得傾斜変化量検出部により検出される利得傾斜変化量と同値でしかも反対符号を有する相殺利得傾斜変化量との和の利得傾斜量を有するWDM光信号に変更し、このWDM光信号を後段に接続される前記光増幅器に送り、
前記光増幅器は、前記利得等化装置から利得傾斜量が変更されたWDM光信号を受けて、このWDM光信号を増幅して出力伝送路へ出力することを特徴とするWDM光中継システム。
A WDM optical repeater system in which an input optical transmission line, a gain equalizer, an optical amplifier, and an output optical transmission line are connected in cascade,
The gain equalizer is
With a variable gain equalizer,
A first optical branching coupler for branching a monitor WDM optical signal from an input WDM optical signal multiplexed with a plurality of wavelengths input from an input optical transmission line and sending the input WDM optical signal to the variable gain equalizer;
A second optical branching coupler for branching the monitor WDM optical signal from the first optical branching coupler into two;
A first photodiode that receives one of the monitor WDM optical signals branched into two by the second optical branching coupler, converts the monitor WDM optical signal into an electrical signal, and obtains the total optical power of all of a plurality of wavelengths; An average optical power detector having an average optical power calculator that calculates the average optical power by dividing the total optical power from the photodiode by the number of wavelengths;
The other one of the monitor WDM optical signals branched by the second optical branching coupler is received, and only the light having a predetermined monitoring wavelength is selected from the light of a plurality of wavelengths included in the monitor WDM optical signal. Monitoring wavelength light having a wavelength filter that transmits, and a second photodiode that receives the monitoring wavelength light selected and transmitted by the wavelength filter and converts the monitoring wavelength light into an electrical signal to obtain the monitoring wavelength light power A power detector;
The difference between the monitoring wavelength optical power detected by the monitoring wavelength optical power detection unit and the average optical power detected by the average optical power detection unit is taken, and the gain tilt amount of the input WDM optical signal is detected from this difference. A gain tilt amount detection unit;
The difference between the average optical power detected by the average optical power detector and the standard average optical power giving the standard gain tilt amount of the optical amplifier connected in the subsequent stage, and the amount of change from the standard gain tilt amount of the optical amplifier An optical amplifier gain inclination change amount table showing a relationship with a certain gain inclination change amount is stored, and a difference between the average optical power and the standard average optical power is obtained, and from this difference, the optical amplifier gain inclination change is obtained. A gain tilt change amount detecting unit for detecting a gain tilt change amount of the optical amplifier based on a quantity table;
The gain tilt amount detected by the gain tilt amount detection unit is multiplied by an inversion coefficient -2, the gain tilt change amount detected by the gain tilt change amount detection unit is multiplied by an offset coefficient -1, and both are added. And an equalizer inclination amount determination unit for determining an equalizer inclination amount,
The variable gain equalizer changes the attenuation amount for each wavelength so as to obtain an equalizer inclination amount determined by the equalizer inclination amount determination unit, thereby providing an input from the first optical branching coupler. The WDM optical signal has the same value as the gain tilt amount detected by the gain tilt amount detecting unit and the same value as the inverted gain tilt amount having the opposite sign and the gain tilt change amount detected by the gain tilt change amount detecting unit. Change to a WDM optical signal having a gain tilt amount that is the sum of the offset gain tilt change amount having the opposite sign, and send this WDM optical signal to the optical amplifier connected to the subsequent stage,
The WDM optical repeater system, wherein the optical amplifier receives a WDM optical signal whose gain tilt amount has been changed from the gain equalizer, amplifies the WDM optical signal, and outputs the amplified WDM optical signal to an output transmission line.
JP2002273223A 2002-09-19 2002-09-19 Gain equalizer and WDM optical repeater system Expired - Lifetime JP4026458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002273223A JP4026458B2 (en) 2002-09-19 2002-09-19 Gain equalizer and WDM optical repeater system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002273223A JP4026458B2 (en) 2002-09-19 2002-09-19 Gain equalizer and WDM optical repeater system

Publications (2)

Publication Number Publication Date
JP2004112437A JP2004112437A (en) 2004-04-08
JP4026458B2 true JP4026458B2 (en) 2007-12-26

Family

ID=32270030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002273223A Expired - Lifetime JP4026458B2 (en) 2002-09-19 2002-09-19 Gain equalizer and WDM optical repeater system

Country Status (1)

Country Link
JP (1) JP4026458B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100848835B1 (en) * 2007-11-16 2008-07-28 주식회사 프리웍스 Digital optical repeater and digital signal processing method in the repeater
JP5584143B2 (en) * 2011-01-11 2014-09-03 日本電信電話株式会社 Optical amplifier
JP6020640B2 (en) * 2015-04-06 2016-11-02 富士通株式会社 Optical amplifier
EP3767843A4 (en) * 2018-03-16 2021-05-19 NEC Corporation Variable equalizer and method for controlling variable equalizer
CN113691346A (en) * 2021-08-20 2021-11-23 国家电网有限公司信息通信分公司 Optical power adjusting unit, device, system and method

Also Published As

Publication number Publication date
JP2004112437A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
US6040933A (en) Method and apparatus for channel equalization in wavelength division multiplexed systems
JP6562149B2 (en) Optical transmission system, wavelength selective switch control device, and insertion loss correction method
JP7000984B2 (en) Devices and methods for adjusting the power of wavelength division multiplexing optical signals
EP0959578B1 (en) Wavelength division multiplexing system and its termination
US6606188B2 (en) Optical repeater using raman amplification, wavelength division multiplexed light transmission system, excitation light supply method and excitation light control method for raman amplification
US6212001B1 (en) Method and system for controlling optical amplification in wavelength division multiplex optical transmission
JPH11275007A (en) Optical multiplexer-demultiplexer
JP2007235412A (en) Repeater and repeating method
JP6455297B2 (en) Optical amplifier, optical transmission device, and optical repeater
JP4714692B2 (en) Method and system for determining gain of optical signal
JP3938270B2 (en) Optical repeater amplifier
JP4026458B2 (en) Gain equalizer and WDM optical repeater system
EP1067725A2 (en) Filter with variable transmission characteristic
US9520694B2 (en) Optical amplifier with loss adjustment unit based on gain
US7970286B2 (en) Optical transmission device
JP5625415B2 (en) Optical amplification device, gain control method, optical transmission device, and gain control device
JP3298404B2 (en) Apparatus and method for controlling gain of optical amplifier
JP4319695B2 (en) Light system
JP2006352364A (en) Optical add-drop multiplexer and optical level control method
JP5027770B2 (en) Dispersion monitoring system and method, and dispersion compensation system and method
US7142784B2 (en) Microprocessor-based optical signal conditioner
JP2009253426A (en) Relay device, and optical signal level correcting method thereof
JPH11225115A (en) Wavelength multiplex transmission system
JP2002280962A (en) Optical sn detector and method in coherent optical communication system
EP1863202B1 (en) An optical transmission system with gain adjustment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050822

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4026458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

EXPY Cancellation because of completion of term