JP4026389B2 - Optical intensity modulator and optical frequency shifter - Google Patents

Optical intensity modulator and optical frequency shifter Download PDF

Info

Publication number
JP4026389B2
JP4026389B2 JP2002091545A JP2002091545A JP4026389B2 JP 4026389 B2 JP4026389 B2 JP 4026389B2 JP 2002091545 A JP2002091545 A JP 2002091545A JP 2002091545 A JP2002091545 A JP 2002091545A JP 4026389 B2 JP4026389 B2 JP 4026389B2
Authority
JP
Japan
Prior art keywords
optical
light intensity
light
modulator
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002091545A
Other languages
Japanese (ja)
Other versions
JP2003287725A (en
Inventor
元勝 金納
良幸 坂入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2002091545A priority Critical patent/JP4026389B2/en
Publication of JP2003287725A publication Critical patent/JP2003287725A/en
Application granted granted Critical
Publication of JP4026389B2 publication Critical patent/JP4026389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光源から入射された所定光周波数の光信号を強度変調することにより上記光周波数を周波数変移させる光強度変調器及び光周波数シフタに関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
光周波数シフタは、光源から出射される単一光周波数の光源光を強度変調し、該強度変調によって得られる光強度変調波の側帯波成分を抽出することにより周波数を変移させる。この場合、周波数変位量は、強度変調に供される変調信号(電気信号)の周波数によって規定される。このような光周波数シフタでは、通常、光強度変調器としてマッハツェンダ(Mach-Zehnder)型光変調器が用いられるが、このマッハツェンダ型光変調器は、高速応答性に優れている反面、変調動作点が周囲温度等の影響によりドリフトし易いという欠点を有している。
【0003】
特開2000−122015号公報には、このようなマッハツェンダ型光変調器の欠点を克服する技術として、変調信号のバイアス電圧を側帯波成分の周波数変動に応じてフィードバック制御する技術が開示されている。しかし、この技術では、光強度変調波を電気信号に変換する受光器の帯域制限に起因して高い周波数の変調信号を用いることができない、すなわち周波数変位量が制限されてしまうという問題点がある。
【0004】
本発明は、上述する問題点に鑑みてなされたもので、周波数変位量の制限を解消しつつ変調動作点のドリフトを抑制することをを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明では、光強度変調器に係わる第1の手段として、所定周波数の変調信号を出力する変調制御部と、光源から搬送波として出力される光信号を、前記変調制御部から出力される前記変調信号に基づいて光強度変調して光強度変調波を出力する変調器とを備える光強度変調器において、前記変調制御部は、前記搬送波と前記光強度変調波とのビート成分を検出するビート検出部と、前記ビート検出部で検出されるビート成分のうち直流近傍成分であるビート成分が最小となるようなバイアス電圧を、前記変調信号に重畳して前記変調器に出力するバイアス制御部とを具備するという構成を採用する。
【0006】
また、光強度変調器に係わる第2の手段として、上記第1の手段において、前記変調器は、前記前記バイアス制御部から出力される前記変調信号に重畳されたバイアス電圧に応じて光出力が変化する特性を有するマッハツェンダ型の変調器であり、前記バイアス電圧は、前記前記変調器の光出力が最小となる電圧に設定されるという構成を採用する。
【0007】
光強度変調器に係わる第3の手段として、上記第1又は第2の手段において、前記ビート検出部は、前記搬送波の一部を分波する搬送波用光分波器と、前記光強度変調波の一部を分波する変調波用光分波器と、前記搬送波用光分波器から入力される搬送波と変調波用光分波器から入力される光強度変調波とを合波する光合波器と、該光合波器から出力される合波光を合波電気信号に変換する受光器と、受光器から出力される合波電気信号から低周波成分のみを選択的に出力するローパスフィルタとから成るという構成を採用する。
【0008】
光強度変調器に係わる第4の手段として、上記第3の手段において、前記受光器及び前記ローパスフィルタに代えて、低周波成分のみに受光感度を有する周波数選択性受光器を用いるという構成を採用する。
【0009】
一方、本発明では、光周波数シフタに係わる第1の手段として、上記第1〜第4いずれかに記載の光強度変調器から出力される光強度変調波から側帯波成分を取り出して光周波数変移信号として出力する周波数選択手段を備えるという構成を採用する。
【0010】
また、光周波数シフタに係わる第2の手段として、上記第1の手段において、周波数選択手段は下側帯波あるいは上側帯波を選択的に透過させる光バンドパスフィルタであるという構成を採用する。
【0011】
【発明の実施の形態】
以下、図面を参照して、本発明に係わる光強度変調器及び光周波数シフタの一実施形態について説明する。
【0012】
図1は、本実施形態における光強度変調器及び光周波数シフタの機能構成図である。この図において、符号1は光源、2,4,5は光分岐器、3は外部変調器、6は光合波器、7はBPF(バンドパスフィルタ)、8は受光器、9はLPF(ローパスフィルタ)、10はA/D(A/D変換器)、11は制御部、12はD/A(D/A変換器)、13はバイアス回路、14は信号源である。
【0013】
これら各構成要素のうち、2点差線で囲む光分岐器4,5、光合波器6、受光器8、LPF9、A/D10、制御部11、D/A12、バイアス回路13及び信号源14は、変調制御部MCを構成している。また、変調制御部MCを構成する各構成要素のうち、点線で囲む光分岐器4,5、光合波器6、受光器8及びLPF9は、ビート検出部BSを構成し、残りのA/D10、制御部11、D/A12、バイアス回路13及び信号源14はバイアス制御部BCを構成している。
【0014】
光源1は、周波数νの光源光(搬送波a)を発生して光分岐器2に出力する。光分岐器2は、上記搬送波aを外部変調器3と光分岐器4とに分岐出力する。外部変調器3は、マッハツェンダ型光変調器であり、搬送波aをバイアス回路13から入力される変調信号b(電気信号)で強度変調し、光強度変調波cとして光分岐器5に出力する。光分岐器4は、搬送波aを分岐させ、一方を本線出力光として外部に出力すると共に他方を光合波器6に出力する。光分岐器5は、光強度変調波cを分岐させ、一方をBPF7に出力すると共に、他方を光合波器6に出力する。
【0015】
光合波器6は、搬送波aと光強度変調波cとを合波し、合波光dとして受光器8に出力する。BPF7は、光強度変調波cから上側帯波成分あるいは下側帯波成分のみを分離し、本線出力光として外部に出力する。受光器8は、合波光dを電気信号(受光信号)に変換してLPF9に出力する。LPF9は、受光信号の直流近傍成分(ビート信号)のみを抽出してA/D10に出力する。A/D10は、ビート信号をデジタル信号(ビートデータ)に変換して制御部11に出力する。
【0016】
制御部11は、ビートデータに対応したバイアスデータをD/A12に出力する。ここで、バイアスデータは、ビートデータが時系列的に順次小さくなるように制御部11によって設定されたデータである。D/A12は、このようなバイアスデータをアナログ信号(バイアス電圧)に変換してバイアス回路13に出力する。バイアス回路13は、信号源14から入力された変調信号(交流成分のみ)に直流成分であるバイアス電圧を重畳して外部変調器3に出力する。信号源14は、単一周波数fの変調信号(交流成分のみ)を発振してバイアス回路13に出力する。
【0017】
次に、このように構成された光強度変調器及び光周波数シフタの動作について、図2〜図4をも参照して詳細に説明する。
【0018】
まず最初に、図2は、外部変調器3の動作特性を示す図である。この図に示すように外部変調器3の動作特性はバイアス電圧に対して光出力が正弦波状に変化する。このような動作特性に対して、制御部11は、ビート信号が最小値を取るように、つまり光強度変調波c内に含まれる基本波成分a0(搬送波aと同一周波数の成分)が最小となるようにバイアス電圧を順次フィードバック制御する。すなわち、制御部11は、光出力が最小値を取る点Aを変調動作点として維持するように動作する。光強度変調器の動作点は、一般的には動作特性が直線に近い例えば点Bに設定されるが、本実施形態の外部変調器3では、光出力が最小値を取る点Aが変調動作点に設定される。
【0019】
一方、図3は、このように動作点が点Aに設定された外部変調器3の光出力つまり光強度変調波cのスペクトラムを示す図である。光強度変調波cは、変調動作点を点Aとして周波数νの搬送波aを周波数fの変調信号で強度変調したものなので、上記基本波成分a0と同一周波数の基本波成分c0、当該基本波成分c0から周波数fだけ上方に変移した周波数(ν+f)の上側帯波成分c1と周波数fだけ下方に変移した周波数(ν−f)の下側帯波成分c2、及び点Aが外部変調器3の動作特性における非線形領域に設定されているのでさらに高次の上下側帯波成分(レベルが小さいので図示略)から構成される。
【0020】
なお、図3の(a)は、搬送波aに相当する周波数νのスペクトラム成分a0を示している。また、図3の(b)は、光強度変調波cのスペクトラム、すなわち基本波成分c0、上側帯波成分c1及び下側帯波成分c2を示している。さらに、図3(c)は、合波光dのビート成分db,d1,d2を示している。合波光dは搬送波aと光強度変調波cとを加算したものなので、同一周波数νである搬送波aの基本波成分a0と光強度変調波cの基本波成分c0とのビート成分dbと、搬送波aの基本波成分a0と光強度変調波cの上側帯波成分c1及び下側帯波成分c2とのビート成分d1,d2が発生する。
【0021】
また、図4は、上記外部変調器3の光出力における基本波成分c0と上下側帯波成分c1,c2とのレベル関係を示す図である。この図4に示すように、バイアス電圧を変化させた場合に互いに反するレベル変化をする。すなわち、基本波成分c0が最大値をとるとき上下側帯波成分c1,c2は最小値となり、基本波成分c0が最小値をとるとき上下側帯波成分c1,c2は最大値となる。しかも、基本波成分c0及び上下側帯波成分c1,c2は、最小値をとるときの前後における変化率が急峻であり、一方、最大値をとるときの前後における変化率は極めてなだらかである。上述した外部変調器3の変調動作点Aは、この図4では図示するように基本波成分c0が最小値をとる点Aに相当する。
【0022】
ここで、上記各ビート成分db,d1,d2のうち、直流近傍成分であるビート成分dbのみがLPF9を通過してA/D変換器10に入力される。このビート成分dbは、搬送波aの基本波成分a0及び光強度変調波cの基本波成分c0とが光合波器6によって加算されることによって生じるので、そのレベルは基本波成分a0のレベルと基本波成分c0のレベルとに依存する。基本波成分a0のレベルは搬送波aの成分なので一定であり、これに対して基本波成分c0は、光強度変調波cの成分なので、制御部11によって設定されるバイアス電圧に依存する。制御部11は、上記ビート成分dbつまりバイアス電圧に依存して変化する基本波成分c0が最小値をとるように当該バイアス電圧をフィードバック制御するので、結果的に光強度変調波cの変調動作点は点Aに維持される。
【0023】
本実施形態によれば、光合波器6から出力される合波光dのビート成分dbつまり直流成分を受光器8で受光して得られるビート信号に基づいて光強度変調波cの変調動作点をフィードバック制御するので、すなわち従来技術のように光強度変調波を直接受光器に入力して電気信号に変換するのではなく、光合波器6から出力される合波光dのビート成分dbを受光器8で受光するので、受光器8による帯域制限を受けることなく、変調動作点のドリフトを抑えることが可能である。
【0024】
しかも、変調動作点Aは、図4に示すように光強度変調波cの基本波成分c0の変化率が急峻に変化する点に設定されるので、変調動作点の安定度が極めて高い。さらに、光強度変調波cの上下側帯波成分c1,c2は、この変調動作点Aにおい最大値となるので、高レベルの上下側帯波成分c1,c2つまりS/N比の良い側帯波成分c1,c2を得ることができる。
【0025】
なお、上記実施形態では、外部変調器3としてマッハツェンダ型光変調器を用いたが、本発明はこれに限定されるものではなく、他の形式の光変調器にも適用することが可能である。
【0026】
【発明の効果】
以上説明したように、本発明によれば、所定周波数の変調信号を出力する変調制御部と、光源から搬送波として出力される光信号を、前記変調制御部から出力される前記変調信号に基づいて光強度変調して光強度変調波を出力する変調器とを備える光強度変調器において、前記変調制御部は、前記搬送波と前記光強度変調波とのビート成分を検出するビート検出部と、前記ビート検出部で検出されるビート成分のうち直流近傍成分であるビート成分が最小となるようなバイアス電圧を、前記変調信号に重畳して前記変調器に出力するバイアス制御部とを具備するので、ビート検出部内の受光器による周波数変位量の制限を解消しつつ変調動作点のドリフトを抑制することが可能である。
【図面の簡単な説明】
【図1】 本発明の一実施形態の機能構成を示すブロック図である。
【図2】 本発明の一実施形態の動作を示す特性図である。
【図3】 本発明の一実施形態における各種信号のスペクトラムを示す特性図である。
【図4】 本発明の一実施形態における搬送波と側帯波とのレベル関係を示す特性図である。
【符号の説明】
MC……変調制御部
BS……ビート検出部
BC……バイアス制御部
1……光源
2……光分岐器
3……外部変調器(変調器
4……搬送波用光分波器
5……変調波用光分波器
6……光合波器
7……BPF(光バンドパスフィルタ;周波数選択手段)
8……受光器
9……LPF(ローパスフィルタ)
10……A/D
11……制御部
12……D/A
13……バイアス回路
14……信号源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical intensity modulator and an optical frequency shifter that shift the frequency of the optical frequency by intensity modulating an optical signal having a predetermined optical frequency incident from a light source.
[0002]
[Prior art and problems to be solved by the invention]
The optical frequency shifter changes the frequency by intensity-modulating light source light having a single optical frequency emitted from the light source and extracting a sideband component of the light intensity-modulated wave obtained by the intensity modulation. In this case, the frequency displacement amount is defined by the frequency of the modulation signal (electric signal) used for intensity modulation. In such an optical frequency shifter, a Mach-Zehnder type optical modulator is usually used as an optical intensity modulator. This Mach-Zehnder type optical modulator is excellent in high-speed response, but has a modulation operating point. However, it has a drawback that it tends to drift due to the influence of ambient temperature and the like.
[0003]
Japanese Patent Application Laid-Open No. 2000-12215 discloses a technique for feedback control of a bias voltage of a modulation signal in accordance with a frequency variation of a sideband component as a technique for overcoming the drawbacks of such a Mach-Zehnder type optical modulator. . However, this technique has a problem that a high-frequency modulation signal cannot be used due to the band limitation of the light receiver that converts the light intensity modulated wave into an electric signal, that is, the frequency displacement amount is limited. .
[0004]
The present invention has been made in view of the above-described problems, and an object thereof is to suppress the drift of the modulation operation point while eliminating the restriction on the frequency displacement amount.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, as a first means related to a light intensity modulator, a modulation control unit that outputs a modulation signal of a predetermined frequency, and an optical signal output as a carrier wave from a light source are modulated. A light intensity modulator comprising: a modulator that modulates light intensity based on the modulation signal output from the control unit and outputs a light intensity modulated wave; wherein the modulation control unit includes the carrier wave, the light intensity modulated wave, A beat detection unit that detects a beat component of the modulator, and a bias voltage that minimizes a beat component that is a direct current component among beat components detected by the beat detection unit is superimposed on the modulation signal, and the modulator And a bias control unit that outputs to the signal.
[0006]
Further, as a second means related to the light intensity modulator, in the first means, the modulator outputs an optical output according to a bias voltage superimposed on the modulation signal output from the bias controller. It is a Mach-Zehnder type modulator having changing characteristics, and employs a configuration in which the bias voltage is set to a voltage at which the optical output of the modulator is minimized.
[0007]
As a third means related to the light intensity modulator, in the first or second means, the beat detection unit includes a carrier wave optical demultiplexer for demultiplexing a part of the carrier wave, and the light intensity modulated wave. A modulation wave optical demultiplexer that demultiplexes a part of the optical signal, a carrier wave input from the carrier wave optical demultiplexer, and an optical beam combining the light intensity modulated wave input from the modulation wave optical demultiplexer. A wave receiver, a light receiver that converts the combined light output from the optical multiplexer into a combined electric signal, and a low-pass filter that selectively outputs only a low-frequency component from the combined electric signal output from the light receiver. The composition which consists of is adopted.
[0008]
As a fourth means related to the light intensity modulator, in the third means, a configuration is adopted in which a frequency selective light receiver having a light receiving sensitivity only for a low frequency component is used instead of the light receiver and the low pass filter. To do.
[0009]
On the other hand, in the present invention, as a first means related to the optical frequency shifter, the sideband component is extracted from the light intensity modulated wave output from the light intensity modulator described in any one of the first to fourth, and the optical frequency shift is performed. A configuration is adopted in which frequency selection means for outputting as a signal is provided.
[0010]
Further, as the second means related to the optical frequency shifter, in the first means, a configuration is adopted in which the frequency selection means is an optical bandpass filter that selectively transmits the lower sideband or the upper sideband.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of an optical intensity modulator and an optical frequency shifter according to the present invention will be described with reference to the drawings.
[0012]
FIG. 1 is a functional configuration diagram of a light intensity modulator and an optical frequency shifter in the present embodiment. In this figure, reference numeral 1 is a light source, 2, 4 and 5 are optical splitters, 3 is an external modulator, 6 is an optical multiplexer, 7 is a BPF (band pass filter), 8 is a light receiver, and 9 is an LPF (low pass). Filter) 10 is an A / D (A / D converter), 11 is a control unit, 12 is a D / A (D / A converter), 13 is a bias circuit, and 14 is a signal source.
[0013]
Among these components, the optical branching units 4 and 5, the optical multiplexer 6, the optical receiver 8, the LPF 9, the A / D 10, the control unit 11, the D / A 12, the bias circuit 13, and the signal source 14 surrounded by a two-point difference line are The modulation control unit MC is configured. Among the components constituting the modulation control unit MC, the optical branching units 4 and 5, the optical multiplexer 6, the optical receiver 8 and the LPF 9 surrounded by a dotted line constitute a beat detection unit BS and the remaining A / D 10. The control unit 11, the D / A 12, the bias circuit 13, and the signal source 14 constitute a bias control unit BC.
[0014]
The light source 1 generates light source light (carrier wave a) having a frequency ν and outputs it to the optical splitter 2. The optical branching device 2 branches and outputs the carrier wave a to the external modulator 3 and the optical branching device 4. The external modulator 3 is a Mach-Zehnder type optical modulator, which modulates the intensity of the carrier wave a with the modulation signal b (electric signal) input from the bias circuit 13 and outputs it to the optical branching unit 5 as a light intensity modulated wave c. The optical branching device 4 branches the carrier wave a, outputs one to the outside as main line output light, and outputs the other to the optical multiplexer 6. The optical branching device 5 branches the light intensity modulated wave c, outputs one to the BPF 7, and outputs the other to the optical multiplexer 6.
[0015]
The optical combiner 6 combines the carrier wave a and the light intensity modulated wave c, and outputs the combined light d to the light receiver 8. The BPF 7 separates only the upper sideband component or the lower sideband component from the light intensity modulated wave c and outputs it as the main line output light to the outside. The light receiver 8 converts the combined light d into an electrical signal (light reception signal) and outputs it to the LPF 9. The LPF 9 extracts only the direct current vicinity component (beat signal) of the received light signal and outputs it to the A / D 10. The A / D 10 converts the beat signal into a digital signal (beat data) and outputs it to the control unit 11.
[0016]
The control unit 11 outputs bias data corresponding to the beat data to the D / A 12. Here, the bias data is data set by the control unit 11 so that the beat data sequentially decreases in time series. The D / A 12 converts such bias data into an analog signal (bias voltage) and outputs it to the bias circuit 13. The bias circuit 13 superimposes a bias voltage, which is a DC component, on the modulation signal (only the AC component) input from the signal source 14 and outputs the superimposed signal to the external modulator 3. The signal source 14 oscillates a modulation signal (only an AC component) having a single frequency f and outputs it to the bias circuit 13.
[0017]
Next, operations of the thus configured optical intensity modulator and optical frequency shifter will be described in detail with reference to FIGS.
[0018]
First, FIG. 2 is a diagram showing operating characteristics of the external modulator 3. As shown in this figure, the operating characteristics of the external modulator 3 are such that the optical output changes in a sine wave shape with respect to the bias voltage. For such an operation characteristic, the control unit 11 minimizes the fundamental wave component a0 (the component having the same frequency as that of the carrier wave a) included in the light intensity modulated wave c so that the beat signal takes a minimum value. The bias voltage is sequentially feedback-controlled so that That is, the control unit 11 operates so as to maintain the point A at which the light output takes the minimum value as the modulation operation point. The operating point of the light intensity modulator is generally set at a point B whose operating characteristics are close to a straight line, for example, but in the external modulator 3 of this embodiment, the point A at which the light output takes the minimum value is the modulating operation. Set to a point.
[0019]
On the other hand, FIG. 3 is a diagram showing the spectrum of the optical output of the external modulator 3, that is, the light intensity modulated wave c, with the operating point set to the point A in this way. Since the light intensity modulation wave c is obtained by intensity-modulating the carrier wave a having the frequency ν with the modulation signal having the modulation operating point as the point A and the modulation signal having the frequency f, the fundamental wave component c0 having the same frequency as the fundamental wave component a0 is obtained. The upper sideband component c1 of the frequency (ν + f) shifted upward by the frequency f from c0, the lower sideband component c2 of the frequency (ν−f) shifted downward by the frequency f, and the point A are the operations of the external modulator 3. Since it is set in the non-linear region in the characteristics, it is composed of higher-order upper and lower sideband components (not shown because the level is small).
[0020]
FIG. 3A shows a spectrum component a0 having a frequency ν corresponding to the carrier wave a. FIG. 3B shows the spectrum of the light intensity modulated wave c, that is, the fundamental wave component c0, the upper sideband component c1, and the lower sideband component c2. FIG. 3C shows the beat components db, d1, and d2 of the combined light d. Since the multiplexed light d is a sum of the carrier wave a and the light intensity modulated wave c, the beat component db of the fundamental wave component a0 of the carrier wave a having the same frequency ν and the fundamental wave component c0 of the light intensity modulated wave c, and the carrier wave Beat components d1 and d2 of the fundamental wave component a0 of a and the upper sideband component c1 and lower sideband component c2 of the light intensity modulated wave c are generated.
[0021]
FIG. 4 is a diagram showing the level relationship between the fundamental wave component c0 and the upper and lower sideband components c1 and c2 in the optical output of the external modulator 3. As shown in FIG. 4, when the bias voltage is changed, the levels change opposite to each other. That is, when the fundamental wave component c0 has the maximum value, the upper and lower side band components c1 and c2 have the minimum value, and when the fundamental wave component c0 has the minimum value, the upper and lower side band components c1 and c2 have the maximum value. Moreover, the fundamental wave component c0 and the upper and lower sideband components c1 and c2 have a steep change rate before and after taking the minimum value, while the change rate before and after taking the maximum value is very gentle. The modulation operation point A of the external modulator 3 described above corresponds to the point A at which the fundamental wave component c0 takes the minimum value as shown in FIG.
[0022]
Here, among the beat components db, d1, and d2, only the beat component db that is a component near the direct current passes through the LPF 9 and is input to the A / D converter 10. Since the beat component db is generated by adding the fundamental wave component a0 of the carrier wave a and the fundamental wave component c0 of the light intensity modulated wave c by the optical multiplexer 6, the level thereof is the same as the level of the fundamental wave component a0. It depends on the level of the wave component c0. The level of the fundamental wave component a0 is constant because it is a component of the carrier wave a. On the other hand, since the fundamental wave component c0 is a component of the light intensity modulated wave c, it depends on the bias voltage set by the control unit 11. The control unit 11 performs feedback control of the bias voltage so that the beat component db, that is, the fundamental wave component c0 that changes depending on the bias voltage, takes a minimum value. As a result, the modulation operation point of the light intensity modulated wave c is controlled. Is maintained at point A.
[0023]
According to the present embodiment, the modulation operation point of the light intensity modulated wave c is determined based on the beat signal obtained by receiving the beat component db, that is, the DC component, of the combined light d output from the optical combiner 6 by the light receiver 8. Since feedback control is performed, that is, the light intensity modulated wave is not directly input to the light receiver and converted into an electric signal as in the prior art, the beat component db of the combined light d output from the optical multiplexer 6 is received by the light receiver. Since the light is received at 8, it is possible to suppress the drift of the modulation operating point without being subjected to the band limitation by the light receiver 8.
[0024]
In addition, the modulation operating point A is set to a point where the rate of change of the fundamental wave component c0 of the light intensity modulated wave c changes steeply as shown in FIG. 4, so the stability of the modulation operating point is extremely high. Further, since the upper and lower sideband components c1 and c2 of the light intensity modulated wave c have the maximum value at the modulation operating point A, the high level upper and lower sideband components c1 and c2, that is, the sideband component c1 having a good S / N ratio. , C2 can be obtained.
[0025]
In the above embodiment, a Mach-Zehnder type optical modulator is used as the external modulator 3, but the present invention is not limited to this, and can be applied to other types of optical modulators. .
[0026]
【The invention's effect】
As described above, according to the present invention, a modulation control unit that outputs a modulation signal of a predetermined frequency and an optical signal output as a carrier wave from a light source are based on the modulation signal output from the modulation control unit. In a light intensity modulator comprising a modulator that modulates light intensity and outputs a light intensity modulated wave, the modulation control unit includes a beat detection unit that detects a beat component of the carrier wave and the light intensity modulated wave, Since it comprises a bias control unit that superimposes a bias voltage on the modulation signal and outputs it to the modulator such that the beat component that is a direct current component among beat components detected by the beat detection unit is minimized, It is possible to suppress the drift of the modulation operating point while eliminating the limitation of the frequency displacement amount by the light receiver in the beat detection unit.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a functional configuration of an embodiment of the present invention.
FIG. 2 is a characteristic diagram showing the operation of one embodiment of the present invention.
FIG. 3 is a characteristic diagram showing the spectrum of various signals in one embodiment of the present invention.
FIG. 4 is a characteristic diagram showing a level relationship between a carrier wave and a sideband in one embodiment of the present invention.
[Explanation of symbols]
MC …… Modulation control unit BS …… Beat detection unit BC …… Bias control unit 1 …… Light source 2 …… Optical splitter 3 …… External modulator ( modulator )
4 …… Optical demultiplexer for carrier wave 5 …… Optical demultiplexer for modulated wave 6 …… Optical multiplexer 7 …… BPF (optical bandpass filter; frequency selection means)
8 …… Receiver 9 …… LPF (low-pass filter)
10 …… A / D
11 …… Control unit 12 …… D / A
13 …… Bias circuit 14 …… Signal source

Claims (6)

所定周波数の変調信号(b)を出力する変調制御部(MC)と、光源(1)から搬送波(a)として出力される光信号を、前記変調制御部から出力される前記変調信号に基づいて光強度変調して光強度変調波(c)を出力する変調器(3)とを備える光強度変調器において、
前記変調制御部(MC)は、
前記搬送波と前記光強度変調波とのビート成分を検出するビート検出部(BS)と、
前記ビート検出部で検出されるビート成分(d b ,d 1 ,d 2 )のうち直流近傍成分であるビート成分(d b が最小となるようなバイアス電圧を、前記変調信号に重畳して前記変調器に出力するバイアス制御部(BC)と
を具備することを特徴とする光強度変調器。
Based on the modulation signal output from the modulation control unit, a modulation control unit (MC) that outputs a modulation signal (b) having a predetermined frequency, and an optical signal output as a carrier wave (a) from the light source (1). A light intensity modulator comprising: a modulator (3) that modulates light intensity and outputs a light intensity modulated wave (c);
The modulation control unit (MC)
A beat detector (BS) for detecting beat components of the carrier wave and the light intensity modulated wave;
A bias voltage that minimizes a beat component (d b ) that is a direct current component among beat components (d b , d 1 , d 2 ) detected by the beat detector is superimposed on the modulation signal. A light intensity modulator comprising: a bias control unit (BC) that outputs to the modulator.
前記変調器は、前記前記バイアス制御部から出力される前記変調信号に重畳されたバイアス電圧に応じて光出力が変化する特性を有するマッハツェンダ型の変調器であり、
前記バイアス電圧は、前記前記変調器の光出力が最小となる電圧に設定される
ことを特徴とする請求項1記載の光強度変調器。
The modulator is a Mach-Zehnder type modulator having a characteristic that an optical output changes according to a bias voltage superimposed on the modulation signal output from the bias control unit,
The light intensity modulator according to claim 1, wherein the bias voltage is set to a voltage at which an optical output of the modulator is minimized.
前記ビート検出部(BS)は、
前記搬送波の一部を分波する搬送波用光分波器(4)と、
前記光強度変調波の一部を分波する変調波用光分波器(5)と、
前記搬送波用光分波器(4)から入力される搬送波と変調波用光分波器(5)から入力される光強度変調波とを合波する光合波器(6)と、
該光合波器(6)から出力される合波光を合波電気信号に変換する受光器(8)と、
受光器(8)から出力される合波電気信号から低周波成分のみを選択的に出力するローパスフィルタ(9)と
から成ることを特徴とする請求項1又は請求項2記載の光強度変調器。
The beat detector (BS)
An optical demultiplexer (4) for demultiplexing a part of the carrier;
A modulated wave demultiplexer (5) for demultiplexing a part of the light intensity modulated wave;
An optical multiplexer (6) for combining the carrier wave input from the carrier wave optical demultiplexer (4) and the light intensity modulated wave input from the modulated wave optical demultiplexer (5);
A light receiver (8) for converting the combined light output from the optical combiner (6) into a combined electrical signal;
The light intensity modulator according to claim 1 or 2, comprising a low-pass filter (9) that selectively outputs only a low-frequency component from the combined electrical signal output from the light receiver (8). .
前記受光器及び前記ローパスフィルタに代えて、低周波成分のみに受光感度を有する周波数選択性受光器を用いることを特徴とする請求項3記載の光強度変調器。  4. The light intensity modulator according to claim 3, wherein a frequency selective light receiver having a light receiving sensitivity only for a low frequency component is used instead of the light receiver and the low pass filter. 請求項1〜4いずれかに記載の光強度変調器から出力される光強度変調波から側帯波成分を取り出して光周波数変移信号として出力する周波数選択手段(7)を備えることを特徴とする光周波数シフタ。  5. A light comprising frequency selection means (7) for extracting a sideband component from a light intensity modulated wave output from the light intensity modulator according to claim 1 and outputting it as an optical frequency shift signal. Frequency shifter. 周波数選択手段(7)は、下側帯波あるいは上側帯波を選択的に透過させる光バンドパスフィルタであることを特徴とする請求項5記載の光周波数シフタ。  6. The optical frequency shifter according to claim 5, wherein the frequency selection means (7) is an optical bandpass filter that selectively transmits the lower sideband or the upper sideband.
JP2002091545A 2002-03-28 2002-03-28 Optical intensity modulator and optical frequency shifter Expired - Fee Related JP4026389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002091545A JP4026389B2 (en) 2002-03-28 2002-03-28 Optical intensity modulator and optical frequency shifter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002091545A JP4026389B2 (en) 2002-03-28 2002-03-28 Optical intensity modulator and optical frequency shifter

Publications (2)

Publication Number Publication Date
JP2003287725A JP2003287725A (en) 2003-10-10
JP4026389B2 true JP4026389B2 (en) 2007-12-26

Family

ID=29236604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002091545A Expired - Fee Related JP4026389B2 (en) 2002-03-28 2002-03-28 Optical intensity modulator and optical frequency shifter

Country Status (1)

Country Link
JP (1) JP4026389B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4928779B2 (en) * 2005-12-15 2012-05-09 日本電信電話株式会社 Light source for millimeter wave generation
JP2011049970A (en) * 2009-08-28 2011-03-10 Nippon Telegr & Teleph Corp <Ntt> Phase noise reduction apparatus

Also Published As

Publication number Publication date
JP2003287725A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
EP1168038A2 (en) Optical frequency doubling device and bias control method for such a device
JP3591346B2 (en) Light modulator
US7075695B2 (en) Method and apparatus for controlling a bias voltage of a Mach-Zehnder modulator
JP6805687B2 (en) Bias control method for optical modules and light modulators
JP2007133176A (en) Light modulator and method of controlling bias therefor
EP1701186A1 (en) Electro-optic delay line discriminator
JPH053458A (en) Bi-direction optical transmitting method and device
US20020167705A1 (en) Multi-value modulation apparatus
JP3231545B2 (en) Optical frequency stabilizer
JP4026389B2 (en) Optical intensity modulator and optical frequency shifter
JP3482088B2 (en) Frequency modulation device
JP3527607B2 (en) Optical control signal transmission device
EP1128593A2 (en) Optical receiver
KR100713408B1 (en) Single side band modulator module and single side band modulator device using the same
CN101884004A (en) Control apparatus and method of external modulator
US20040005154A1 (en) Optical transmitter
JPH10322284A (en) Fm modulator
JPH0595153A (en) Optical fsk frequency deviation stabilizer
JP2007158251A (en) Wavelength stabilization apparatus and wavelength stabilization method
JP4828447B2 (en) Frequency modulator
JP2000122015A (en) Optical modulator
ATE336737T1 (en) WAVELENGTH CONVERTER FOR BINARY OPTICAL SIGNALS
KR0134004B1 (en) Apparatus for bias control of mach zehnder interference and fabry-perot filter
JP2007215165A (en) Angle modulation system
JP2000206474A (en) Optical transmission circuit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees