JP4026268B2 - Waste FRP crushed material and cement material, concrete member or resin member containing the same - Google Patents
Waste FRP crushed material and cement material, concrete member or resin member containing the same Download PDFInfo
- Publication number
- JP4026268B2 JP4026268B2 JP06287399A JP6287399A JP4026268B2 JP 4026268 B2 JP4026268 B2 JP 4026268B2 JP 06287399 A JP06287399 A JP 06287399A JP 6287399 A JP6287399 A JP 6287399A JP 4026268 B2 JP4026268 B2 JP 4026268B2
- Authority
- JP
- Japan
- Prior art keywords
- cement
- crushed material
- frp
- resin
- waste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/52—Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、市場から回収されたFRP廃棄物をリサイクルするのに適したFRP粉砕物およびその製造方法、および該粉砕物を含有する成形物およびその製造方法に関するものである。
【0002】
【従来の技術】
FRPは、軽量、高耐久性であることより、スポーツ分野、航空機分野、自動車分野、その他一般産業分野で広く使用されてきたが、環境問題への関心の高まりとともに、そのリサイクル法が重要となっている。
【0003】
廃棄FRPをリサイクル利用する従来の方法としては、粉砕して表面積を大きくして燃焼させて熱源として利用するサーマルリサイクル法と、やはり粉砕して樹脂だけを溶かすなどして短くなった補強繊維だけを取り出すなどしてマテリアルリサイクルする方法が知られている。しかし、これら従来リサイクル法では、廃棄FRPを粉砕工程、加熱工程を施すことから、FRPを成形する以上の大量のエネルギーを消費する加工工程を経ることになり、形式上はリサイクルできても、グローバルには環境問題を解決したことにはなっていない。FRPを粉砕、微粉砕するという工程は、数百μmあるいは数十μm以下の大きさになるまで粉砕工程を繰り返すため消費エネルギーが大きく、粉砕なしでリサイクルできる低エネルギーのリサイクル法が求められていた。
【0004】
FRPを微小に粉砕する理由は、粉砕品をセメントや樹脂などの他の母材に混入した場合に、母材の機械物性等の付加価値を向上させるためと考えられるが、機械物性の向上幅に比べ、粉砕に要する労力の方が遙かに大きく、経済性を強いられるリサイクル品として、実用に耐える技術とはなっていない。
【0005】
一方、粉砕の前工程として粗砕工程が知られているが、労力を掛けていない粗砕物のレベルで利用価値のあるリサイクル品ができるという発想はなく、さらに進んで、粗砕の段階で廃棄FRPの形状や寸法をコントロールするという試みはなされたことはなかった。
【0006】
FRP部材の中でも、スポーツ用具などはファション性があり、航空機部材よりも短いサイクルで市場から回収されてくるので、FRP製の廃棄スポーツ部材を少量のエネルギーで再利用できる技術が緊急に求められているのが現状である。
【0007】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、上記した廃棄FRPのリサイクルに必要な投入エネルギーを従来より小さくし、かつ、セメントや樹脂などの母材に混入した場合にも機械物性を損なわず、かつ、経済性(コスト競争力)のある、実用的なリサイクル品を提供することにある。
【0008】
すなわち、本発明の目的は、上記した廃棄FRPを低コストでリサイクルする技術およびリサイクル品を含有させた部材、およびそれら製造法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は、定方向径が3mm以上であり、最小曲率半径が150mm以下の廃棄FRP破砕物であって、該廃棄FRP破砕物のみを集合させた時の充填率が0.2〜0.7の範囲内である廃棄FRP破砕物を提供する。
【0011】
【発明の実施の形態】
この発明をその一実施態様に基づいて詳細に説明する。本発明の破砕物は、市場あるいは、生産工程から回収した補強繊維と樹脂からなる硬化したFRP廃棄物を衝撃力、引き裂き力、引張力、剪断力、圧縮力、熱応力、電磁気的力等を利用して、曲がりを持つ形状に破砕したことを特徴とする。破砕物が曲がりを有することで、破砕物同士が干渉しあって、後述する空隙率が大きくなり、セメントや樹脂などに混入した場合に軽量となるばかりかセメントや樹脂が含浸し易く高強度となる。さらには、破砕物同士が絡み合っているためにセメントや樹脂にクラックが入った後も容易に分離しないというモードを呈することが可能となる。
また、面内方向だけでなく、厚み方向にも機械的物性に優れる等の効果もある。さらには、3次元的に安定して形態保持できるため、微小な粉砕物で生じがちな成形時の母材中に粉砕物が沈降するという問題がない。さらには、空隙率を生かして、隙間のある部材を製造するのにも適している。
【0012】
まず、本発明のカール状の廃棄FRP破砕物は、例えば、補強繊維と樹脂からなる硬化した繊維強化プラスチック(以下FRPと略す)を小片化する単一の装置あるいは複数の装置群により製造することができる。
【0013】
具体的な装置としては、シュレッダーをはじめ、ジョーククラッシャー、ジャイレトリクラッシャー、コーンクラシャーなどの粗砕機、ハンマークラッシャーなどの粗砕機、ロールクラッシャー、ロールミル、スタンプミル、エッジランナー、カッターミル、ロッドミルなどの中砕機、エロフォールミル、カスケードミルなどの自生粉砕機が挙げられる。本発明の曲がりを持つ破砕物を製造するためには、破砕機構の中に、圧縮衝撃力および引き裂き力が作用するようにすることが好ましい。グラインドや鋭利な刃先を有する剪断刃を使用するのではなく、破砕物と比較的広い面積で接触する刃先の鈍い(刃先の丸み半径が0.5mm以上)回転刃で粗砕することが好ましい。破砕時には、破砕粉の飛散を抑えたり、加熱の影響、火花の影響、静電気の影響を抑えるために水中や高湿度雰囲気中で破砕することも好ましい。また、曲がりを有する破砕物を得るために、布やプラスチック、ゴム材などFRPよりも柔らかい物質と同時に破砕することも有効である。
【0014】
破砕に際しては、曲がりのある破砕物のみを得ることは不可能であるので、破砕物の中から曲率を持つ破砕物を取り出すには、篩、風力、水力等による選別装置を用いることができる。勿論、後述するように選別工程を経ずに、本発明の破砕物とその他の形状の粉砕物を含んだ状態でセメントや樹脂に混入しても差し支えない。
【0015】
FRPが硬化物でなければならない理由は、小片化あるいは破砕工程により破砕物が上述の曲がり形状を有し易いからである。未硬化物状態では、補強繊維は自由に動くことができるので、引き裂き、分断しにくく、たとえ分断できても、本発明の硬化した破砕物のように3次元的に形態を保持することができない。また、未硬化樹脂は小片化あるいは破砕装置の内部に付着するなどして装置の機能を不能にしてしまう可能性もある。
【0016】
廃棄FRPが硬化しているかどうかの判断はDSCにより決定できる。小片化が容易になる望ましい硬化度は60%以上である。また、小片化装置に硬化を促進する前工程を組み込むことも好ましい。具体的な硬化促進法としては、加熱、電子線照射、硬化剤添加などが挙げられる。
【0017】
本発明の破砕物の代表的な形状の一例としては、大凡図1の三日月状、図2のコイル状、図3のS字状、図4の多葉状といった形状が挙げられる。曲がりを有するかどうかを定量的に判断する基準は、最小の曲率半径(図1参照)の大きさで決められ、本発明における好ましい曲がりの大きさは、最小曲率半径は150mm以下、より好ましくは100mm以下である。なお、場合によっては、表面に補強繊維やマトリクス樹脂の微細な毛状形状乃至は突起形状が存在して、どの部分でもって最小曲率半径を定義するか判断が困難なこともあり得る。また、あまりに小さい部分でもって、最小曲率半径を定義するのは、実態に則していない。従って、FRP粒子において、太さ(図1参照)が0.5mm以上の部分についてのみ曲率半径を計測し、最小曲率半径を定義するのが実際的である。最小の曲率半径が本範囲の上限値以下であることで、破砕物同士が干渉しあって、後述する空隙率が大きくなり、セメントや樹脂などに混入した場合に軽量となると同時にセメントや樹脂が含浸し易く高強度となる。さらには、破砕物がカールしているため互いに絡み合っているためにセメントや樹脂にクラックが入った後も容易に分離しないというモードを呈する。曲率半径は、例えば、破砕物を光学顕微鏡で写真にとり、2次元映像として画像処理して求めることができる。前記曲率半径の範囲内にあるFRP粉砕物のみをカウントして、その体積の総量より当該FRP粉砕物の体積%を定義する考え方もある。しかし、以下の通り、体積平均曲率半径により、曲率半径を定義する考え方がより精密ではある。
Cv=Σ(Vi・Ci)/Σ(Vi)
(Cv:体積平均曲率半径、Ci:i番目の粉砕物の曲率半径、Vi:i番目の粉砕物の体積)
本発明の粉砕物の大きさとしては、定方向径が3mm以上、より好ましくは7mm以上であることが好ましい。上記範囲の下限値より小さいと、破砕物同士が絡み合う、あるいは接触して反発しあうなどして互いに干渉しあう確率が十分ではなくなる可能性があり、強度向上が不十分となる。
【0018】
定方向径とは、粉砕物を平面上で統計的にランダムに配位していることを前提とし、一定方向の寸法を測定したもの(化学工学便覧仮定第5版、p.219頁参照)で、本発明においては、100cm2の断面積を用いて求める。
破砕物を分級するには、メッシュや篩を用いる。風力、水力、磁力、渦電流、浮遊、光などを利用した自動の選別機を使用しても差し支えない。
【0019】
また、曲がりを有する破砕物のみを集合させた時の充填率(1から空隙率を引いた値)は、0.2〜0.7の範囲内となっていることを必要とする。本範囲の下限値を下回ると干渉しあっている破砕物の数が少なく、これを含有させたセメントや樹脂材は最大荷重後に容易に分離してしまう。また本範囲の上限値を上回ると破砕物同士は絡みあうというより接触した状態となり、破砕物を混入したセメントや樹脂材の強度は思ったように向上しない場合があるからである。より好ましくは、0.3〜0.6である。尚、充填率に関係して、セメントや樹脂材に混入する場合には、本発明の破砕物に加え、従来の粉砕物を混入させても差しつかえない。
【0020】
次ぎに、本発明における廃棄FRPとは、テニスラケット、ゴルフシャフト、釣り竿、などのスポーツ用具、自動車や航空機などの輸送機器部材、風呂釜、壁材などの建築部材などに使用されている、ガラス、炭素、パルプ、テトロン、ナイロン、ビニロン、アクリル、アラミド、モダアクリル、アルミナ、窒化珪素などの各種補強繊維をエポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ベンゾオキサジン樹脂、ビニルエステル樹脂、などの熱硬化性樹脂、あるいは、ポリエチレン、ポリプロピレン樹脂、ポリアミド樹脂、ABS樹脂、ポチブチレンテレフタレート樹脂、ポリアセタール樹脂、ポリカーボネート等の樹脂などの熱可塑性樹脂、及びこれら樹脂をアロイ化した変性樹脂、ゴムなどのエラシトマーなどで覆ったいわゆる廃プラのことである。樹脂で覆われているため、セメントや樹脂材との接着が良好で強度の高い部材にできる。
【0021】
本発明の破砕物は、廃棄されたFRPを出発原料としており、かつ、樹脂と繊維を分離しないことから分離コストが不要であるため低コストであり、本破砕物を含有させたセメントや樹脂部材のコストは実用レベルまで低減することができる。特に、本発明では、破砕に要する投入エネルギーが少ないことから、環境負荷の極めて小さいリサイクル法となっている。
【0022】
次ぎに、廃棄FRPの中でも、ゴルフシャフト、釣り竿、ロール、プロペラシャフト、トラスチューブなどの円筒状廃プラは、破砕物が曲がりを持った形状となりやすく好ましい。また、熱可塑性樹脂廃FRPは高靱性であるため曲がりを持った形状としやすい。
【0023】
FRPの中でも好ましいのは、炭素繊維を含有するFRPが耐アルカリ性に優れ、長期的に強度を維持できるので好ましい。炭素繊維にはPAN系、ピッチ系があるがいずれでも好ましいが、破砕時に曲がりを有するようにするためにはPAN系の高強度繊維(弾性率は200GPa〜800GPa、強度は2500MPa〜10GPa)が好ましい。セメントに混ぜる場合には、弾性率が200GPa〜400GPaの範囲内であるとセメントとの弾性率差が小さくなり、歪み集中が無くなって、耐寒性及び耐凍害性が向上して特に好ましい。アラミド繊維やポリチレン繊維などの有機繊維を含有する場合には、繊維が破砕中にフィブリル状を呈するため、破砕物は干渉し合うので好ましい。
【0024】
樹脂としては、耐アルカリ性に優れるエポキシ樹脂、ポリエステル樹脂、ビニルエステル樹脂およびこれら樹脂の変性樹脂が好ましい。エポキシ樹脂は接着性にも優れていて最も好ましい。
【0025】
次ぎに、本発明の破砕物は、例えば、セメントやコンクリート、樹脂に混ぜ込んで使用することが可能である。
【0026】
セメント材の成形法としては、型枠に流し込む成形法、吹き付け成形法など公知の成形法が利用できる。破砕物を均一に分散させるという必要性が有る場合には、流し込む成形が好ましく、作業性は吹き付け成形が好ましい。
【0027】
セメントの場合、上記したように、曲がりを有する廃FRP破砕物は、セメント中で3次元的に均等分布するので、セメント材を厚み方向にも高強度とすることができる。また、セメント材は低歪みで分断するが、本発明の破砕物を混入させることで、セメント中に亀裂が生じた後でも分断せずに荷重負担するというモードを呈することが可能となる。
【0028】
具体的なセメントとしては、公知のあらゆるセメントが使用できる。例えば、普通ポルトランドセメント、早強セメント、中庸熱ポルトランドセメント、耐硫酸ポルトランドセメント等の各種ポルトランドセメント、白色セメント、アルミナセメント、スラグセメント、シリカセメント、フライアッシュセメント、ローマンセメント、天然セメント、高炉セメント、微粒子セメント、発泡セメントなどの特殊セメントである。また、2種以上のセメントを混合して使用することも可能である。
【0029】
さらに、セメントには、本発明のFRP破砕物以外に、本発明の破砕物製造時に発生する廃棄FRPからなる粉砕物/パウダー状物や一般にセメント材に混入される軽量骨材を添加させることも可能である。具体的には珪砂、砂、砂利、フライアッシュ、シラスバルーン、パーライト、ガラスバルーン、SiO2,Al2O3、FeO、CaO、Na2O、MgOなどの中空物等の無機粉体材料、発泡性樹脂粉体としてポリプロピレン、ポリエチレン、スチレン、エチレン、ウレタン、フェノール、ポリエステル、アクリル、ブタジエンゴムラテックス等の有機高分子物質等が使用できる。
【0030】
中でもガラスバルーンは吸水率が小さく、水/セメント比を小さくすることができ強度が向上するので好ましい。軽量骨材の混合比率はセメントに対し40〜150重量 %、FRPに対200〜5000重量%が好ましい。本範囲の下限値未満ではFRPの分散性を阻害する可能性があり、本範囲の上限値を越えると比重が大きくなりすぎて、自重により破壊が生じる可能性がある。
【0031】
減水剤も使用可能であるが、セメントに対し10重量%以下、FRPに対し200重量%以下とすることが好ましい。セメントに対し1重量%未満では減水硬化が小さく、作業性が十分でない。セメントに対し10重量%を越えるとセメント硬化体の防火性能が低下しやすく、材料コストが上昇するため好ましくない。具体的な減水剤としては、AE減水剤、高性能減水剤がある。
【0032】
セメント材への混入の形態は、かならずしも均一である必要はなく、例えば、セメント材が大型の場合、セメント材の厚み中央に廃FRPよりもさらに軽量で低コストな炭化カルシウムなどの軽量フィラーを配置させ、本発明の破砕物をセメント材の表層に配置させても差し支えない。曲がりを有する破砕物を選択的に配置させるためには、セメント材を分割成形することも有効である。すなわち、通常の工程で硬化させたセメント材の表面の一部または全部を曲がりを有する破砕物を含有するセメントで覆って一体化させる等である。
【0033】
本発明のFRP破砕物の周囲はセメントで隈無く覆われていても、破砕物同士を繋ぐように、セメントがバインダー的に付着していても差し支えない。セメントで隈無く覆われていると強度は著しく向上するが、比重も大きくなるため、重さとの関係で、適度にセメントの付着量を調節することが好ましい。セメントで隈無く覆う場合には、混入後に振動や熱等により気泡やガスを追い出す方法が有効であり、付着量を低下させる方法としては、空気やガスを混入させたり、発泡材を混入させたりすることが有効である。
【0034】
さらに、本発明の破砕物が数cmと大きい場合には、破砕物が比較的大きな寸法で3次元的に形態保持するため、セメント成形時に使用されるセメント型枠等の成形補助資材を使用しなくてもセメントやセメント混和物が破砕物の間の空間に保持できて所望の形態に近い形状の部材が成形できる。型枠などの成形補助資材が不要となることで、極めて低コストでセメント部材を成形することができる。好ましい本発明の破砕物の混入量としては、3%〜70%である。本請求項の範囲で重量と強度とコストのバランスが取れたセメント材となる。より好ましくは3%〜40%である。
【0035】
尚、セメント材 の表層に破砕物を偏って分散させると、表層近傍が高強度となり、部材が曲げを受ける場合に好ましいが、本発明のFRP粉砕物をセメント材の表層に選択的に配置し、セメントの付着を少なくしてポーラス状にすると、吸音特性、保水性をもたせることもできる。ポーラス部には、種子や土が補足され易いので、植物や微生物の棲息場所となる等の効果も生じる。この場合、表面近傍の破砕物の混入量は10%〜30%であることが好ましい。勿論、セメント材には、フォーム材や金属板などが埋設されていても差し支えないし、セメント部材の形状は中空であったり、中実であったり任意の形状である。
【0036】
尚、湿度の多い環境で使用されるセメント部材の場合、粉砕物には耐アルカリ性が要求されることがあるので、粉砕物の補強繊維は耐アルカリ性のあるビニロン繊維、アラミド繊維、モダアクリル繊維、カーボン繊維がより多く含まれていることが好ましい。
【0037】
本発明のセメント材は、軽量、高強度、低コスト、耐腐食性に優れることから、壁材、屋根剤、床材、セメント瓦、本瓦等の家屋屋根及び外壁等の建築部材などの建築用部材として、植木鉢、花壇柵、庭敷板などの園芸用品、テトラポット、護岸壁、錘等の海洋構造物に適する。より具体的には、住宅、ホテル、学校、病院、事務所、劇場、体育館、オフィスビルなどの各種建築用資材。その他用途として、透水パネル、基礎パネル、防音パネル、断熱パネル、テトラポット、電柱、側溝、ヒューム管、屋根瓦、緑化用構造物も挙げられる。
【0038】
次ぎに、本発明の破砕物は、樹脂やゴムにも混入させて使用することができる。代表的な樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ベンゾオキサジン樹脂、ビニルエステル樹脂、などの熱硬化性樹脂、あるいは、ポリエチレン、ポリプロピレン樹脂、ポリアミド樹脂、ABS樹脂、ポチブチレンテレフタレート樹脂、ポリアセタール樹脂、ポリカーボネート等の樹脂などの熱可塑性樹脂、及びこれら樹脂をアロイ化した変性樹脂が挙げられる。
【0039】
上記したセメントに混入させる場合と同様、樹脂においても、本発目の破砕物は局所的(選択的)に配置させても、均質に配置させても差し支えない。また、一体成形しても、分割成形しても差し支えない。また、複数回に亘り硬化を繰り返しても差し支えない。また、本発明の破砕物以外のフィラー/添加材を併用しても差し支えない。樹脂の場合、セメントより比重が低いので、本発明の破砕物の添加量は3%〜60%が適当である。
【0040】
樹脂部材の用途としては、卓球台の天板、バスケットボールのパネル、得点や参加者の掲示パネルなどのスポーツ用品、工事現場で使用するパネルや掲示板などの土木資材、セメント瓦、本瓦等の家屋屋根及び外壁等の建築部材、その他産業用資材など、軽量性、耐久性と低コストが必要とされる資材が考えられる。建築用途では、フェノール樹脂は耐熱性に優れ、燃焼時の発生ガスも少なく好ましい。
【0041】
尚、樹脂に混入した場合もセメントに混入した場合と同様、破壊がローカライズされて、亀裂が部材全体に進展しないため、釘を打てるといった従来にない特性が生じる。タイヤやベルト等のゴム材を含有する破砕物を混ぜ合わせると釘打ち性能はさらに向上する。
【0042】
最後に、廃棄FRPには塗料やラベル、金属など、FRP以外の不純物が混入する可能性があるが、これら混入物を取り除くことは高コストとなるので、最終のセメント材の特性を害しない程度の範囲内で含まれていても差し支えない。それら不純物の割合は、10%以下が好ましく、5%以下がより好ましい。
【0043】
【実施例】
本発明のセメント材の特徴を実施例によって述べる。
(実施例1)
市場から回収した炭素繊維強化複合材料製(炭素繊維は2種類:弾性率300GPa、強度5600MPaのものと弾性率400GPa、強度3000MPa、樹脂はエポキシ樹脂、繊維含有率は70%、硬化度は95%)のゴルフシャフト円筒(長さ50cm〜80cm、直径5mm〜12mm)を一軸衝撃破砕機で1分間破砕(投入エネルギーは660キロジュール)した後、6mmの篩にかけて、定方向半径が6mm以上、曲率半径80mm以下の曲がりを有する破砕物を1kg得た。本破砕物を1リットルのポリ容器に充填し、水を注ぐことで充填率を測定したところ、0.6であった。
【0044】
本破砕物と、普通ポルトランドセメント、減水剤、標準砂、水を混ぜ合わせ(混合比率はセメントに対し、破砕物100重量%、水60重量%、減水材3重量%、標準砂100重量%)養生してセメント板(30cm×30cm、厚さ20mm)を得た。本セメント板は表面、内部に空孔を有しており、断面観察の結果、破砕物が3次元的に均一分散していることが確認された。透水性を有し、比重は1.3であった。
【0045】
本セメント板から曲げ試験片(95×60×20mm)を切り出し、3点曲げ試験した結果、最大荷重は破砕物を添加しないブランクセメント硬化体の170%であり、最大荷重後も試験片はブランクセメントのように分離することなく、荷重負担した。
【0046】
また、上記セメント板から切り出した曲げ試験片を海中に3ヶ月間放置したところ、空孔部に緑色物が付着していた。さらに、本試験片を曲げ試験したところ、最大荷重、破壊モードに変化は見られなかった。
(実施例2)
実施例1において、破砕物の重量%を60とした以外は、実施例1と同じにしてセメント板(30cm×30cm、厚さ20mm)を得た。本セメント板も表面、内部に空孔を有しており、断面観察の結果、破砕物が3次元的に均一分散していることが確認された。透水性を有し、比重は1.4であった。
【0047】
本セメント板から曲げ試験片(95×60×20mm)を切り出し、3点曲げ試験した結果、最大荷重は破砕物を添加しないブランクセメント硬化体の130%であり、最大荷重後も試験片はブランクセメントのように分離することなく、荷重負担した。
【0048】
また、上記セメント板から切り出した曲げ試験片を吸水させて−30℃〜80℃で熱サイクル試験(対流時間10分、サイクル数3000)したところ、ひび割れや剥離は認められなかった。さらに本試験片を曲げ試験したところ、最大荷重、破壊モードに変化は見られなかった。
(実施例3)
市場から回収した炭素繊維強化複合材料製(炭素繊維は2種類:弾性率500GPa、強度3000MPaのものと弾性率450GPa、強度3000MPa、樹脂はエポキシ樹脂、繊維含有率は74%、硬化度は95%)の釣竿円筒(長さ80cm〜120cm、直径6mm〜15mm)を一軸衝撃破砕機で破砕(消費エネルギー600キロジュール/kg)した後、10mmの篩にかけて、定方向半径が10mm以上、曲率半径60mm以下の曲がりを有する破砕物を500g得た。本破砕物を1リットルのポリ容器に充填し、水を注ぐことで充填率を測定したところ、0.4であった。
【0049】
本破砕物とポリエステル樹脂(主剤100部、硬化剤1部)を混合比率100:100で混ぜ合わせて、中央に厚さ5mmのポリウレタンフォーム(発砲倍率30倍)を有する厚さ9mmの樹脂パネルを得た。断面観察の結果、破砕物がポリウレタンフォームを対称にサンドイッチする形態で3次元的に均一分散していることが確認された。ポリウレタンを除く部分の比重は1.4であった。
【0050】
本樹脂パネルを正方形に切り出し、卓球台の天板としたところ、木製(厚さ25mm)のものより軽快な打球音を有することがわかった。
【0051】
また、上記樹脂板から切り出した試験片を曲げ試験したところ、最大荷重後に試験片は分離することなく、引き続いて荷重負担することが確認できた。
(比較例1)
実施例1と同じ市場から回収した炭素繊維強化複合材料製(炭素繊維は2種類:弾性率300GPa、強度5600MPaのものと弾性率400GPa、強度3000MPa、樹脂はエポキシ樹脂、繊維含有率は70%、硬化度は95%)のゴルフシャフト円筒(長さ50cm〜80cm、5mm〜12mm)をグラインダー(粒度#80)で微粉砕(粉砕品の粒径は約20μm)して1kgのCFRP粉末を得た。投入エネルギーは8000キロジュールであった。続いて、本破砕物を1リットルのポリ容器に充填し、水を撹拌して注ぐことで充填率を測定したところ、充填率は0.9であった。
【0052】
本破砕物と、普通ポルトランドセメント、減水剤、標準砂、水を混ぜ合わせ(混合比率はセメントに対し、破砕物100重量%、水60重量%、減水材3重量%、標準砂100重量%)養生してセメント板(30cm×30cm、厚さ20mm)を得た。
【0053】
本セメント板は断面観察の結果、均質であることが確認された。透水性はほとんどなく、比重は1.7であった。
【0054】
本セメント板から曲げ試験片(95×60×20mm)を切り出し、3点曲げ試験した結果、最大荷重は破砕物を添加しないブランクセメント硬化体の90%であり、最大荷重後、試験片は分離した。
【0055】
【発明の効果】
本発明によれば、従来の粉砕品よりもセメントや樹脂材に添加してリサイクルすることにより適した廃棄FRP破砕物を得ることができる。また、破砕に要するエネルギーが小さいため、極めて低コストなリサイクルが可能となり、社会的貢献度は非常に高いといえる。
【図面の簡単な説明】
【図1】 三日月状の本発明の廃棄FRP破砕物である。
【図2】 コイル状の本発明の廃棄FRP破砕物である。
【図3】 S字状の本発明の廃棄FRP破砕物である。
【図4】 多葉状の本発明の廃棄FRP破砕物である。
【符号の説明】
1:定方向径
2:曲率半径
3:太さ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an FRP pulverized material suitable for recycling FRP waste collected from the market and a method for producing the same, and a molded product containing the pulverized material and a method for producing the same.
[0002]
[Prior art]
FRP has been widely used in the sports field, aircraft field, automobile field, and other general industrial fields because of its light weight and high durability. However, with the growing interest in environmental issues, the recycling law becomes important. ing.
[0003]
Conventional methods for recycling waste FRP include thermal recycling methods that use pulverized and increased surface area to burn and use as a heat source, and only reinforcing fibers that have been shortened by pulverizing and melting only the resin. There is a known method of material recycling by taking it out. However, according to these conventional recycling methods, waste FRP is subjected to a pulverization process and a heating process, and therefore, it undergoes a processing process that consumes a large amount of energy in excess of molding FRP. It is not supposed to solve environmental problems. In the process of pulverizing and finely pulverizing the FRP, the pulverization process is repeated until the size becomes several hundred μm or tens of μm or less, so that a large amount of energy is consumed and a low energy recycling method that can be recycled without pulverization has been demanded .
[0004]
The reason why the FRP is finely pulverized is thought to be to improve the added value of the mechanical properties of the base material when the pulverized product is mixed with other base materials such as cement and resin. Compared with, the labor required for pulverization is much larger, and it is not a technology that can withstand practical use as a recycled product that is forced to be economical.
[0005]
On the other hand, the crushing process is known as a pre-crushing process, but there is no idea that a recycled product with utility value can be produced at the level of the crushed material without much effort, and it is further advanced and discarded at the crushing stage. No attempt has been made to control the shape or dimensions of the FRP.
[0006]
Among FRP members, sports equipment is fashionable and is collected from the market in a shorter cycle than aircraft members, so there is an urgent need for technology that can reuse FRP waste sports members with a small amount of energy. The current situation is.
[0007]
[Problems to be solved by the invention]
The problem to be solved by the present invention is that the input energy required for recycling the above-mentioned waste FRP is made smaller than before, and even when mixed in a base material such as cement or resin, the mechanical properties are not impaired, and The purpose is to provide practical recycled products that are economical (cost competitive).
[0008]
That is, an object of the present invention is to provide a technique for recycling the above-described waste FRP at a low cost, a member containing a recycled product, and a manufacturing method thereof.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has a constant direction diameter of 3 mm or more and a minimum curvature radius of 150 mm or less. A waste FRP crushed material that is a waste FRP crushed material that has a filling rate within a range of 0.2 to 0.7 when only the waste FRP crushed material is assembled. provide.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
One embodiment of this invention Based on Will be described in detail. The crushed material of the present invention is used for the impact force, tearing force, tensile force, shearing force, compressive force, thermal stress, electromagnetic force, etc. of the cured FRP waste made of reinforcing fiber and resin recovered from the market or production process. It is characterized by being crushed into a curved shape. Since the crushed material has a bend, the crushed material interferes with each other, and the porosity described later increases, and when mixed into cement or resin, the weight becomes light, and the cement and resin are easily impregnated with high strength. Become. Furthermore, since the crushed materials are intertwined with each other, it is possible to exhibit a mode in which they are not easily separated even after a crack has occurred in cement or resin.
Further, there are effects such as excellent mechanical properties not only in the in-plane direction but also in the thickness direction. Furthermore, since the shape can be stably maintained three-dimensionally, there is no problem that the pulverized product settles in the base material at the time of molding, which is likely to occur with a fine pulverized product. Furthermore, it is suitable for manufacturing a member having a gap by utilizing the porosity.
[0012]
First, the curled waste FRP crushed material of the present invention is manufactured by, for example, a single device or a plurality of device groups for fragmenting hardened fiber reinforced plastic (hereinafter abbreviated as FRP) made of reinforcing fibers and resin. Can do.
[0013]
Specific equipment includes shredders, crushers such as joke crushers, gyrate crushers, cone crushers, crushers such as hammer crushers, roll crushers, roll mills, stamp mills, edge runners, cutter mills, rod mills, etc. Examples include self-pulverizers such as medium crushers, erotic fall mills and cascade mills. In order to produce a crushed material having a bend according to the present invention, it is preferable that a compression impact force and a tearing force act in the crushing mechanism. Rather than using a grind or a shearing blade having a sharp cutting edge, it is preferable to coarsely crush with a rotating blade having a dull edge (roundness radius of the cutting edge of 0.5 mm or more) that contacts the crushed material over a relatively large area. When crushing, it is also preferable to crush in water or a high-humidity atmosphere in order to suppress scattering of the crushed powder, or to suppress the effects of heating, sparks, and static electricity. In order to obtain a crushed material having a bend, it is also effective to crush simultaneously with a material softer than FRP, such as cloth, plastic, or rubber material.
[0014]
At the time of crushing, it is impossible to obtain only a crushed material with a bend, and therefore a sorting device using a sieve, wind power, hydraulic power, etc. can be used to extract a crushed material having a curvature from the crushed material. Of course, as will be described later, the crushed material of the present invention and other shapes of pulverized material may be mixed into cement or resin without passing through the sorting step.
[0015]
The reason why the FRP must be a cured product is that the crushed material is likely to have the above-described bent shape by the fragmentation or crushing process. In the uncured material state, the reinforcing fiber can move freely, so it is difficult to tear and break, and even if it can be broken, it cannot hold the three-dimensional shape like the hardened crushed material of the present invention. . In addition, the uncured resin may make the function of the apparatus impossible by fragmentation or adhering to the inside of the crushing apparatus.
[0016]
The determination of whether the waste FRP is cured can be determined by DSC. A desirable degree of curing that facilitates fragmentation is 60% or more. It is also preferable to incorporate a pre-process for accelerating curing into the fragmentation device. Specific examples of the curing acceleration method include heating, electron beam irradiation, and addition of a curing agent.
[0017]
Examples of typical shapes of the crushed material of the present invention include shapes such as a crescent shape in FIG. 1, a coil shape in FIG. 2, an S shape in FIG. 3, and a multileaf shape in FIG. The criterion for quantitatively determining whether or not there is a bend is determined by the size of the minimum radius of curvature (see FIG. 1), and the preferred bend size in the present invention is: Minimum song The modulus radius is 150 mm or less, more preferably 100 mm or less. In some cases, there are fine hairs or protrusions of reinforcing fibers or matrix resin on the surface, and it may be difficult to determine which part defines the minimum radius of curvature. In addition, defining the minimum radius of curvature with a portion that is too small does not conform to the actual situation. Therefore, in the FRP particle, it is practical to measure the radius of curvature only for a portion where the thickness (see FIG. 1) is 0.5 mm or more and define the minimum radius of curvature. When the minimum radius of curvature is less than or equal to the upper limit of this range, crushed materials interfere with each other, increasing the porosity described later, and when mixed with cement or resin, the weight becomes light and at the same time cement and resin Easy to impregnate and high strength. Furthermore, since the crushed materials are curled, they are intertwined with each other, so that they do not easily separate even after cracks are formed in the cement or resin. The radius of curvature can be obtained, for example, by taking a photograph of a crushed material with an optical microscope and processing it as a two-dimensional image. There is also an idea of counting only the FRP pulverized product within the radius of curvature and defining the volume% of the FRP pulverized product based on the total volume. However, as described below, the concept of defining the curvature radius by the volume average curvature radius is more precise.
C v = Σ (Vi · Ci) / Σ (Vi)
(C v : Volume average radius of curvature, Ci: radius of curvature of i th crushed material, Vi: volume of i th crushed material)
As for the size of the pulverized product of the present invention, the fixed direction diameter is preferably 3 mm or more, more preferably 7 mm or more. If it is smaller than the lower limit of the above range, there is a possibility that the crushed materials will be intertwined with each other or contact each other and repel each other, and there is a possibility that they will interfere with each other, and the strength improvement will be insufficient.
[0018]
The fixed-direction diameter is based on the assumption that the pulverized material is randomly distributed on the plane, and the dimensions in a certain direction are measured (see Chemical Engineering Handbook 5th Edition, p. 219) In the present invention, 100 cm 2 Obtained using the cross-sectional area of
A mesh or sieve is used to classify the crushed material. An automatic sorter using wind, hydraulic power, magnetic force, eddy current, floating, light, etc. can be used.
[0019]
In addition, the filling rate (a value obtained by subtracting the porosity from 1) when only the crushed materials having a bend are assembled is within a range of 0.2 to 0.7. And need. When the value falls below the lower limit of this range, the number of crushed materials that interfere with each other is small, and the cement and the resin material containing them are easily separated after the maximum load. If the upper limit of this range is exceeded, the crushed materials are in contact with each other rather than entangled, and the strength of the cement or resin material mixed with the crushed materials may not improve as expected. More preferably, it is 0.3-0.6. In addition, in the case of mixing in cement or resin material in relation to the filling rate, a conventional pulverized material may be mixed in addition to the crushed material of the present invention.
[0020]
Next, the waste FRP in the present invention is a glass used for sports equipment such as tennis rackets, golf shafts, fishing rods, transportation equipment members such as automobiles and airplanes, building parts such as bath tubs and wall materials, etc. Various types of reinforcing fibers such as carbon, pulp, tetron, nylon, vinylon, acrylic, aramid, modacrylic, alumina, silicon nitride, etc., thermosetting epoxy resin, unsaturated polyester resin, phenol resin, benzoxazine resin, vinyl ester resin, etc. Or thermoplastic resins such as polyethylene, polypropylene resin, polyamide resin, ABS resin, polybutylene terephthalate resin, polyacetal resin, polycarbonate, etc., and modified resins obtained by alloying these resins, elastomers such as rubber, etc. I covered yuwayu Is that of waste plastic. Since it is covered with resin, it can be made a member with good adhesion and high strength with cement and resin material.
[0021]
The crushed material of the present invention is low cost because it uses waste FRP as a starting material and does not separate the resin and the fiber, so the separation cost is unnecessary, and the cement or resin member containing the crushed material The cost can be reduced to a practical level. In particular, in the present invention, since the input energy required for crushing is small, the recycling method has an extremely low environmental load.
[0022]
Next, among waste FRP, cylindrical waste plastics such as golf shafts, fishing rods, rolls, propeller shafts, truss tubes, etc. are preferred because the crushed material tends to be bent. Moreover, since the thermoplastic resin waste FRP has high toughness, it is easy to form a bent shape.
[0023]
Among the FRPs, FRPs containing carbon fibers are preferred because they are excellent in alkali resistance and can maintain strength over the long term. There are PAN-based and pitch-based carbon fibers, but both are preferable, but PAN-based high-strength fibers (elastic modulus is 200 GPa to 800 GPa, strength is 2500 MPa to 10 GPa) are preferable in order to have bending when crushing. . In the case of mixing with cement, it is particularly preferable that the elastic modulus is in the range of 200 GPa to 400 GPa because the difference in elastic modulus from cement is reduced, strain concentration is eliminated, and cold resistance and frost damage resistance are improved. When organic fibers such as an aramid fiber and a polytylene fiber are contained, since the fibers exhibit a fibril shape during crushing, the crushed materials interfere with each other.
[0024]
As the resin, epoxy resins, polyester resins, vinyl ester resins and modified resins of these resins that are excellent in alkali resistance are preferable. Epoxy resins are most preferred because of their excellent adhesiveness.
[0025]
Next, the crushed material of the present invention can be used by being mixed with, for example, cement, concrete, or resin.
[0026]
As a molding method of the cement material, a known molding method such as a molding method poured into a mold or a spray molding method can be used. When there is a need to disperse the crushed material uniformly, casting molding is preferable, and spraying molding is preferable for workability.
[0027]
In the case of cement, as described above, the waste FRP crushed material having a bend is evenly distributed three-dimensionally in the cement, so that the cement material can have high strength also in the thickness direction. In addition, the cement material is divided at a low strain, but by mixing the crushed material of the present invention, it is possible to exhibit a mode in which the load is borne without being divided even after a crack is generated in the cement.
[0028]
As the concrete cement, any known cement can be used. For example, ordinary portland cement, early-strength cement, moderately hot portland cement, various portland cements such as sulfate-resistant portland cement, white cement, alumina cement, slag cement, silica cement, fly ash cement, roman cement, natural cement, blast furnace cement, Special cements such as fine particle cement and foam cement. It is also possible to use a mixture of two or more types of cement.
[0029]
Further, in addition to the FRP crushed material of the present invention, the cement may be added with a pulverized material / powder material made of waste FRP generated during the production of the crushed material of the present invention or a lightweight aggregate generally mixed in the cement material. Is possible. Specifically, silica sand, sand, gravel, fly ash, shirasu balloon, perlite, glass balloon, SiO 2 , Al 2 O Three , FeO, CaO, Na 2 Inorganic powder materials such as hollow materials such as O and MgO, and organic polymer substances such as polypropylene, polyethylene, styrene, ethylene, urethane, phenol, polyester, acrylic, and butadiene rubber latex can be used as the foamable resin powder.
[0030]
Of these, glass balloons are preferred because they have a low water absorption rate, can reduce the water / cement ratio, and improve strength. The mixing ratio of the lightweight aggregate is preferably 40 to 150% by weight with respect to cement and 200 to 5000% by weight with respect to FRP. If it is less than the lower limit of this range, the dispersibility of FRP may be hindered, and if it exceeds the upper limit of this range, the specific gravity becomes too large, and destruction may occur due to its own weight.
[0031]
Although a water reducing agent can be used, it is preferably 10% by weight or less based on cement and 200% by weight or less based on FRP. If it is less than 1% by weight with respect to the cement, water hardening is small and workability is not sufficient. Exceeding 10% by weight with respect to cement is not preferable because the fireproof performance of the hardened cement body tends to be lowered and the material cost is increased. Specific water reducing agents include AE water reducing agents and high performance water reducing agents.
[0032]
The form of mixing into the cement material does not necessarily have to be uniform. For example, when the cement material is large, a lightweight filler such as calcium carbide that is lighter and lower in cost than the waste FRP is placed at the center of the cement material thickness. The crushed material of the present invention may be disposed on the surface layer of the cement material. In order to selectively arrange the crushed material having a bend, it is also effective to perform the split molding of the cement material. That is, a part or all of the surface of the cement material hardened in a normal process is covered with a cement containing a crushed material having a bend and integrated.
[0033]
Even if the periphery of the FRP crushed material of the present invention is completely covered with cement, the cement may adhere as a binder so as to connect the crushed materials. If it is completely covered with cement, the strength is remarkably improved, but the specific gravity also increases. Therefore, it is preferable to adjust the amount of cement adhering appropriately in relation to the weight. In the case of covering thoroughly with cement, it is effective to expel bubbles and gas after mixing by vibration, heat, etc., and methods for reducing the amount of adhesion include mixing air and gas or mixing foaming material. It is effective to do.
[0034]
Furthermore, when the crushed material of the present invention is as large as several centimeters, the crushed material is three-dimensionally held in a relatively large size. Even without this, cement or cement admixture can be held in the space between the crushed materials, and a member having a shape close to a desired shape can be formed. By eliminating the need for molding auxiliary materials such as molds, cement members can be molded at an extremely low cost. A preferable mixing amount of the crushed material of the present invention is 3% to 70%. Within the scope of this claim, the cement material has a balance of weight, strength and cost. More preferably, it is 3% to 40%.
[0035]
In addition, it is preferable to disperse the crushed material on the surface of the cement material in an uneven manner, so that the vicinity of the surface becomes high in strength and the member is subjected to bending. However, the FRP pulverized material of the present invention is selectively disposed on the surface of the cement material. If the adhesion of cement is reduced to make it porous, sound absorption characteristics and water retention can be provided. The porous part is easily supplemented with seeds and soil, so that an effect of becoming a habitat for plants and microorganisms is produced. In this case, the amount of crushed material near the surface is preferably 10% to 30%. Of course, a foam material, a metal plate, or the like may be embedded in the cement material, and the shape of the cement member may be hollow, solid, or any shape.
[0036]
In the case of a cement member used in a humid environment, the ground product may be required to have alkali resistance. Therefore, the reinforcing fiber of the ground product is vinylon fiber, aramid fiber, modacrylic fiber, carbon, which has alkali resistance. It is preferable that more fibers are contained.
[0037]
Since the cement material of the present invention is excellent in light weight, high strength, low cost, and corrosion resistance, it can be used for building materials such as wall materials, roofing agents, flooring materials, cement tiles, building roofs such as main tiles, and building members such as outer walls. Suitable for use as garden materials such as flower pots, flower bed fences, garden floorboards, and other marine structures such as tetrapots, revetment walls and weights. More specifically, various building materials such as houses, hotels, schools, hospitals, offices, theaters, gymnasiums and office buildings. Other applications include water permeable panels, foundation panels, soundproof panels, heat insulation panels, tetrapots, utility poles, side grooves, fume pipes, roof tiles, and greening structures.
[0038]
Next, the crushed material of the present invention can be used by being mixed with resin and rubber. Typical resins include thermosetting resins such as epoxy resins, unsaturated polyester resins, phenol resins, benzoxazine resins, vinyl ester resins, or polyethylene, polypropylene resins, polyamide resins, ABS resins, and polybutylene terephthalate resins. , Thermoplastic resins such as polyacetal resin and polycarbonate resin, and modified resins obtained by alloying these resins.
[0039]
As in the case of mixing in the cement as described above, in the resin, the crushed material may be disposed locally (selectively) or uniformly. Moreover, it does not matter whether it is integrally formed or divided. Further, the curing may be repeated a plurality of times. Further, a filler / additive other than the crushed material of the present invention may be used in combination. In the case of resin, since the specific gravity is lower than that of cement, the addition amount of the crushed material of the present invention is suitably 3% to 60%.
[0040]
Resin materials can be used for tabletop tabletops, basketball panels, sports equipment such as score and participant signage panels, civil engineering materials such as panels and bulletin boards used at construction sites, cement tiles, main tiles, and other houses. Materials that require light weight, durability, and low cost, such as building members such as roofs and outer walls, and other industrial materials are conceivable. For architectural applications, phenolic resins are preferred because they are excellent in heat resistance and produce less gas during combustion.
[0041]
In addition, when mixed with resin, as in the case of mixing with cement, the fracture is localized and the crack does not propagate to the entire member, so that an unprecedented characteristic such as nailing can be produced. When crushed materials containing rubber materials such as tires and belts are mixed, the nailing performance is further improved.
[0042]
Lastly, waste FRP may contain impurities other than FRP, such as paint, labels, and metals. However, removing these contaminants is expensive and does not harm the properties of the final cement material. It may be included within the range of. The proportion of these impurities is preferably 10% or less, and more preferably 5% or less.
[0043]
【Example】
The features of the cement material of the present invention will be described by way of examples.
Example 1
Made from carbon fiber reinforced composite material recovered from the market (two types of carbon fiber: elastic modulus 300 GPa, strength 5600 MPa and elastic modulus 400 GPa, strength 3000 MPa, resin is epoxy resin, fiber content 70%, cure degree 95% ) Golf shaft cylinder (length: 50 cm to 80 cm, diameter: 5 mm to 12 mm) with a uniaxial impact crusher for 1 minute (input energy is 660 kilojoules), and then passed through a 6 mm sieve, the directional radius is 6 mm or more, and the curvature is
[0044]
This crushed material is mixed with ordinary Portland cement, water reducing agent, standard sand, and water (mixing ratio is 100% by weight of crushed material, 60% by weight of water, 3% by weight of water reducing material, 100% by weight of standard sand). Curing was performed to obtain a cement board (30 cm × 30 cm, thickness 20 mm). The cement board has pores on the surface and inside, and as a result of cross-sectional observation, it was confirmed that the crushed material was uniformly dispersed three-dimensionally. It had water permeability and specific gravity was 1.3.
[0045]
A bending test piece (95 × 60 × 20 mm) was cut out from this cement plate, and as a result of a three-point bending test, the maximum load was 170% of the blank cement cured body to which no crushed material was added. Heavy load Later, the test piece was loaded without being separated like blank cement.
[0046]
Moreover, when the bending test piece cut out from the cement board was left in the sea for 3 months, a green material was adhered to the pores. Furthermore, when this specimen was subjected to a bending test, Heavy load There was no change in the destruction mode.
(Example 2)
A cement board (30 cm × 30 cm, thickness 20 mm) was obtained in the same manner as in Example 1, except that the weight% of the crushed material was 60 in Example 1. This cement board also has pores on the surface and inside, and as a result of cross-sectional observation, it was confirmed that the crushed material was uniformly dispersed three-dimensionally. It had water permeability and specific gravity was 1.4.
[0047]
A bending test piece (95 × 60 × 20 mm) was cut out from this cement plate, and as a result of a three-point bending test, the maximum load was 130% of the blank cement cured body to which no crushed material was added. Heavy load Later, the test piece was loaded without being separated like blank cement.
[0048]
Moreover, when the bending test piece cut out from the said cement board was made to absorb water and the thermal cycle test (convection time 10 minutes, cycle number 3000) was -30 degreeC-80 degreeC, the crack and peeling were not recognized. Furthermore, when this specimen was subjected to a bending test, Heavy load There was no change in the destruction mode.
(Example 3)
Made of carbon fiber reinforced composite material recovered from the market (two types of carbon fiber: elastic modulus 500 GPa, strength 3000 MPa and elastic modulus 450 GPa, strength 3000 MPa, resin is epoxy resin, fiber content 74%, cure degree 95% ) Of a fishing rod cylinder (length: 80 cm to 120 cm, diameter: 6 mm to 15 mm) with a uniaxial impact crusher (consumed energy: 600 kilojoules / kg), and then passed through a 10 mm sieve, the fixed radius is 10 mm or more, and the radius of curvature is 60 mm. 500 g of crushed material having the following bending was obtained. The crushed material was filled in a 1-liter plastic container, and the filling rate was measured by pouring water into it, which was 0.4.
[0049]
This crushed material and polyester resin (100 parts of main agent, 1 part of curing agent) are mixed at a mixing ratio of 100: 100, and a 9 mm thick resin panel having a polyurethane foam of 5 mm thickness (foaming magnification 30 times) in the center. Obtained. As a result of cross-sectional observation, it was confirmed that the crushed material was uniformly dispersed three-dimensionally in the form of sandwiching the polyurethane foam symmetrically. The specific gravity of the portion excluding polyurethane was 1.4.
[0050]
When this resin panel was cut out into a square and used as a table top for a table tennis table, it was found that it had a lighter hitting sound than a wooden (thickness 25 mm).
[0051]
Also, when a test piece cut out from the resin plate was subjected to a bending test, Heavy load It was confirmed that the test piece was subsequently subjected to load bearing without separation.
(Comparative Example 1)
Made of carbon fiber reinforced composite material collected from the same market as in Example 1 (two types of carbon fiber: elastic modulus 300 GPa, strength 5600 MPa and elastic modulus 400 GPa, strength 3000 MPa, resin is epoxy resin, fiber content is 70%, A golf shaft cylinder (length: 50% to 80 cm, 5 mm to 12 mm) having a curing degree of 95% was pulverized with a grinder (particle size # 80) (particle size of the pulverized product was about 20 μm) to obtain 1 kg of CFRP powder. . The input energy was 8000 kilojoules. Subsequently, the crushed material was filled into a 1 liter plastic container, and the filling rate was measured by pouring water under stirring. As a result, the filling rate was 0.9.
[0052]
This crushed material is mixed with ordinary Portland cement, water reducing agent, standard sand, and water (mixing ratio is 100% by weight of crushed material, 60% by weight of water, 3% by weight of water reducing material, 100% by weight of standard sand). Curing was performed to obtain a cement board (30 cm × 30 cm, thickness 20 mm).
[0053]
As a result of cross-sectional observation, the cement board was confirmed to be homogeneous. There was almost no water permeability and specific gravity was 1.7.
[0054]
As a result of cutting a bending test piece (95 × 60 × 20 mm) from this cement plate and performing a three-point bending test, the maximum load was 90% of the blank cement cured body to which no crushed material was added. Heavy load Later, the test piece separated.
[0055]
【The invention's effect】
According to the present invention, it is possible to obtain a suitable waste FRP crushed material by adding it to cement or a resin material and recycling it compared to conventional pulverized products. Moreover, since the energy required for crushing is small, it is possible to recycle at extremely low cost, and it can be said that the social contribution is very high.
[Brief description of the drawings]
FIG. 1 shows a crescent-shaped waste FRP crushed material of the present invention.
FIG. 2 is a coiled waste FRP crushed material of the present invention.
FIG. 3 is an S-shaped waste FRP crushed material of the present invention.
FIG. 4 is a waste FRP crushed material of the present invention having a multilobal shape.
[Explanation of symbols]
1: Constant diameter
2: Curvature radius
3: Thickness
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06287399A JP4026268B2 (en) | 1999-03-10 | 1999-03-10 | Waste FRP crushed material and cement material, concrete member or resin member containing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06287399A JP4026268B2 (en) | 1999-03-10 | 1999-03-10 | Waste FRP crushed material and cement material, concrete member or resin member containing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000254919A JP2000254919A (en) | 2000-09-19 |
JP4026268B2 true JP4026268B2 (en) | 2007-12-26 |
Family
ID=13212834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06287399A Expired - Fee Related JP4026268B2 (en) | 1999-03-10 | 1999-03-10 | Waste FRP crushed material and cement material, concrete member or resin member containing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4026268B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20120859A1 (en) * | 2012-05-17 | 2013-11-18 | Presti Salvatore Lo | NEW PROCEDURE FOR THE MANUFACTURE OF CONCRETE REINFORCED UPHOLSTERY WITH FIBER OF PLASTIC MATERIAL, AND CORRESPONDING MANUFACTURING OF REINFORCED CONCRETE MADE WITH THIS PROCEDURE |
DE102013219960A1 (en) * | 2013-10-01 | 2015-04-02 | Bayerische Motoren Werke Aktiengesellschaft | Co-extrusion, pultrusion of profiles with carbon waste |
WO2017222815A1 (en) | 2016-06-20 | 2017-12-28 | Dow Global Technologies Llc | Process for reclaiming scrap or unused epoxy resin prepreg |
JP6726055B2 (en) * | 2016-08-04 | 2020-07-22 | Aca株式会社 | Method for producing reclaimed fine particles |
US10563023B2 (en) | 2016-08-26 | 2020-02-18 | The Boeing Company | Carbon fiber composite, a medium incorporating the carbon fiber composite, and a related method |
JP6880908B2 (en) * | 2017-03-28 | 2021-06-02 | 宇部興産株式会社 | Separate recovery method of carbon fiber reinforced composite material from waste plastic mixture |
KR102711149B1 (en) * | 2022-08-08 | 2024-09-26 | 김주인 | Eco-friendly waste FRP pavement aggregate by CaO coating, composition containing the same, and road construction method using the same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06191917A (en) * | 1990-03-14 | 1994-07-12 | Asaoka Kk | Production of hardened cement article |
JPH0639834A (en) * | 1991-04-15 | 1994-02-15 | Mitsubishi Petrochem Co Ltd | Fiber reinforced thermoplastic resin composite material |
JP2540477B2 (en) * | 1993-06-25 | 1996-10-02 | 工業技術院長 | Concrete product using glass fiber reinforced thermosetting resin as a reinforcing material and method for producing the same |
JP3401865B2 (en) * | 1993-10-25 | 2003-04-28 | 東レ株式会社 | Carbon fiber lump and method for producing the same |
JPH09110494A (en) * | 1995-10-24 | 1997-04-28 | Shinko:Kk | Resin concrete and its production |
JPH09254156A (en) * | 1996-03-26 | 1997-09-30 | Matsushita Electric Works Ltd | Building board |
JPH10272629A (en) * | 1997-03-31 | 1998-10-13 | Ube Nitto Kasei Co Ltd | Manufacture of fiber reinforced thermoplastic resin reclaimed articles |
-
1999
- 1999-03-10 JP JP06287399A patent/JP4026268B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000254919A (en) | 2000-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Potential use of waste tire rubber as aggregate in cement concrete–A comprehensive review | |
Nili et al. | Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete | |
Mohammed et al. | Strength reduction factors for structural rubbercrete | |
Hosen et al. | Investigation of structural characteristics of palm oil clinker based high-strength lightweight concrete comprising steel fibers | |
Rahman et al. | Examining polyethylene terephthalate (PET) as artificial coarse aggregates in concrete | |
Senin et al. | Properties of cement mortar containing rubber ash as sand replacement | |
JP4026268B2 (en) | Waste FRP crushed material and cement material, concrete member or resin member containing the same | |
Mohamed et al. | Exploring the performance of steel fiber reinforced lightweight concrete: A case study review | |
US9382160B2 (en) | Waste crumb-rubber augmented masonry blocks | |
Khoso et al. | An experimental study on fiberly reinforced concrete using polypropylene fibre with virgin and recycled road aggregate | |
Zhang et al. | Dynamic performance of foam concrete with recycled coir fiber | |
CN105645842B (en) | A kind of artificial stone prepared with waste residues of polished tiles and preparation method thereof | |
Chen et al. | The splitting tensile strength and impact resistance of concrete reinforced with hybrid BFRP minibars and micro fibers | |
Akinyele et al. | Production of lightweight concrete from waste tire rubber crumb | |
Intaboot et al. | Investigation of concrete blocks mixed with recycled crumb rubber: A case study in Thailand. | |
Liao et al. | Effects of fiber and rubber materials on the dynamic mechanical behaviors and damage evolution of shotcrete under cyclic impact load | |
Farooq et al. | Influence of hybrid coir-steel fibres on the mechanical behaviour of high-performance concrete: Step towards a novel and eco-friendly hybrid-fibre reinforced concrete | |
Stankevičius et al. | Acoustical characteristics and physical-mechanical properties of plaster with rubber waste additives | |
Ma et al. | Structural properties of lightweight rubberized concrete | |
Neocleous et al. | Reuse of tire constituents in concrete | |
Al Biajawi et al. | Impact of concrete containing shredded latex gloves and silicone catheter on the fresh and mechanical properties at room and elevated temperatures | |
Aman et al. | Crumb rubber mortar and its properties: An overview | |
JP3499200B2 (en) | Wood cement board | |
Gadkar | Freeze-thaw durability of portland cement concrete due to addition of crumb rubber aggregates | |
Heng et al. | Investigating Mechanical Properties of Interlocking Concrete Blocks by Recycling Waste Polyethylene Terephthalate-A Sustainable Approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040830 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070412 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070412 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070918 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071001 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131019 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |