JP4026208B2 - Failure diagnosis device for thermal control system for internal combustion engine - Google Patents

Failure diagnosis device for thermal control system for internal combustion engine Download PDF

Info

Publication number
JP4026208B2
JP4026208B2 JP34892097A JP34892097A JP4026208B2 JP 4026208 B2 JP4026208 B2 JP 4026208B2 JP 34892097 A JP34892097 A JP 34892097A JP 34892097 A JP34892097 A JP 34892097A JP 4026208 B2 JP4026208 B2 JP 4026208B2
Authority
JP
Japan
Prior art keywords
water temperature
heat storage
internal combustion
combustion engine
storage water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34892097A
Other languages
Japanese (ja)
Other versions
JPH11182307A (en
Inventor
直樹 永田
京彦 黒田
英樹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP34892097A priority Critical patent/JP4026208B2/en
Publication of JPH11182307A publication Critical patent/JPH11182307A/en
Application granted granted Critical
Publication of JP4026208B2 publication Critical patent/JP4026208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Testing Of Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の停止時の冷却水の所定量を蓄熱水として保存し、この蓄熱水を始動時に循環させることで早期暖機可能な内燃機関用熱制御システムの故障診断装置に関するものである。また、内燃機関の運転状態における負荷に応じて、冷却水温を高水温または低水温に制御可能な内燃機関用熱制御システムの故障診断装置に関するものである。
【0002】
【従来の技術】
従来、内燃機関の始動時において、内燃機関の冷却水のうち蓄熱器に貯留されている蓄熱水を優先的に内燃機関内に循環させることで早期暖機を達成することができる内燃機関用熱制御システムが知られている。また、車両走行時、内燃機関の運転状態における負荷に応じてラジエータに導入される冷却水量を増減させ、低負荷時には冷却水温を高水温化して摩擦を減らし、逆に高負荷時には低水温化してノッキングを防止し、オイル劣化を抑え異常摩耗を抑止することができる内燃機関用熱制御システムも知られている。
【0003】
【発明が解決しようとする課題】
ところで、前述のような内燃機関用熱制御システムで異常が発生した際、水温センサ単体の故障は診断できても、蓄熱器や蓄熱水循環経路等の故障を診断できるようなものはなかった。
【0004】
そこで、この発明はかかる不具合を解決するためになされたもので、蓄熱器や蓄熱水循環経路等の故障による異常の発生を診断可能な内燃機関用熱制御システムの故障診断装置の提供を課題としている。
【0005】
【課題を解決するための手段】
請求項1の内燃機関用熱制御システムの故障診断装置によれば、内燃機関の停止時、冷却水温検出手段にて検出される内燃機関内の冷却水の冷却水温から蓄熱器内の蓄熱水の蓄熱水温が推定され、この蓄熱水温とその停止時刻と、内燃機関の始動時における経過時間とから、蓄熱水温推定手段によりそのときの蓄熱水温が推定される。この推定された蓄熱水温が十分高いのに、暖機中における冷却水温の上昇率が所定値を下回って小さいときには、故障診断手段により蓄熱水循環経路を含む蓄熱器に何らかの異常が生じていると診断されるのである。これにより、始動時及び暖機中における蓄熱水循環経路や蓄熱器の故障が診断できることとなり、ユーザへの警告等が実施できると共に、この場合には蓄熱水循環経路や蓄熱器側への冷却水の流入が禁止されることでフェイルセーフが達成できるという効果が得られる。
【0006】
請求項2の内燃機関用熱制御システムの故障診断装置によれば、内燃機関の停止時、蓄熱水温検出手段にて検出される蓄熱器内の蓄熱水の蓄熱水温とその停止時刻と、内燃機関の始動時における経過時間及び蓄熱水温とによる蓄熱水温の下降率が所定値を上回って大きいときには、故障診断手段により蓄熱器に何らかの異常が生じていると診断されるのである。これにより、始動時及び暖機中における蓄熱器の故障が診断できることとなり、ユーザへの警告等が実施できると共に、この場合には蓄熱器側への冷却水の流入が禁止されることでフェイルセーフが達成できるという効果が得られる。
【0007】
また、内燃機関の始動時における蓄熱水温が十分高いのに、暖機中における冷却水温の上昇率が所定値を下回って小さいときには、故障診断手段により蓄熱水循環経路を含む蓄熱器に何らかの異常が生じていると診断されるのである。これにより、始動時及び暖機中における蓄熱水循環経路や蓄熱器の故障が診断できることとなり、ユーザへの警告等が実施できると共に、この場合には蓄熱水循環経路や蓄熱器側への冷却水の流入が禁止されることでフェイルセーフが達成できるという効果が得られる。
【0008】
請求項3の内燃機関用熱制御システムの故障診断装置によれば、内燃機関の停止時、蓄熱水温検出手段にて検出される蓄熱器内の蓄熱水の蓄熱水温とその停止時刻と、内燃機関の始動時における経過時間及び蓄熱水温とによる蓄熱水温の下降率が所定値を上回って大きいときには、故障診断手段により蓄熱器に何らかの異常が生じていると診断されるのである。これにより、始動時及び暖機中における蓄熱器の故障が診断できることとなり、ユーザへの警告等が実施できると共に、この場合には蓄熱器側への冷却水の流入が禁止されることでフェイルセーフが達成できるという効果が得られる。
また、内燃機関の暖機中における蓄熱水温の下降率が所定値を下回って小さいときには、故障診断手段により蓄熱水循環経路に何らかの異常が生じていると診断されるのである。これにより、暖機中における蓄熱水循環経路の故障が診断できることとなり、ユーザへの警告等が実施できると共に、この場合には蓄熱水循環経路側への冷却水の流入が禁止されることでフェイルセーフが達成できるという効果が得られる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。
【0012】
〈実施例1〉
図1、図2及び図3は本発明の実施の形態の第1実施例にかかる内燃機関用熱制御システムの故障診断装置の全体構成を示す概略図である。ここで、図1は内燃機関の始動時及び暖機中、図2は内燃機関の高水温制御時(一般走行による低負荷時)、図3は内燃機関の低水温制御時(高負荷時)における制御状態を示す。
【0013】
図1、図2及び図3において、内燃機関(エンジン)1とラジエータ3との間には、冷却水を循環するための往路としての冷却水通路2及び復路としての冷却水通路4が接続されている。このうち、往路の冷却水通路2の途中にはバイパス通路5が接続され、このバイパス通路5の下流側は2温度切替弁6の導入口6aに接続されている。また、2温度切替弁6の導出口6b,6cにはそれぞれ低水温制御用冷却水通路7及び高水温制御用冷却水通路8が接続され2分岐されている。2温度切替弁6には吸気導入管9が接続されており、吸気導入管9の途中に配設されている常開の吸気導入制御弁10を介して吸気導入管9から導入される内燃機関1の吸気圧PMにより弁位置が切替えられることでバイパス通路5からの冷却水が低水温制御用冷却水通路7(図3参照)または高水温制御用冷却水通路8(図1及び図2参照)の何れか1つの通路に導入される。
【0014】
また、復路の冷却水通路4の途中にはサーモスタット11が設けられており、ラジエータ3を通過し冷却された冷却水はサーモスタット11の作動(図2及び図3参照)に伴ってその導入口11aから導出口11bへと導かれる。更に、低水温制御用冷却水通路7の下流側がサーモスタット11の導入口11cに接続されている。このため、低水温制御用冷却水通路7がサーモスタット11を介して復路の冷却水通路4に接続されている。そして、高水温制御用冷却水通路8の下流側には蓄熱器12が設けられている。蓄熱器12の下流側には蓄熱水通路13が接続されており、この蓄熱水通路13は下流側で復路の冷却水通路9と合流され内燃機関1の戻り側と接続されている。更に、高水温制御用冷却水通路8の途中にはバイパス通路14が接続されており、このバイパス通路14の下流側はサーモスタット11の導入口11dに接続されている。
【0015】
内燃機関1には、冷却水の冷却水温THWを検出する水温センサ21、図示しない吸気通路内の吸気圧PMを検出する吸気圧センサ22、図示しないクランク軸の回転に基づく機関回転数NEを検出するクランク角センサ23が配設されている。なお、本実施例では蓄熱器12内の蓄熱水の蓄熱水温は後述のように、推定によって求められるため蓄熱水温センサ24は不要である。
【0016】
これら水温センサ21、吸気圧センサ22及びクランク角センサ23からの出力信号はECU(Electronic Control Unit:電子制御ユニット)30に入力される。また、蓄熱水温センサ24を必要とするシステムではその出力信号もECU30に入力される。ECU30は、周知の中央処理装置としてのCPU、制御プログラムを格納したROM、各種データを格納するRAM、B/U(バックアップ)RAM、入出力回路及びそれらを接続するバスライン等からなる論理演算回路として構成されている。なお、本システムが故障時には、ECU30によるフェイルセーフ処理として、常開の吸気導入制御弁10が強制的に閉弁状態とされることで吸気導入管9が閉塞状態とされ2温度切替弁6の弁位置が低水温制御側に保持される(図3参照)。
【0017】
次に、本実施例の内燃機関用熱制御システムにおける内燃機関1の冷却系統における冷却水の流れについて図1、図2及び図3を参照して説明する。
【0018】
まず、図1に示す内燃機関1の始動時及び暖機中における冷却水の流れについて説明する。内燃機関1の始動時及び暖機中では、内燃機関1で発生される吸気圧(絶対圧が小さな負圧)が吸気導入管9を介して2温度切替弁6に導入されることで、2温度切替弁6の弁位置はばね(図示略)の付勢力に打勝って図示のように左方向に移動保持される。このとき、サーモスタット11周囲の冷却水の冷却水温が低いとサーモスタット11の弁位置が図示のように左端に移動保持されることで、ラジエータ3からの復路の冷却水通路4が閉塞される。このため、内燃機関1からの冷却水は冷却水通路2からバイパス通路5側に全て導入されることとなる。そして、バイパス通路5からの冷却水は導入口6aから2温度切替弁6の内部に入りその左方向に移動保持された弁位置によって導出口6c側から高水温制御用冷却水通路8側に導入される。この高水温制御用冷却水通路8側に導入された冷却水はバイパス通路14側にも多少流れるが、その大部分が蓄熱器12側に流れることとなる。このとき、蓄熱器12内に高水温の蓄熱水が貯留されていると、その蓄熱水は蓄熱器12に導入される冷却水によって蓄熱水通路13側に押出されて優先的に内燃機関1内に導入されることとなり、内燃機関1は蓄熱水によって早期暖機されることとなる。
【0019】
次に、図2に示す内燃機関1の高水温制御時(一般走行による低負荷時)における冷却水の流れについて説明する。内燃機関1の高水温制御時(一般走行による低負荷時)では、内燃機関1で発生される吸気圧(絶対圧が小さな負圧)が吸気導入管9を介して2温度切替弁6に導入されることで、2温度切替弁6の弁位置は始動時及び暖機中と同様、図示のように左方向に移動保持される。また、バイパス通路14の冷却水の冷却水温によってサーモスタット11の弁位置が図示のように中間位置に移動される。このため、内燃機関1からの冷却水は往路の冷却水通路2からラジエータ3側にも多少流れるが大部分はバイパス通路5側に流れることとなる。したがって、ラジエータ3を通過した少量の冷却水は冷却されるが、バイパス通路5からの冷却水の大部分は蓄熱器12側に流れることとなる。このため、蓄熱器12内の蓄熱水の蓄熱水温は常時、高水温となる。そして、蓄熱器12からの蓄熱水は蓄熱水通路13を通過し、サーモスタット11を通過した復路の冷却水通路4側からの冷却水と合流されたのち内燃機関1内に導入されることで内燃機関1は高水温制御されることとなる。
【0020】
次に、図3に示す内燃機関1の低水温制御時(高負荷時)における冷却水の流れについて説明する。内燃機関1の低水温制御時(高負荷時)では、内燃機関1で発生される吸気圧(絶対圧が大きな負圧)が吸気導入管9を介して2温度切替弁6に導入されることで、2温度切替弁6の弁位置はばね(図示略)の付勢力によって図示のように右方向に移動保持される。また、低水温制御用冷却水通路7の冷却水の冷却水温によってサーモスタット11の弁位置が図示のように右端に移動保持されることで、サーモスタット11のバイパス通路14側の導入口11dが閉塞される。このため、内燃機関1からの冷却水は往路の冷却水通路2からバイパス通路5側にも多少流れるが、その大部分がラジエータ3側に流れることとなる。このとき、バイパス通路5を通過した冷却水は2温度切替弁6によって全て低水温制御用冷却水通路7側に導入されるため、高水温制御用冷却水通路8側、即ち、蓄熱器12方向には流れない。そして、低水温制御用冷却水通路7側に導入された冷却水によってサーモスタット11周囲が高水温に保持されることで、サーモスタット11の弁位置も右端に保持される。このため、ラジエータ3からの冷却水は復路の冷却水通路4を介して導入口11aからサーモスタット11内部に導入され、サーモスタット11の導入口11cからの冷却水と合流されたのち、サーモスタット11の導出口11bから復路の冷却水通路4を通って内燃機関1内に導入されることで内燃機関1は低水温制御されることとなる。
【0021】
次に、本発明の実施の形態の第1実施例にかかる内燃機関用熱制御システムの故障診断装置で使用されているECU30による内燃機関停止時の蓄熱水温等検出の処理手順を示す図4のフローチャートに基づき、図6のタイムチャートを参照して説明する。なお、この内燃機関停止時における検出ルーチンは所定時間毎にECU30にて繰返し実行される。
【0022】
図4において、ステップS101で、クランク角センサ23にて検出された機関回転数NEが予め設定された所定値α未満であるかが判定される。ステップS101の判定条件が成立、即ち、機関回転数NEがα未満と低いとき(図6参照)には内燃機関1が停止状態にあるとしてステップS102に移行し、このとき内燃機関1の停止時の蓄熱器12内の蓄熱水の蓄熱水温が、本システムでは図1〜図3に示す蓄熱水温センサ24を有しないため、内燃機関1に配設された水温センサ21からの冷却水温に基づき推定され、蓄熱水温THWW0 (図6参照)としてECU30のRAM内の記憶領域に格納される。次にステップS103に移行して、この時刻が内燃機関停止時刻TT0 (図6に示す停止判定と同時の内燃機関停止時刻)としてECU30のRAM内の記憶領域に格納され、本ルーチンを終了する。一方、ステップS101の判定条件が成立せず、即ち、機関回転数NEがα以上と高いときには内燃機関1が運転状態にあるとして、何もすることなく本ルーチンを終了する。
【0023】
次に、本発明の実施の形態の第1実施例にかかる内燃機関用熱制御システムの故障診断装置で使用されているECU30による内燃機関の始動時及び暖機中の故障診断の処理手順を示す図5のフローチャートに基づき、図6のタイムチャートを参照して説明する。なお、この故障診断ルーチンは、図1〜図3に示す蓄熱水温センサ24を有しないシステムに対応し、所定時間毎にECU30にて繰返し実行される。
【0024】
図5において、ステップS201で、内燃機関1の始動後タイマが作動中であるかが判定される。ステップS201の判定条件が成立せず、即ち、始動後タイマが作動していないときにはステップS202に移行し、図示しないイグニッションスイッチのオン時刻をTT1 (図6に示す内燃機関始動時刻)としたのちステップS203に移行する。ステップS203では、ステップS202による内燃機関1の始動時刻TT1 から図4のステップS103で格納されている内燃機関1の停止時刻TT0 (図6に示す停止判定と同時の内燃機関停止時刻)が減算された内燃機関1の停止後経過時間が予め設定された所定値β以上であるかが判定される。ステップS203の判定条件が成立せず、即ち、内燃機関1の停止後経過時間(TT1 −TT0 )が所定値β未満と経過時間が少ないときには、ステップS204に移行する。
【0025】
ステップS204では、内燃機関1の停止時の冷却水温と内燃機関1の停止後経過時間とからイグニッションスイッチがオン時の蓄熱器12における蓄熱水温が推定され推定蓄熱水温THWW1 (図6参照)とされる。次にステップS205に移行して、ステップS204で推定された推定蓄熱水温THWW1 が予め設定された所定値γ以上であるかが判定される。ステップS205の判定条件が成立、即ち、推定蓄熱水温THWW1 が所定値γ以上と高水温であるときにはステップS206に移行し、蓄熱による早期な暖機が可能であるとして始動前における冷却水温がTHW0 (図6参照)とされたのちステップS207に移行する。
【0026】
ステップS207では、内燃機関1の機関回転数NEが予め設定された所定値δ以上であるかが判定される。ステップS207の判定条件が成立、即ち、機関回転数NEが所定値δ以上と高いとき(図6に示す始動判定と同時の内燃機関始動時刻)にはステップS208に移行し、内燃機関1が始動されたとして始動後タイマが起動される。次にステップS209に移行して、始動後タイマ起動後、予め設定された所定時間T1 (図6参照)が経過しており、始動後タイマの終了時であるかが判定される。ステップS209の判定条件が成立、即ち、始動後タイマの終了時であるときにはステップS210に移行し、始動後タイマの終了時における冷却水温がTHW1 とされる。
【0027】
次に、ステップS211に移行して、ステップS210による始動後タイマの終了時における冷却水温THW1 からステップS206による始動前における冷却水温THW0 が減算され、それが始動後タイマの所定時間T1 で除算されて求められた冷却水温上昇率{(THW1 −THW0 )/T1 }が予め設定された所定値ε以上であるかが判定される。ステップS211の判定条件が成立せず、即ち、冷却水温上昇率{(THW1 −THW0 )/T1 }が所定値ε未満と小さいとき(図6に立ち上がりの破線にて示す異常時冷却水温参照)には蓄熱水循環経路としての高水温制御用冷却水通路8及び蓄熱水通路13を含む蓄熱器12に異常が生じているとしてステップS212に移行し、蓄熱水循環経路を含む蓄熱器12の異常が警告ランプの点灯等によりユーザへ警告される。次にステップS213に移行して、これ以降の始動時及び暖機中における蓄熱水循環経路を含む蓄熱器12側への冷却水の導入が禁止、即ち、吸気導入制御弁10を強制的に閉弁状態とすることで2温度切替弁6の弁位置が図3に示す右方向に保持され、低水温制御用冷却水通路7側のみへの冷却水の導入とされ、本ルーチンを終了する。
【0028】
一方、ステップS201の判定条件が成立、即ち、始動後タイマが作動中であるときには、何もすることなく本ルーチンを終了する。また、ステップS203の判定条件が成立、即ち、内燃機関1の停止後経過時間(TT1 −TT0 )が所定値β以上と経過時間を経ているとき、またはステップS205の判定条件が成立せず、即ち、推定蓄熱水温THWW1 が所定値γ未満と低水温であるときには蓄熱水が冷え過ぎているとしてステップS214に移行し、蓄熱器12による早期暖機ができないことがユーザへ報知されたのち本ルーチンを終了する。そして、ステップS207の判定条件が成立せず、即ち、機関回転数NEがδ未満と低くく内燃機関1が未だ始動されていないときには何もすることなく本ルーチンを終了する。更に、ステップS209の判定条件が成立せず、即ち、始動後タイマの終了時でないときには何もすることなく本ルーチンを終了する。また、ステップS211の判定条件が成立、即ち、冷却水温上昇率{(THW1 −THW0 )/T1 }が所定値ε以上と大きいとき(図6に立ち上がりの一点鎖線にて示す正常時冷却水温参照)には蓄熱器12等は正常に動作しているとしてそのまま本ルーチンを終了する。
【0029】
このように、本実施例の内燃機関用熱制御システムの故障診断装置は、内燃機関1の始動時には内燃機関1の冷却系統の冷却水のうち蓄熱器12に貯留された蓄熱水を優先的に前記内燃機関1内に循環する冷却水通路2,4、2温度切替弁6、高水温制御用冷却水通路8及び蓄熱水通路13等からなる蓄熱水循環手段と、内燃機関1内の冷却水の冷却水温THWを検出する水温センサ21からなる冷却水温検出手段と、内燃機関1の停止時における冷却水温THWから推定される蓄熱器12内の蓄熱水の蓄熱水温THWW0 及び停止時刻TT0 を記憶するECU30にて達成される記憶手段と、前記記憶手段に記憶された前回の内燃機関1の停止時に推定された蓄熱水温THWW0 と停止時刻TT0 から始動時刻TT1 までの停止後経過時間(TT1 −TT0 )とにより内燃機関1の始動時の蓄熱器12内の蓄熱水の蓄熱水温THWW1 を推定するECU30にて達成される蓄熱水温推定手段と、前記蓄熱水温推定手段で推定された蓄熱水温THWW1 が十分高いにもかかわらず、内燃機関1の暖機中の冷却水温上昇率{(THW1 −THW0 )/T1 }が予め設定された所定値εを下回っているときには、蓄熱水循環経路としての高水温制御用冷却水通路8及び蓄熱水通路13等を含む蓄熱器12の故障であると診断するECU30にて達成される故障診断手段とを具備するものである。
【0030】
したがって、内燃機関1の停止時、水温センサ21にて検出される内燃機関1内の冷却水の冷却水温THWから蓄熱器12内の蓄熱水の蓄熱水温THWW0 が推定され、この蓄熱水温THWW0 とその停止時刻TT0 と、内燃機関1の始動時(始動時刻TT1 )における停止後経過時間(TT1 −TT0 )とから、そのときの蓄熱水温THWW1 が推定される。この推定された蓄熱水温THWW1 が十分高いのに、暖機中における冷却水温上昇率{(THW1 −THW0 )/T1 }が所定値εより小さいときには、高水温制御用冷却水通路8及び蓄熱水通路13を含む蓄熱器12に何らかの異常が生じていると判るのである。これにより、始動時及び暖機中における蓄熱水循環経路や蓄熱器12の故障が診断できることとなり、ユーザへの警告等が実施できると共に、この場合には蓄熱水循環経路や蓄熱器12側への冷却水の流入を禁止することでフェイルセーフを達成することができる。
【0031】
〈実施例2〉
図7は本発明の実施の形態の第2実施例にかかる内燃機関用熱制御システムの故障診断装置で使用されているECU30による内燃機関の始動時及び暖機中の故障診断の処理手順を示すフローチャートである。なお、本実施例にかかる内燃機関用熱制御システムの故障診断装置の構成は上述の第1実施例における図1〜図3の概略図と同一であるためその詳細な説明を省略する。
【0032】
まず、この故障診断ルーチンに先立って上述の第1実施例と同様に実行されるECU30による内燃機関の停止時の蓄熱水温等検出の処理手順を図4に基づき、図8のタイムチャートを参照して説明する。なお、この内燃機関停止時における検出ルーチンは、図1〜図3に示す蓄熱水温センサ24を有し、蓄熱器12内に貯留されている蓄熱水の蓄熱水温を直接検出するシステムに対応し、所定時間毎にECU30にて繰返し実行される。
【0033】
図4において、ステップS101で、クランク角センサ23にて検出された機関回転数NEが予め設定された所定値α未満であるかが判定される。ステップS101の判定条件が成立、即ち、機関回転数NEがα未満と低いとき(図8参照)には内燃機関1が停止状態にあるとしてステップS102に移行し、このとき蓄熱水温センサ24にて検出される蓄熱水温が内燃機関停止時の蓄熱水温THWW0 (図8参照)としてECU30のRAM内の記憶領域に格納される。次にステップS103に移行して、この時刻が内燃機関停止時刻TT0 (図8に示す停止判定と同時の内燃機関停止時刻)としてECU30のRAM内の記憶領域に格納され、本ルーチンを終了する。一方、ステップS101の判定条件が成立せず、即ち、機関回転数NEがα以上と高いときには内燃機関1が運転状態にあるとして、何もすることなく本ルーチンを終了する。
【0034】
次に、図7の故障診断ルーチンについて、図8に示すタイムチャートを参照して説明する。本実施例の故障診断ルーチンは、図1〜図3に示す蓄熱水温センサ24を有し、蓄熱器12内に貯留されている蓄熱水の蓄熱水温を直接検出するシステムに対応し、所定時間毎にECU30にて繰返し実行される。
【0035】
図7において、ステップS301で、内燃機関1の始動後タイマが作動中であるかが判定される。ステップS301の判定条件が成立せず、即ち、始動後タイマが作動していないときにはステップS302に移行し、図示しないイグニッションスイッチのオン時刻をTT1 (図8に示す内燃機関始動時刻)としたのちステップS303に移行する。ステップS303では、ステップS302による内燃機関1の始動時刻TT1 から図4のステップS103で格納されている内燃機関1の停止時刻TT0 (図8に示す停止判定と同時の内燃機関停止時刻)が減算された内燃機関1の停止後経過時間が予め設定された所定値β以上であるかが判定される。ステップS303の判定条件が成立せず、即ち、内燃機関1の停止後経過時間(TT1 −TT0 )が所定値β未満と経過時間が少ないときには、ステップS304に移行する。
【0036】
ステップS304では、図示しないイグニッションスイッチがオン時に蓄熱水温センサ24にて検出される蓄熱器12内の蓄熱水の蓄熱水温がTHWW2 (図8参照)とされる。次にステップS305に移行して、図4のステップS102で格納されている内燃機関1の停止時の蓄熱水温THWW0 (図8参照)がステップS304による蓄熱水温THWW2 にて除算され、それがステップS302による内燃機関1の始動時刻TT1 から図4のステップS103による内燃機関1の停止時刻TT0 が減算された時間で更に除算されて求められた蓄熱水温下降率{(THWW0 /THWW2 )/(TT1 −TT0 )}が予め設定された所定値ζ以上であるかが判定される。ステップS305の判定条件が成立せず、即ち、蓄熱水温下降率{(THWW0 /THWW2 )/(TT1 −TT0 )}が所定値ζ未満と低いときにはステップS306に移行し、ステップS304による蓄熱水温THWW2 が所定値γ以上であるかが判定される。ステップS306の判定条件が成立、即ち、蓄熱水温THWW2 が所定値γ以上と高水温であるときにはステップS307に移行し、蓄熱による早期な暖機が可能であるとして始動前における冷却水温がTHW0 (図8参照)とされたのちステップS308に移行する。
【0037】
ステップS308では、内燃機関1の機関回転数NEが予め設定された所定値δ以上であるかが判定される。ステップS308の判定条件が成立、即ち、機関回転数NEが所定値δ以上と高いとき(図8に示す始動判定と同時の内燃機関始動時刻)にはステップS309に移行し、内燃機関1が始動されたとして始動後タイマが起動される。次にステップS310に移行して、始動後タイマ起動後、予め設定された所定時間T1 (図8参照)が経過しており、始動後タイマの終了時であるかが判定される。ステップS310の判定条件が成立、即ち、始動後タイマの終了時であるときにはステップS311に移行し、始動後タイマの終了時における冷却水温がTHW1 とされる。
【0038】
次に、ステップS312に移行して、ステップS311による始動後タイマの終了時における冷却水温THW1 からステップS306による始動前における冷却水温THW0 が減算され、それが始動後タイマの所定時間T1 で除算されて求められた冷却水温上昇率{(THW1 −THW0 )/T1 }が予め設定された所定値ε以上であるかが判定される。ステップS312の判定条件が成立せず、即ち、冷却水温上昇率{(THW1 −THW0 )/T1 }が所定値ε未満と小さいとき(図8に立ち上がりの破線にて示す異常時冷却水温参照)、またはステップS305の判定条件が成立、即ち、蓄熱水温下降率{(THWW0 /THWW2 )/(TT1 −TT0 )}が所定値ζ以上と大きいとき(図8に立ち下がりの太い破線にて示す異常時蓄熱水温参照)には蓄熱水循環経路としての高水温制御用冷却水通路8及び蓄熱水通路13を含む蓄熱器12に異常が生じているとしてステップS313に移行し、蓄熱水循環経路の異常が警告ランプの点灯等によりユーザへ警告される。次にステップS314に移行して、これ以降の始動時及び暖機中における蓄熱水循環経路を含む蓄熱器12側への冷却水の導入が禁止、即ち、吸気導入制御弁10を強制的に閉弁状態とすることで2温度切替弁6の弁位置が図3に示す右方向に保持され、低水温制御用冷却水通路7側のみへの冷却水の導入とされ、本ルーチンを終了する。
【0039】
一方、ステップS301の判定条件が成立、即ち、始動後タイマが作動中であるときには、何もすることなく本ルーチンを終了する。また、ステップS303の判定条件が成立、即ち、内燃機関1の停止後経過時間(TT1 −TT0 )が所定値β以上と経過時間を経ているとき、またはステップS306の判定条件が成立せず、即ち、蓄熱水温THWW2 が所定値γ未満と低水温であるときには蓄熱水が冷え過ぎているとしてステップS315に移行し、蓄熱器12による早期暖機ができないことがユーザへ報知されたのち本ルーチンを終了する。そして、ステップS308の判定条件が成立せず、即ち、機関回転数NEがδ未満と低くく内燃機関1が未だ始動されていないときには何もすることなく本ルーチンを終了する。更に、ステップS310の判定条件が成立せず、即ち、始動後タイマの終了時でないときには何もすることなく本ルーチンを終了する。また、ステップS312の判定条件が成立、即ち、冷却水温上昇率{(THW1 −THW0 )/T1 }が所定値ε以上と大きいとき(図8に立ち上がりの一点鎖線にて示す正常時冷却水温参照)には蓄熱器12等は正常に動作しているとしてそのまま本ルーチンを終了する。
【0040】
このように、本実施例の内燃機関用熱制御システムの故障診断装置は、内燃機関1の始動時には内燃機関1の冷却系統の冷却水のうち蓄熱器12に貯留された蓄熱水を優先的に内燃機関1内に循環する冷却水通路2,4、2温度切替弁6、高水温制御用冷却水通路8及び蓄熱水通路13等からなる蓄熱水循環手段と、蓄熱器12内の蓄熱水の蓄熱水温を検出する蓄熱水温センサ24からなる蓄熱水温検出手段と、内燃機関1の停止時における蓄熱水温THWW0 と停止時刻TT0 とを記憶するECU30にて達成される記憶手段と、前記記憶手段に記憶された前回の内燃機関1の停止時における蓄熱水温THWW0 と停止時刻からの停止後経過時間(TT1 −TT0 )と、内燃機関1の始動時に蓄熱水温センサ24で検出される蓄熱水温THWW2 とによる蓄熱水温下降率{(THWW0 /THWW2 )/(TT1 −TT0 )}が予め設定された所定値ζを上回っているときには、蓄熱器12の故障であると診断するECU30にて達成される故障診断手段とを具備するものである。
【0041】
したがって、内燃機関1の停止時、蓄熱水温センサ24にて検出される蓄熱器12内の蓄熱水の蓄熱水温THWW0 とその停止時刻TT0 と、内燃機関1の始動時(始動時刻TT1 )における停止後経過時間(TT1 −TT0 )及び蓄熱水温THWW2 とによる蓄熱水温下降率{(THWW0 /THWW2 )/(TT1 −TT0 )}が所定値ζより大きいときには、蓄熱器12に何らかの異常が生じていると判るのである。これにより、始動時及び暖機中における蓄熱器12の故障が診断できることとなり、ユーザへの警告等が実施できると共に、この場合には蓄熱器12側への冷却水の流入を禁止することでフェイルセーフを達成することができる。
【0042】
また、本実施例の内燃機関用熱制御システムの故障診断装置は、更に、内燃機関1内の冷却水の冷却水温THWを検出する水温センサ21からなる冷却水温検出手段を具備し、ECU30にて達成される故障診断手段は、内燃機関1の始動時に蓄熱水温センサ24で検出された蓄熱水温THWW2 が十分高いにもかかわらず、内燃機関1の暖機中に水温センサ21で検出される冷却水温による冷却水温上昇率{(THW1 −THW0 )/T1 }が予め設定された所定値εを下回っているときには、蓄熱水循環経路としての高水温制御用冷却水通路8及び蓄熱水通路13を含む蓄熱器12の故障であると診断するものである。つまり、内燃機関1の始動時における蓄熱水温THWW2 が十分高いのに、暖機中における冷却水温上昇率{(THW1 −THW0 )/T1 }が所定値εより小さいときには、高水温制御用冷却水通路8及び蓄熱水通路13を含む蓄熱器12に何らかの異常が生じていると判るのである。これにより、始動時及び暖機中における蓄熱水循環経路や蓄熱器12の故障が診断できることとなり、ユーザへの警告等が実施できると共に、この場合には蓄熱水循環経路や蓄熱器12側への冷却水の流入を禁止することでフェイルセーフを達成することができる。
【0043】
次に、本発明の実施の形態の第2実施例にかかる内燃機関用熱制御システムの故障診断装置で使用されているECU30による始動時及び暖機中の故障診断の処理手順の変形例を示す図9のフローチャートを参照して説明する。なお、この故障診断ルーチンは、図1〜図3に示す蓄熱水温センサ24を有し、蓄熱器12内に貯留されている蓄熱水の蓄熱水温を直接検出するシステムに対応し、所定時間毎にECU30にて繰返し実行される。
【0044】
図9において、ステップS401で、内燃機関1の始動後タイマが作動中であるかが判定される。ステップS401の判定条件が成立せず、即ち、始動後タイマが作動していないときにはステップS402に移行し、図示しないイグニッションスイッチのオン時に蓄熱水温センサ24にて検出される蓄熱器12内の蓄熱水温がTHWW3 とされる。次にステップS403に移行して、ステップS402による蓄熱水温THWW3 が予め設定された所定値γ以上であるかが判定される。ステップS403の判定条件が成立、即ち、蓄熱水温THWW3 が所定値γ以上と高水温であるときにはステップS404に移行し、内燃機関1の機関回転数NEが予め設定された所定値δ以上であるかが判定される。
【0045】
ステップS404の判定条件が成立、即ち、機関回転数NEが所定値δ以上と高いときにはステップS405に移行し、内燃機関1が始動されたとして始動後タイマが起動される。次にステップS406に移行して、始動後タイマ起動後、予め設定された所定時間T2 が経過しており、始動後タイマの終了時であるかが判定される。ステップS406の判定条件が成立、即ち、始動後タイマの終了時であるときにはステップS407に移行し、始動後タイマの終了時に蓄熱水温センサ24にて検出される蓄熱器12内の蓄熱水温がTHWW4 とされる。
【0046】
次にステップS408に移行して、ステップS407による始動後タイマの終了時における蓄熱水温THWW4 からステップS402による始動後タイマが作動されていないときの蓄熱水温THWW3 が減算され、それが始動後タイマの所定時間T2 で除算されて求められた蓄熱水温下降率{(THWW4 −THWW3 )/T2 }が予め設定された所定値η以上であるかが判定される。ステップS408の判定条件が成立せず、即ち、蓄熱水温下降率{(THWW4 −THWW3 )/T2 }が所定値η未満と小さいときには高水温制御用冷却水通路8及び蓄熱水通路13に異常が生じているとしてステップS409に移行し、蓄熱水循環経路の異常が警告ランプの点灯等によりユーザへ警告される。次に、ステップS410に移行して、これ以降の始動時及び暖機中における蓄熱水循環経路側への冷却水の導入が禁止、即ち、吸気導入制御弁10を強制的に閉弁状態とすることで2温度切替弁6の弁位置が図3に示す右方向に保持され、低水温制御用冷却水通路7側のみへの冷却水の導入とされ、本ルーチンを終了する。
【0047】
一方、ステップS401の判定条件が成立、即ち、始動後タイマが作動中であるとき、またはステップS403の判定条件が成立せず、即ち、蓄熱水温THWW3 が所定値γ未満と低水温であるとき、またはステップS404の判定条件が成立せず、即ち、内燃機関1の機関回転数NEが所定値δ未満と低くく内燃機関1が未だ始動されていないとき、またはステップS406の判定条件が成立せず、即ち、始動後タイマの終了時でないときには何もすることなく本ルーチンを終了する。また、ステップS408の判定条件が成立、即ち、蓄熱水温下降率{(THWW4 −THWW3 )/T2 }が所定値η以上と大きいときには蓄熱器12等が正常に動作しているとしてそのまま本ルーチンを終了する。
【0048】
このように、本実施例の内燃機関用熱制御システムの故障診断装置は、ECU30にて達成される故障診断手段が内燃機関1の暖機中に蓄熱水温センサ24で検出される蓄熱水温による蓄熱水温下降率{(THWW4 −THWW3 )/T2 }が予め設定された所定値ηを下回っているときには、蓄熱水循環経路としての高水温制御用冷却水通路8及び蓄熱水通路13の故障であると診断するものである。
【0049】
つまり、内燃機関1の暖機中における蓄熱水温下降率{(THWW4 −THWW3 )/T2 }が所定値ηより小さいときには、高水温制御用冷却水通路8及び蓄熱水通路13に何らかの異常が生じていると判るのである。これにより、暖機中における高水温制御用冷却水通路8及び蓄熱水通路13の故障が診断できることとなり、ユーザへの警告等が実施できると共に、この場合には高水温制御用冷却水通路8及び蓄熱水通路13側への冷却水の流入を禁止することでフェイルセーフを達成することができる。
【0050】
〈実施例3〉
図10は本発明の実施の形態の第3実施例にかかる内燃機関用熱制御システムの故障診断装置で使用されているECU30による内燃機関の冷却水温制御における故障診断の処理手順を示すフローチャートである。なお、本実施例にかかる内燃機関用熱制御システムの故障診断装置の構成は上述の第1実施例における図1〜図3の概略図で、蓄熱器12を省き高水温制御用冷却水通路8と蓄熱水通路13とを直接接続し、蓄熱水温センサ24を省いたものであるためその詳細な説明を省略する。
【0051】
図10の故障診断ルーチンに基づき、図11に示すタイムチャートを参照して説明する。なお、この故障診断ルーチンは所定時間毎にECU30にて繰返し実行される。
【0052】
図10において、まず、ステップS501では、本システムが故障中であることを示す故障判定フラグXTHWFが「0」で、現在、本システムが故障中でなくつまり、正常状態であるかが判定される。ステップS501の判定条件が成立、即ち、XTHWF=0で正常状態であるときにはステップS502に移行し、内燃機関1に配設されている水温センサ21にて検出された冷却水温THWが予め設定された所定値θ以上であるかが判定される。ステップS502の判定条件が成立、即ち、冷却水温THWが所定値θ以上と高水温であるときにはステップS503に移行し、内燃機関1における負荷として例えば、吸気圧センサ22にて検出された吸気圧PMが予め設定された所定値ι以上であるかが判定される。ステップS503の判定条件が成立、即ち、負荷が所定値ι以上と高負荷であるときにはステップS504に移行し、本システムが低水温による制御中であることを示す低水温制御中判定フラグXTHWLが「0」であるかが判定される。
【0053】
ステップS504の判定条件が成立、即ち、XTHWL=0で本システムが現在、低水温制御されていないときにはステップS505に移行し、低水温化タイマが起動される(図11に示す低水温化タイマ始動時刻)。次にステップS506に移行して、内燃機関1に対する低水温制御処理が実行される。この低水温制御とは、内燃機関1の冷却水温を低水温側に移行させ予め設定された低水温に保持することで高負荷時等におけるオイルの温度上昇を抑制しオイル劣化を防止しつつ異常摩耗等を回避させるものである。次にステップS507に移行して、低水温制御中判定フラグXTHWLが「1」にセットされる。一方、ステップS504の判定条件が成立せず、即ち、XTHWL=1で本システムが既に低水温制御されているときにはステップS505〜ステップS507がスキップされる。
【0054】
次に、ステップS508に移行して、ステップS505で起動された低水温化タイマが作動中であるかが判定される。ステップS508の判定条件が成立せず、即ち、低水温化タイマの終了時(図11に示す低水温化タイマ終了時刻)にはステップS509に移行し、冷却水温THWが予め設定された所定値κ以下であるかが判定される。ステップS509の判定条件が成立せず、即ち、冷却水温THWが所定値κを越えて高水温であるとき(図11に立ち下がりの二点鎖線にて示す異常時参照)にはステップS510に移行し、蓄熱水循環経路が故障しているとして警告ランプの点灯等によりユーザへ警告される。次に、ステップS511に移行して、本システムの故障判定フラグXTHWFが「1」にセットされ本ルーチンを終了する。
【0055】
なお、ステップS501の判定条件が成立せず、即ち、故障判定フラグXTHWFが「1」で、本システムが故障中であるとき、またはステップS508の判定条件が成立、即ち、低水温化タイマが未だ作動中であるとき、またはステップS509の判定条件が成立、即ち、冷却水温THWが所定値κ以下と既に低水温であるとき(図11に立ち下がりの実線にて示す正常時参照)には何もすることなく本ルーチンを終了する。
【0056】
一方、ステップS502の判定条件が成立せず、即ち、冷却水温THWが所定値θ未満と低水温であるとき、またはステップS503の判定条件が成立せず、即ち、内燃機関1の負荷が所定値ι未満と小さいときにはステップS512に移行し、本システムが高水温による制御中であることを示す高水温制御中判定フラグXTHWHが「0」であるかが判定される。
【0057】
ステップS512の判定条件が成立、即ち、XTHWH=0で本システムが現在、高水温制御されていないときにはステップS513に移行し、高水温化タイマが起動される(図11に示す高水温化タイマ始動時刻)。次にステップS514に移行して、内燃機関1に対する高水温制御処理が実行される。この高水温制御とは、内燃機関1の冷却水温を高水温側に移行させ保持することで摩擦による摩耗等を減少させ出力向上を図るものである。次にステップS515に移行して、高水温制御中判定フラグXTHWHが「1」にセットされる。一方、ステップS512の判定条件が成立せず、即ち、XTHWL=1で本システムが既に高水温制御されているときにはステップS513〜ステップS515がスキップされる。
【0058】
次に、ステップS516に移行して、ステップS513で起動された高水温化タイマが作動中であるかが判定される。ステップS516の判定条件が成立せず、即ち、高水温化タイマの終了時(図11に示す高水温化タイマ終了時刻)にはステップS517に移行し、冷却水温THWが予め設定された所定値λ以下であるかが判定される。ステップS517の判定条件が成立、即ち、冷却水温THWが所定値λ以下と低水温であるとき(図11に立ち上がりの二点鎖線にて示す異常時参照)にはステップS518に移行し、蓄熱水循環経路が故障しているとして警告ランプの点灯等によりユーザへ警告される。次にステップS519に移行して、この場合には高水温制御処理が実行できないため低水温制御処理として、吸気導入制御弁10が常開状態から常閉状態とされ吸気導入管9が閉塞状態とされる。これにより、2温度切替弁6の弁位置は低水温制御用冷却水通路7側に常時、開保持され冷却水温THWが低水温側に戻されるようフェイルセーフ処理が実行される(図11参照)。次にステップS520に移行して、本システムの故障判定フラグXTHWFが「1」にセットされ本ルーチンを終了する。
【0059】
なお、ステップS516の判定条件が成立、即ち、高水温化タイマが未だ作動中であるとき、またはステップS517の判定条件が成立せず、即ち、冷却水温THWが所定値λを越えて高水温であるとき(図11に立ち上がりの実線にて示す正常時参照)には何もすることなく本ルーチンを終了する。
【0060】
このように、本実施例の内燃機関用熱制御システムの故障診断装置は、内燃機関1内の冷却水の冷却水温THWを検出する水温センサ21からなる冷却水温検出手段と、内燃機関1の運転状態における負荷としての吸気圧センサ22で検出される吸気圧PMに応じて、ラジエータ3に導入する冷却水量を増減し、冷却水温を低負荷時には高水温、高負荷時には低水温に制御する冷却水通路2,4、2温度切替弁6、低水温制御用冷却水通路7、高水温制御用冷却水通路8、吸気導入管9、サーモスタット11等にて達成される冷却水温制御手段と、低負荷時の冷却水温が予め設定された所定の高水温に達しないとき、または高負荷時の冷却水温が予め設定された所定の低水温に達しないときには前記冷却水温制御手段の故障であると診断するECU30にて達成される故障診断手段とを具備するものである。
【0061】
したがって、内燃機関1の運転状態における吸気圧PMに応じて、冷却水温制御手段を達成する冷却水通路2,4、2温度切替弁6、低水温制御用冷却水通路7、高水温制御用冷却水通路8、吸気導入管9、サーモスタット11等によってラジエータ3に導入される冷却水量が増減され、冷却水温が低負荷時には高水温、高負荷時には低水温に制御される。ここで、冷却水温が低負荷時に所定の高水温、または高負荷時に所定の低水温に達しないときには故障診断手段を達成するECU30で冷却水温制御手段に何らかの異常が生じていると判るのである。これにより、冷却水通路2,4、2温度切替弁6、低水温制御用冷却水通路7、高水温制御用冷却水通路8、吸気導入管9、サーモスタット11等の故障が適切に診断できることとなる。
【0062】
また、本実施例の内燃機関用熱制御システムの故障診断装置は、ECU30にて達成される故障診断手段が冷却水通路2,4、2温度切替弁6、低水温制御用冷却水通路7、高水温制御用冷却水通路8、吸気導入管9、サーモスタット11等にて達成される冷却水温制御手段の故障であると診断したときには、その旨をユーザへ警告すると共に、冷却水温が低水温側となるように制御するものである。つまり、冷却水通路2,4、2温度切替弁6、低水温制御用冷却水通路7、高水温制御用冷却水通路8、吸気導入管9、サーモスタット11等の異常であると判定されたときには、ユーザへの警告等が実施されると共に、吸気導入管9を吸気導入制御弁10にて閉塞させ、2温度切替弁6から低水温制御用冷却水通路7側に連通させサーモスタット11を作動させ復路の冷却水通路4を通過状態とすることで冷却水温が低水温側となるように制御するものである。このため、高水温制御用冷却水通路8及び蓄熱水通路13側への冷却水の流入が禁止され、これ以降では冷却水の大部分がラジエータ3側に導入される低水温制御とされフェイルセーフを達成することができる。
【0063】
ところで、内燃機関1の暖機中における冷却水の冷却水温が所定時間内に予め設定された冷却水温以上に上昇しないときには、蓄熱水循環経路を含む蓄熱器12の故障であると診断するようにしてもよい。
【0064】
また、低水温制御時、内燃機関1の冷却水温が所定時間で所定の下降率未満であるとき、または高水温制御時、内燃機関1の冷却水温が所定時間で所定の上昇率未満であるときには本システムの故障と診断するようにしてもよい。
【図面の簡単な説明】
【図1】 図1は本発明の実施の形態の第1実施例乃至第3実施例にかかる内燃機関用熱制御システムの故障診断装置における内燃機関の始動時及び暖機中の冷却水の流れを示す概略図である。
【図2】 図2は本発明の実施の形態の第1実施例乃至第3実施例にかかる内燃機関用熱制御システムの故障診断装置における内燃機関の高水温制御時の冷却水の流れを示す概略図である。
【図3】 図3は本発明の実施の形態の第1実施例乃至第3実施例にかかる内燃機関用熱制御システムの故障診断装置における内燃機関の低水温制御時の冷却水の流れを示す概略図である。
【図4】 図4は本発明の実施の形態の第1実施例及び第2実施例にかかる内燃機関用熱制御システムの故障診断装置で使用されているECUによる内燃機関停止時の蓄熱水温等検出の処理手順を示すフローチャートである。
【図5】 図5は本発明の実施の形態の第1実施例にかかる内燃機関用熱制御システムの故障診断装置で使用されているECUによる内燃機関の始動時及び暖機中の故障診断の処理手順を示すフローチャートである。
【図6】 図6は図5の処理に対応する冷却水温及び蓄熱水温の遷移状態を示すタイムチャートである。
【図7】 図7は本発明の実施の形態の第2実施例にかかる内燃機関用熱制御システムの故障診断装置で使用されているECUによる内燃機関始動時及び暖機中の故障診断の処理手順を示すフローチャートである。
【図8】 図8は図7の処理に対応する冷却水温及び蓄熱水温の遷移状態を示すタイムチャートである。
【図9】 図9は本発明の実施の形態の第2実施例にかかる内燃機関用熱制御システムの故障診断装置で使用されているECUによる内燃機関の始動時及び暖機中の故障診断の処理手順の変形例を示すフローチャートである。
【図10】 図10は本発明の実施の形態の第3実施例にかかる内燃機関用熱制御システムの故障診断装置で使用されているECUによる内燃機関の冷却水温制御における故障診断の処理手順を示すフローチャートである。
【図11】 図11は図10の処理に対応する冷却水温の遷移状態を示すタイムチャートである。
【符号の説明】
1 内燃機関
3 ラジエータ
6 2温度切替弁
11 サーモスタット
12 蓄熱器
21 水温センサ
22 吸気圧センサ
23 クランク角センサ
24 蓄熱水温センサ
30 ECU(電子制御ユニット)
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a failure diagnosis device for a thermal control system for an internal combustion engine that can store a predetermined amount of cooling water when the internal combustion engine is stopped as heat storage water and circulates the heat storage water at the time of start-up to enable early warm-up. is there. The present invention also relates to a failure diagnosis device for a thermal control system for an internal combustion engine that can control the cooling water temperature to a high water temperature or a low water temperature according to the load in the operating state of the internal combustion engine.
[0002]
[Prior art]
Conventionally, when starting an internal combustion engine, heat for the internal combustion engine that can achieve early warm-up by preferentially circulating the heat storage water stored in the regenerator among the cooling water of the internal combustion engine into the internal combustion engine. Control systems are known. In addition, when the vehicle is running, the amount of cooling water introduced into the radiator is increased or decreased according to the load in the operating state of the internal combustion engine, the temperature of the cooling water is increased to reduce the friction when the load is low, and the temperature is decreased when the load is high. There is also known an internal combustion engine thermal control system that can prevent knocking, suppress oil deterioration, and suppress abnormal wear.
[0003]
[Problems to be solved by the invention]
By the way, when an abnormality occurs in the heat control system for an internal combustion engine as described above, there is no one that can diagnose a failure of a single water temperature sensor but a failure of a heat storage device, a heat storage water circulation path, or the like.
[0004]
Accordingly, the present invention has been made to solve such a problem, and an object thereof is to provide a failure diagnosis apparatus for a thermal control system for an internal combustion engine that can diagnose the occurrence of an abnormality due to a failure of a heat storage device, a heat storage water circulation path, or the like. .
[0005]
[Means for Solving the Problems]
According to the failure diagnosis apparatus for a thermal control system for an internal combustion engine according to claim 1, when the internal combustion engine is stopped, the heat storage water in the regenerator is determined from the cooling water temperature in the internal combustion engine detected by the cooling water temperature detecting means. The heat storage water temperature is estimated, and the heat storage water temperature at that time is estimated by the heat storage water temperature estimation means from the heat storage water temperature, its stop time, and the elapsed time at the start of the internal combustion engine. When the estimated heat storage water temperature is sufficiently high, but the rate of increase in the cooling water temperature during warm-up is smaller than a predetermined value, it is diagnosed by the fault diagnosis means that some abnormality has occurred in the heat storage unit including the heat storage water circulation path. It is done. This makes it possible to diagnose failures of the heat storage water circulation path and the heat accumulator during start-up and during warm-up, so that warnings to the user can be implemented, and in this case the inflow of cooling water to the heat storage water circulation path or the heat accumulator side The effect that fail safe can be achieved by being prohibited is obtained.
[0006]
According to the failure diagnosis apparatus for a thermal control system for an internal combustion engine according to claim 2, when the internal combustion engine is stopped, the heat storage water temperature in the heat storage water detected by the heat storage water temperature detecting means and its stop time, the internal combustion engine When the rate of decrease in the heat storage water temperature due to the elapsed time and the heat storage water temperature at the time of starting is greater than a predetermined value, it is diagnosed that some abnormality has occurred in the heat accumulator by the failure diagnosis means. As a result, failure of the regenerator during start-up and warm-up can be diagnosed, and warnings to the user can be implemented. In this case, the inflow of cooling water to the regenerator side is prohibited, thereby fail-safe. Can be achieved.
[0007]
Also internal combustion engineWhen the heat storage water temperature at the start of the engine is sufficiently high, but the rate of increase in the cooling water temperature during warm-up is smaller than the predetermined value, it is diagnosed that some abnormality has occurred in the heat accumulator including the heat storage water circulation path by the failure diagnosis means It is done. This makes it possible to diagnose failures of the heat storage water circulation path and the heat accumulator during start-up and during warm-up, so that warnings to the user and the like can be implemented. The effect that fail safe can be achieved by being prohibited is obtained.
[0008]
According to the failure diagnosis apparatus for a thermal control system for an internal combustion engine according to claim 3, when the internal combustion engine is stopped, the heat storage water temperature in the heat storage water detected by the heat storage water temperature detecting means and its stop time, the internal combustion engine When the rate of decrease in the heat storage water temperature due to the elapsed time and the heat storage water temperature at the time of starting is greater than a predetermined value, it is diagnosed that some abnormality has occurred in the heat accumulator by the failure diagnosis means. As a result, failure of the regenerator during start-up and warm-up can be diagnosed, and warnings to the user can be implemented. In this case, the inflow of cooling water to the regenerator side is prohibited, thereby fail-safe. Can be achieved.
Also internal combustion engineWhen the rate of decrease in the heat storage water temperature during the warm-up is smaller than a predetermined value, the failure diagnosis means diagnoses that some abnormality has occurred in the heat storage water circulation path. As a result, failure of the heat storage water circulation path during warm-up can be diagnosed, and a warning can be given to the user.In this case, inflow of cooling water to the heat storage water circulation path side is prohibited, thereby failsafe. The effect that it can be achieved is obtained.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples.
[0012]
<Example 1>
1, FIG. 2 and FIG. 3 are schematic views showing the overall configuration of a failure diagnosis apparatus for a thermal control system for an internal combustion engine according to a first example of an embodiment of the present invention. Here, FIG. 1 is when the internal combustion engine is started and warming up, FIG. 2 is during high water temperature control of the internal combustion engine (low load due to general running), and FIG. 3 is during low water temperature control of the internal combustion engine (high load). The control state in is shown.
[0013]
In FIG. 1, FIG. 2 and FIG. 3, between the internal combustion engine (engine) 1 and the radiator 3, a cooling water passage 2 as a forward path for circulating cooling water and a cooling water passage 4 as a return path are connected. ing. Among these, a bypass passage 5 is connected in the middle of the outgoing coolant passage 2, and a downstream side of the bypass passage 5 is connected to an inlet 6 a of the two-temperature switching valve 6. A cooling water passage 7 for low water temperature control and a cooling water passage 8 for high water temperature control are connected to the outlets 6b and 6c of the two temperature switching valve 6, respectively, and are branched into two. An internal combustion engine that is introduced from the intake air introduction pipe 9 through a normally open intake air introduction control valve 10 that is disposed in the middle of the intake air introduction pipe 9 is connected to the two temperature switching valve 6. When the valve position is switched by the intake air pressure PM of 1, the cooling water from the bypass passage 5 becomes the low water temperature control cooling water passage 7 (see FIG. 3) or the high water temperature control cooling water passage 8 (see FIGS. 1 and 2). ) Is introduced into one of the passages.
[0014]
Further, a thermostat 11 is provided in the middle of the cooling water passage 4 on the return path, and the cooling water that has passed through the radiator 3 and has been cooled is introduced into the inlet 11a along with the operation of the thermostat 11 (see FIGS. 2 and 3). To the outlet 11b. Furthermore, the downstream side of the low water temperature control cooling water passage 7 is connected to the inlet 11 c of the thermostat 11. For this reason, the cooling water passage 7 for low water temperature control is connected to the cooling water passage 4 in the return path via the thermostat 11. A heat accumulator 12 is provided downstream of the high water temperature control cooling water passage 8. A heat storage water passage 13 is connected to the downstream side of the heat accumulator 12, and this heat storage water passage 13 joins with the cooling water passage 9 of the return path on the downstream side and is connected to the return side of the internal combustion engine 1. Further, a bypass passage 14 is connected in the middle of the high water temperature control cooling water passage 8, and a downstream side of the bypass passage 14 is connected to an inlet 11 d of the thermostat 11.
[0015]
The internal combustion engine 1 includes a water temperature sensor 21 that detects a cooling water temperature THW of cooling water, an intake pressure sensor 22 that detects an intake pressure PM in an intake passage (not shown), and an engine speed NE based on the rotation of a crankshaft (not shown). A crank angle sensor 23 is disposed. In the present embodiment, the heat storage water temperature in the heat storage device 12 is obtained by estimation as will be described later, and therefore the heat storage water temperature sensor 24 is unnecessary.
[0016]
Output signals from the water temperature sensor 21, the intake pressure sensor 22 and the crank angle sensor 23 are input to an ECU (Electronic Control Unit) 30. In a system that requires the heat storage water temperature sensor 24, the output signal is also input to the ECU 30. The ECU 30 is a logical operation circuit including a CPU as a known central processing unit, a ROM storing a control program, a RAM storing various data, a B / U (backup) RAM, an input / output circuit, a bus line connecting them, and the like. It is configured as. When this system fails, as a fail-safe process by the ECU 30, the normally-intake intake control valve 10 is forcibly closed so that the intake intake pipe 9 is closed and the two temperature switching valve 6 is closed. The valve position is held on the low water temperature control side (see FIG. 3).
[0017]
Next, the flow of cooling water in the cooling system of the internal combustion engine 1 in the internal combustion engine thermal control system of the present embodiment will be described with reference to FIGS. 1, 2, and 3.
[0018]
First, the flow of the cooling water when the internal combustion engine 1 shown in FIG. 1 is started and during warm-up will be described. During start-up and warm-up of the internal combustion engine 1, intake air pressure (a negative pressure with a small absolute pressure) generated in the internal combustion engine 1 is introduced into the two-temperature switching valve 6 through the intake air introduction pipe 9. The valve position of the temperature switching valve 6 overcomes the biasing force of a spring (not shown) and is moved and held in the left direction as shown. At this time, if the cooling water temperature around the thermostat 11 is low, the valve position of the thermostat 11 is moved and held at the left end as shown in the figure, so that the return cooling water passage 4 from the radiator 3 is closed. For this reason, all the cooling water from the internal combustion engine 1 is introduced from the cooling water passage 2 to the bypass passage 5 side. Then, the cooling water from the bypass passage 5 enters the two temperature switching valve 6 through the introduction port 6a and is introduced from the outlet port 6c side to the high water temperature control cooling water passage 8 side by the valve position moved and held in the left direction. Is done. Although the cooling water introduced to the high water temperature control cooling water passage 8 side also flows somewhat to the bypass passage 14 side, most of it flows to the heat accumulator 12 side. At this time, if the heat storage water having a high water temperature is stored in the heat storage device 12, the heat storage water is pushed out to the heat storage water passage 13 side by the cooling water introduced into the heat storage device 12 and preferentially in the internal combustion engine 1. Therefore, the internal combustion engine 1 is warmed up early by the heat storage water.
[0019]
Next, the flow of the cooling water during high water temperature control of the internal combustion engine 1 shown in FIG. At the time of high water temperature control of the internal combustion engine 1 (low load due to general running), the intake pressure (negative pressure with a small absolute pressure) generated in the internal combustion engine 1 is introduced into the two-temperature switching valve 6 through the intake pipe 9. As a result, the valve position of the two-temperature switching valve 6 is moved and held in the left direction as shown in the figure as in the start-up and during warm-up. Further, the valve position of the thermostat 11 is moved to the intermediate position as shown by the cooling water temperature of the cooling water in the bypass passage 14. For this reason, the cooling water from the internal combustion engine 1 also flows somewhat from the forward cooling water passage 2 to the radiator 3 side, but most of it flows to the bypass passage 5 side. Therefore, a small amount of cooling water that has passed through the radiator 3 is cooled, but most of the cooling water from the bypass passage 5 flows toward the heat accumulator 12. For this reason, the heat storage water temperature of the heat storage water in the heat accumulator 12 is always a high water temperature. Then, the heat storage water from the heat accumulator 12 passes through the heat storage water passage 13, is merged with the cooling water from the cooling water passage 4 side of the return path that has passed through the thermostat 11, and is then introduced into the internal combustion engine 1. The engine 1 is controlled at a high water temperature.
[0020]
Next, the flow of cooling water during low water temperature control (high load) of the internal combustion engine 1 shown in FIG. 3 will be described. At the time of low water temperature control (high load) of the internal combustion engine 1, the intake pressure (negative pressure with a large absolute pressure) generated in the internal combustion engine 1 is introduced into the two-temperature switching valve 6 through the intake introduction pipe 9. Thus, the valve position of the two-temperature switching valve 6 is moved and held in the right direction as shown by the biasing force of a spring (not shown). Further, the valve position of the thermostat 11 is moved and held at the right end as shown in the figure by the cooling water temperature of the cooling water passage 7 for low water temperature control, so that the inlet 11d on the bypass passage 14 side of the thermostat 11 is closed. The For this reason, the cooling water from the internal combustion engine 1 slightly flows from the forward cooling water passage 2 to the bypass passage 5 side, but most of it flows to the radiator 3 side. At this time, all of the cooling water that has passed through the bypass passage 5 is introduced to the low water temperature control cooling water passage 7 side by the two temperature switching valve 6, so that the high water temperature control cooling water passage 8 side, that is, the direction of the regenerator 12. Does not flow. And the valve position of the thermostat 11 is also hold | maintained at the right end by the thermostat 11 circumference | surroundings being hold | maintained by the cooling water introduce | transduced to the cooling water channel | path 7 side for the low water temperature control at high water temperature. For this reason, the cooling water from the radiator 3 is introduced into the thermostat 11 from the introduction port 11 a through the cooling water passage 4 in the return path, merged with the cooling water from the introduction port 11 c of the thermostat 11, and then introduced into the thermostat 11. The internal combustion engine 1 is controlled at a low water temperature by being introduced into the internal combustion engine 1 from the outlet 11b through the cooling water passage 4 of the return path.
[0021]
Next, FIG. 4 shows a processing procedure for detecting the heat storage water temperature or the like when the internal combustion engine is stopped by the ECU 30 used in the failure diagnosis apparatus for the internal combustion engine thermal control system according to the first example of the embodiment of the invention. This will be described with reference to the time chart of FIG. 6 based on the flowchart. The detection routine when the internal combustion engine is stopped is repeatedly executed by the ECU 30 every predetermined time.
[0022]
In FIG. 4, in step S101, it is determined whether the engine speed NE detected by the crank angle sensor 23 is less than a preset predetermined value α. When the determination condition of step S101 is satisfied, that is, when the engine speed NE is low and less than α (see FIG. 6), the process proceeds to step S102 assuming that the internal combustion engine 1 is stopped, and at this time the internal combustion engine 1 is stopped. The heat storage water temperature in the regenerator 12 is estimated based on the cooling water temperature from the water temperature sensor 21 disposed in the internal combustion engine 1 because the system does not have the heat storage water temperature sensor 24 shown in FIGS. Then, it is stored as a heat storage water temperature THWW0 (see FIG. 6) in a storage area in the RAM of the ECU 30. Next, the routine proceeds to step S103, where this time is stored in the storage area in the RAM of the ECU 30 as the internal combustion engine stop time TT0 (the internal combustion engine stop time simultaneously with the stop determination shown in FIG. 6), and this routine is finished. On the other hand, when the determination condition of step S101 is not satisfied, that is, when the engine speed NE is high as α or more, it is determined that the internal combustion engine 1 is in an operating state, and this routine is terminated without doing anything.
[0023]
Next, a processing procedure for failure diagnosis during start-up and warm-up of the internal combustion engine by the ECU 30 used in the failure diagnosis apparatus for the internal combustion engine thermal control system according to the first example of the embodiment of the present invention will be described. Based on the flowchart of FIG. 5, it demonstrates with reference to the time chart of FIG. This failure diagnosis routine corresponds to a system that does not have the heat storage water temperature sensor 24 shown in FIGS. 1 to 3 and is repeatedly executed by the ECU 30 at predetermined time intervals.
[0024]
In FIG. 5, it is determined in step S201 whether the timer after starting the internal combustion engine 1 is operating. If the determination condition of step S201 is not satisfied, that is, if the timer after starting is not operating, the routine proceeds to step S202, where the ON time of an ignition switch (not shown) is set to TT1 (internal combustion engine start time shown in FIG. 6). The process proceeds to S203. In step S203, the stop time TT0 of the internal combustion engine 1 stored in step S103 of FIG. 4 (the internal combustion engine stop time simultaneously with the stop determination shown in FIG. 6) is subtracted from the start time TT1 of the internal combustion engine 1 in step S202. It is determined whether the elapsed time after the internal combustion engine 1 has stopped is equal to or greater than a predetermined value β set in advance. When the determination condition of step S203 is not satisfied, that is, when the elapsed time after the stop (TT1−TT0) of the internal combustion engine 1 is less than the predetermined value β, the process proceeds to step S204.
[0025]
In step S204, the heat storage water temperature in the heat accumulator 12 when the ignition switch is on is estimated from the cooling water temperature when the internal combustion engine 1 is stopped and the elapsed time after the internal combustion engine 1 is stopped, and the estimated heat storage water temperature THWW1 (see FIG. 6) is obtained. The Next, the process proceeds to step S205, where it is determined whether the estimated heat storage water temperature THWW1 estimated in step S204 is equal to or higher than a predetermined value γ. When the determination condition of step S205 is satisfied, that is, when the estimated heat storage water temperature THWW1 is a high water temperature that is equal to or higher than the predetermined value γ, the process proceeds to step S206, and the cooling water temperature before starting is determined as THW0 ( After that, the process proceeds to step S207.
[0026]
In step S207, it is determined whether the engine speed NE of the internal combustion engine 1 is equal to or greater than a predetermined value δ. When the determination condition of step S207 is satisfied, that is, when the engine speed NE is as high as the predetermined value δ or more (internal combustion engine start time at the same time as the start determination shown in FIG. 6), the routine proceeds to step S208 and the internal combustion engine 1 is started. As a result, the timer is started after starting. In step S209, a predetermined time T1 (see FIG. 6) elapses after the start-up timer is started, and it is determined whether the post-start timer is over. When the determination condition of step S209 is satisfied, that is, when the timer after starting has ended, the routine proceeds to step S210, and the coolant temperature at the end of the timer after starting is set to THW1.
[0027]
Next, the process proceeds to step S211, where the cooling water temperature THW0 before starting in step S206 is subtracted from the cooling water temperature THW1 at the end of the starting timer in step S210, and is divided by the predetermined time T1 of the post-starting timer. It is determined whether or not the obtained cooling water temperature increase rate {(THW1−THW0) / T1} is equal to or greater than a predetermined value ε set in advance. When the determination condition of step S211 is not satisfied, that is, when the cooling water temperature increase rate {(THW1-THW0) / T1} is smaller than a predetermined value ε (see the abnormal time cooling water temperature shown by the rising broken line in FIG. 6). Moves to step S212 because an abnormality has occurred in the heat storage unit 12 including the high water temperature control cooling water passage 8 and the heat storage water passage 13 as the heat storage water circulation path, and an abnormality in the heat storage unit 12 including the heat storage water circulation path is indicated by a warning lamp. The user is warned by lighting up. Next, the process proceeds to step S213, where the introduction of the cooling water to the regenerator 12 side including the regenerator water circulation path during the subsequent start-up and warm-up is prohibited, that is, the intake introduction control valve 10 is forcibly closed. By setting the state, the valve position of the two-temperature switching valve 6 is held in the right direction shown in FIG. 3, and the cooling water is introduced only into the low water temperature control cooling water passage 7 side, and this routine is finished.
[0028]
On the other hand, when the determination condition of step S201 is satisfied, that is, when the timer after starting is operating, this routine is finished without doing anything. Further, the determination condition of step S203 is satisfied, that is, when the elapsed time (TT1−TT0) after the stop of the internal combustion engine 1 has exceeded the predetermined value β or the determination condition of step S205 is not satisfied, that is, When the estimated heat storage water temperature THWW1 is less than the predetermined value γ and the water temperature is low, it is determined that the heat storage water is too cold and the process proceeds to step S214. finish. When the determination condition in step S207 is not satisfied, that is, when the engine speed NE is low and less than δ and the internal combustion engine 1 has not yet been started, this routine is terminated without doing anything. Further, if the determination condition in step S209 is not satisfied, that is, it is not at the end of the timer after starting, this routine is terminated without doing anything. Further, when the determination condition of step S211 is satisfied, that is, when the cooling water temperature increase rate {(THW1-THW0) / T1} is larger than a predetermined value ε (see the normal cooling water temperature indicated by a one-dot chain line in FIG. 6). In this case, it is assumed that the heat accumulator 12 and the like are operating normally, and this routine is terminated.
[0029]
As described above, the failure diagnosis apparatus for the internal combustion engine thermal control system according to the present embodiment gives priority to the heat storage water stored in the heat accumulator 12 among the cooling water of the cooling system of the internal combustion engine 1 when the internal combustion engine 1 is started. The heat storage water circulation means comprising the cooling water passages 2, 4, 2, the temperature switching valve 6, the high water temperature control cooling water passage 8, the heat storage water passage 13, etc. circulating in the internal combustion engine 1; A cooling water temperature detection means comprising a water temperature sensor 21 for detecting the cooling water temperature THW, and an ECU 30 for storing the heat storage water temperature THWW0 of the heat storage water in the heat accumulator 12 estimated from the cooling water temperature THW when the internal combustion engine 1 is stopped and the stop time TT0. And the storage temperature THWW0 estimated at the time of the previous stop of the internal combustion engine 1 stored in the storage means and the post-stop elapsed time from the stop time TT0 to the start time TT1 (T T1 -TT0), the heat storage water temperature estimation means achieved by the ECU 30 for estimating the heat storage water temperature THWW1 in the heat storage device 12 at the start of the internal combustion engine 1, and the heat storage water temperature estimated by the heat storage water temperature estimation means When the cooling water temperature rise rate {(THW1−THW0) / T1} during warm-up of the internal combustion engine 1 is below a predetermined value ε even though THWW1 is sufficiently high, And a failure diagnosis means that is achieved by the ECU 30 that diagnoses a failure of the heat accumulator 12 including the water temperature control cooling water passage 8, the heat storage water passage 13, and the like.
[0030]
Accordingly, when the internal combustion engine 1 is stopped, the heat storage water temperature THWW0 in the heat storage water 12 is estimated from the cooling water temperature THW in the internal combustion engine 1 detected by the water temperature sensor 21, and this heat storage water temperature THWW0 and From the stop time TT0 and the post-stop elapsed time (TT1-TT0) at the start of the internal combustion engine 1 (start time TT1), the heat storage water temperature THWW1 at that time is estimated. When the estimated heat storage water temperature THWW1 is sufficiently high but the cooling water temperature increase rate {(THW1-THW0) / T1} during warm-up is smaller than a predetermined value ε, the high water temperature control cooling water passage 8 and the heat storage water passage It can be seen that some abnormality has occurred in the regenerator 12 including 13. As a result, failure of the heat storage water circulation path and the heat storage unit 12 during start-up and warm-up can be diagnosed, and a warning to the user can be performed. In this case, the cooling water to the heat storage water circulation path or the heat storage unit 12 side Fail-safety can be achieved by prohibiting inflow.
[0031]
<Example 2>
FIG. 7 shows a processing procedure for failure diagnosis during start-up and warm-up of the internal combustion engine by the ECU 30 used in the failure diagnosis device for the internal combustion engine thermal control system according to the second example of the embodiment of the present invention. It is a flowchart. In addition, since the structure of the failure diagnosis apparatus of the thermal control system for internal combustion engines concerning a present Example is the same as the schematic diagram of FIGS. 1-3 in the above-mentioned 1st Example, the detailed description is abbreviate | omitted.
[0032]
First, prior to this failure diagnosis routine, the processing procedure for detecting the heat storage water temperature and the like when the internal combustion engine is stopped by the ECU 30 executed in the same manner as in the first embodiment is described with reference to FIG. 4 and the time chart of FIG. I will explain. The detection routine when the internal combustion engine is stopped corresponds to a system having the heat storage water temperature sensor 24 shown in FIGS. 1 to 3 and directly detecting the heat storage water temperature of the heat storage water stored in the heat accumulator 12. It is repeatedly executed by the ECU 30 every predetermined time.
[0033]
In FIG. 4, in step S101, it is determined whether the engine speed NE detected by the crank angle sensor 23 is less than a preset predetermined value α. When the determination condition of step S101 is satisfied, that is, when the engine speed NE is low and less than α (see FIG. 8), the process proceeds to step S102 assuming that the internal combustion engine 1 is stopped. At this time, the heat storage water temperature sensor 24 The detected heat storage water temperature is stored in the storage area in the RAM of the ECU 30 as the heat storage water temperature THWW0 (see FIG. 8) when the internal combustion engine is stopped. Next, the routine proceeds to step S103, where this time is stored in the storage area in the RAM of the ECU 30 as the internal combustion engine stop time TT0 (the internal combustion engine stop time at the same time as the stop determination shown in FIG. 8), and this routine ends. On the other hand, when the determination condition of step S101 is not satisfied, that is, when the engine speed NE is high as α or more, it is determined that the internal combustion engine 1 is in an operating state, and this routine is terminated without doing anything.
[0034]
Next, the failure diagnosis routine of FIG. 7 will be described with reference to the time chart shown in FIG. The failure diagnosis routine of the present embodiment has a heat storage water temperature sensor 24 shown in FIGS. 1 to 3 and corresponds to a system that directly detects the heat storage water temperature stored in the heat accumulator 12 at predetermined time intervals. It is repeatedly executed by the ECU 30.
[0035]
In FIG. 7, it is determined in step S301 whether the timer after starting of the internal combustion engine 1 is operating. If the determination condition of step S301 is not satisfied, that is, if the timer after starting is not operated, the routine proceeds to step S302, where the ON time of an ignition switch (not shown) is set to TT1 (internal combustion engine start time shown in FIG. 8). The process proceeds to S303. In step S303, the stop time TT0 of the internal combustion engine 1 stored in step S103 of FIG. 4 (the internal combustion engine stop time simultaneously with the stop determination shown in FIG. 8) is subtracted from the start time TT1 of the internal combustion engine 1 in step S302. It is determined whether the elapsed time after the internal combustion engine 1 has stopped is equal to or greater than a predetermined value β set in advance. When the determination condition of step S303 is not satisfied, that is, when the elapsed time after the stop (TT1-TT0) of the internal combustion engine 1 is less than the predetermined value β, the process proceeds to step S304.
[0036]
In step S304, the heat storage water temperature in the heat accumulator 12 detected by the heat storage water temperature sensor 24 when an ignition switch (not shown) is turned on is set to THWW2 (see FIG. 8). Next, the process proceeds to step S305, where the heat storage water temperature THWW0 (see FIG. 8) stored in step S102 of FIG. 4 when the internal combustion engine 1 is stopped is divided by the heat storage water temperature THWW2 of step S304. 4 is obtained by further dividing by the time obtained by subtracting the stop time TT0 of the internal combustion engine 1 in step S103 of FIG. 4 from the start time TT1 of the internal combustion engine 1 by {circumflex over (THWW0 / THWW2) / (TT1−TT0]. )} Is greater than or equal to a predetermined value ζ set in advance. When the determination condition of step S305 is not satisfied, that is, when the heat storage water temperature decrease rate {(THWW0 / THWW2) / (TT1-TT0)} is lower than a predetermined value ζ, the process proceeds to step S306, and the heat storage water temperature THWW2 in step S304 is It is determined whether the value is equal to or greater than a predetermined value γ. When the determination condition of step S306 is satisfied, that is, when the heat storage water temperature THWW2 is higher than the predetermined value γ, the process proceeds to step S307, and the cooling water temperature before starting is determined as THW0 (Fig. 8), the process proceeds to step S308.
[0037]
In step S308, it is determined whether the engine speed NE of the internal combustion engine 1 is equal to or greater than a predetermined value δ. When the determination condition in step S308 is satisfied, that is, when the engine speed NE is as high as the predetermined value δ or more (internal combustion engine start time at the same time as the start determination shown in FIG. 8), the process proceeds to step S309 and the internal combustion engine 1 is started. As a result, the timer is started after starting. In step S310, a predetermined time T1 (see FIG. 8) has elapsed since the start of the timer after starting, and it is determined whether the timer after starting has ended. When the determination condition in step S310 is satisfied, that is, when the timer after starting is ended, the process proceeds to step S311 and the coolant temperature at the end of the timer after starting is set to THW1.
[0038]
Next, the process proceeds to step S312, and the cooling water temperature THW0 before starting in step S306 is subtracted from the cooling water temperature THW1 at the end of the starting timer in step S311 and divided by the predetermined time T1 of the post-starting timer. It is determined whether or not the obtained cooling water temperature increase rate {(THW1−THW0) / T1} is equal to or greater than a predetermined value ε set in advance. When the determination condition of step S312 is not satisfied, that is, when the cooling water temperature increase rate {(THW1−THW0) / T1} is smaller than a predetermined value ε (see the abnormal time cooling water temperature shown by the rising broken line in FIG. 8). Alternatively, when the determination condition of step S305 is satisfied, that is, when the heat storage water temperature decrease rate {(THWW0 / THWW2) / (TT1-TT0)} is larger than a predetermined value ζ (in the case of an abnormality shown by a thick broken line in FIG. 8) For the heat storage water temperature), it is determined that an abnormality has occurred in the heat storage unit 12 including the high water temperature control cooling water passage 8 and the heat storage water passage 13 as the heat storage water circulation path, and the process proceeds to step S313. The user is warned by lighting up. Next, the process proceeds to step S314, and the introduction of the cooling water to the regenerator 12 side including the regenerator water circulation path at the time of starting and warming up thereafter is prohibited, that is, the intake introduction control valve 10 is forcibly closed. By setting the state, the valve position of the two-temperature switching valve 6 is held in the right direction shown in FIG. 3, and the cooling water is introduced only into the low water temperature control cooling water passage 7 side, and this routine is finished.
[0039]
On the other hand, when the determination condition of step S301 is satisfied, that is, when the timer after starting is operating, this routine is terminated without doing anything. Further, the determination condition of step S303 is satisfied, that is, when the elapsed time after the stop of the internal combustion engine 1 (TT1−TT0) has passed the predetermined value β or more, or the determination condition of step S306 is not satisfied, that is, When the heat storage water temperature THWW2 is less than the predetermined value γ and the water temperature is low, the process proceeds to step S315 because the heat storage water is too cold, and this routine is terminated after the user is informed that the heat storage 12 cannot be warmed up early. To do. When the determination condition in step S308 is not satisfied, that is, when the engine speed NE is low and less than δ and the internal combustion engine 1 has not yet been started, this routine is terminated without doing anything. Further, when the determination condition of step S310 is not satisfied, that is, when it is not at the end of the timer after starting, this routine is finished without doing anything. Further, when the determination condition of step S312 is satisfied, that is, when the cooling water temperature increase rate {(THW1−THW0) / T1} is larger than a predetermined value ε (see the normal cooling water temperature indicated by a one-dot chain line in FIG. 8). In this case, it is assumed that the heat accumulator 12 and the like are operating normally, and this routine is terminated.
[0040]
As described above, the failure diagnosis apparatus for the internal combustion engine thermal control system according to the present embodiment gives priority to the heat storage water stored in the heat accumulator 12 among the cooling water of the cooling system of the internal combustion engine 1 when the internal combustion engine 1 is started. Heat storage water circulation means comprising cooling water passages 2, 4, 2 temperature switching valve 6, high water temperature control cooling water passage 8, heat storage water passage 13, etc. circulating in internal combustion engine 1, and heat storage of heat storage water in regenerator 12 A heat storage water temperature detection means comprising a heat storage water temperature sensor 24 for detecting the water temperature, a storage means achieved by the ECU 30 for storing the heat storage water temperature THWW0 and the stop time TT0 when the internal combustion engine 1 is stopped, and stored in the storage means Further, the heat storage water temperature THWW0 at the time of the previous stop of the internal combustion engine 1, the elapsed time after the stop (TT1-TT0) from the stop time, and the heat storage water temperature THWW detected by the heat storage water temperature sensor 24 at the start of the internal combustion engine 1 2 is achieved by the ECU 30 that diagnoses a failure of the heat accumulator 12 when the heat storage water temperature decrease rate {(THWW0 / THWW2) / (TT1-TT0)} by 2 exceeds a predetermined value ζ. Failure diagnosis means.
[0041]
Accordingly, when the internal combustion engine 1 is stopped, the heat storage water temperature THWW0 detected by the heat storage water temperature sensor 24 and its stop time TT0, and after the stop at the start of the internal combustion engine 1 (start time TT1). When the heat storage water temperature decrease rate {(THWW0 / THWW2) / (TT1-TT0)} based on the elapsed time (TT1-TT0) and the heat storage water temperature THWW2 is greater than a predetermined value ζ, it is determined that some abnormality has occurred in the heat accumulator 12. It is. As a result, failure of the regenerator 12 at the time of start-up and during warm-up can be diagnosed, a warning to the user can be performed, and in this case, the inflow of cooling water to the regenerator 12 side is prohibited to fail. Safe can be achieved.
[0042]
In addition, the failure diagnosis device for a thermal control system for an internal combustion engine according to the present embodiment further includes a cooling water temperature detecting means including a water temperature sensor 21 for detecting the cooling water temperature THW of the cooling water in the internal combustion engine 1. The failure diagnosis means achieved is that the coolant temperature detected by the water temperature sensor 21 during the warm-up of the internal combustion engine 1 even though the heat storage water temperature THWW2 detected by the heat storage water temperature sensor 24 at the start of the internal combustion engine 1 is sufficiently high. When the cooling water temperature rise rate {(THW1−THW0) / T1} by the engine is lower than a predetermined value ε, a heat accumulator including the high water temperature control cooling water passage 8 and the heat storage water passage 13 as the heat storage water circulation passage. Diagnose that there are 12 failures. That is, when the heat storage water temperature THWW2 at the start of the internal combustion engine 1 is sufficiently high but the cooling water temperature increase rate {(THW1-THW0) / T1} during warm-up is smaller than the predetermined value ε, the high water temperature control cooling water passage 8 and the heat storage water passage 13 including the heat storage water passage 13 is found to have some abnormality. As a result, failure of the heat storage water circulation path and the heat storage unit 12 during start-up and warm-up can be diagnosed, and a warning to the user can be performed. In this case, the cooling water to the heat storage water circulation path or the heat storage unit 12 side Fail-safety can be achieved by prohibiting inflow.
[0043]
Next, a modification of the processing procedure of failure diagnosis at start-up and warm-up by the ECU 30 used in the failure diagnosis apparatus for the internal combustion engine thermal control system according to the second example of the embodiment of the present invention will be shown. This will be described with reference to the flowchart of FIG. This failure diagnosis routine has a heat storage water temperature sensor 24 shown in FIGS. 1 to 3 and corresponds to a system that directly detects the heat storage water temperature stored in the heat accumulator 12 at predetermined time intervals. It is repeatedly executed by the ECU 30.
[0044]
In FIG. 9, it is determined in step S401 whether the timer after starting of the internal combustion engine 1 is operating. When the determination condition of step S401 is not satisfied, that is, when the timer after starting is not operated, the process proceeds to step S402, and the heat storage water temperature in the heat storage 12 detected by the heat storage water temperature sensor 24 when an ignition switch (not shown) is turned on. Is THWW3. Next, the process proceeds to step S403, where it is determined whether or not the heat storage water temperature THWW3 in step S402 is equal to or higher than a predetermined value γ. When the determination condition of step S403 is satisfied, that is, when the heat storage water temperature THWW3 is equal to or higher than a predetermined value γ, the process proceeds to step S404, and whether the engine speed NE of the internal combustion engine 1 is equal to or higher than a predetermined value δ. Is determined.
[0045]
When the determination condition of step S404 is satisfied, that is, when the engine speed NE is high as the predetermined value δ or more, the routine proceeds to step S405, and the post-start timer is started assuming that the internal combustion engine 1 is started. Next, the routine proceeds to step S406, where it is determined whether or not a predetermined time T2 has elapsed since the start of the timer after startup, and the post-start timer has ended. When the determination condition of step S406 is satisfied, that is, when the timer after start is over, the routine proceeds to step S407, and the stored water temperature in the regenerator 12 detected by the heat storage water temperature sensor 24 at the end of the post-start timer is THWW4. Is done.
[0046]
Next, the process proceeds to step S408, and the heat storage water temperature THWW3 when the post-start timer is not activated in step S402 is subtracted from the heat storage water temperature THWW4 at the end of the post-start timer in step S407. It is determined whether or not the heat storage water temperature decrease rate {(THWW4−THWW3) / T2} determined by dividing by time T2 is equal to or greater than a predetermined value η. When the determination condition of step S408 is not satisfied, that is, when the heat storage water temperature decrease rate {(THWW4−THWW3) / T2} is smaller than a predetermined value η, an abnormality occurs in the high water temperature control cooling water passage 8 and the heat storage water passage 13. The process proceeds to step S409, and the user is warned of an abnormality in the heat storage water circulation path by turning on a warning lamp or the like. Next, the process proceeds to step S410, and the introduction of the cooling water to the heat storage water circulation path side during the subsequent start-up and during warm-up is prohibited, that is, the intake introduction control valve 10 is forcibly closed. Thus, the valve position of the two-temperature switching valve 6 is held in the right direction shown in FIG. 3, and the cooling water is introduced only into the low water temperature control cooling water passage 7 side, and this routine is finished.
[0047]
On the other hand, when the determination condition of step S401 is satisfied, that is, when the timer after starting is in operation, or when the determination condition of step S403 is not satisfied, that is, when the heat storage water temperature THWW3 is less than the predetermined value γ and the water temperature is low, Alternatively, the determination condition in step S404 is not satisfied, that is, when the engine speed NE of the internal combustion engine 1 is low and lower than the predetermined value δ, or the determination condition in step S406 is not satisfied. That is, when the timer is not expired after starting, this routine is terminated without doing anything. Further, when the determination condition in step S408 is satisfied, that is, when the heat storage water temperature decrease rate {(THWW4−THWW3) / T2} is larger than the predetermined value η, this routine is terminated as it is assumed that the heat storage device 12 is operating normally. To do.
[0048]
As described above, the failure diagnosis device for the internal combustion engine thermal control system according to the present embodiment is configured such that the failure diagnosis means achieved by the ECU 30 stores heat by the stored water temperature detected by the stored water temperature sensor 24 while the internal combustion engine 1 is warmed up. When the water temperature decrease rate {(THWW4−THWW3) / T2} is below a predetermined value η, it is diagnosed that the high water temperature control cooling water passage 8 and the heat storage water passage 13 are malfunctioning as the heat storage water circulation passage. To do.
[0049]
That is, when the rate of decrease in the heat storage water temperature {(THWW4−THWW3) / T2} during warm-up of the internal combustion engine 1 is smaller than the predetermined value η, some abnormality occurs in the high water temperature control cooling water passage 8 and the heat storage water passage 13. You know that As a result, failure of the high water temperature control cooling water passage 8 and the heat storage water passage 13 during warm-up can be diagnosed, and a warning to the user can be performed. In this case, the high water temperature control cooling water passage 8 and Fail-safety can be achieved by prohibiting the inflow of cooling water to the heat storage water passage 13 side.
[0050]
<Example 3>
FIG. 10 is a flowchart showing a failure diagnosis processing procedure in the cooling water temperature control of the internal combustion engine by the ECU 30 used in the failure diagnosis device of the thermal control system for the internal combustion engine according to the third example of the embodiment of the present invention. . The configuration of the failure diagnosis apparatus for the internal combustion engine thermal control system according to the present embodiment is a schematic diagram of FIGS. 1 to 3 in the first embodiment described above. And the heat storage water passage 13 are directly connected and the heat storage water temperature sensor 24 is omitted.
[0051]
Based on the failure diagnosis routine of FIG. 10, a description will be given with reference to the time chart shown in FIG. This failure diagnosis routine is repeatedly executed by the ECU 30 every predetermined time.
[0052]
In FIG. 10, first, in step S501, it is determined whether or not the failure determination flag XTHWF indicating that the system is in failure is “0” and the system is not currently in failure, that is, in a normal state. . When the determination condition in step S501 is satisfied, that is, when XTHWF = 0 and the normal state is established, the process proceeds to step S502, and the cooling water temperature THW detected by the water temperature sensor 21 provided in the internal combustion engine 1 is set in advance. It is determined whether the value is equal to or greater than a predetermined value θ. When the determination condition in step S502 is satisfied, that is, when the cooling water temperature THW is a high water temperature that is equal to or higher than the predetermined value θ, the process proceeds to step S503 and, for example, the intake pressure PM detected by the intake pressure sensor 22 as a load in the internal combustion engine 1 Is greater than or equal to a predetermined value ι set in advance. When the determination condition in step S503 is satisfied, that is, when the load is a high load equal to or greater than the predetermined value ι, the process proceeds to step S504, and the low water temperature control determination flag XTHWL indicating that the system is under control by the low water temperature is “ It is determined whether it is “0”.
[0053]
When the determination condition in step S504 is satisfied, that is, when XTHWL = 0 and the present system is not currently under low water temperature control, the process proceeds to step S505 to start the low water temperature timer (starting the low water temperature timer shown in FIG. 11). Times of Day). Next, the process proceeds to step S506, and a low water temperature control process for the internal combustion engine 1 is executed. The low water temperature control is an abnormality that prevents the oil temperature from deteriorating by suppressing the temperature rise of the oil at a high load or the like by shifting the cooling water temperature of the internal combustion engine 1 to the low water temperature side and keeping it at a preset low water temperature. It avoids wear and the like. Next, the process proceeds to step S507, where the low water temperature control determination flag XTHWL is set to “1”. On the other hand, when the determination condition of step S504 is not satisfied, that is, when the system is already under low water temperature control with XTHWL = 1, steps S505 to S507 are skipped.
[0054]
Next, the process proceeds to step S508, and it is determined whether the low water temperature timer started in step S505 is operating. When the determination condition in step S508 is not satisfied, that is, when the low water temperature timer ends (the low water temperature timer end time shown in FIG. 11), the process proceeds to step S509, where the cooling water temperature THW is set to a predetermined value κ. It is determined whether or not: When the determination condition of step S509 is not satisfied, that is, when the cooling water temperature THW exceeds the predetermined value κ and is a high water temperature (see the abnormal time indicated by the two-dot chain line in FIG. 11), the process proceeds to step S510. Then, the user is warned that the heat storage water circulation path is broken by turning on a warning lamp or the like. Next, the process proceeds to step S511, the failure determination flag XTHWF of this system is set to “1”, and this routine is finished.
[0055]
It should be noted that the determination condition of step S501 is not satisfied, that is, the failure determination flag XTHWF is “1” and the system is in failure, or the determination condition of step S508 is satisfied, that is, the low water temperature timer is not yet established. What is during operation or when the determination condition in step S509 is satisfied, that is, when the cooling water temperature THW is already a low water temperature equal to or lower than the predetermined value κ (refer to a normal time indicated by a solid line in FIG. 11) This routine is terminated without doing anything.
[0056]
On the other hand, the determination condition in step S502 is not satisfied, that is, the cooling water temperature THW is lower than the predetermined value θ, or the determination condition in step S503 is not satisfied, that is, the load of the internal combustion engine 1 is a predetermined value. When it is less than ι, the process proceeds to step S512, and it is determined whether or not the high water temperature control in-progress determination flag XTHWH indicating that the system is under control by the high water temperature is “0”.
[0057]
When the determination condition of step S512 is satisfied, that is, when XTHWH = 0 and the present system is not currently under high water temperature control, the process proceeds to step S513, and the high water temperature timer is started (starting of the high water temperature timer shown in FIG. 11). Times of Day). Next, the process proceeds to step S514, and a high water temperature control process for the internal combustion engine 1 is executed. This high water temperature control is intended to improve the output by reducing the wear due to friction and the like by shifting the cooling water temperature of the internal combustion engine 1 to the high water temperature side and holding it. Next, the process proceeds to step S515, and the high water temperature control determination flag XTHWH is set to “1”. On the other hand, when the determination condition of step S512 is not satisfied, that is, when the system is already under high water temperature control with XTHWL = 1, steps S513 to S515 are skipped.
[0058]
Next, the process proceeds to step S516, and it is determined whether the high water temperature timer started in step S513 is operating. When the determination condition of step S516 is not satisfied, that is, when the high water temperature timer ends (the high water temperature timer end time shown in FIG. 11), the process proceeds to step S517, where the cooling water temperature THW is set to a predetermined value λ. It is determined whether or not: When the determination condition of step S517 is satisfied, that is, when the cooling water temperature THW is a low water temperature that is equal to or lower than the predetermined value λ (see the abnormal time indicated by the two-dot chain line in FIG. 11), the process proceeds to step S518 and the heat storage water circulation The user is warned that the route is broken by turning on a warning lamp or the like. Next, the process proceeds to step S519, and in this case, since the high water temperature control process cannot be executed, as the low water temperature control process, the intake intake control valve 10 is changed from the normally open state to the normally closed state, and the intake inlet pipe 9 is closed. Is done. As a result, the valve position of the two temperature switching valve 6 is always kept open on the low water temperature control cooling water passage 7 side, and the fail safe process is executed so that the cooling water temperature THW is returned to the low water temperature side (see FIG. 11). . Next, the process proceeds to step S520, where the failure determination flag XTHWF of this system is set to “1”, and this routine ends.
[0059]
It should be noted that the determination condition of step S516 is satisfied, that is, when the high water temperature timer is still operating, or the determination condition of step S517 is not satisfied, that is, the cooling water temperature THW exceeds the predetermined value λ and the water temperature is high. At some time (refer to the normal state shown by the solid line in FIG. 11), this routine is terminated without doing anything.
[0060]
As described above, the failure diagnosis apparatus for the internal combustion engine thermal control system according to the present embodiment includes the cooling water temperature detecting means including the water temperature sensor 21 that detects the cooling water temperature THW of the cooling water in the internal combustion engine 1, and the operation of the internal combustion engine 1. In accordance with the intake pressure PM detected by the intake pressure sensor 22 as a load in the state, the amount of cooling water introduced into the radiator 3 is increased or decreased, and the cooling water temperature is controlled to a high water temperature at a low load and to a low water temperature at a high load. Cooling water temperature control means achieved by the passages 2, 4, 2 temperature switching valve 6, low water temperature control cooling water passage 7, high water temperature control cooling water passage 8, intake pipe 9, thermostat 11, etc., and low load When the cooling water temperature at the time does not reach a predetermined high water temperature set in advance, or when the cooling water temperature at a high load does not reach a predetermined low water temperature set in advance, it is diagnosed that the cooling water temperature control means is out of order. It is intended to and a failure diagnosis means being achieved by CU 30.
[0061]
Therefore, according to the intake pressure PM in the operating state of the internal combustion engine 1, the cooling water passages 2, 4, 2 temperature switching valve 6, the low water temperature control cooling water passage 7, the high water temperature control cooling that achieve the cooling water temperature control means. The amount of cooling water introduced into the radiator 3 is increased or decreased by the water passage 8, the intake pipe 9, the thermostat 11, and the like, and the cooling water temperature is controlled to a high water temperature when the load is low and to a low water temperature when the load is high. Here, if the cooling water temperature does not reach a predetermined high water temperature at a low load or does not reach a predetermined low water temperature at a high load, the ECU 30 that achieves the failure diagnosis means knows that some abnormality has occurred in the cooling water temperature control means. This makes it possible to properly diagnose failures of the cooling water passages 2, 4, 2, the temperature switching valve 6, the low water temperature control cooling water passage 7, the high water temperature control cooling water passage 8, the intake pipe 9, the thermostat 11, and the like. Become.
[0062]
Further, in the failure diagnosis apparatus for the internal combustion engine thermal control system according to the present embodiment, the failure diagnosis means achieved by the ECU 30 includes the cooling water passages 2 and 4, the 2 temperature switching valve 6, the low water temperature control cooling water passage 7, When diagnosing a failure of the cooling water temperature control means achieved by the high water temperature control cooling water passage 8, the intake pipe 9, the thermostat 11, etc., the user is warned to that effect and the cooling water temperature is on the low water temperature side. It controls to become. That is, when it is determined that the cooling water passages 2, 4, 2, the temperature switching valve 6, the low water temperature control cooling water passage 7, the high water temperature control cooling water passage 8, the intake pipe 9, the thermostat 11, etc. In addition to the warning to the user, the intake air introduction pipe 9 is closed by the intake air introduction control valve 10, and the thermostat 11 is operated by connecting the two temperature switching valve 6 to the low water temperature control cooling water passage 7 side. The cooling water temperature is controlled to be on the low water temperature side by setting the cooling water passage 4 in the return path to the passing state. For this reason, the inflow of the cooling water to the high water temperature control cooling water passage 8 and the heat storage water passage 13 side is prohibited, and after that, the low water temperature control in which most of the cooling water is introduced to the radiator 3 side is adopted and the fail safe. Can be achieved.
[0063]
By the way, when the cooling water temperature of the cooling water during the warm-up of the internal combustion engine 1 does not rise above the cooling water temperature set in advance within a predetermined time, it is diagnosed as a failure of the heat accumulator 12 including the heat storage water circulation path. Also good.
[0064]
Further, when the coolant temperature of the internal combustion engine 1 is less than a predetermined decrease rate at a predetermined time during the low water temperature control, or when the coolant temperature of the internal combustion engine 1 is less than a predetermined increase rate at the predetermined time during the high water temperature control. You may make it diagnose with the failure of this system.
[Brief description of the drawings]
FIG. 1 is a flow of cooling water during start-up and warm-up of an internal combustion engine in a failure diagnosis apparatus for a thermal control system for an internal combustion engine according to first to third embodiments of an embodiment of the present invention; FIG.
FIG. 2 shows a flow of cooling water at the time of high water temperature control of the internal combustion engine in the failure diagnosis device of the thermal control system for the internal combustion engine according to the first to third examples of the embodiment of the present invention. FIG.
FIG. 3 shows the flow of cooling water at the time of low water temperature control of the internal combustion engine in the failure diagnosis apparatus for the internal combustion engine thermal control system according to the first to third embodiments of the present invention. FIG.
FIG. 4 is a diagram showing an example of a heat storage water temperature when an internal combustion engine is stopped by an ECU used in a failure diagnosis apparatus for a thermal control system for an internal combustion engine according to the first and second embodiments of the present invention; It is a flowchart which shows the process sequence of a detection.
FIG. 5 is a diagram of failure diagnosis during start-up and warm-up of the internal combustion engine by the ECU used in the failure diagnosis apparatus for the thermal control system for the internal combustion engine according to the first example of the embodiment of the present invention; It is a flowchart which shows a process sequence.
FIG. 6 is a time chart showing transition states of cooling water temperature and heat storage water temperature corresponding to the processing of FIG. 5;
FIG. 7 is a process of failure diagnosis during start-up and warm-up of the internal combustion engine by the ECU used in the failure diagnosis apparatus for the internal combustion engine thermal control system according to the second example of the embodiment of the present invention; It is a flowchart which shows a procedure.
FIG. 8 is a time chart showing transition states of cooling water temperature and heat storage water temperature corresponding to the processing of FIG.
FIG. 9 is a diagram of failure diagnosis during start-up and warm-up of an internal combustion engine by an ECU used in a failure diagnosis apparatus for a thermal control system for an internal combustion engine according to a second example of an embodiment of the present invention; It is a flowchart which shows the modification of a process procedure.
FIG. 10 is a flowchart of a failure diagnosis process in cooling water temperature control of an internal combustion engine by an ECU used in a failure diagnosis apparatus for a thermal control system for an internal combustion engine according to a third example of an embodiment of the present invention; It is a flowchart to show.
11 is a time chart showing a transition state of the cooling water temperature corresponding to the process of FIG.
[Explanation of symbols]
1 Internal combustion engine
3 Radiators
6 2-temperature switching valve
11 Thermostat
12 heat storage
21 Water temperature sensor
22 Intake pressure sensor
23 Crank angle sensor
24 Thermal storage water temperature sensor
30 ECU (Electronic Control Unit)

Claims (3)

内燃機関の始動時には前記内燃機関の冷却系統の冷却水のうち蓄熱器に貯留された蓄熱水を優先的に前記内燃機関内に循環する蓄熱水循環手段と、
前記内燃機関内の冷却水の冷却水温を検出する冷却水温検出手段と、
前記内燃機関の停止時における冷却水温から推定される前記蓄熱器内の蓄熱水の蓄熱水温及び停止時刻を記憶する記憶手段と、
前記記憶手段に記憶された前回の前記内燃機関の停止時に推定された蓄熱水温と停止時刻からの経過時間とにより前記内燃機関の始動時の前記蓄熱器内の蓄熱水の蓄熱水温を推定する蓄熱水温推定手段と、
前記蓄熱水温推定手段で推定された蓄熱水温が十分高いにもかかわらず、前記内燃機関の暖機中の冷却水温の上昇率が予め設定された所定値を下回っているときには、蓄熱水循環経路を含む前記蓄熱器の故障であると診断する故障診断手段と
を具備することを特徴とする内燃機関用熱制御システムの故障診断装置。
A heat storage water circulating means for preferentially circulating the heat storage water stored in the heat storage unit among the cooling water of the cooling system of the internal combustion engine when starting the internal combustion engine;
Cooling water temperature detecting means for detecting the cooling water temperature of the cooling water in the internal combustion engine;
Storage means for storing the heat storage water temperature and stop time of the heat storage water in the heat accumulator estimated from the cooling water temperature when the internal combustion engine is stopped;
Thermal storage for estimating the thermal storage water temperature in the thermal storage at the start of the internal combustion engine from the thermal storage water temperature estimated at the previous stop of the internal combustion engine stored in the storage means and the elapsed time from the stop time Water temperature estimation means,
When the heat storage water temperature estimated by the heat storage water temperature estimation means is sufficiently high, when the rate of increase in the cooling water temperature during warming-up of the internal combustion engine is below a predetermined value, the heat storage water circulation path is included. A failure diagnosis device for a thermal control system for an internal combustion engine, comprising failure diagnosis means for diagnosing a failure of the heat accumulator.
内燃機関の始動時には前記内燃機関の冷却系統の冷却水のうち蓄熱器に貯留された蓄熱水を優先的に前記内燃機関内に循環する蓄熱水循環手段と、
前記蓄熱器内の蓄熱水の蓄熱水温を検出する蓄熱水温検出手段と、
前記内燃機関の停止時における蓄熱水温と停止時刻とを記憶する記憶手段と、
前記記憶手段に記憶された前回の前記内燃機関の停止時における蓄熱水温と停止時刻からの経過時間と、
前記内燃機関の始動時に前記蓄熱水温検出手段で検出される蓄熱水温とによる蓄熱水温の下降率が予め設定された所定値を上回っているときには、前記蓄熱器の故障であると診断する故障診断手段と
前記内燃機関内の冷却水の冷却水温を検出する冷却水温検出手段を具備し、
前記故障診断手段は、前記内燃機関の始動時に前記蓄熱水温検出手段で検出された蓄熱水温が十分高いにもかかわらず、前記内燃機関の暖機中に前記冷却水温検出手段で検出される冷却水温の上昇率が予め設定された所定値を下回っているときには、蓄熱水循環経路を含む前記蓄熱器の故障であると診断することを特徴とする内燃機関用熱制御システムの故障診断装置。
A heat storage water circulating means for preferentially circulating the heat storage water stored in the heat storage unit among the cooling water of the cooling system of the internal combustion engine when starting the internal combustion engine;
A heat storage water temperature detecting means for detecting a heat storage water temperature of the heat storage water in the heat storage;
Storage means for storing a heat storage water temperature and a stop time when the internal combustion engine is stopped;
The accumulated heat temperature at the time of the previous stop of the internal combustion engine stored in the storage means and the elapsed time from the stop time,
Failure diagnosis means for diagnosing a failure of the heat accumulator when the rate of decrease in the heat storage water temperature due to the heat storage water temperature detected by the heat storage water temperature detection means at the start of the internal combustion engine exceeds a predetermined value. and,
Comprising cooling water temperature detecting means for detecting the cooling water temperature of the cooling water in the internal combustion engine,
The failure diagnosis means is a cooling water temperature detected by the cooling water temperature detection means during warm-up of the internal combustion engine, even though the heat storage water temperature detected by the heat storage water temperature detection means is sufficiently high when the internal combustion engine is started. A failure diagnosis apparatus for a thermal control system for an internal combustion engine, wherein when the rate of increase of the engine is below a predetermined value set in advance, it is diagnosed as a failure of the heat storage unit including the heat storage water circulation path.
内燃機関の始動時には前記内燃機関の冷却系統の冷却水のうち蓄熱器に貯留された蓄熱水を優先的に前記内燃機関内に循環する蓄熱水循環手段と、
前記蓄熱器内の蓄熱水の蓄熱水温を検出する蓄熱水温検出手段と、
前記内燃機関の停止時における蓄熱水温と停止時刻とを記憶する記憶手段と、
前記記憶手段に記憶された前回の前記内燃機関の停止時における蓄熱水温と停止時刻からの経過時間と、
前記内燃機関の始動時に前記蓄熱水温検出手段で検出される蓄熱水温とによる蓄熱水温の下降率が予め設定された所定値を上回っているときには、前記蓄熱器の故障であると診断する故障診断手段とを具備し、
前記故障診断手段は、前記内燃機関の暖機中に前記蓄熱水温検出手段で検出される蓄熱水温の下降率が予め設定された所定値を下回っているときには、蓄熱水循環経路の故障であると診断することを特徴とする内燃機関用熱制御システムの故障診断装置。
A heat storage water circulating means for preferentially circulating the heat storage water stored in the heat storage unit among the cooling water of the cooling system of the internal combustion engine when starting the internal combustion engine;
A heat storage water temperature detecting means for detecting a heat storage water temperature of the heat storage water in the heat storage;
Storage means for storing a heat storage water temperature and a stop time when the internal combustion engine is stopped;
The accumulated heat temperature at the time of the previous stop of the internal combustion engine stored in the storage means and the elapsed time from the stop time,
Failure diagnosis means for diagnosing a failure of the heat accumulator when the rate of decrease in the heat storage water temperature due to the heat storage water temperature detected by the heat storage water temperature detection means at the start of the internal combustion engine exceeds a predetermined value. And
The failure diagnosis means diagnoses that the heat storage water circulation path is faulty when the rate of decrease in the heat storage water temperature detected by the heat storage water temperature detection means is lower than a predetermined value while the internal combustion engine is warming up. A failure diagnosis device for a thermal control system for an internal combustion engine.
JP34892097A 1997-12-18 1997-12-18 Failure diagnosis device for thermal control system for internal combustion engine Expired - Fee Related JP4026208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34892097A JP4026208B2 (en) 1997-12-18 1997-12-18 Failure diagnosis device for thermal control system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34892097A JP4026208B2 (en) 1997-12-18 1997-12-18 Failure diagnosis device for thermal control system for internal combustion engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007215505A Division JP4530008B2 (en) 2007-08-22 2007-08-22 Failure diagnosis device for thermal control system for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11182307A JPH11182307A (en) 1999-07-06
JP4026208B2 true JP4026208B2 (en) 2007-12-26

Family

ID=18400283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34892097A Expired - Fee Related JP4026208B2 (en) 1997-12-18 1997-12-18 Failure diagnosis device for thermal control system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4026208B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100376667B1 (en) * 1999-08-16 2003-03-15 현대자동차주식회사 Method for sensing out of order thermostat of vehicle
KR100356660B1 (en) * 1999-09-15 2002-10-19 기아자동차주식회사 A method for diagnosing a thermorsat using a temperature of cooling water for an engine
KR20010027782A (en) * 1999-09-15 2001-04-06 류정열 Method for diagnosing thermostat of engine cooling system for a motor vehicle
JP3823672B2 (en) * 2000-03-21 2006-09-20 日産自動車株式会社 Engine stop determination device and restart device
JP2002195035A (en) * 2000-12-27 2002-07-10 Aisin Seiki Co Ltd Method and apparatus for cooling engine
JP4755572B2 (en) 2006-11-28 2011-08-24 カルソニックカンセイ株式会社 Vehicle heat storage system
CN114112409A (en) * 2021-11-05 2022-03-01 上海中联重科桩工机械有限公司 Engine water temperature abnormity diagnosis method, terminal and computer readable storage medium

Also Published As

Publication number Publication date
JPH11182307A (en) 1999-07-06

Similar Documents

Publication Publication Date Title
EP2690267B1 (en) Apparatus and method of determining failure in thermostat
US8479569B2 (en) Malfunction determination apparatus for cooling apparatus and malfunction determination method for cooling apparatus
EP2638263B1 (en) Abnormality determination apparatus and abnormality determination method for coolant temperature sensor, and engine cooling system
US20130213600A1 (en) Abnormality determination apparatus and abnormality determination method for coolant temperature sensor, and engine cooling system
WO2011046058A1 (en) Thermostat and cooling device for vehicle
JP4530008B2 (en) Failure diagnosis device for thermal control system for internal combustion engine
JP5276636B2 (en) Internal combustion engine temperature control system
JP2010065671A (en) Failure diagnosis device of cooling system for vehicle
JP4026208B2 (en) Failure diagnosis device for thermal control system for internal combustion engine
EP3489503B1 (en) Control device for internal combustion engine
JP2016186245A (en) Intake air temperature control device of vehicle engine
JP6537842B2 (en) Intake system hot water heating apparatus for vehicle engine
JP2004339969A (en) Failure-diagnosis device for temperature sensor of internal combustion engine
US20170268410A1 (en) Abnormality diagnosis device of thermostat
JP3777776B2 (en) Engine cooling device abnormality diagnosis device
JP2008051019A (en) Exhaust heat recovery device for internal combustion engine
JP2000104549A (en) Abnormality diagnosing device for cooling device for engine
JP2004232519A (en) Thermostat diagnosis device
JP6607527B2 (en) Vehicle control device
WO2019138582A1 (en) Cooling system and cooling system control method
JP7211126B2 (en) Diagnostic device and diagnostic method
KR20010094396A (en) Method for controlling the temperature of cooling water and for diagnosing malfunction of a thermostat when engine is coldly started in a motor vehicle
JP2006046109A (en) Trouble diagnosing device for thermal storage system
JP2023130824A (en) Cooling device for internal combustion engine
JP3849273B2 (en) Temperature sensor failure diagnosis device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees