JP4024001B2 - Method and apparatus for optical inspection of multilayer electronic components - Google Patents

Method and apparatus for optical inspection of multilayer electronic components Download PDF

Info

Publication number
JP4024001B2
JP4024001B2 JP2000597637A JP2000597637A JP4024001B2 JP 4024001 B2 JP4024001 B2 JP 4024001B2 JP 2000597637 A JP2000597637 A JP 2000597637A JP 2000597637 A JP2000597637 A JP 2000597637A JP 4024001 B2 JP4024001 B2 JP 4024001B2
Authority
JP
Japan
Prior art keywords
layer
camera
intermediate layer
conductor
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000597637A
Other languages
Japanese (ja)
Other versions
JP2002537546A (en
Inventor
ビショップ,ロバート
Original Assignee
ベルトロニクス,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベルトロニクス,インコーポレイテッド filed Critical ベルトロニクス,インコーポレイテッド
Priority claimed from PCT/IB1999/001830 external-priority patent/WO2000046608A1/en
Publication of JP2002537546A publication Critical patent/JP2002537546A/en
Application granted granted Critical
Publication of JP4024001B2 publication Critical patent/JP4024001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • G01R31/311Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation of integrated circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0269Marks, test patterns or identification means for visual or optical inspection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Hardware Design (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)
  • Thermistors And Varistors (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

A novel optical inspection technique for multi-layer wafers and the like in which conductor patterns of a top layer only are to be inspected, such layer being upon an intermediate transparent or translucent insulation layer in tu rn upon a base layer(s) thereunder, wherein the intermediate layer only is fluoresced, displaying the top layer conductors as dark in the field of fluorescent light, and causing reflections from layers below the intermediat e layer effectively to disappear to obviate confusion with the top layer conductors to be inspected.

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品等の光学的検査に関し、より詳しくは、集積回路チップを形成する元になるウェハ、フラットディスプレイパネル、マルチチップモジュール、可動式回路パッチ及びデカール等の光学的検査に関する。これらは、様々なパターンの導体からなる上層と、透明または半透明の絶縁体からなる中間層(しばしば外側の上部に前記導体層を有する)と、セラミック、ガラス、金属等からなり同様に大抵の場合様々なパターンの導体を有する下層と、からなる。
【0002】
【従来の技術】
従来、堆積される回路を形成する導体を含むエポキシの層からなる電子回路基板の検査には、蛍光放射が用いられてきた。この導体は、一般的には、銅、酸化銅、錫めっきされた銅等のように、極めて粗い表面を有する可能性のある金属である。ここで、粗い表面というのは、あまりにも厄介なため光学的画像処理技術を用いて欠陥を検査できないことを意味している。その結果、検査装置の製造者は、電子回路を構成する導体を有するエポキシ層を蛍光させるたのに特に適した波長のレーザを用いている。これを行う際、エポキシの背景は様々な波長(色)の蛍光を発するが、導体は発光せず暗く見える。したがって、前記導体が破損した導体のような欠陥を有する場合、このような欠陥は暗くない領域として現れるため、検知することができる。さらに、短絡は明るい領域であるはずの場所に影となって現れるため、これによって欠陥として検知される。この蛍光の使用で重要なことは、特に、光学的変動の影響を克服すること、または凹凸のある導体それ自身の欠陥を画像化することである。
【0003】
Mat. Resi. Soc. Symp Proc.Vol 381、1995の165〜173頁、R.A.DeVries他による「Digital Optical Imaging Of Benzo-Cyclobritene(BCB) Thin Films On Silicon Wafers」と題された記事には、厚さのばらつきまたは粒子等を検知するため、薄膜が蛍光放射されることが記載されている。
【0004】
また、蛍光は機械部品等の様々なクラックや欠陥を検出するのにも用いられており、蛍光材料は、部品上に塗布され、蛍光材料の入り込んだクラックまたは欠陥部分にのみ蛍光材料が残るように拭き取られる。
【0005】
【発明が解決しようとする課題】
一方、本発明に関連する問題とされる高密度多層集積回路部品に関して述べると、順に、導線を含むいくつかの層または皮膜が下部ベース基板層上に重ねられ、その上に透明または半透明の中間絶縁体層が重ねられる。導体のパターンを含む上層の欠陥を検査する場合、そのような多層部品のそのような欠陥等を検査する際に、極めて特異な問題が生じる。この問題は、あらゆる重ねられた層からの反射の合成に起因しており、入射光は上層だけでなくもっと下の層からも反射され、これら反射のすべての重なりが発生するため、上層の導体パターン層の検査のみを区別して行う必要があっても、これを行うことは出来ないことに起因している。
【0006】
暗い場所、浅い角度の照明、色の識別、および直交偏波照明を用いて上層の導電パターン画像を識別する試みは、成功しなかった。
【0007】
【課題を解決するための手段】
しかしながら、本発明の基礎となるのは、入射光の所定の波長に応じて異なる波長で蛍光する好ましくは半透明または透明な絶縁体層を伝搬する中間光の使用を通じて、上層の導体パターンの導体は、入射光が元の波長のまま反射され且つ蛍光しないため直ぐに区別することが可能であり、上層導体の所望の検査のみを識別的及び選択的に行うことができ、中間蛍光層より下の層からのいかなる入射光の反射も、拒絶し、マスクし、または消去することにより、上述の問題を見事に解決するという発見である。
【0008】
このようなアプローチは従来の技術において、あらかじめ機械加工された平坦な階層面に対して注意深く行われているが、これらの技術は、不規則な凹凸のあるボード、大量生産された回路基板の角度のついた導体およびウェハ等には適さず、本発明によって解決される。
【0009】
発明の目的
したがって、本発明の主たる目的は、中間層及び下層を含む多層電子部品の上層等の欠陥等の識別的および選択的な検査を可能にするための、新規で改善された方法および装置を提供することにある。上層は、そのような欠陥が個別に検査されるべき線等の導体のパターンを含み、中間層は、入射光の所定の入射波長に応じて蛍光を発する透明またはいくらか半透明な絶縁体からなり、上層導体を、蛍光する中間層の画像上に暗い画像として選択的に表示し、下の層からの反射がマスクされた蛍光する画像を提供する。
【0010】
さらなる目的は、導体等を含む上層の検査が、下にある導体を含む層からの反射を有効に完全に消去しながら画像化することが可能であるような新規の光学的検査技術を提供することである。
【0011】
その他の及びさらなる目的はこれから説明するものとし、また、より詳細には付加する特許請求の範囲で輪郭づけるものとする。
【0012】
概要
しかしながら、概要としては、おそらくその最も広い見地の1つから、本発明は、中間層と下層とを有する多層電子部品の上層を光学的に検査する方法を含む。上層は検査されるべき導体のパターンを含み、中間層は透明または半透明の絶縁体からなり、この方法は、中間絶縁体層への入射光の所定の波長を選択して前記導体または他の層が異なる波長で反応して蛍光しないようにするステップと、部品の上層へ入射光を照射するステップと、入射光を層から反射させて反射光を検査カメラへ返すステップと、前記異なる波長の蛍光を中間層からカメラへ返すステップと、返ってきた蛍光のみを選択的に画像化して中間層の上部及び下部の層からカメラへ反射する他の入射光のすべてを抑制し、これによって上層の導体の非蛍光のパターンを蛍光する中間層画像の背景に対照的な暗い色として表現し、中間層より下からの反射を効果的に除去するステップとからなる。好ましい設計技術及び最適な動作形態は以下で詳細に説明する。本発明は、添付の図面と共に説明される。
【0013】
【発明の実施の形態】
本発明の好適実施例
上述した特徴を有する典型的な多層チップが、図1A〜Cに示されている。これらは、例えばセラミックのベースまたは基板層L4を含み、図に示すように金属導体Cの層L3を上部に有する。そして順に、典型的には透明または半透明が望ましく例えば有機ポリイミド等などからなる中間層L2に覆われ、この中間層L2が、下方導体Cを、中間絶縁体層L2の上にさらに重ねられる上層L1上の導体C1から絶縁する。
【0014】
光源からの入射光Lが、ハーフミラーMによってチップの上層L1上へ向けられ、導体C1の上層パターンから反射される状態が例示されている。太い垂直の矢印は、入射光L及び検査カメラへ返る反射光Rを示している。層L3の下方導体Cを覆う中間絶縁体層L2は平坦にはならず、図に示されるように、層の沈降により形成されるくぼみを伴い不規則な形状になる。最上部の導体C1は、図に示されるように、層L2の突き出した凹凸やくぼみによって、いくらか傾けられることがあり、導体C1からの反射のいくらかは、堆積された導体C1の層の角度によってはカメラへ届かない可能性があるが、導体C1の平坦な領域は、Rとして上方検査カメラ方向へ反射して返す。半透明または透明の中間絶縁体層L2の光の伝達特性に関して述べると、図1Bにおいて、光は、下層の導体C及び基板層L4からもカメラCAMへ反射して返される。これによって様々な層からの重なり合う反射の合成が生じ、後で十分な説明を行うが、多くの場合、この混乱は上層導体の検査を不可能ではないにしても極めて難しくさせる。
【0015】
カメラ及び画像化回路は、例えば、多層構造で製造されたチップまたは他の部品をカメラが通過する又はカメラがこれらの部品上を走査を行う際の画像検査を目的とする、私の米国特許第.5,119,434号及び4,697,088号に記載されるような類のものでもよい。さらなる例示としては、他の光学的検査装置が米国特許第5,058,982号及び5,333,052号に記載されている。
【0016】
本発明では、前記混乱は、中間絶縁体層L2にのみ入射光より大きい波長の光を蛍光させる入射光波長Lの特別な使用により、劇的に回避される。この蛍光は、図1Cにおいて、層L2の凹凸のある表面からあらゆる方向に返される反射光Fとして概略的に点線で示されるように、いくらかの傾向光線をレンズL1によってカメラCAMに対して方向を揃えることにより、傾いた導体によって覆われていない中間層の露出した下方傾斜/くぼみ領域からの垂直方向から外れて放射される点線で示される光線も含んでいる。すべての光線のうち前記大きい波長の蛍光以外をFILでフィルタすることにより、図1A及び1Bの入射波長の反射RはフィルタFILで除去され、中間層L2からの蛍光FのみがカメラCAMによって画像化されることになる。蛍光する中間層L2の厚さを、ほぼ完全に光を通さないような十分な厚さにすることによって、上層の導体C1のパターンは、層L2の蛍光する画像に影として表示される。そして、中間層L2より下の層からの入射光波長の反射Rはマスクまたは除去されるため、これらが効果的に除去され(図1Aおよび図1BにフィルタFILを通過しないことが示されている)、上層の導体C1のパターンのみを明確かつ選択的に検査することが可能になる。
【0017】
図2は、前述のように、絶縁皮膜層L2として機能する透明または半透明の特性を持つ好ましいポリイミド材料に対する、好ましいアルゴン層光源Xの蛍光輝度スペクトラムを示している。
【0018】
図3及び図4の比較は、これを用いたときの本発明の効果を示している。図3は、かかる多層ウェハ回路から生成された普通の白色光画像であり、上部の導体層より下にあるすべての層が写っている。導線の表面の変化もまたはっきりと見える。本技術を用いることにより、上層は、下の層からのいかなる光の反射による干渉または重なりを生じることなく検査される。
【0019】
この多層ウェハ構造において、上層は、位相の変化により生じたこれを横切る複数の暗い線を伴った白色に見え、同時に下にあるすべての層もまた見えている。これは、単に上層を判定するのが極めて難しいというだけでなく、対象とする上部の導線の破損または短絡または欠陥を発見することが事実上不可能であるといことを意味している。これに対し、図4は図1Cの本発明にしたがって得られた蛍光画像の写真であり、上部導体をはっきりと示している。本技術により、上層は、下にある層からのいかなる光の反射による干渉または重なりを生じることなく検査される。
【0020】
図5には、3層を有する別のマルチチップモジュールが示されている。この例では、上層を判定するのが難しく、また、位相の変化により多数の線及び帯が画像を横切っている。しかしながら、図6では、本発明(図1C)を用いることにより、蛍光画像は下にある他の層が除外されて、きわめてはっきりと上層導体を識別している。
【0021】
このように、本発明はここまで概して蛍光する絶縁体層に関して述べられてきたが、好ましい層は488(または514)[nm]の入射アルゴン光波長に応答して蛍光するポリイミド有機物である。この蛍光スペクトラムは、図2において約500〜7000[nm]の範囲であり、図4及び図6に示されるように、選択的フィルタ(FIL)が、入射により非蛍光材料から生じるあらゆる反射を有効に分離できるのは、この範囲である。他の波長の光源及び上述した記事に記載されるような類似の蛍光材料もまた、本発明の原理にしたがって用いることができる。好ましい下層またはベース基板L4は、セラミック、ガラス、エポキシ及び金属から選択される。さらに本発明は、下層からの反射による混乱を生じることのない上層の検査の選択性が要求されるいかなる類似の多層電子部品又は他の部品にも適用することができる。これらには、集積回路チップが形成される元になるウェハに加え、フラットディスプレイパネル、マルチチップモジュール、可動式回路パッチ及びデカール及び他の応用なども含まれる。
【0022】
当業者には、更なる変更も明らかであり、それらすべては、本発明の思想、及び付加した特許請求の範囲によって規定される範囲に含まれると考えられる。
【図面の簡単な説明】
【図1A及び図1B】 本発明の技術による、多層構造のチップ等からカメラへの光の反射を示す部分的な断面図である。図1Bは、図1Aの位置からカメラ前方、すなわち左へ走査したところを示す図である。
【図1C】 次の走査位置での同様の図であり、中間層のみからカメラへ蛍光の散乱光が返ることを示している。
【図2】 輝線波長488[nm]のアルゴン入射光に応答して、好ましい中間層絶縁体材料から発せられる好ましい蛍光スペクトラムの範囲を示すグラフである。
【図3】 従来の多層ウェハの様々な層から生じる合成されて区別できない反射の重なりを示す図であり、上層のみの欠陥の識別的検出がほとんど不可能であることを示している。
【図4】 本発明による蛍光する中間絶縁体層の選択図であり、導体の上層パターンを選択的に識別し且つ中間層より下からのすべての反射を除去することによる問題の全体的な解決方法を示している。
【図5及び図6】 別のウェハに対して、それぞれ図3及び図4と同様の内容を示す図であり、再度本発明の効果を示している。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to optical inspection of electronic components and the like, and more particularly to optical inspection of wafers, flat display panels, multichip modules, movable circuit patches, decals and the like from which integrated circuit chips are formed. These consist of an upper layer of various patterns of conductors, an intermediate layer of transparent or translucent insulators (often with the conductor layer on the outer top), ceramic, glass, metal, etc. And a lower layer having conductors of various patterns.
[0002]
[Prior art]
Conventionally, fluorescent radiation has been used to inspect electronic circuit boards consisting of an epoxy layer containing conductors that form the circuit to be deposited. This conductor is typically a metal that can have a very rough surface, such as copper, copper oxide, tin-plated copper, and the like. Here, the rough surface means that the defect cannot be inspected by using an optical image processing technique because it is too troublesome. As a result, inspection device manufacturers use lasers with wavelengths that are particularly suitable for fluorescing epoxy layers having conductors that make up electronic circuits. In doing this, the epoxy background fluoresces at various wavelengths (colors), but the conductor does not emit light and appears dark. Therefore, when the conductor has a defect such as a broken conductor, such a defect appears as a non-dark area and can be detected. Furthermore, since the short circuit appears as a shadow in a place that should be a bright region, it is detected as a defect. What is important in the use of this fluorescence is, in particular, to overcome the effects of optical fluctuations or to image defects in the uneven conductor itself.
[0003]
Mat. Resi. Soc. Symp Proc. Vol 381, 1995, pp. 165-173, RADeVries et al., Entitled “Digital Optical Imaging Of Benzo-Cyclobritene (BCB) Thin Films On Silicon Wafers” It is described that a thin film is fluorescently emitted to detect variations or particles.
[0004]
Fluorescence is also used to detect various cracks and defects in mechanical parts, etc., and the fluorescent material is applied on the part so that the fluorescent material remains only in the cracks or defects where the fluorescent material enters. Wiped off.
[0005]
[Problems to be solved by the invention]
On the other hand, in connection with the high-density multilayer integrated circuit component, which is regarded as a problem related to the present invention, several layers or coatings including conductive wires are sequentially stacked on the lower base substrate layer, and transparent or translucent layers are formed thereon. An intermediate insulator layer is overlaid. When inspecting upper layer defects including conductor patterns, a very unique problem arises when inspecting such defects and the like of such multilayer parts. This problem is due to the combination of reflections from any superimposed layers, and incident light is reflected not only from the top layer, but also from lower layers, and all these reflections overlap, causing the top conductor This is because even if it is necessary to distinguish only the inspection of the pattern layer, this cannot be performed.
[0006]
Attempts to identify upper conductive pattern images using dark locations, shallow angle illumination, color identification, and cross-polarization illumination were unsuccessful.
[0007]
[Means for Solving the Problems]
However, the basis of the present invention is that the conductor of the upper conductor pattern is through the use of intermediate light that propagates in a preferably translucent or transparent insulator layer that fluoresces at different wavelengths depending on the predetermined wavelength of incident light. Since the incident light is reflected at its original wavelength and does not fluoresce, it can be distinguished immediately, and only the desired inspection of the upper layer conductor can be performed in a discriminative and selective manner, below the intermediate phosphor layer. The discovery is that any reflection of incident light from a layer can be successfully solved by rejecting, masking, or erasing.
[0008]
Such approaches have been carefully done in the prior art on pre-machined flat level surfaces, but these techniques are used for irregularly uneven boards, mass-produced circuit board angles. It is not suitable for conductors and wafers with a mark, and is solved by the present invention.
[0009]
SUMMARY OF THE INVENTION Accordingly, a primary object of the present invention is to provide a new and improved method and apparatus for enabling differential and selective inspection of defects such as upper layers of multilayer electronic components including intermediate and lower layers. Is to provide. The upper layer contains a pattern of conductors such as lines that should be individually inspected for such defects, and the intermediate layer consists of a transparent or somewhat translucent insulator that fluoresces depending on the predetermined incident wavelength of incident light. The upper conductor is selectively displayed as a dark image on the fluorescent intermediate layer image to provide a fluorescent image masked by reflection from the lower layer.
[0010]
A further object is to provide a novel optical inspection technique in which an inspection of an upper layer including a conductor etc. can be imaged while effectively completely erasing reflections from the layer including the underlying conductor. That is.
[0011]
Other and further objects will now be described, and more particularly will be outlined in the appended claims.
[0012]
SUMMARY However, as an overview, perhaps from one of its broadest aspects, the present invention includes a method for optically inspecting an upper layer of a multilayer electronic component having an intermediate layer and a lower layer. The upper layer includes a pattern of conductors to be inspected, and the intermediate layer is made of a transparent or translucent insulator, and this method selects a predetermined wavelength of light incident on the intermediate insulator layer to select the conductor or other Reacting the layers at different wavelengths so that they do not fluoresce, irradiating incident light onto the upper layer of the component, reflecting incident light from the layers and returning reflected light to the inspection camera, and Returning fluorescence from the middle layer to the camera and selectively imaging only the returned fluorescence to suppress all other incident light reflected from the top and bottom layers of the middle layer to the camera, thereby The non-fluorescent pattern of the conductor is expressed as a dark color in contrast to the background of the fluorescent interlayer image, and the reflection from below the intermediate layer is effectively removed. Preferred design techniques and optimal modes of operation are described in detail below. The present invention will be described with reference to the accompanying drawings.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Preferred Embodiment of the Invention A typical multi-layer chip having the features described above is shown in FIGS. These include, for example a ceramic base or substrate layer L 4, having a layer L 3 of the metal conductor C as shown in Figure the top. Then, in order, typically transparent or translucent is desirable and is covered with an intermediate layer L 2 made of, for example, organic polyimide, and the intermediate layer L 2 further includes a lower conductor C on the intermediate insulator layer L 2. insulated from the conductor C 1 on the upper layer L 1 to be overlaid.
[0014]
Illustrated is a state in which the incident light L from the light source is directed onto the upper layer L 1 of the chip by the half mirror M and reflected from the upper layer pattern of the conductor C 1 . Thick vertical arrows indicate incident light L and reflected light R returning to the inspection camera. The intermediate insulator layer L 2 that covers the lower conductor C of the layer L 3 does not become flat, but has an irregular shape with depressions formed by the settling of the layers, as shown in the figure. Conductor C 1 of the top, as shown in FIG, by irregularities or depressions projecting layer L 2, may be tilted somewhat, some of the reflection from the conductor C 1, deposited conductors C 1 Although the angle of the layer may not reach the camera, the planar area of the conductor C 1 returns reflected upward inspection camera direction R. Referring to the light transfer characteristics of the semi-transparent or transparent intermediate insulator layer L 2 , in FIG. 1B, light is also reflected back from the underlying conductor C and substrate layer L 4 to the camera CAM. This results in the synthesis of overlapping reflections from the various layers, which will be fully explained later, but in many cases this confusion makes the inspection of upper conductors extremely difficult if not impossible.
[0015]
The camera and imaging circuit are, for example, my U.S. Pat. Nos. 1, pp. 119, for the purpose of image inspection as the camera passes through or scans over chips or other parts made of multilayer structures. It may be of the kind described in .5,119,434 and 4,697,088. As a further illustration, other optical inspection devices are described in US Pat. Nos. 5,058,982 and 5,333,052.
[0016]
In the present invention, the confusion, the special use of the incident light wavelength L to fluorescence light of greater wavelength than the incident light only in the intermediate insulating layer L 2, is dramatically avoided. This fluorescence, in FIG. 1C, causes some trend rays to be directed to the camera CAM by the lens L 1 , as shown schematically by the dotted line as reflected light F returning in all directions from the rough surface of the layer L 2 . By aligning the direction, it also includes rays indicated by dotted lines that radiate out of the vertical direction from the exposed lower slope / indentation region of the intermediate layer not covered by the tilted conductor. By filtering all the rays other than the above-mentioned large wavelength fluorescence with the FIL, the reflection R of the incident wavelength in FIGS. 1A and 1B is removed by the filter FIL, and only the fluorescence F from the intermediate layer L 2 is imaged by the camera CAM. Will be converted. By making the thickness of the fluorescent intermediate layer L 2 sufficiently thick so as not to transmit light almost completely, the pattern of the upper conductor C 1 is displayed as a shadow on the fluorescent image of the layer L 2. The And since the reflection R of the incident light wavelength from the layer below the intermediate layer L 2 is masked or removed, they are effectively removed (FIGS. 1A and 1B show that they do not pass through the filter FIL). have), it is possible to test only a clear and selective pattern of the upper layer of conductor C 1.
[0017]
FIG. 2 shows a fluorescence intensity spectrum of a preferable argon layer light source X for a preferable polyimide material having a transparent or translucent characteristic that functions as the insulating film layer L 2 as described above.
[0018]
Comparison between FIG. 3 and FIG. 4 shows the effect of the present invention when this is used. FIG. 3 is a normal white light image generated from such a multilayer wafer circuit, showing all layers below the upper conductor layer. Changes in the surface of the conductor are also clearly visible. By using this technique, the upper layer is inspected without causing interference or overlap due to any reflection of light from the lower layer.
[0019]
In this multi-layer wafer structure, the top layer appears white with a plurality of dark lines across it caused by the phase change, and all the layers below are also visible. This means that it is not only extremely difficult to determine the upper layer, but that it is virtually impossible to find a broken or shorted or defective upper conductor of interest. In contrast, FIG. 4 is a photograph of the fluorescent image obtained in accordance with the present invention of FIG. 1C, clearly showing the top conductor. With this technique, the upper layer is inspected without interference or overlap due to reflection of any light from the underlying layer.
[0020]
FIG. 5 shows another multichip module having three layers. In this example, it is difficult to determine the upper layer, and many lines and bands cross the image due to phase changes. However, in FIG. 6, using the present invention (FIG. 1C), the fluorescent image clearly distinguishes the upper conductor, excluding the other underlying layers.
[0021]
Thus, while the present invention has been described generally with respect to a fluorescent insulator layer, the preferred layer is a polyimide organic that fluoresces in response to an incident argon light wavelength of 488 (or 514) [nm]. This fluorescence spectrum is in the range of about 500 to 7000 [nm] in FIG. 2, and as shown in FIGS. 4 and 6, the selective filter (FIL) is effective for any reflection that occurs from non-fluorescent materials upon incidence. It is this range that can be separated. Other wavelength light sources and similar fluorescent materials as described in the above articles can also be used in accordance with the principles of the present invention. A preferred lower layer or base substrate L 4 is selected from ceramic, glass, epoxy and metal. In addition, the present invention can be applied to any similar multilayer electronic component or other component that requires selectivity for inspection of the upper layer without causing confusion due to reflections from the lower layer. These include flat display panels, multichip modules, movable circuit patches and decals and other applications as well as the wafer from which the integrated circuit chips are formed.
[0022]
Further modifications will be apparent to those skilled in the art, all of which are considered to be within the scope defined by the spirit of the invention and the appended claims.
[Brief description of the drawings]
FIGS. 1A and 1B are partial cross-sectional views illustrating reflection of light from a multilayer chip or the like to a camera according to the technique of the present invention. FIG. 1B is a diagram illustrating a position scanned from the position of FIG. 1A to the front of the camera, that is, to the left.
FIG. 1C is a similar view at the next scanning position, showing that fluorescent scattered light returns from only the intermediate layer to the camera.
FIG. 2 is a graph showing a range of a preferable fluorescence spectrum emitted from a preferable interlayer insulating material in response to argon incident light having an emission line wavelength of 488 [nm].
FIG. 3 is a diagram showing the overlap of synthesized and indistinguishable reflections arising from various layers of a conventional multilayer wafer, indicating that it is almost impossible to detect defects only in the upper layer.
FIG. 4 is a selection diagram of a fluorescent intermediate insulator layer according to the present invention, the overall solution of the problem by selectively identifying the upper layer pattern of the conductor and removing all reflections from below the intermediate layer. Shows how.
FIGS. 5 and 6 are views showing the same contents as in FIGS. 3 and 4 for another wafer, respectively, and again show the effect of the present invention.

Claims (8)

所定の波長の入射光(L)と中間層(L2)及び下層(L4)を有する多層電子部品(C)の上層(L1)の光学的検査を行うための画像化方式検査カメラ(CAM)とを用いて光学的に検査し、
前記上層(L1)は、前記入射光に応答して前記所定の波長とは異なる波長で蛍光する材質の透明または半透明の絶縁体からなる前記中間層(L2)の一部のみを覆う検査されるべき導体のパターン(C')を有し、
前記導体のパターン(C')が前記中間層(L2)の複数の蛍光領域を前記カメラ(CAM)に対して露出し、
前記蛍光波長が前記カメラ( CAM)によってのみ受光されることが必要とされている方法であって、 前記中間層(L2)より下の層から反射する光を効果的に除去しつつ、前記中間層(L2)からの所定の蛍光波長の入射光波長のみを選択的に透過して(FIL)、前記蛍光している前記中間層(L2)の画像の背景と対照的に暗い前記導体のパターンの画像を前記カメラ内に生成するように構成された方法において、
前記中間層(L2)が複数の凹部の間に比較的平坦な領域を有する不規則の凹凸のある層であり、前記導体のパターンが、前記入射光(L)の軸に対して角度を有する前記中間層(L2)上の導体(C')を有するものである多層部品の検査を行うものであって、
前記中間層(L2)から前記入射光の軸に平行に放射される蛍光光線だけでなく、前記軸に対して平行でない方向に沿って放射された光線についても蛍光光線を集光するために、前記カメラ(CAM)の前で前記波長選択的に透過された蛍光光線をコリメートレンズ(L')で前記カメラ(CAM)に対して揃え、この揃える工程が、前記導体によって覆われていない前記露出した凹部の領域からの垂直方向から外れて放射される蛍光光線の受光をも可能にし、これによって前記蛍光が前記カメラで受光及び画像化されるように動作し、前記カメラによって生成された画像における前記暗い導体パターンの強化されたコントラストを成す前記蛍光画像を提供する、工程とを有することを特徴とする方法。
An imaging system inspection camera (CAM) for optical inspection of an upper layer (L1) of a multilayer electronic component (C) having incident light (L) of a predetermined wavelength and an intermediate layer (L2) and a lower layer (L4); Optically inspect using
The upper layer (L1) is tested to cover only a portion of the intermediate layer made of a transparent or translucent insulation of material that fluoresces at a different wavelength (L2) from the predetermined wavelength in response to the incident light Having a conductor pattern (C ′) to be
The conductor pattern (C ′) exposes a plurality of fluorescent regions of the intermediate layer (L2) to the camera (CAM);
Wherein only the fluorescence wavelength by the camera (CAM) A method which is required to be received, while effectively removing the light reflected from the layer below the intermediate layer (L2), the intermediate and selectively transmitting only the wavelength of the incident light having a predetermined fluorescence wavelength of the layer (L2) (FIL), said intermediate layer being the fluorescent image background as opposed to the dark the conductor of the (L2) In a method configured to generate an image of a pattern in the camera,
The intermediate layer (L2) is a layer with irregular irregularities having a relatively flat region between a plurality of recesses, and the pattern of the conductor has an angle with respect to the axis of the incident light (L) Inspecting a multilayer part having a conductor (C ′ ) on the intermediate layer (L2) ,
In order to collect fluorescent light not only from fluorescent light emitted parallel to the optical axis of the incident light from the intermediate layer (L2) but also from light emitted along a direction not parallel to the axis the alignment with respect to the camera the said wavelength selectively transmitting fluorescent light in front of the (CAM) by a collimator lens (L ') camera (CAM), the aligning process is not covered by said conductor said An image generated by the camera that also allows the reception of fluorescent light emitted off the vertical direction from the area of the exposed recess, thereby operating the fluorescent light to be received and imaged by the camera. Providing the fluorescent image with enhanced contrast of the dark conductor pattern in the method.
前記中間層が、該中間層の下の非蛍光層からこれらの孔を通して反射して見える前記蛍光画像内において暗く見える、バイアまたは接続孔を備えていることを特徴とする請求項1の方法。  The method of claim 1, wherein the intermediate layer comprises vias or connecting holes that appear dark in the fluorescent image that appears to be reflected through these holes from a non-fluorescent layer below the intermediate layer. 前記下層(L4)が、セラミック、ガラス及び金属からなる一群から選択されたベース基板である、請求項1または2に記載の方法。  The method according to claim 1 or 2, wherein the lower layer (L4) is a base substrate selected from the group consisting of ceramic, glass and metal. 前記中間層(L2)が、前記入射光波長に感応して蛍光を発することができる有機層である、請求項1ないし3のいずれかに記載の方法。  The method according to any one of claims 1 to 3, wherein the intermediate layer (L2) is an organic layer capable of emitting fluorescence in response to the incident light wavelength. 前記有機層がポリイミドからなる、請求項4の方法。  The method of claim 4, wherein the organic layer comprises polyimide. 前記入射光(L)が、488[nm]または514[nm]の所定の放射線を有するアルゴン光源により生成され、前記蛍光する絶縁体の前記異なる波長が、500〜700[nm]の範囲のスペクトラムである、請求項1ないし5のいずれかに記載の方法。  The incident light (L) is generated by an argon light source having a predetermined radiation of 488 [nm] or 514 [nm], and the different wavelength of the fluorescent insulator is a spectrum in the range of 500 to 700 [nm]. The method according to claim 1, wherein 前記多層電子部品(C)が、集積回路チップ形成のためのウェハ、フラットディスプレイパネル、マルチチップモジュール及び可動式回路パッチ及びデカールからなる一群から選択される、請求項1ないし6のいずれかに記載の方法。  The multilayer electronic component (C) is selected from the group consisting of a wafer for forming an integrated circuit chip, a flat display panel, a multichip module, a movable circuit patch and a decal. the method of. 中間層(L2)及び下層(L4)を有する多層電子部品(C)の上層(L1)を光学的に検査するための装置であって、前記上層(L1)が、透明または半透明の絶縁体の中間層(L2)の上に配され、かつその一部を覆う検査されるべき導体のパターン(C')を含み、
該装置は、
前記導体及び他の層ではなく前記中間層(L2)が異なる波長で蛍光することによって応答する所定の波長の入射光源と、
前記入射光(L)を前記上層に方向付け、前記入射光の反射(R)を前記上層(L1)の画像化を行うための検査カメラ(CAM)へ返すようにする光路と、
前記反射された前記所定の波長の光をフィルタし、前記カメラによる前記所定の波長の光の受光を防止する手段とを備え、前記中間層(L2)より下からの反射を効果的に除去しつつ、蛍光した前記中間層(L2)の画像の背景に対照的な暗い画像として非蛍光的な導体パターンの画像が前記カメラ(CAM)に形成するようになっている装置において、
前記中間層(L2)が、不規則に間隔をあけて形成された凹凸を有しており、前記導体パターン(C ' が前記入射光(L)の軸に対して角度を成す前記中間層(L2)の上にある導体を有しており、さらに該装置が、前記中間層(L2)から前記入射光の光軸に平行に放射される蛍光光線だけでなく、前記軸に対して平行でない方向に沿って放射された光線についても蛍光光線を集光するための、前記カメラ(CAM)の前のコリメートレンズ(L')を備えており、
前記カメラ(CAM)の前で前記波長選択的に透過された蛍光光線を前記コリメートレンズ(L')で前記カメラ(CAM)に対して揃え、これによってこのコリメートレンズ(L')が、前記導体によって覆われていない前記露出した凹部の領域からの垂直方向から外れて放射される蛍光光線の受光をも可能にし、これによって前記蛍光が前記カメラ( CAM)で受光及び画像化されるように動作し、前記カメラ( CAM)によって生成された画像における前記暗い導体パターン(C ' の強化されたコントラストを成す前記蛍光画像を提供するようになったことを特徴とする装置。
An apparatus for optically inspecting an upper layer (L1) of a multilayer electronic component (C) having an intermediate layer (L2) and a lower layer (L4), wherein the upper layer (L1) is a transparent or translucent insulator Including a pattern (C ′) of a conductor to be inspected that is disposed on and covers a portion of the intermediate layer (L2) of
The device
An incident light source of a predetermined wavelength that responds by fluorescence of the intermediate layer (L2) rather than the conductor and other layers at different wavelengths ;
An optical path that directs the incident light (L) to the upper layer and returns a reflection (R) of the incident light to an inspection camera (CAM) for imaging the upper layer (L1);
Means for filtering the reflected light of the predetermined wavelength and preventing the camera from receiving the light of the predetermined wavelength, and effectively removing reflection from below the intermediate layer (L2). while, in the apparatus in which the image of the non-fluorescently conductor pattern as opposed dark image in the background of the image of the middle tier that fluorescence (L2) is adapted to form the camera (CAM),
The intermediate layer (L2) has irregularities formed at irregular intervals, and the conductor pattern (C ) forms an angle with respect to the axis of the incident light (L). A conductor overlying (L2) , and the device is not only for the fluorescent light emitted parallel to the optical axis of the incident light from the intermediate layer (L2) , but also for the optical axis. A collimating lens (L ′) in front of the camera (CAM) for condensing fluorescent light even for light emitted along a non-parallel direction;
The fluorescent light selectively transmitted in front of the camera (CAM) is aligned with the camera (CAM) by the collimating lens (L ′), whereby the collimating lens (L ′) becomes the conductor. Also enables the reception of fluorescent light emitted off the vertical direction from the exposed recessed area not covered by the light, so that the fluorescence is received and imaged by the camera ( CAM) And providing the fluorescent image with enhanced contrast of the dark conductor pattern (C ) in the image generated by the camera ( CAM) .
JP2000597637A 1999-11-15 1999-11-15 Method and apparatus for optical inspection of multilayer electronic components Expired - Fee Related JP4024001B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB1999/001830 WO2000046608A1 (en) 1999-02-02 1999-11-15 Multi-layered electronic parts

Publications (2)

Publication Number Publication Date
JP2002537546A JP2002537546A (en) 2002-11-05
JP4024001B2 true JP4024001B2 (en) 2007-12-19

Family

ID=11004929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000597637A Expired - Fee Related JP4024001B2 (en) 1999-11-15 1999-11-15 Method and apparatus for optical inspection of multilayer electronic components

Country Status (5)

Country Link
JP (1) JP4024001B2 (en)
AT (1) ATE271693T1 (en)
AU (1) AU766779B2 (en)
CA (1) CA2373116A1 (en)
DE (1) DE69918868T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7752775B2 (en) 2000-03-10 2010-07-13 Lyden Robert M Footwear with removable lasting board and cleats

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845425A (en) * 1985-09-23 1989-07-04 International Business Machines Corporation Full chip integrated circuit tester
US5040047A (en) * 1989-12-26 1991-08-13 General Electric Company Enhanced fluorescence polymers and interconnect structures using them
US5119434A (en) * 1990-12-31 1992-06-02 Beltronics, Inc. Method of and apparatus for geometric pattern inspection employing intelligent imaged-pattern shrinking, expanding and processing to identify predetermined features and tolerances

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7752775B2 (en) 2000-03-10 2010-07-13 Lyden Robert M Footwear with removable lasting board and cleats
US7770306B2 (en) 2000-03-10 2010-08-10 Lyden Robert M Custom article of footwear
US8209883B2 (en) 2000-03-10 2012-07-03 Robert Michael Lyden Custom article of footwear and method of making the same

Also Published As

Publication number Publication date
AU6484399A (en) 2000-08-25
DE69918868D1 (en) 2004-08-26
JP2002537546A (en) 2002-11-05
ATE271693T1 (en) 2004-08-15
AU766779B2 (en) 2003-10-23
CA2373116A1 (en) 2000-08-10
DE69918868T2 (en) 2005-09-01

Similar Documents

Publication Publication Date Title
US6014209A (en) Method of optically inspecting multi-layered electronic parts and the like with fluorescent scattering top layer discrimination and apparatus therefor
AU774674B2 (en) Semi conductor structures
JP4684033B2 (en) Board inspection equipment
CN101832948A (en) The appearance inspecting system of printed circuit board (PCB) and method thereof
US4679938A (en) Defect detection in films on ceramic substrates
JP2006191101A (en) Device and method for inspecting metal residues
JP4024001B2 (en) Method and apparatus for optical inspection of multilayer electronic components
JP2005140663A (en) Inspection device for wiring pattern, and wiring pattern inspecting method
JP2018146531A (en) Substrate inspection device, substrate polishing device, substrate inspection method, and substrate polishing method
EP1234189B1 (en) Multi-layered electronic parts
US20140022541A1 (en) Systems and methods for near infra-red optical inspection
TW200928286A (en) Measurement method for laser vias on flip chip substrate and system thereof
JPH0436336B2 (en)
JP2519363B2 (en) Wiring pattern defect inspection method on printed circuit board
US20230049123A1 (en) Electronic device and manufacturing method and inspection method thereof
US6496559B1 (en) Sample preparation for inspection of ball contacts and internal vias
TWI833147B (en) Electronic device and inspecting method thereof
JPH06167461A (en) Via hole inspecting apparatus
JP2003222510A (en) Imaging method of wiring pattern
CN112113976A (en) Appearance inspection device and appearance inspection method
JP2002122554A (en) Device for inspecting via hole in printed wiring board
KR20130027906A (en) Improved apparatus, system and method of inspecting top-layer patterns of multi-layer structure
JPH02247513A (en) Inspecting device for hole charging state
JPH05235137A (en) Inspection method of circuit pattern
JPH1019807A (en) X-ray image pick up method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040308

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20040608

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050404

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050701

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070305

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070605

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees