JP4023877B2 - Elevator car pressure control device - Google Patents

Elevator car pressure control device Download PDF

Info

Publication number
JP4023877B2
JP4023877B2 JP24756097A JP24756097A JP4023877B2 JP 4023877 B2 JP4023877 B2 JP 4023877B2 JP 24756097 A JP24756097 A JP 24756097A JP 24756097 A JP24756097 A JP 24756097A JP 4023877 B2 JP4023877 B2 JP 4023877B2
Authority
JP
Japan
Prior art keywords
car
air
air pressure
adjustment pattern
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24756097A
Other languages
Japanese (ja)
Other versions
JPH1171077A (en
Inventor
順二 竹田
彰 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Elevator and Building Systems Corp
Original Assignee
Toshiba Elevator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Elevator Co Ltd filed Critical Toshiba Elevator Co Ltd
Priority to JP24756097A priority Critical patent/JP4023877B2/en
Publication of JPH1171077A publication Critical patent/JPH1171077A/en
Application granted granted Critical
Publication of JP4023877B2 publication Critical patent/JP4023877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cage And Drive Apparatuses For Elevators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エレベータのかご内の気圧を適切に制御するためのエレベータのかご内気圧制御装置に関する。
【0002】
【従来の技術】
一般に、超高層・高速エレベータにおいては、かご内の気圧を制御することが要望されている。これはエレベータの走行によってかご内の気圧が急激に変化することから、乗客に気圧変化による不快感を与えたりするからである。
【0003】
従来においては、エレベータのかご内の気圧制御は、エレベータが下降するときはかご内を加圧し、エレベータが上昇するときはかご内を減圧するようにしている。これにより、かご内の気圧が目的階での気圧に近づくように制御している。また、特に気圧制御を行っていないエレベータもある。
【0004】
【発明が解決しようとする課題】
ところが、かご内の気圧を制御する場合であっても、かご内の気圧制御が適切でない場合には、乗客に不快感を与えることがある。また、気圧の急変化により乗客の身体に異常が発生した場合に、その異常に対しての保護動作を行えるようにしておくことも大切である。特に、超高層・高速エレベータの乗客は、急変する気圧により内圧(生体側)と外圧(環境圧)に差ができ下記症状で悩まされることがままある。
(1)鼓膜が押されて、音の伝達が悪くなる。
(2)健康な身体の場合においても、中耳腔と咽頭腔とを連絡する耳管が開き、耳がツンとする。
(3)風邪またはアレルギーまどで鼻が詰まっている時、その耳管が閉鎖し、外圧(環境圧)と内圧(生体側)との均圧ができない人の場合、無理をしすぎると中耳・内耳障害を引き起こすような可能性が高くなる。
【0005】
本発明の目的は、かご内の気圧を適切に維持することができ、気圧の急変化により乗客の身体に異常が発生した場合には、保護動作を行えるようにしたエレベータの気圧制御装置を提供することである。
【0006】
【課題を解決するための手段】
請求項1の発明に係わるエレベータのかご内気圧制御装置は、エレベータのかご内の気圧を検出する気圧計と、前記かご内に空気を送り出したり前記かご内の空気を吸い込んだりするポンプと、前記ポンプからの前記かご内への流入空気量や流出空気量を調整する流量制御弁と、前記気圧計で検出されたかご内気圧が予め定めた気圧調整パターンに沿って変化するように前記ポンプおよび前記流量調整弁に指令を出してかご内気圧を制御する制御回路とを備え、前記予め定めた気圧調整パターンは、出発階でのかごの戸閉から目的階でのかごの戸開までの時間間隔において、かご内気圧を出発階の気圧から目的階の気圧まで一定の変化率で変化させる気圧調整パターンであり、前記出発階でのかごの戸閉から所定の時間経過後にかごを走行開始し、前記気圧調整パターンにおける時間間隔を延長するようにしたことを特徴とする。
【0007】
請求項2の発明に係わるエレベータのかご内気圧制御装置は、エレベータのかご内の気圧を検出する気圧計と、前記かご内に空気を送り出したり前記かご内の空気を吸い込んだりするポンプと、前記ポンプからの前記かご内への流入空気量や流出空気量を調整する流量制御弁と、前記気圧計で検出されたかご内気圧が予め定めた気圧調整パターンに沿って変化するように前記ポンプおよび前記流量調整弁に指令を出してかご内気圧を制御する制御回路とを備え、前記予め定めた気圧調整パターンは、出発階でのかごの戸閉から目的階でのかごの戸開までの時間間隔において、かご内気圧を出発階の気圧から目的階の気圧まで一定の変化率で変化させる気圧調整パターンであり、前記出発階でのかごの戸閉から所定の時間経過後にかごを走行開始し、前記気圧調整パターンにおける時間間隔を延長するようにしたことを特徴とする。
【0008】
請求項3の発明に係わるエレベータのかご内気圧制御装置は、エレベータのかご内の気圧を検出する気圧計と、前記かご内に空気を送り出したり前記かご内の空気を吸い込んだりするポンプと、前記ポンプからの前記かご内への流入空気量や流出空気量を調整する流量制御弁と、前記気圧計で検出されたかご内気圧が予め定めた気圧調整パターンに沿って変化するように前記ポンプおよび前記流量調整弁に指令を出してかご内気圧を制御する制御回路とを備え、前記予め定めた気圧調整パターンは、出発階でのかごの戸閉から目的階で戸開する所定の時間前までの時間間隔において、かご内気圧を出発階の気圧から目的階の気圧まで一定の変化率で変化させ、目的階で戸開する所定の時間前の時点からかご内気圧を一旦オーバーシュートさせて目的階で戸開する時点で目的階の気圧に戻す気圧調整パターンであり、前記出発階でのかごの戸閉から所定の時間経過後にかごを走行開始し、前記気圧調整パターンにおける時間間隔を延長するようにしたことを特徴とする。
【0009】
請求項4の発明に係わるエレベータのかご内気圧制御装置は、エレベータのかご内の気圧を検出する気圧計と、前記かご内に空気を送り出したり前記かご内の空気を吸い込んだりするポンプと、前記ポンプからの前記かご内への流入空気量や流出空気量を調整する流量制御弁と、前記気圧計で検出されたかご内気圧が予め定めた気圧調整パターンに沿って変化するように前記ポンプおよび前記流量調整弁に指令を出してかご内気圧を制御する制御回路とを備え、前記予め定めた気圧調整パターンは、出発階でのかごの戸閉から目的階でのかごの戸開までの時間間隔において、かご内気圧を出発階の気圧から目的階の気圧まで一定の変化率で変化させる気圧調整パターンであり、前記目的階でのかごの到着から所定の時間経過後にかごの戸開を行い、前記気圧調整パターンにおける時間間隔を延長するようにしたことを特徴とする。
【0010】
請求項5の発明に係わるエレベータのかご内気圧制御装置は、エレベータのかご内の気圧を検出する気圧計と、前記かご内に空気を送り出したり前記かご内の空気を吸い込んだりするポンプと、前記ポンプからの前記かご内への流入空気量や流出空気量を調整する流量制御弁と、前記気圧計で検出されたかご内気圧が予め定めた気圧調整パターンに沿って変化するように前記ポンプおよび前記流量調整弁に指令を出してかご内気圧を制御する制御回路とを備え、前記予め定めた気圧調整パターンは、出発階でのかごの戸閉から目的階で戸開する所定の時間前までの時間間隔において、かご内気圧を出発階の気圧から目的階の気圧まで一定の変化率で変化させ、目的階で戸開する所定の時間前の時点からかご内気圧を一旦オーバーシュートさせて目的階で戸開する時点で目的階の気圧に戻す気圧調整パターンであり、前記目的階でのかごの到着から所定の時間経過後にかごの戸開を行い、前記気圧調整パターンにおける時間間隔を延長するようにしたことを特徴とする。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。図1は本発明の実施の形態に係わるエレベータの気圧制御装置の構成図である。
【0025】
エレベータのかご1は、戸閉時には密閉となる構造となっており、そのかご1内には気圧計2が設けられている。気圧計2はかご1内の気圧の測定を行うものであり、この気圧計2で計測されたかご内の気圧はA/D変換器3でアナログ信号からデジタル信号に変換されて、入出力回路4を介して制御回路5に入力される。制御回路5では、測定されたかご内気圧がメモリ10に予め記憶された気圧調整パターンで変化するように気圧制御する。
【0026】
また、かご1内には身体異常釦6が設けられており、かご1内の気圧の変化により乗客の身体に異常があったときに押操作される。身体異常釦6が押されたときは、その操作信号は入出力回路4を介して制御回路5に入力され、制御回路5では、メモリ10に予め記憶された保護動作モードによる気圧制御を行う。
【0027】
さらに、かご1内の空気はポンプ7にて流入流出されるようになっており、流量調整弁8でその空気量が調整され、空気フィルタ8でかご1内の空気の清浄化を行う。かご1内の気圧を加圧するときはポンプ7から空気を送り込み、流量調整弁8でその空気流入量を調整制御する。一方、かご1内の気圧を減圧するときは、ポンプ7はかご1内の空気を吸い込み、流量調整弁8でその空気流入量を調整制御することになる。制御回路5は、メモリ10に予め記憶された気圧調整パターンや保護動作モードに基づいて、ポンプ7および流量調整弁8に指令を出力してかご1内の気圧制御を行うことになる。
【0028】
図2は、制御回路5でのかご内気圧制御および保護動作の処理内容を示すフローチャートである。制御回路5でのかご内気圧制御および保護動作は、エレベータのかご戸開後に開始される。
【0029】
かごの戸閉後、制御装置8はメモリ10に予め記憶された気圧調整パターンを読み出し、その気圧調整パターンに従ってかご内気圧の加圧または減圧の操作を行う(S1)。そして、その気圧制御のための操作の結果、かご内の気圧変化率が乗客の生理的問題が発生する生理的限界値を越えたか否かの判定を行う(S2)。かご内の気圧変化率が生理的限界値未満であるときは、次に、気圧調整パターンに従った気圧制御に必要な操作が完了しているか否かを判定し(S3)。気圧調整パターンに従った必要な操作が終了しているときは、気圧制御を終了する。
【0030】
一方、ステップS3の判定で気圧制御に必要な操作が終了していないと判定されたときは、身体異常釦6が押されたか否かを判定し(S4)、身体異常釦6が押されていないときは、ステップS1に戻り気圧制御を続行する。
【0031】
そして、ステップS2の判定で、かご内の気圧変化率が生理的限界値を越えているときは、かご内の気圧制御がうまく作動していないと判定し、保護動作モードの制御を行う(S5)。同様に、ステップS4の判定で身体異常釦6が押されているときも、保護動作モードの制御を行う(S5)。
【0032】
この保護動作モードでは、例えば、エレベータの走行パターンを低速パターンに切り換えて目的階に到着までの時間を延長し、かご内の気圧変化率をより小さく制御するようにする。この場合、制御回路5は保護動作モードの制御を行うに当たり、エレベータの走行制御装置に対しその旨を通知する。エレベータの走行制御装置は、保護動作モードになったことを制御回路5から知らさせると、エレベータの走行パターンを低速パターンに切り換える。その低速パターンになった状態で、制御回路5はかご内の気圧変化率をより小さく制御する。
【0033】
また、保護動作モードとして、エレベータの走行パターンを低速パターンに切り換えると共に、流量調整弁8を開放してかご内気圧を外気圧と等しくするようにすることも可能である。すなわち、エレベータの走行パターンを低速パターンに切り換えた後に流量調整弁8を全開放し、外気圧とかご内気圧とを等しくする。これによって、緩やかな気圧変化で乗客の輸送を行う。
【0034】
次に、本発明の実施の形態における気圧調整パターンについて説明する。図3は、第1の気圧調整パターンC1および第2の気圧調整パターンC2の説明図である。図3では、エレベータ下降運転時における気圧調整パターンを示している。
【0035】
図3において、縦軸はかご内の気圧変化を示しており、出発階気圧を0、目的階気圧を100で表している。横軸はかごの走行時間を示しており、時点t1はかごが戸閉かつ走行開始した時点、時点t2はかごが目的階に到着かつ戸開開始した時点、時点t3は時点t2の所定時間前の時点である。また、特性曲線Aはかご内の気圧制御なし時におけるエレベータ走行中のかご内の気圧変化を示す無制御曲線、特性曲線Bは乗客が生理的問題を生じる気圧変化率の限界値を示す限界値曲線、特性曲線C1は本発明の第1の気圧調整パターン、特性曲線C2は本発明の第2の気圧調整パターンである。
【0036】
ここで、かご内気圧制御なし時の無制御曲線Aにおいては、定常走行時(直線部)の変化率は限界値曲線Bの変化率を越えてしまう。そこで、限界値曲線Bの変化率を越えないように、出発階気圧から目的階気圧までの気圧差が一定変化率で変化するような第1の気圧調整パターンC1を用いる。このような一定変化率で変化する第1の気圧調整パターンC1は、かごの走行時間と気圧差(出発階と目的階の気圧差)が分かれば容易に計算できる。すなわち、出発階気圧と目的階気圧との気圧差は、建物の昇降行程に依存するのみであるので容易に分かり、かごの走行時間も走行制御のデータから容易に分かる。従って、第1の気圧調整パターンC1は容易に計算できる。
【0037】
制御回路5は、実際に走行中のかご内気圧を気圧計2からA/D変換器3を介して読み取り、かご内気圧がこの第1の気圧調整パターンC1に従って変化するように制御する。つまり、走行を開始した時期においては無制御曲線Aと第1の気圧調整パターンC1との差分領域D1を補償するように制御する。差分領域D1ではポンプ7に対し空気の送り出し指令を出し流量調整弁8でかご内を加圧する制御を行う。一方、目的階に近づいてきた時期においては無制御曲線Aと第1の気圧調整パターンC1との差分領域D2を補償するように、ポンプ7に対し空気の吸い込み指令を出し流量調整弁8でかご内を減圧する制御を行う。
【0038】
これにより、かご内気圧を第1の気圧調整パターンに従って制御するので、かご内気圧が限界値曲線Bの限界変化率(傾き)以下で目的階の気圧まで制御でき、乗客を輸送できることになる。
【0039】
以上説明した第1の気圧調整パターンC1は、かご内気圧変化率を一定で制御する気圧調整パターンであるが、本発明の実施の形態では、図3の第2の気圧調整パターンC2で示すように、かごが目的階に到着(戸開開始)する時点t2より所定時間以前の時点t3までに、かご内気圧を出発階の気圧から目的階の気圧まで一定の変化率で変化させ、目的階で戸開する所定の時間前の時点t3からかご内気圧を一旦オーバーシュートさせて目的階で戸開する時点t2で目的階の気圧に戻すようにする。
【0040】
すなわち、時点t3から目的階に到着する時点t2までの時間で、気圧差の10%程度をピーク値とした差分領域D3のオーバーシュートをかけた一連のかご内気圧調整パターンで制御し、目的階の気圧に近づけ到着する。
【0041】
第1の気圧調整パターンC1では、かご内気圧が一定比率で単に増加していくだけであったが、第2の気圧調整パターンC2ではオーバーシュートを到着前に行うので、気圧が減少しながら到着することになり、乗客に今までのエレベータでは体感することがなかった心地良さを提供することができる。
【0042】
次に、図4は、本発明の実施の形態における第3の気圧調整パターンC3および第4の気圧調整パターンC4の説明図である。図4では、エレベータ下降運転時における気圧調整パターンを示している。この第3の気圧調整パターンC3および第4の気圧調整パターンC4は、図3に示した第1の気圧調整パターンC1および第2の気圧調整パターンC2に対し、出発階でのかごの戸閉時点t0から所定の時間経過後の時点t1でかごを走行開始し、気圧調整パターンにおける時間間隔を延長するようにしたものである。
【0043】
図4において、縦軸はかご内の気圧変化を示しており、出発階気圧を0、目的階気圧を100で表している。横軸はかごの走行時間を示しており、時点t0はかごが戸閉した時点、時点t1はかごが走行開始した時点、時点t2はかごが目的階に到着かつ戸開開始した時点、時点t3は時点t2の所定時間前の時点である。また、特性曲線Aはかご内の気圧制御なし時におけるエレベータ走行中のかご内の気圧変化を示す無制御曲線、特性曲線Bは乗客が生理的問題を生じる気圧変化率の限界値を示す限界値曲線、特性曲線C3は本発明の第3の気圧調整パターン、特性曲線C4は本発明の第4の気圧調整パターンである。
【0044】
ここで、かご内の気圧変化は、出発階での戸閉から目的階での戸開までの時間と、昇降行程に依存するため、戸閉から戸開までの時間を極力長くすれば、より気圧変化が緩くなり、乗客が生理的問題を抱える状況も減少することになる。第1の気圧調整パターンC1では、乗客がかご室に乗り入れ戸閉した後すぐに走行開始している。このため、目的階に到着後戸開するまでの時間が短くなる。
【0045】
そこで、第3の気圧調整パターンC3および第4の気圧調整パターンC4では、乗客が乗り入れ戸閉時点t0から所定時間経過後の時点t1で走行開始するようにし、戸閉から戸開までの時間を長くする。この場合、戸閉した時点t0において、かご室内のアナウンスで、「気圧調整中です。しばらくお待ち下さい。」等を流し、戸閉時点t0から十秒程度経過した後にエレベータを走行開始させる。気圧制御は戸閉時点t0から制御開始するので、戸閉から戸開するまでの時間が第1の気圧調整パターンC1や第2の気圧調整パターンC2より長くなる。従って、より緩やかな気圧変化により目的階の気圧まで一定変化で制御することができる。この場合、第1の気圧調整パターンC1での差分領域D1での加圧量が大きくなり、差分領域D2での減圧量は小さくなる。
【0046】
また、図4の第4の気圧調整パターンC4では、第2の気圧調整パターンC2と同様に、かごが目的階に到着(戸開開始)する時点t2より所定時間以前の時点t3までに、かご内気圧を出発階の気圧から目的階の気圧まで一定の変化率で変化させ、目的階で戸開する所定の時間前の時点t3からかご内気圧を一旦オーバーシュートさせて目的階で戸開する時点t2で目的階の気圧に戻すようにしている。
【0047】
すなわち、時点t3から目的階に到着する時点t2までの時間で、気圧差の10%程度をピーク値とした差分領域D3のオーバーシュートをかけた一連のかご内気圧調整パターンで制御し、目的階の気圧に近づけ到着する。この第4の気圧調整パターンC4ではオーバーシュートを到着前に行うので、気圧が減少しながら到着することになり、乗客に今までのエレベータでは体感することがなかった心地良さを提供することができる。
【0048】
次に、図5は、本発明の実施の形態における第5の気圧調整パターンC5および第6の気圧調整パターンC6の説明図である。図5では、エレベータ下降運転時における気圧調整パターンを示している。この第5の気圧調整パターンC5および第6の気圧調整パターンC6は、図3に示した第1の気圧調整パターンC1および第2の気圧調整パターンC2に対し、目的階でのかごの到着した時点t2から所定の時間経過後の時点t4でかごの戸開を行い、気圧調整パターンにおける時間間隔を延長するようにしたものである。
【0049】
図5において、縦軸はかご内の気圧変化を示しており、出発階気圧を0、目的階気圧を100で表している。横軸はかごの走行時間を示しており、時点t1はかごが戸閉かつ走行開始した時点、時点t2はかごが目的階に到着した時点、時点t4は戸開開始した時点である。また、特性曲線Aはかご内の気圧制御なし時におけるエレベータ走行中のかご内の気圧変化を示す無制御曲線、特性曲線Bは乗客が生理的問題を生じる気圧変化率の限界値を示す限界値曲線、特性曲線C5は本発明の第5の気圧調整パターン、特性曲線C6は本発明の第6の気圧調整パターンである。
【0050】
ここで、図4に示した第3の気圧調整パターンC3および第4の気圧調整パターンC4では、戸閉時点でアナウンスを流しその所定時間経過後に走行開始することで、戸閉から戸開までの時間を延長し、緩やかな気圧制御を行うものであるが、この第5の気圧調整パターンC5および第6の気圧調整パターンC6では、目的階到着後にアナウンスを流しその所定時間経過後に戸開するようにする。
【0051】
時点t2でエレベータは目的階に到着しているが、その時点t2よりかごにアナウンスで、「気圧調整中です。しばらくお待ちください。」等を流すことにより、戸開までの時間を時点t4(アナウンス終了から数秒後)まで延長する。それにより、戸閉から戸開までの時間を延長する。これにより、緩やかな気圧変化を乗客に提供できる。
【0052】
また、図5の第6の気圧調整パターンC6では、かごが目的階に到着する時点t2までに、かご内気圧を出発階の気圧から目的階の気圧まで一定の変化率で変化させ、目的階に到着する時点t2からかご内気圧を一旦オーバーシュートさせて目的階で戸開する時点t4で目的階の気圧に戻すようにしている。
【0053】
すなわち、目的階に到着した時点t2から目的階で戸開する時点t4までの時間で、気圧差の10%程度をピーク値とした差分領域D3のオーバーシュートをかけた一連のかご内気圧調整パターンで制御し、目的階の気圧に近づけ到着する。この第6の気圧調整パターンC6ではオーバーシュートを戸開前に行うので、乗客に今までのエレベータでは体感することがなかった心地良さを提供することができる。なお、オーバーシュートの開始時点をかごの目的階への到着時点t2としたが、必ずしも到着時点t2に合わせる必要はなく、気圧差の10%程度をピーク値にできる時点であればよい。
【0054】
【発明の効果】
以上述べたように本発明によれば、かご内気圧制御を行うことにより超高層・高速エレベータにおける乗客の生理問題を抑制し、さらに乗客に心地良さを提供することができる。また、かご内気圧制御が正常に作動しない場合や、正常に作動したにもかかわらず乗客が身体の異常を訴えた場合においても保護動作モードに切り換えが可能であるので、乗客を安全に輸送できる。
【図面の簡単な説明】
【図1】 図1は、本発明の実施の形態に係わるエレベータの気圧制御装置の構成図である。
【図2】 図2は、本発明の実施の形態における制御回路でのかご内気圧制御および保護動作の処理内容を示すフローチャートである。
【図3】 図3は、本発明の実施の形態における気圧調整パターンの一例の説明図である。
【図4】 図4は、本発明の実施の形態における気圧調整パターンの他の一例の説明図である。
【図5】 図5は、本発明の実施の形態における気圧調整パターンの別の他の一例の説明図である。
【符号の説明】
1…かご、2…気圧計、3…A/D変換器、4…入出力回路、5…制御回路、6…身体異常釦、7…ポンプ、8…流量調整弁、9…空気フィルタ、10…メモリ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an elevator car internal pressure control device for appropriately controlling the air pressure in an elevator car.
[0002]
[Prior art]
Generally, in the super high-rise / high-speed elevator, it is desired to control the atmospheric pressure in the car. This is because the air pressure in the car changes abruptly as the elevator travels, causing passengers to feel uncomfortable due to changes in air pressure.
[0003]
Conventionally, the atmospheric pressure control in the elevator car pressurizes the interior of the car when the elevator descends, and depressurizes the interior of the car when the elevator rises. Thereby, it controls so that the atmospheric | air pressure in a cage | basket | car approaches the atmospheric pressure in the destination floor. There are also elevators that are not specifically controlled.
[0004]
[Problems to be solved by the invention]
However, even when the atmospheric pressure in the car is controlled, passengers may feel uncomfortable if the atmospheric pressure control in the car is not appropriate. In addition, when an abnormality occurs in the passenger's body due to a sudden change in atmospheric pressure, it is also important to be able to perform a protection operation against the abnormality. In particular, passengers of super high-rise / high-speed elevators may suffer from the following symptoms due to the difference between internal pressure (biological side) and external pressure (environmental pressure) due to suddenly changing atmospheric pressure.
(1) The eardrum is pushed and the transmission of sound becomes worse.
(2) Even in the case of a healthy body, the ear canal that communicates between the middle ear cavity and the pharyngeal cavity is opened, and the ears are sharp.
(3) When the nose is clogged with a cold or an allergy, the ear canal closes, and if you are unable to equalize external pressure (environmental pressure) and internal pressure (biological side) The possibility of causing an ear / inner ear disorder is increased.
[0005]
An object of the present invention is to provide an air pressure control device for an elevator that can appropriately maintain the air pressure in a car and can perform a protective operation when an abnormality occurs in a passenger's body due to a sudden change in air pressure. It is to be.
[0006]
[Means for Solving the Problems]
An elevator car atmospheric pressure control apparatus according to the invention of claim 1 includes a barometer for detecting an air pressure in an elevator car, a pump for sending air into the car and sucking air in the car, A flow rate control valve that adjusts the amount of air flowing into and out of the car from the pump, and the pump and the pump so that the air pressure inside the car detected by the barometer changes in accordance with a predetermined air pressure adjustment pattern. A control circuit that issues a command to the flow control valve to control the air pressure in the car, and the predetermined air pressure adjustment pattern is a time from the door closing on the departure floor to the door opening on the destination floor. This is an air pressure adjustment pattern that changes the air pressure inside the car from the air pressure on the departure floor to the air pressure on the destination floor at regular intervals, and the car is opened after a predetermined time has elapsed since the car was closed on the departure floor. And, characterized in that so as to prolong the time interval in the atmospheric pressure adjustment pattern.
[0007]
An elevator car internal pressure control apparatus according to the invention of claim 2 includes a barometer for detecting an air pressure in the elevator car, a pump for sending air into the car and sucking air in the car, A flow rate control valve that adjusts the amount of air flowing into and out of the car from the pump, and the pump and the pump so that the air pressure inside the car detected by the barometer changes in accordance with a predetermined air pressure adjustment pattern. A control circuit that issues a command to the flow control valve to control the air pressure in the car, and the predetermined air pressure adjustment pattern is a time from the door closing on the departure floor to the door opening on the destination floor. This is an air pressure adjustment pattern that changes the air pressure inside the car from the air pressure on the departure floor to the air pressure on the destination floor at regular intervals, and the car is opened after a predetermined time has elapsed since the car was closed on the departure floor. And, characterized in that so as to prolong the time interval in the atmospheric pressure adjustment pattern.
[0008]
An elevator car internal pressure control apparatus according to a third aspect of the invention includes a barometer for detecting an atmospheric pressure in an elevator car, a pump for sending air into the car and sucking air in the car, A flow rate control valve that adjusts the amount of air flowing into and out of the car from the pump, and the pump and the pump so that the air pressure inside the car detected by the barometer changes in accordance with a predetermined air pressure adjustment pattern. A control circuit that issues a command to the flow rate adjusting valve to control the atmospheric pressure in the car, and the predetermined atmospheric pressure adjustment pattern is from the closing of the car on the departure floor to a predetermined time before opening on the destination floor. In this time interval, the air pressure inside the car is changed from the air pressure on the starting floor to the air pressure on the destination floor at a constant rate of change, and the air pressure inside the car is temporarily overshot from the point in time before the door opens on the destination floor. This is an atmospheric pressure adjustment pattern that returns to the atmospheric pressure of the destination floor when the door opens on the destination floor. The car starts running after a predetermined period of time has elapsed since the car was closed on the departure floor, and the time interval in the atmospheric pressure adjustment pattern is extended. It was made to do.
[0009]
An elevator car internal pressure control apparatus according to a fourth aspect of the invention includes a barometer for detecting an air pressure in an elevator car, a pump for sending air into the car and sucking air in the car, A flow rate control valve that adjusts the amount of air flowing into and out of the car from the pump, and the pump and the pump so that the air pressure inside the car detected by the barometer changes in accordance with a predetermined air pressure adjustment pattern. A control circuit that issues a command to the flow control valve to control the air pressure in the car, and the predetermined air pressure adjustment pattern is a time from the door closing on the departure floor to the door opening on the destination floor. This is an air pressure adjustment pattern that changes the air pressure in the car from the air pressure at the departure floor to the air pressure at the destination floor at a constant rate at intervals, and the door is opened after a predetermined time has elapsed since the arrival of the car at the destination floor. There, is characterized in that so as to prolong the time interval in the atmospheric pressure adjustment pattern.
[0010]
An elevator car atmospheric pressure control apparatus according to the invention of claim 5 includes a barometer for detecting an atmospheric pressure in an elevator car, a pump for sending air into the car and sucking air in the car, A flow rate control valve that adjusts the amount of air flowing into and out of the car from the pump, and the pump and the pump so that the air pressure inside the car detected by the barometer changes in accordance with a predetermined air pressure adjustment pattern. A control circuit that issues a command to the flow rate adjusting valve to control the atmospheric pressure in the car, and the predetermined atmospheric pressure adjustment pattern is from the closing of the car on the departure floor to a predetermined time before opening on the destination floor. In this time interval, the air pressure inside the car is changed from the air pressure on the starting floor to the air pressure on the destination floor at a constant rate of change, and the air pressure inside the car is temporarily overshot from the point in time before the door opens on the destination floor. This is an air pressure adjustment pattern that returns to the air pressure of the destination floor when the door is opened on the destination floor. The car is opened after a predetermined time has elapsed since the arrival of the car on the destination floor, and the time interval in the air pressure adjustment pattern is extended. It was made to do.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 is a block diagram of an elevator atmospheric pressure control apparatus according to an embodiment of the present invention.
[0025]
The elevator car 1 has a structure that is hermetically closed when the door is closed, and a barometer 2 is provided in the car 1. The barometer 2 measures the atmospheric pressure in the car 1, and the atmospheric pressure in the car measured by the barometer 2 is converted from an analog signal to a digital signal by the A / D converter 3, and an input / output circuit 4 to the control circuit 5. In the control circuit 5, the atmospheric pressure is controlled such that the measured atmospheric pressure in the car changes according to the atmospheric pressure adjustment pattern stored in the memory 10 in advance.
[0026]
Further, a physical abnormality button 6 is provided in the car 1 and is pressed when there is an abnormality in the passenger's body due to a change in the atmospheric pressure in the car 1. When the physical abnormality button 6 is pressed, the operation signal is input to the control circuit 5 via the input / output circuit 4, and the control circuit 5 performs atmospheric pressure control in the protection operation mode stored in the memory 10 in advance.
[0027]
Further, the air in the car 1 flows in and out by the pump 7, the air amount is adjusted by the flow rate adjusting valve 8, and the air in the car 1 is cleaned by the air filter 8. When pressurizing the air pressure in the car 1, air is sent from the pump 7, and the air inflow amount is adjusted and controlled by the flow rate adjusting valve 8. On the other hand, when the pressure in the car 1 is reduced, the pump 7 sucks the air in the car 1 and adjusts and controls the air inflow by the flow rate adjusting valve 8. The control circuit 5 outputs a command to the pump 7 and the flow rate adjustment valve 8 based on the atmospheric pressure adjustment pattern and the protection operation mode stored in advance in the memory 10 to control the atmospheric pressure in the car 1.
[0028]
FIG. 2 is a flowchart showing the processing contents of the car internal pressure control and the protection operation in the control circuit 5. The car internal pressure control and the protection operation in the control circuit 5 are started after the elevator car door is opened.
[0029]
After the car is closed, the control device 8 reads out the atmospheric pressure adjustment pattern stored in advance in the memory 10 and performs an operation of increasing or reducing the atmospheric pressure in the car according to the atmospheric pressure adjustment pattern (S1). Then, as a result of the operation for the atmospheric pressure control, it is determined whether or not the atmospheric pressure change rate in the car exceeds a physiological limit value at which a physiological problem for the passenger occurs (S2). When the atmospheric pressure change rate in the car is less than the physiological limit value, it is next determined whether or not an operation necessary for atmospheric pressure control according to the atmospheric pressure adjustment pattern is completed (S3). When the necessary operation according to the atmospheric pressure adjustment pattern is completed, the atmospheric pressure control is terminated.
[0030]
On the other hand, when it is determined in step S3 that the operation required for atmospheric pressure control has not been completed, it is determined whether or not the abnormal body button 6 has been pressed (S4), and the abnormal body button 6 has been pressed. If not, the process returns to step S1 to continue the atmospheric pressure control.
[0031]
If it is determined in step S2 that the rate of change in air pressure in the car exceeds the physiological limit value, it is determined that the air pressure control in the car is not operating well, and the protection operation mode is controlled (S5). ). Similarly, the protection operation mode is also controlled when the physical abnormality button 6 is pressed in the determination of step S4 (S5).
[0032]
In this protection operation mode, for example, the traveling pattern of the elevator is switched to the low speed pattern to extend the time until arrival at the destination floor and to control the rate of change in the atmospheric pressure in the car to be smaller. In this case, when the control circuit 5 performs the control of the protection operation mode, the control circuit 5 notifies the elevator travel control device to that effect. When the elevator travel control device informs the control circuit 5 that the protective operation mode has been entered, the elevator travel pattern is switched to the low speed pattern. In the state of the low speed pattern, the control circuit 5 controls the rate of change in atmospheric pressure in the car to be smaller.
[0033]
Further, as the protective operation mode, the elevator traveling pattern can be switched to the low speed pattern, and the flow regulating valve 8 can be opened to make the car internal pressure equal to the external air pressure. That is, after the elevator running pattern is switched to the low speed pattern, the flow rate adjusting valve 8 is fully opened to make the outside air pressure and the car inside air pressure equal. As a result, passengers are transported with a gradual change in atmospheric pressure.
[0034]
Next, the atmospheric pressure adjustment pattern in the embodiment of the present invention will be described. FIG. 3 is an explanatory diagram of the first atmospheric pressure adjustment pattern C1 and the second atmospheric pressure adjustment pattern C2. FIG. 3 shows an atmospheric pressure adjustment pattern during the elevator lowering operation.
[0035]
In FIG. 3, the vertical axis indicates the atmospheric pressure change in the car, where the starting floor pressure is 0 and the target floor pressure is 100. The horizontal axis indicates the traveling time of the car. Time t1 is the time when the car is closed and started running, time t2 is the time when the car arrives at the destination floor and the door starts to open, and time t3 is a predetermined time before time t2. It is time of. A characteristic curve A is a non-control curve indicating a change in pressure in the car during elevator travel without pressure control in the car, and a characteristic curve B is a limit value indicating a limit value of the rate of change in pressure at which the passenger causes a physiological problem. The curve and the characteristic curve C1 are the first atmospheric pressure adjustment pattern of the present invention, and the characteristic curve C2 is the second atmospheric pressure adjustment pattern of the present invention.
[0036]
Here, in the non-control curve A when the car internal pressure control is not performed, the rate of change during steady running (straight line portion) exceeds the rate of change of the limit value curve B. Therefore, the first atmospheric pressure adjustment pattern C1 is used so that the pressure difference from the starting floor pressure to the target floor pressure changes at a constant change rate so as not to exceed the change rate of the limit value curve B. The first atmospheric pressure adjustment pattern C1 that changes at a constant change rate can be easily calculated if the traveling time of the car and the atmospheric pressure difference (the atmospheric pressure difference between the departure floor and the destination floor) are known. That is, the pressure difference between the departure floor pressure and the target floor pressure is easily determined because it depends only on the ascending / descending process of the building, and the traveling time of the car can also be easily determined from the traveling control data. Therefore, the first atmospheric pressure adjustment pattern C1 can be easily calculated.
[0037]
The control circuit 5 reads the atmospheric pressure in the car actually traveling from the barometer 2 via the A / D converter 3 and controls the atmospheric pressure in the car to change according to the first atmospheric pressure adjustment pattern C1. That is, the control is performed so as to compensate for the difference region D1 between the non-control curve A and the first atmospheric pressure adjustment pattern C1 at the time when traveling is started. In the difference region D1, an air delivery command is issued to the pump 7 and control is performed to pressurize the interior of the car with the flow rate adjusting valve 8. On the other hand, at the time of approaching the destination floor, an air suction command is issued to the pump 7 so that the difference area D2 between the non-control curve A and the first atmospheric pressure adjustment pattern C1 is compensated, and the flow rate adjusting valve 8 uses the car. Control to depressurize the inside.
[0038]
Thereby, since the car internal pressure is controlled according to the first atmospheric pressure adjustment pattern, the car internal air pressure can be controlled to the atmospheric pressure of the target floor below the limit change rate (slope) of the limit value curve B, and passengers can be transported.
[0039]
The first atmospheric pressure adjustment pattern C1 described above is an atmospheric pressure adjustment pattern for controlling the rate of change of the atmospheric pressure in the car at a constant level. In the embodiment of the present invention, as shown by the second atmospheric pressure adjustment pattern C2 in FIG. Then, from the time t2 when the car arrives at the destination floor (start of door opening) to the time t3 before a predetermined time, the inside air pressure is changed from the departure floor pressure to the destination floor pressure at a constant rate of change. The car internal pressure is once overshooted from a time point t3 before a predetermined time at which the door is opened, and is returned to the target floor pressure at the time point t2 when the door is opened on the target floor .
[0040]
That is, the time is controlled from a time t3 to a time t2 when arriving at the destination floor by a series of car internal pressure adjustment patterns in which the difference region D3 is overshot with a peak value of about 10% of the pressure difference. Arrives close to the barometric pressure.
[0041]
In the first atmospheric pressure adjustment pattern C1, the atmospheric pressure in the car simply increased at a constant rate, but in the second atmospheric pressure adjustment pattern C2, overshoot is performed before arrival, so the atmospheric pressure arrives while decreasing. As a result, it is possible to provide the passengers with a comfort that has not been experienced by conventional elevators.
[0042]
Next, FIG. 4 is an explanatory diagram of the third atmospheric pressure adjustment pattern C3 and the fourth atmospheric pressure adjustment pattern C4 in the embodiment of the present invention. FIG. 4 shows an atmospheric pressure adjustment pattern during the elevator lowering operation. The third atmospheric pressure adjustment pattern C3 and the fourth atmospheric pressure adjustment pattern C4 are the same as the first atmospheric pressure adjustment pattern C1 and the second atmospheric pressure adjustment pattern C2 shown in FIG. The car starts running at a time point t1 after a predetermined time has elapsed from t0, and the time interval in the atmospheric pressure adjustment pattern is extended.
[0043]
In FIG. 4, the vertical axis indicates the atmospheric pressure change in the car, where the starting floor pressure is 0 and the target floor pressure is 100. The horizontal axis indicates the traveling time of the car. Time t0 is the time when the car is closed, time t1 is the time when the car starts running, time t2 is the time when the car arrives at the destination floor and the door starts to open, time t3 Is a time point a predetermined time before the time point t2. A characteristic curve A is a non-control curve indicating a change in pressure in the car during elevator travel without pressure control in the car, and a characteristic curve B is a limit value indicating a limit value of the rate of change in pressure at which the passenger causes a physiological problem. A curve and a characteristic curve C3 are the third atmospheric pressure adjustment pattern of the present invention, and a characteristic curve C4 is the fourth atmospheric pressure adjustment pattern of the present invention.
[0044]
Here, the pressure change in the car depends on the time from the door closing on the departure floor to the door opening on the destination floor and the lifting process, so if the time from door closing to door opening is made as long as possible, it will be more Air pressure changes will be relaxed, and the situation in which passengers will have physiological problems will also be reduced. In the first atmospheric pressure adjustment pattern C1, the passenger starts traveling immediately after entering the cab and closing the door. For this reason, the time until the door opens after arrival at the destination floor is shortened.
[0045]
Therefore, in the third atmospheric pressure adjustment pattern C3 and the fourth atmospheric pressure adjustment pattern C4, the passenger starts traveling at a time t1 after a predetermined time has elapsed from the entry door closing time t0, and the time from the door closing to the door opening is set. Lengthen. In this case, at the time t0 when the door is closed, an announcement in the car room is given, and the message “Air pressure is being adjusted. Please wait for a while.” Since the atmospheric pressure control starts from the door closing time t0, the time from the door closing to the door opening becomes longer than the first atmospheric pressure adjustment pattern C1 and the second atmospheric pressure adjustment pattern C2. Therefore, it is possible to control with a constant change up to the pressure of the target floor by a more gradual change in the atmospheric pressure. In this case, the amount of pressurization in the difference area D1 in the first atmospheric pressure adjustment pattern C1 is increased, and the amount of pressure reduction in the difference area D2 is decreased.
[0046]
Further, in the fourth atmospheric pressure adjustment pattern C4 of FIG. 4, as in the case of the second atmospheric pressure adjustment pattern C2, the car is reached by a time t3 before a predetermined time from the time t2 when the car arrives at the destination floor (door opening start). The internal air pressure is changed at a constant rate from the air pressure of the departure floor to the air pressure of the destination floor, and the car internal air pressure is overshot from a time point t3 before the door opens on the destination floor, and the door is opened on the destination floor. At the time t2, the pressure is returned to the target floor pressure.
[0047]
That is, the time is controlled from a time t3 to a time t2 when arriving at the destination floor by a series of car internal pressure adjustment patterns in which the difference region D3 is overshot with a peak value of about 10% of the pressure difference. Arrives close to the barometric pressure. In this fourth atmospheric pressure adjustment pattern C4, overshoot is performed before arrival, so that the air pressure arrives while decreasing, and it is possible to provide the passengers with a comfort that has never been experienced by an elevator. .
[0048]
Next, FIG. 5 is an explanatory diagram of the fifth atmospheric pressure adjustment pattern C5 and the sixth atmospheric pressure adjustment pattern C6 in the embodiment of the present invention. FIG. 5 shows an atmospheric pressure adjustment pattern during the elevator lowering operation. The fifth atmospheric pressure adjustment pattern C5 and the sixth atmospheric pressure adjustment pattern C6 are obtained when the car arrives at the destination floor with respect to the first atmospheric pressure adjustment pattern C1 and the second atmospheric pressure adjustment pattern C2 shown in FIG. The car is opened at time t4 after a predetermined time has elapsed from t2, and the time interval in the atmospheric pressure adjustment pattern is extended.
[0049]
In FIG. 5, the vertical axis indicates the atmospheric pressure change in the car, where the starting floor pressure is 0 and the target floor pressure is 100. The horizontal axis indicates the traveling time of the car. Time t1 is the time when the car is closed and started running, time t2 is the time when the car arrives at the destination floor, and time t4 is the time when the door starts to open. A characteristic curve A is a non-control curve indicating a change in pressure in the car during elevator travel without pressure control in the car, and a characteristic curve B is a limit value indicating a limit value of the rate of change in pressure at which the passenger causes a physiological problem. A curve and a characteristic curve C5 are the fifth atmospheric pressure adjustment pattern of the present invention, and a characteristic curve C6 is the sixth atmospheric pressure adjustment pattern of the present invention.
[0050]
Here, in the third atmospheric pressure adjustment pattern C3 and the fourth atmospheric pressure adjustment pattern C4 shown in FIG. 4, the announcement is made at the time of door closing, and the vehicle starts running after the predetermined time has elapsed, so that from door closing to door opening. In this fifth atmospheric pressure adjustment pattern C5 and sixth atmospheric pressure adjustment pattern C6, an announcement is made to flow after arrival at the destination floor, and the door is opened after the predetermined time has elapsed. To.
[0051]
The elevator has arrived at the destination floor at time t2, but an announcement was made to the car from time t2, and the time until the door opens was announced at time t4 (announcement) Extend until after a few seconds. Thereby, the time from the door closing to the door opening is extended. Thereby, a gentle pressure change can be provided to a passenger.
[0052]
Further, in the sixth atmospheric pressure adjustment pattern C6 of FIG. 5, by the time t2 when the car arrives at the destination floor, the inside air pressure is changed from the departure floor pressure to the destination floor pressure at a constant rate of change. The air pressure in the car is once overshooted from the time t2 when arriving at the time point, and returned to the pressure on the target floor at the time t4 when the door opens on the target floor.
[0053]
That is, a series of car air pressure adjustment patterns in which an overshoot of the difference region D3 having a peak value of about 10% of the air pressure difference is a time from the time t2 when reaching the destination floor to the time t4 when the door is opened on the destination floor. Control with, arrive near the pressure of the destination floor. In the sixth atmospheric pressure adjustment pattern C6, the overshoot is performed before the door is opened, so that it is possible to provide the passengers with comfort that has not been experienced by conventional elevators. Although the overshoot start time is the arrival time t2 of the car at the destination floor, it is not always necessary to match the arrival time t2, and any time point can be used as long as about 10% of the atmospheric pressure difference can be reached.
[0054]
【The invention's effect】
As described above, according to the present invention, it is possible to suppress the physiological problems of passengers in the super high-rise / high-speed elevator by controlling the atmospheric pressure in the car, and to provide comfort to the passengers. In addition, even if the car pressure control does not work properly, or when the passenger complains of physical abnormalities even though it works normally, it can be switched to the protective operation mode, so the passenger can be transported safely. .
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an elevator atmospheric pressure control apparatus according to an embodiment of the present invention.
FIG. 2 is a flowchart showing the contents of processing of car internal pressure control and protection operation in the control circuit according to the embodiment of the present invention.
FIG. 3 is an explanatory diagram showing an example of an atmospheric pressure adjustment pattern according to the embodiment of the present invention.
FIG. 4 is an explanatory diagram of another example of the atmospheric pressure adjustment pattern in the embodiment of the present invention.
FIG. 5 is an explanatory diagram of another example of the atmospheric pressure adjustment pattern in the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Car, 2 ... Barometer, 3 ... A / D converter, 4 ... Input / output circuit, 5 ... Control circuit, 6 ... Body abnormality button, 7 ... Pump, 8 ... Flow control valve, 9 ... Air filter, 10 …memory

Claims (5)

エレベータのかご内の気圧を検出する気圧計と、前記かご内に空気を送り出したり前記かご内の空気を吸い込んだりするポンプと、前記ポンプからの前記かご内への流入空気量や流出空気量を調整する流量制御弁と、前記気圧計で検出されたかご内気圧が予め定めた気圧調整パターンに沿って変化するように前記ポンプおよび前記流量調整弁に指令を出してかご内気圧を制御する制御回路とを備え、前記予め定めた気圧調整パターンは、出発階でのかごの戸閉から目的階で戸開する所定の時間前までの時間間隔において、かご内気圧を出発階の気圧から目的階の気圧まで一定の変化率で変化させ、目的階で戸開する所定の時間前の時点からかご内気圧を一旦オーバーシュートさせて目的階で戸開する時点で目的階の気圧に戻す気圧調整パターンであることを特徴とするエレベータのかご内気圧制御装置。A barometer for detecting the atmospheric pressure in the elevator car, a pump for sending air into the car and sucking air in the car, an inflow air amount and an outflow air amount from the pump into the car A flow control valve to be adjusted, and a control for controlling the car internal pressure by issuing a command to the pump and the flow control valve so that the car internal pressure detected by the barometer changes in accordance with a predetermined air pressure adjustment pattern A predetermined air pressure adjustment pattern , wherein the air pressure inside the car is changed from the air pressure at the departure floor to the air at the destination floor at a time interval from the closing of the car at the departure floor to a predetermined time before opening at the destination floor. The air pressure adjustment pattern is changed at a constant rate of change to the atmospheric pressure of the target floor, and the atmospheric pressure inside the car is temporarily overshot from the time before the door opens on the destination floor, and then returned to the air pressure on the destination floor when the door opens on the destination floor. In-car air pressure control device for an elevator, characterized in that it. エレベータのかご内の気圧を検出する気圧計と、前記かご内に空気を送り出したり前記かご内の空気を吸い込んだりするポンプと、前記ポンプからの前記かご内への流入空気量や流出空気量を調整する流量制御弁と、前記気圧計で検出されたかご内気圧が予め定めた気圧調整パターンに沿って変化するように前記ポンプおよび前記流量調整弁に指令を出してかご内気圧を制御する制御回路とを備え、前記予め定めた気圧調整パターンは、出発階でのかごの戸閉から目的階でのかごの戸開までの時間間隔において、かご内気圧を出発階の気圧から目的階の気圧まで一定の変化率で変化させる気圧調整パターンであり、前記出発階でのかごの戸閉から所定の時間経過後にかごを走行開始し、前記気圧調整パターンにおける時間間隔を延長するようにしたことを特徴とするエレベータのかご内気圧制御装置。A barometer for detecting the atmospheric pressure in the elevator car, a pump for sending air into the car and sucking air in the car, and an inflow air amount and an outflow air amount from the pump into the car. A flow control valve to be adjusted and a control for controlling the car internal pressure by issuing a command to the pump and the flow control valve so that the car internal pressure detected by the barometer changes in accordance with a predetermined air pressure adjustment pattern. A predetermined air pressure adjustment pattern, wherein the air pressure inside the car is changed from the air pressure at the starting floor to the air pressure at the destination floor at a time interval from the door closing of the car on the starting floor to the door opening of the car on the destination floor. The air pressure adjustment pattern is changed at a constant rate until the car starts running after a predetermined time has elapsed since the car was closed on the departure floor, and the time interval in the air pressure adjustment pattern is extended. In-car air pressure control device for an elevator, characterized in that the. エレベータのかご内の気圧を検出する気圧計と、前記かご内に空気を送り出したり前記かご内の空気を吸い込んだりするポンプと、前記ポンプからの前記かご内への流入空気量や流出空気量を調整する流量制御弁と、前記気圧計で検出されたかご内気圧が予め定めた気圧調整パターンに沿って変化するように前記ポンプおよび前記流量調整弁に指令を出してかご内気圧を制御する制御回路とを備え、前記予め定めた気圧調整パターンは、出発階でのかごの戸閉から目的階で戸開する所定の時間前までの時間間隔において、かご内気圧を出発階の気圧から目的階の気圧まで一定の変化率で変化させ、目的階で戸開する所定の時間前の時点からかご内気圧を一旦オーバーシュートさせて目的階で戸開する時点で目的階の気圧に戻す気圧調整パターンであり、前記出発階でのかごの戸閉から所定の時間経過後にかごを走行開始し、前記気圧調整パターンにおける時間間隔を延長するようにしたことを特徴とするエレベータのかご内気圧制御装置。A barometer for detecting the atmospheric pressure in the elevator car, a pump for sending air into the car and sucking air in the car, and an inflow air amount and an outflow air amount from the pump into the car. A flow control valve to be adjusted and a control for controlling the car internal pressure by issuing a command to the pump and the flow control valve so that the car internal pressure detected by the barometer changes in accordance with a predetermined air pressure adjustment pattern. A predetermined air pressure adjustment pattern, wherein the air pressure inside the car is changed from the air pressure at the departure floor to the air at the destination floor at a time interval from the closing of the car at the departure floor to a predetermined time before opening at the destination floor. The air pressure adjustment pattern is changed at a constant rate of change to the atmospheric pressure of the target floor, and the atmospheric pressure inside the car is temporarily overshot from the time before the door opens on the destination floor, and then returned to the air pressure on the destination floor when the door opens on the destination floor. , And the said basket from the door closing the cage after a predetermined time has elapsed in the departure floor to begin running, in-car air pressure control device for an elevator, characterized in that so as to prolong the time interval in the atmospheric pressure adjustment pattern. エレベータのかご内の気圧を検出する気圧計と、前記かご内に空気を送り出したり前記かご内の空気を吸い込んだりするポンプと、前記ポンプからの前記かご内への流入空気量や流出空気量を調整する流量制御弁と、前記気圧計で検出されたかご内気圧が予め定めた気圧調整パターンに沿って変化するように前記ポンプおよび前記流量調整弁に指令を出してかご内気圧を制御する制御回路とを備え、前記予め定めた気圧調整パターンは、出発階でのかごの戸閉から目的階でのかごの戸開までの時間間隔において、かご内気圧を出発階の気圧から目的階の気圧まで一定の変化率で変化させる気圧調整パターンであり、前記目的階でのかごの到着から所定の時間経過後にかごの戸開を行い、前記気圧調整パターンにおける時間間隔を延長するようにしたことを特徴とするエレベータのかご内気圧制御装置。A barometer for detecting the atmospheric pressure in the elevator car, a pump for sending air into the car and sucking air in the car, an inflow air amount and an outflow air amount from the pump into the car A flow control valve to be adjusted and a control for controlling the car internal pressure by issuing a command to the pump and the flow control valve so that the car internal pressure detected by the barometer changes in accordance with a predetermined air pressure adjustment pattern. A predetermined air pressure adjustment pattern, wherein the air pressure inside the car is changed from the air pressure at the starting floor to the air pressure at the destination floor at a time interval from the door closing of the car on the starting floor to the door opening of the car on the destination floor. The air pressure adjustment pattern is changed at a constant rate of change until the car opens on the destination floor after a predetermined time has elapsed, and the time interval in the air pressure adjustment pattern is extended. In-car air pressure control device for an elevator, characterized in that the. エレベータのかご内の気圧を検出する気圧計と、前記かご内に空気を送り出したり前記かご内の空気を吸い込んだりするポンプと、前記ポンプからの前記かご内への流入空気量や流出空気量を調整する流量制御弁と、前記気圧計で検出されたかご内気圧が予め定めた気圧調整パターンに沿って変化するように前記ポンプおよび前記流量調整弁に指令を出してかご内気圧を制御する制御回路とを備え、前記予め定めた気圧調整パターンは、出発階でのかごの戸閉から目的階で戸開する所定の時間前までの時間間隔において、かご内気圧を出発階の気圧から目的階の気圧まで一定の変化率で変化させ、目的階で戸開する所定の時間前の時点からかご内気圧を一旦オーバーシュートさせて目的階で戸開すA barometer for detecting the atmospheric pressure in the elevator car, a pump for sending air into the car and sucking air in the car, an inflow air amount and an outflow air amount from the pump into the car A flow control valve to be adjusted and a control for controlling the car internal pressure by issuing a command to the pump and the flow control valve so that the car internal pressure detected by the barometer changes in accordance with a predetermined air pressure adjustment pattern. A predetermined air pressure adjustment pattern, wherein the air pressure inside the car is changed from the air pressure at the departure floor to the air at the destination floor at a time interval from the closing of the car at the departure floor to a predetermined time before opening at the destination floor. The air pressure in the car is overshooted from a point in time before the door opens on the destination floor, and then opens on the destination floor. る時点で目的階の気圧に戻す気圧調整パターンであり、前記目的階でのかごの到着から所定の時間経過後にかごの戸開を行い、前記気圧調整パターンにおける時間間隔を延長するようにしたことを特徴とするエレベータのかご内気圧制御装置。This is a barometric pressure adjustment pattern that returns to the target floor pressure at the point of time, and the car is opened after a predetermined time has elapsed since the arrival of the car on the destination floor, thereby extending the time interval in the barometric pressure adjustment pattern. Elevator car internal pressure control device characterized by
JP24756097A 1997-08-29 1997-08-29 Elevator car pressure control device Expired - Fee Related JP4023877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24756097A JP4023877B2 (en) 1997-08-29 1997-08-29 Elevator car pressure control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24756097A JP4023877B2 (en) 1997-08-29 1997-08-29 Elevator car pressure control device

Publications (2)

Publication Number Publication Date
JPH1171077A JPH1171077A (en) 1999-03-16
JP4023877B2 true JP4023877B2 (en) 2007-12-19

Family

ID=17165319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24756097A Expired - Fee Related JP4023877B2 (en) 1997-08-29 1997-08-29 Elevator car pressure control device

Country Status (1)

Country Link
JP (1) JP4023877B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102066223B (en) * 2008-06-13 2013-10-09 三菱电机株式会社 Elevator controller and elevator apparatus
CN102414107B (en) * 2009-07-21 2014-11-05 三菱电机株式会社 Elevator device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1845871B (en) * 2004-06-29 2011-03-23 东芝电梯株式会社 Elevator system
JP4597938B2 (en) * 2006-10-13 2010-12-15 東芝エレベータ株式会社 Elevator equipment
US9017153B2 (en) 2007-11-09 2015-04-28 Mitsubishi Electric Corporation Elevator air pressure control device
JP5148257B2 (en) * 2007-12-10 2013-02-20 株式会社日立製作所 Elevator apparatus and pressure control method thereof
JP6198564B2 (en) * 2013-10-16 2017-09-20 株式会社日立製作所 Elevator pressure control device
JP6272118B2 (en) * 2014-04-16 2018-01-31 株式会社日立製作所 Elevator with atmospheric pressure control device, its setting method and manufacturing method
JP2020083544A (en) * 2018-11-22 2020-06-04 株式会社日立製作所 Elevator car inside air pressure control device and method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102066223B (en) * 2008-06-13 2013-10-09 三菱电机株式会社 Elevator controller and elevator apparatus
CN102414107B (en) * 2009-07-21 2014-11-05 三菱电机株式会社 Elevator device

Also Published As

Publication number Publication date
JPH1171077A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
JP5225286B2 (en) Elevator pressure control device
KR101228249B1 (en) Elevator controller and elevator apparatus
JP4023877B2 (en) Elevator car pressure control device
JP5393253B2 (en) Elevator equipment
JP5063093B2 (en) Elevator equipment
JP5148257B2 (en) Elevator apparatus and pressure control method thereof
JP6272167B2 (en) Elevator car pressure control device
JP5585582B2 (en) Elevator equipment
CN111204639B (en) Air pressure control device in elevator car and method thereof
JP5970362B2 (en) Elevator car pressure control method
JP3953168B2 (en) Elevator equipment
JPH10226477A (en) Air pressure adjusting device in elevator car
JP4659460B2 (en) elevator
JP3630723B2 (en) Elevator equipment and buildings
JP2003118943A (en) Elevator device
WO2000073192A1 (en) Elevator control method
JP3175258B2 (en) Hydraulic elevator equipment
JP2002128401A (en) Operation system for elevator
JPS6236955B2 (en)
JPH07206287A (en) Controller for hydraulic elevator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees