JP2020083544A - Elevator car inside air pressure control device and method therefor - Google Patents

Elevator car inside air pressure control device and method therefor Download PDF

Info

Publication number
JP2020083544A
JP2020083544A JP2018219762A JP2018219762A JP2020083544A JP 2020083544 A JP2020083544 A JP 2020083544A JP 2018219762 A JP2018219762 A JP 2018219762A JP 2018219762 A JP2018219762 A JP 2018219762A JP 2020083544 A JP2020083544 A JP 2020083544A
Authority
JP
Japan
Prior art keywords
car
pressure
internal
outside
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018219762A
Other languages
Japanese (ja)
Inventor
真貴 宮前
Maki Miyamae
真貴 宮前
真輔 井上
Shinsuke Inoue
真輔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018219762A priority Critical patent/JP2020083544A/en
Priority to CN201911022848.3A priority patent/CN111204639B/en
Publication of JP2020083544A publication Critical patent/JP2020083544A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/02Cages, i.e. cars
    • B66B11/0226Constructional features, e.g. walls assembly, decorative panels, comfort equipment, thermal or sound insulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)

Abstract

To provide an elevator car inside air pressure control device that is able to reduce noise leaking from a car by obtaining a difference between the inside and outside air pressure at the highest speed even if there is a change in highest speed, and is able to eliminate unpleasant feeling of ear stuffing by inducing a passenger to swallow.SOLUTION: An elevator car inside air pressure control device comprises: a suction/exhaust unit configured for suction/exhaust with respect to inside of a car; an air pressure measurement device capable of measuring an air pressure difference P, N between inside and outside the car; and a control unit that controls the suction/exhaust unit such that the air pressure difference P, N between inside and outside, measured by the air pressure measurement device becomes close to a pattern set in advance in correspondence with an operation of an elevator. The pattern not only gradually changes the air pressure difference P, N between inside and outside during a lifting/lowering time T from start of lifting/lowering of the car to end of the lifting/lowering by arrival at a target floor, but also applies first pressure to the car such that negative pressure or positive pressure is determined at a point in time closer to the start of lifting/lowering than a half of the lifting/lowering time T and, if necessary, a second pressure opposite the application of the first pressure is applied to offset the application of the first pressure right before the end of lifting/lowering to make it equal to air pressure outside the car.SELECTED DRAWING: Figure 2

Description

本発明は、エレベーターかご内気圧制御装置及びその方法に関し、特に、乗り心地を改善するためのエレベーターかご内気圧制御装置及びその方法に関する。 The present invention relates to an elevator car internal pressure control device and method, and more particularly, to an elevator car internal pressure control device and method for improving riding comfort.

高層ビル等に使用される長行程を高速で昇降するかごを有するエレベーターかご内気圧制御装置では、かご内の急激な気圧変化が生じやすく、これにより乗客が耳詰まりによる不快感を覚えることがある。このような不都合を改善するために、従来から種々の対策が提案されている。 In elevator car internal pressure control devices that have a car that elevates and lowers a long stroke used in high-rise buildings, etc., a sudden change in air pressure in the car is likely to occur, which may cause passengers to feel uncomfortable due to ear blockage. .. In order to improve such inconvenience, various measures have been conventionally proposed.

特許文献1には、制御部の構成および制御方法を簡潔なものとした上で、乗客に嚥下を誘発させて耳詰まりの不快感を解消させることができるエレベーター気圧制御部が開示されている。具体的には、エレベーターかご内気圧制御装置において、第1の運転期間(前半)では、かごの内部気圧がかごの外部気圧よりも高い陽圧となる範囲内で階段状に変化するように、加圧制御を実行し、第2の運転期間(後半)では、内部気圧が外部気圧よりも低い陰圧となる範囲内で階段状に変化するように、減圧制御を実行する。さらに、昇降運転の運転開始時刻から運転終了時刻までの運転時間よりも短いかご内気圧制御区間を設定し、かご内気圧制御区間の中で加圧制御と減圧制御とを実行する、というものである。 Patent Document 1 discloses an elevator air pressure control unit that can simplify the configuration and control method of the control unit and can induce passengers to swallow to eliminate the discomfort of ear clogging. Specifically, in the elevator car internal pressure control device, during the first operation period (first half), the internal pressure of the car changes stepwise within a range where the positive pressure is higher than the external pressure of the car. The pressurization control is executed, and in the second operation period (second half), the depressurization control is executed so that the internal pressure changes stepwise within a range where the negative pressure is lower than the external pressure. Furthermore, by setting a car internal pressure control section that is shorter than the operation time from the operation start time of the lifting operation to the operation end time, pressurization control and decompression control are executed in the car internal pressure control section. is there.

また、特許文献2には、超高層ビル用のエレベーターにおいて、かご内の気圧をかごの昇降にあわせて段階的に変化させることにより、かご内の乗客に確実に嚥下を誘発させ、耳の異常感の防止或いは緩和を図るエレベーターかご内気圧制御装置が開示されている。特許文献2のエレベーターかご内気圧制御装置には、かご内外の気圧をそれぞれ検出する気圧検出器と、かご内の与圧を行う与圧装置と、これを制御するマイクロコンピュータとを有する与圧調整装置が設けられている。 Further, in Patent Document 2, in an elevator for a skyscraper, the atmospheric pressure in the car is changed stepwise in accordance with the elevation of the car, so that the passenger in the car is surely induced to swallow, and the ear abnormality occurs. An elevator car internal pressure control device for preventing or alleviating the feeling is disclosed. The elevator car inside air pressure control device of Patent Document 2 has an air pressure detector that detects the air pressure inside and outside the car, a pressurizing device that pressurizes the inside of the car, and a pressurizing adjustment that includes a microcomputer that controls the pressurizing device. A device is provided.

マイクロコンピュータは、かご内外の気圧を比較する比較手段の機能と、比較に応じて与圧装置を制御する与圧制御手段の機能を備え、かごの起動(運転開始)から停止(運転終了)までかご内の気圧を所定値幅で段階的(ステップ状)に変化させる。特許文献2のエレベーターかご内気圧制御装置では、エレベーターのかご内の気圧をステップ状に変化させることで、乗客が気圧変化を認識することができ、嚥下を確実に行うことで耳の異常感を緩和することができる。特許文献1及び特許文献2で提案された気圧制御方法によれば、乗客に嚥下時間を与えているので耳詰まりは解消される。 The microcomputer has a function of comparing means for comparing atmospheric pressures inside and outside the car and a function of pressurizing control means for controlling the pressurizing device according to the comparison, from the start (operation start) to the stop (operation end) of the car. The atmospheric pressure in the car is changed stepwise within a predetermined value range. In the elevator car internal pressure control device of Patent Document 2, the passenger can recognize the change in atmospheric pressure by changing the atmospheric pressure in the car of the elevator in a step-like manner, and the swallowing will surely cause the abnormal ears to be heard. Can be relaxed. According to the atmospheric pressure control methods proposed in Patent Document 1 and Patent Document 2, since the swallowing time is given to the passenger, the ear blockage is eliminated.

さらに、引用文献による開示はないものの、かご内の気圧変化パターンを、かごの走行時間に基づいて制御、すなわち時間T軸の方向で調整することにより、かご外からの漏洩音を低減するという構想もあった。より具体的には、指定された目的階と、それに向かうかごの走行時間に基づいて最高速度時を見出して、その最高速度時にかご内外で気圧差が発生するように、予め設定された気圧パターンどおりに制御する。このように、かごの内の気圧を制御することで、得られた内外気圧差を利用してかごの気密保持する弁構造(以下、「差圧気密弁構造」ともいう)により、かごの隙間を塞いでかご外からの漏洩音を低減するという構想(以下、「差圧利用静粛かご構想」ともいう)である。 Further, although there is no disclosure by the cited document, the concept of reducing the sound leakage from the outside of the car by controlling the atmospheric pressure change pattern in the car based on the traveling time of the car, that is, adjusting it in the direction of the time T axis. There was also. More specifically, it finds the maximum speed based on the designated destination floor and the traveling time of the car toward it, and the preset atmospheric pressure pattern is used so that the atmospheric pressure difference occurs inside and outside the car at the maximum speed. Control as per. In this way, by controlling the air pressure inside the car, the valve structure that maintains the airtightness of the car by utilizing the obtained internal and external air pressure difference (hereinafter, also referred to as "differential pressure airtight valve structure") allows The concept is to block the leak noise from the outside of the car by closing the (hereinafter, also referred to as "silent car concept utilizing differential pressure").

特開2016−20274号公報JP, 2016-20274, A 特開平07−112879号公報JP, 07-112879, A

しかしながら、上述の差圧利用静粛かご構想の着眼点は、時間T軸に基づく制御である。すなわち、エレベーターの運行における最高速度を検出、又は予測してかごの内外気圧差Pを制御するので、その最高速度となる時間T軸に狂いが生じると、制御の目的を達成できなくなる。例えば、何らの理由で減速運転した場合に、最高速度や時間T軸に狂いが生じるため、かご外からの漏洩音を低減できなくなるという課題があった。 However, the focus of the above-mentioned concept of the quiet cage utilizing differential pressure is the control based on the time T axis. That is, since the maximum speed in the operation of the elevator is detected or predicted to control the difference P between the internal and external atmospheric pressures of the car, if the time T axis that is the maximum speed is distorted, the purpose of control cannot be achieved. For example, when the vehicle is decelerated for some reason, the maximum speed and the time T-axis are misaligned, which causes a problem that the sound leaked from the outside of the car cannot be reduced.

本発明は、かかる課題を解決するためになされたものであり、その目的とするところは、パターン通りの制御を実行するための基準を時間T軸に限定せず、内外気圧差を確保することを一義的に捉え、気圧変化軸(以下、「気圧Y軸」又は、単に「Y軸」ともいう)も考慮し、最高速度の変更があった場合でも、最高速度時に内外気圧差を得てかご外からの漏洩音を低減するとともに、乗客に嚥下を誘発させて耳詰まりの不快感を解消させることができるエレベーターかご内気圧制御装置を提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is not to limit the time T axis as a reference for executing control according to a pattern, but to secure a difference between internal and external pressures. The air pressure change axis (hereinafter also referred to as "atmospheric pressure Y axis" or simply "Y axis") is taken into consideration, and even if the maximum speed is changed, the difference between the internal and external atmospheric pressure is obtained at the maximum speed. An object of the present invention is to provide an elevator car internal pressure control device that can reduce leakage noise from the outside of the car and can induce passengers to swallow and eliminate the discomfort of ear clogging.

上記目的を達成するための本発明は、エレベーターのかごに、内側と外側との内外気圧差を利用して気密保持する弁構造を備えたエレベーターかご内気圧制御装置であって、前記かごの内側に対して吸排気することで該内側の気圧を任意に加減する吸排気部と、内外のどちらが高いか判別しながら前記内外気圧差を測定可能な気圧測定装置と、該気圧測定装置で測定された前記内外気圧差を前記エレベーターの運行に対応して予め設定されたパターンに近づけるように前記吸排気部を制御する制御部と、を備え、前記パターンは、前記かごの昇降開始から目的階到着による昇降終了までの昇降時間Tの中で、前記内外気圧差を段階的に変化させるのみならず、前記かごに対して前記昇降時間の半分よりも昇降開始に近い時点で陰圧か陽圧かを定めた第1与圧するとともに、必要なら前記第1与圧とは逆の第2与圧することにより昇降終了の直前に前記第1与圧を相殺して乗りかご外気圧に合わせるものである。 The present invention for achieving the above object is an elevator car internal pressure control device having a valve structure for maintaining an airtightness in a car of an elevator by utilizing an internal and external atmospheric pressure difference between an inside and an outside of the car. With respect to the intake/exhaust unit that arbitrarily adjusts the inside pressure by sucking/exhausting the inside and outside, and an atmospheric pressure measuring device capable of measuring the internal/external atmospheric pressure difference while discriminating which is higher, the inside/outside atmospheric pressure is measured by the atmospheric pressure measuring device. And a control unit that controls the intake and exhaust units so that the internal and external pressure difference approaches a preset pattern corresponding to the operation of the elevator, the pattern arriving at the destination floor from the start of raising and lowering the car. During the ascending/descending time T up to the end of ascending/descending, not only the internal/external air pressure difference is changed stepwise, but also negative or positive pressure is applied to the car at a point closer to the ascending/descending start than half of the ascending/descending time. The first pressurization is determined and, if necessary, the second pressurization opposite to the first pressurization is performed to cancel the first pressurization just before the end of the ascending/descending and to match the outside pressure of the car.

本発明によれば、最高速度の変更があった場合でも、最高速度時に内外気圧差を得てかご外からの漏洩音を低減するとともに、乗客に嚥下を誘発させて耳詰まりの不快感を解消させすることができるエレベーターかご内気圧制御装置を提供できる。 According to the present invention, even when the maximum speed is changed, the sound pressure difference between the outside and the outside of the car is reduced by obtaining the difference between the internal pressure and the external pressure at the maximum speed, and the passengers are swallowed to eliminate the discomfort of ear clogging. It is possible to provide an elevator car internal air pressure control device that can be operated.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

本発明の一実施形態に係るエレベーターかご内気圧制御装置(以下、「本装置」ともいう)の構成図である。FIG. 1 is a configuration diagram of an elevator car internal pressure control device (hereinafter, also referred to as “this device”) according to an embodiment of the present invention. 図1の本装置で採用する気圧制御パターンの代表例(以下、「代表パターン」ともいう)を示すグラフであり、第1与圧を陽圧、最高速度時に陽圧、第2与圧を陰圧としている。3 is a graph showing a typical example of the atmospheric pressure control pattern adopted in the present apparatus of FIG. 1 (hereinafter, also referred to as “representative pattern”), in which the first pressurization is positive pressure, the positive pressure at maximum speed, and the second pressurization is negative. It is pressure. 図1の本装置で実行するエレベーターかご内気圧制御方法(以下、「本方法」ともいう)の手順を示すフローチャートである。3 is a flowchart showing a procedure of an elevator car internal pressure control method (hereinafter, also referred to as “present method”) executed by the present apparatus of FIG. 1. 図2の代表パターンの変形例を示すグラフであり、第1与圧を陽圧、最高速度時に弱陰圧、第2与圧を不要とする初期陽圧パターンである。It is a graph which shows the modification of the typical pattern of FIG. 2, and is an initial positive pressure pattern which makes positive pressure a 1st pressurization, a weak negative pressure at the time of maximum speed, and a 2nd pressurization is unnecessary. 図2の代表パターンの変形例を示すグラフであり、第1与圧を陰圧、最高速手前で陰圧から陽圧へと切り替えて、後半陽圧、第2与圧は適宜とする前陰後陽パターンである。3 is a graph showing a modified example of the representative pattern of FIG. 2, in which the first pressurization is switched from negative pressure to negative pressure at the highest speed, and the positive pressure in the second half and the second pressurization are set appropriately. It is a Goyo pattern. 図4及び図5のパターンを合わせた変形例を示すグラフであり、第1与圧を陰圧、最高速の後で陰圧から弱陽圧へと切り替えて、第2与圧を不要とする前陰後弱陽パターンである。It is a graph which shows the modification which combined the pattern of FIG. 4 and FIG. 5, and switches a 1st pressurization to a negative pressure and after a maximum speed from a negative pressure to a weak positive pressure, and a 2nd pressurization is unnecessary. It is a pattern of anterior-posterior weak Yang.

以下、本システム及び本方法について、図面に基づいて説明する。本システム及び本方法は、差圧気密弁構造のかごを備えた超高速及び長行程のエレベーターにおいて、昇降時のかごが最高速度時に内外気圧差P(図2参照)を得ることにより、かごの扉等の隙間を塞いでかご外からの漏洩音を低減するとともに、乗客に嚥下を誘発させて耳詰まりの不快感を解消させるようにしたものである。 The system and the method will be described below with reference to the drawings. This system and the method are for an ultra-high-speed and long-stroke elevator equipped with a car having a differential pressure-tight valve structure, and by obtaining the internal/external pressure difference P (see FIG. 2) when the car is moving up and down at the maximum speed. The gap of a door or the like is closed to reduce the sound leakage from the outside of the car, and the passenger is swallowed to eliminate the discomfort of ear clogging.

上述の「差圧気密弁構造」とは、かごの内外に生じる気圧差で、シール部材を扉等の隙間に押し付けることにより、かごを気密保持する弁構造をいう。これに関連した上述の「差圧利用静粛かご構想」とは、差圧気密弁構造のかご内隙間を塞いでかご外からの漏洩音を低減する構想をいう。その構想は、以下のとおりである。超高速及び長行程のエレベーターにおいて、予め設定されたパターンに近づけるように、かごの内外気圧差を制御する。そのパターン制御により、昇降時のかごが最高速度時に内外気圧差Pを得られるように制御すれば、最高速度時に発生する大きなかご外からの漏洩音に対し、かご内隙間を塞ぐことにより、このかご外からの漏洩音を低減できる。その結果、かご内の乗客は静粛を得られる、というものである。 The above-mentioned "differential pressure airtight valve structure" refers to a valve structure that holds the car airtight by pressing a seal member against a gap such as a door due to an atmospheric pressure difference generated inside and outside the car. The above-mentioned "silent car concept utilizing differential pressure" related to this is a concept for reducing the leakage noise from the outside of the car by closing the internal car gap of the differential pressure airtight valve structure. The concept is as follows. In an ultra-high-speed and long-stroke elevator, the difference in air pressure between the inside and outside of the car is controlled so as to approach a preset pattern. By controlling the pattern so that the car during ascending/descending can obtain the internal/external air pressure difference P at the maximum speed, the leakage sound from the outside of the large car generated at the maximum speed is closed by closing the internal clearance of the car. The leakage noise from outside the car can be reduced. As a result, passengers in the car can be quiet.

図1は、本発明の一実施形態に係るエレベーターかご内気圧制御装置(以下、「本装置」ともいう)の構成図である。図1に示すように、本装置10は、かご1と、かご1内の加減圧を行う1台若しくは複数台の吸排気部(送風機)2と、かご1と吸排気部2を連結する配管4と、かご1内の気圧若しくはかご1内外の差圧を測定する1台若しくは複数台の気圧測定装置3と、吸排気部2を制御する制御部5から構成されている。配管4はかご1と吸排気部2を連通しており、吸排気部2は配管4を介してかご1に対して空気を給排し、かご1内を加圧、又は減圧する。 FIG. 1 is a configuration diagram of an elevator car internal pressure control device (hereinafter, also referred to as “this device”) according to an embodiment of the present invention. As shown in FIG. 1, the present apparatus 10 includes a car 1, one or a plurality of intake/exhaust units (blowers) 2 for increasing/decreasing the pressure in the car 1, and a pipe connecting the car 1 and the intake/exhaust unit 2. 4, an atmospheric pressure measuring device 3 for measuring the atmospheric pressure in the car 1 or a differential pressure between the inside and outside of the car 1, and a control unit 5 for controlling the intake/exhaust unit 2. The pipe 4 communicates with the car 1 and the intake/exhaust unit 2, and the intake/exhaust unit 2 supplies/exhausts air to/from the car 1 via the pipe 4 to pressurize or depressurize the inside of the car 1.

本装置10は、制御部5が、かご1の内外気圧差Pをエレベーターの運行に対応して予め設定されたパターンに近づけるように、吸排気部2を制御する。このパターンには第1、第2で示す2つの目的がある。第1に、かご1の昇降開始から目的階到着による昇降終了までの昇降時間Tの中で、内外気圧差を段階的に変化させることによって、乗客に嚥下を誘発させて耳詰まりの不快感を解消させる目的である。 The present device 10 controls the intake/exhaust unit 2 so that the control unit 5 brings the internal/external air pressure difference P of the car 1 closer to a pattern preset corresponding to the operation of the elevator. This pattern has two purposes, first and second. First, during the ascending/descending time T from the start of the ascending/descending of the car 1 to the end of the ascending/descending at the arrival at the destination floor, the difference in internal and external air pressure is changed step by step to induce swallowing to passengers and cause discomfort due to ear blockage. The purpose is to eliminate it.

なお、第2目的を達成するため、本装置10は、かご1の扉に付設された弁構造、すなわち、扉の内側と外側との内外気圧差Pを利用して気密保持する弁構造(差圧気密弁構造)により、かご1内隙間を塞いでかご外からの漏洩音を低減するように作用させる。この差圧気密弁構造について、詳細な図示は省略するが、シール部材を内外気圧差Pで扉の隙間に押圧して塞ぐことにより気密保持する弁構造である。内外気圧差Pについては、図2を用いて後述する。ここでは、かご1の内側の気圧を乗りかご内気圧、又は内部気圧ともいう。また、かご1と同じ高度ですぐ外側の大気圧を乗りかご外気圧、あるいは外部気圧、又は単に大気圧ともいう。 In order to achieve the second object, the present device 10 has a valve structure attached to the door of the car 1, that is, a valve structure for maintaining airtightness by utilizing the internal/external pressure difference P between the inside and outside of the door (difference). The pressure-tight valve structure) closes the inner clearance of the car 1 to reduce the sound leakage from the outside of the car. Although not shown in detail, the differential pressure airtight valve structure is a valve structure that maintains airtightness by pressing and closing the seal member with the internal/external pressure difference P in the gap of the door. The internal/external pressure difference P will be described later with reference to FIG. Here, the atmospheric pressure inside the car 1 is also referred to as the car internal pressure or the internal atmospheric pressure. Further, the atmospheric pressure immediately outside of the car 1 at the same altitude as that of the car 1 is also referred to as car external pressure, external pressure, or simply atmospheric pressure.

第2目的について、かご1の外では、最高速度時に最も大きなかご外からの漏洩音が発生するので、最高速度時に内外気圧差Pを得て密閉するように、制御部5が、吸排気部2をパターン制御する。このとき、気圧測定装置3は、かご1の内外のどちらの気圧が高いか判別しながら内外気圧差Pを測定可能である。制御部5は、気圧測定装置3で測定された内外気圧差をエレベーターの運行に対応して予め設定されたパターンに近づけるように吸排気部2を制御する。 For the second purpose, the largest leakage sound from the outside of the car is generated outside the car 1 at the maximum speed. Therefore, the control unit 5 controls the intake/exhaust unit to obtain the internal/external air pressure difference P at the maximum speed for sealing. 2 pattern control. At this time, the atmospheric pressure measuring device 3 can measure the internal/external atmospheric pressure difference P while determining which of the internal and external atmospheric pressures of the car 1 is higher. The control unit 5 controls the intake/exhaust unit 2 so that the internal/external atmospheric pressure difference measured by the atmospheric pressure measurement device 3 approaches a preset pattern corresponding to the operation of the elevator.

図2は、図1の本装置で採用する気圧制御パターンの代表例(以下、「代表パターン」ともいう)を示すグラフであり、第1与圧(以下、「オフセット」ともいう)を陽圧、最高速度時に陽圧、第2与圧(これも「オフセット」という)を陰圧としている。図2のグラフは、縦軸に気圧Y及びかご1の速度、横軸に時間Tを示し、エレベーター(かご1)上昇時の乗りかご外気圧(緩いS字の細線)と、乗りかご内気圧(太い折れ線)の時間的変化と、を示している。なお、エレベーター(かご1)下降時については、図2の傾斜を上下で反転させたものであり、当業者自明であるため説明を省略する。 FIG. 2 is a graph showing a typical example (hereinafter, also referred to as “representative pattern”) of the atmospheric pressure control pattern adopted in the present apparatus in FIG. 1, in which the first pressurization (hereinafter, also referred to as “offset”) positive pressure. The positive pressure at the maximum speed and the second pressurization (also called "offset") are the negative pressures. The graph of FIG. 2 shows the atmospheric pressure Y and the speed of the car 1 on the vertical axis, and the time T on the horizontal axis. The outside pressure of the car when the elevator (car 1) rises (loose S-shaped thin line) and the inside pressure of the car (Thick polygonal line) with time. When the elevator (car 1) is descending, the inclination of FIG. 2 is inverted upside down and it is obvious to those skilled in the art, and therefore the description thereof is omitted.

乗りかご外気圧は、昇降開始時の大気圧ys=1010hPa(例えば、地上階が標高28m)から緩いS字による下降線をたどり、最後はY軸上の0=990hPa(例えば、最上の40階が標高203m)まで、変化する。本装置10を動作させず、かご1が外気に対して密封状態でなく、内外気圧差も生じなければ、乗りかご内気圧も、乗りかご外気圧と同等であれば、緩いS字による下降線をたどる。この状況をもたらす、近年の高速エレベーターによる気圧変化の速度に対し、乗客の耳への不快感を解消するために何らかの対策を必要とされるレベルである。 The outside air pressure of the car follows a gentle S-shaped descending line from the atmospheric pressure ys = 1010 hPa (for example, the ground floor is at an altitude of 28 m) at the start of ascending and descending, and finally 0 = 990 hPa on the Y axis (for example, the top 40 floors). Changes up to an altitude of 203 m). If the device 10 is not operated, the car 1 is not in a sealed state with respect to the outside air, and there is no difference between the inside and outside pressures, and if the inside pressure of the car is also equal to the outside pressure of the car, the descending line with a gentle S-shape To follow. This is a level at which some measure is required to eliminate the discomfort to passengers' ears with respect to the speed of changes in atmospheric pressure caused by high-speed elevators in recent years, which causes this situation.

これに対し、本装置10を作動し、乗りかご内気圧を折れ線状に段階的な時間的変化させることは、上述した第1目的のためである。なお、40階建ての上下方向をエレベーターにより数十秒で昇降する際の高度変化に応じて大気圧が変化する程度を1010hPa〜990hPaの数値を用いて例示したが、以降では数値を省略して変化のみを説明する。 On the other hand, it is for the above-mentioned first purpose to operate the device 10 to change the car internal pressure stepwise in a polygonal line. It should be noted that the degree to which the atmospheric pressure changes according to the altitude change when going up and down in the vertical direction of a 40-story building by an elevator in several tens of seconds is illustrated by using the numerical values of 1010 hPa to 990 hPa, but the numerical values will be omitted hereinafter. Only the changes will be explained.

また、上述した第2目的のため、かご1の速度(台形の太い破線)に対して設定された内外気圧差Pの関係もこのグラフから直読できる。この第2目的のため、かご1に対して昇降時間Tの半分よりも昇降開始に近い時点で陰圧か陽圧かを定めて第1与圧する。横軸にT1,T2で示す上昇時間Tの中程で内外気圧差P又はNを得るようにパターン設定されている。以下に説明する図2、図4、図5及び図6のグラフにおいて、乗りかご内気圧が大気圧より高い差圧をP、乗りかご内気圧が大気圧より低い差圧をNとし、区別容易に表示している。なお、内外気圧差P,Nは、後述する閾値yとの関係をP≧y,N≦(−y)とし、この条件を満たすとき、閾値を超える内外気圧差P,Nを得たものとする。 Further, for the above-described second purpose, the relationship between the speed of the car 1 (thick broken line of the trapezoid) and the set internal/external pressure difference P can also be directly read from this graph. For this second purpose, a negative pressure or a positive pressure is determined and first pressure is applied to the car 1 at a time closer to the start of lifting than the half of the lifting time T. The pattern is set so as to obtain the internal/external pressure difference P or N in the middle of the rising time T indicated by T1 and T2 on the horizontal axis. In the graphs of FIG. 2, FIG. 4, FIG. 5, and FIG. 6 described below, the pressure difference inside the car is higher than atmospheric pressure is P, and the pressure inside the car is lower than atmospheric pressure is N. Is displayed. Regarding the internal and external atmospheric pressure differences P and N, the relationship with a threshold value y described later is P≧y, N≦(−y), and when this condition is satisfied, the internal and external atmospheric pressure differences P and N exceeding the threshold value are obtained. To do.

図2のY軸上で、乗りかご内気圧が昇降開始時の大気圧ysと同一であったところを、本装置10を差動させて、第1与圧としてyuレベルまで陽圧を加えている。これにより、時間T1〜T2のタイミングにおいて、オフセットPの陽圧で乗りかご内外に圧力差が得られている。その結果、最高速度時にかご1の外で発生する最も大きな騒音をかご1の中まで侵入させないようにする第2目的を実現する。すなわち、内外気圧差Pによって、シール部材を扉の隙間に押圧して塞ぐことにより気密保持する弁構造を閉弁させるように作動させる。 On the Y-axis of FIG. 2, when the car internal pressure was the same as the atmospheric pressure ys at the start of ascending/descending, the device 10 was made to differ, and a positive pressure was applied to the yu level as the first pressurization. There is. As a result, a pressure difference between the inside and outside of the car is obtained by the positive pressure of the offset P at the timing of times T1 and T2. As a result, the second purpose of preventing the largest noise generated outside the car 1 from entering the car 1 at the maximum speed is realized. That is, the valve structure that keeps airtight by closing the seal member by pressing the seal member against the gap of the door is operated by the difference P between the inside and outside pressures.

図2において、山形に近い台形を描く太い破線は、かご1の速度である。この速度について、まず、台形の左脚に示すように、時間T1まで一定の加速度で速度上昇する。つぎに、台形の上底に示す時間T1〜T2の期間は、最高速度で維持される。つぎに、台形の右脚に示すように、時間T2〜Tまでは、負の一定加速度で速度減少しながら時間Tで停止する。乗客を乗せたほとんど高速移動体は、安全確保のため、これと略同様に速度制御される。これらは、図2に限らず、図4、図5及び図6に示す類似のグラフでも、概ね同様であるので、同一内容の説明は省略し、各図の相違点のみについて後述する。 In FIG. 2, a thick broken line that draws a trapezoid close to a mountain is the speed of the car 1. Regarding this speed, first, as shown in the left leg of the trapezoid, the speed increases at a constant acceleration until time T1. Next, during the period of time T1 to T2 shown on the upper base of the trapezoid, the maximum speed is maintained. Next, as shown in the right leg of the trapezoid, from time T2 to time T, the vehicle is stopped at time T while the speed decreases with a constant negative acceleration. Almost high-speed moving bodies carrying passengers are speed-controlled in a similar manner to ensure safety. These are not limited to FIG. 2 and are similar in the similar graphs shown in FIGS. 4, 5 and 6, so the description of the same contents will be omitted and only the differences between the drawings will be described later.

図3は、図1の本装置で実行するエレベーターかご内気圧制御方法(以下、「本方法」ともいう)の手順を示すフローチャートである。エレベーター(かご1)の運行制御は、不図示のエレベーター運行制御部によって行われる。これに付設されて追加機能を有する別の制御部5が実行主体となって、図3に示す本方法が実行される。以下、主語のない説明は、制御部5が実行主体である。本方法は、図3に示す各ステップS1〜S11を有する。 FIG. 3 is a flowchart showing a procedure of an elevator car internal pressure control method (hereinafter, also referred to as “this method”) executed by the present apparatus of FIG. The operation control of the elevator (car 1) is performed by an elevator operation control unit (not shown). Another control unit 5 attached to this and having an additional function becomes the execution subject, and the present method shown in FIG. 3 is executed. In the following description, the control unit 5 is the main subject of the description without subject. The method has steps S1 to S11 shown in FIG.

まず、エレベーターの扉が閉まっているか否かを確認する(ステップS1)。閉じていなければ(S1でNo)、閉じられるまで確認を継続する。S1でYesならS2へ進み、エレベーターが走行開始したか否かを確認する(ステップS2)。走行開始していなければ(S2でNo)、走行開始するまで確認を継続する。 First, it is confirmed whether or not the elevator door is closed (step S1). If it is not closed (No in S1), the confirmation is continued until it is closed. If Yes in S1, the process proceeds to S2, and it is confirmed whether the elevator has started traveling (step S2). If the traveling has not started (No in S2), the confirmation is continued until the traveling starts.

S2でYesならS3へ進み、気圧制御を開始する(ステップS3)。気圧制御は、上述の第1、第2目的を達成するように予め設定されたパターンに近づけように、図2、図4、図5及び図6に示すグラフを用いて後述する。つぎに、気圧無制御期間を終了したか否かを確認する(ステップS4)。終了していなければ(S4でNo)、終了するまで確認を継続する。S4でYesならS5へ進み、陰圧または陽圧側に気圧パターンを制御する(ステップS5)。 If Yes in S2, the process proceeds to S3 to start atmospheric pressure control (step S3). The atmospheric pressure control will be described later with reference to the graphs shown in FIGS. 2, 4, 5 and 6 so as to approach a pattern preset to achieve the above first and second objects. Next, it is confirmed whether or not the atmospheric pressure non-control period has ended (step S4). If it is not completed (No in S4), the confirmation is continued until it is completed. If Yes in S4, the process proceeds to S5, and the atmospheric pressure pattern is controlled to the negative pressure or positive pressure side (step S5).

つぎに、気圧パターンが閾値yを超えてズレたか否かを確認する(ステップS6)。超えていなければ(S6でNo)、閾値yを超えるまで確認を継続する。なお、閾値yについて、精密な図示をしないものの、つぎのように定義される。すなわち、ここでの閾値yは、最高速度時T1〜T2に、かご1の外で発生する最も大きな騒音をかご1の中まで侵入させないようにする第2目的を実用レベルで実現するために必要最小限の内外気圧差とする。つまり、乗客が静粛性を実感できる程度にかご1の隙間が閉じられていれば、それで足りる。なお、そのために数値を用いた説明は省略する。 Next, it is confirmed whether or not the atmospheric pressure pattern exceeds the threshold value y and is displaced (step S6). If not (No in S6), the confirmation is continued until the threshold y is exceeded. It should be noted that the threshold value y is defined as follows, although not shown in detail. That is, the threshold value y here is necessary to realize the second purpose at the practical level to prevent the largest noise generated outside the car 1 from entering the car 1 during the maximum speed T1 to T2. Minimize the internal/external pressure difference. In other words, it is sufficient if the gap of the car 1 is closed to such an extent that passengers can feel quietness. Note that the description using numerical values for that purpose is omitted.

このように、パターンの第2目的のため、かご1に対して昇降時間Tの半分よりも昇降開始に近い時点、すなわち、時間T0〜T1の間で、陰圧か陽圧かを定めた第1与圧する。この第1与圧入力よって、乗りかご外気圧に対する差圧を設けることができる。この差圧によって、最高速度時にも弁構造を気密保持する。その結果、最高速度時に発生する最も大きなかご外からの漏洩音が、かご1の中に侵入しないので、かご1の乗客は目的階へ到着するまでの間を静粛に過ごせる。S6でYesならS7へ進み、気圧パターンを階段状に制御する(ステップS7)。S7は上述の第1目的のためである。 Thus, for the second purpose of the pattern, the negative or positive pressure is determined for the car 1 at a time point closer to the start of lifting than half of the lifting time T, that is, between times T0 and T1. 1 pressurize. By this first pressurization input, a differential pressure with respect to the car outside air pressure can be provided. Due to this pressure difference, the valve structure is kept airtight even at the maximum speed. As a result, the loudest sound from the outside of the car generated at the maximum speed does not enter the car 1, so that passengers of the car 1 can quietly wait until they reach the destination floor. If Yes in S6, the process proceeds to S7, and the atmospheric pressure pattern is controlled stepwise (step S7). S7 is for the above-mentioned first purpose.

つぎに、かご1の内外気圧差ゼロで、階段パターンが終了したか否かを確認する(ステップS8)。終了していなければ(S8でNo)、終了するまで確認を継続する。図2における時間Tでは、乗客の乗り降りさせるためにかご1の扉を開ける。この時、人体に不快感を及ぼすことのないように内外気圧差を緩慢にゼロまで近付けておくことが重要である。 Next, it is confirmed whether or not the staircase pattern is completed when the difference between the internal and external atmospheric pressures of the car 1 is zero (step S8). If not completed (No in S8), the confirmation is continued until it is completed. At time T in FIG. 2, the door of the car 1 is opened to allow passengers to get on and off. At this time, it is important to slowly bring the difference between the internal and external atmospheric pressures to zero so that the human body is not uncomfortable.

逆に、目的階へ到着する際、第1与圧による差圧が残っていれば、かご1の扉が開いたとき、瞬時に差圧を解消するため、その気圧変化が大きくて、乗客に不快感を与えることもある。残っている差圧の程度にもよるが、もし必要なら、かご1の扉を開く前、すなわち昇降終了の直前に、第1与圧とは逆の第2与圧すると良い。これにより、第1与圧を相殺して、乗りかご内気圧を乗りかご外気圧に合わせられるため、瞬時に差圧が無くなる気圧変化により、乗客の耳にダメージを与える不快感も緩和される。 On the other hand, if the differential pressure due to the first pressurization remains when arriving at the destination floor, the differential pressure is canceled instantly when the door of the car 1 is opened, so that the atmospheric pressure change is large and the passengers are May cause discomfort. Depending on the level of the remaining differential pressure, if necessary, it is advisable to apply the second pressurization opposite to the first pressurization before opening the door of the car 1, that is, immediately before the end of lifting. As a result, the first pressurization is canceled out, and the car internal pressure is adjusted to the car external pressure, so that the discomfort that damages the passengers' ears due to the atmospheric pressure change in which the differential pressure disappears instantaneously is alleviated.

第1目的のための階段状に制御された気圧パターンと、第2目的のための内外気圧差のオフセットP,Nと、いずれも内外気圧差がゼロに解消された(S8でYes)ならば、S9へ進み、気圧制御を終了し無制御区間とする(ステップS9)。 If the atmospheric pressure pattern controlled stepwise for the first purpose and the offsets P and N of the internal/external atmospheric pressure difference for the second purpose are both eliminated to zero (Yes in S8). , S9, the atmospheric pressure control is terminated, and a non-control section is set (step S9).

図4は、図2の代表パターンの変形例を示すグラフであり、第1与圧を陽圧、最高速度時に弱陰圧、第2与圧を不要とする初期陽圧パターンである。上述のように、内外気圧差P,Nは、後述する閾値yとの関係をP≧y,N≦(−y)とし、この条件を満たすとき、閾値を超える内外気圧差P,Nを得て第2目的を達成できるものとする。図2に対する図4の相違点は、エレベーター走行が最高速度となる時間T1〜T2において維持されるオフセットが陽圧か陰圧か、このオフセットが強い陽圧か弱い陰圧か、第1与圧を相殺するための第2与圧が必要か否か、といった点である。 FIG. 4 is a graph showing a modified example of the representative pattern of FIG. 2, which is an initial positive pressure pattern in which the first pressurization is positive pressure, weak negative pressure at the maximum speed, and the second pressurization is unnecessary. As described above, the internal and external atmospheric pressure differences P and N have a relationship with a threshold value y described later as P≧y and N≦(−y), and when this condition is satisfied, the internal and external atmospheric pressure differences P and N that exceed the threshold value are obtained. And achieve the second purpose. The difference between FIG. 4 and FIG. 2 is that the offset maintained during the time T1 to T2 when the elevator travel reaches the maximum speed is positive pressure or negative pressure, whether this offset is strong positive pressure or weak negative pressure, or the first pressurization. Whether or not the second pressurization for offsetting is necessary.

図2の代表パターンでは、強い第1与圧が時間T1〜T2まで維持されるが、図4のパターンでは維持されない。図4において、この強い第1与圧が、時間T1以前に、第1目的のため階段状に制御された結果、気圧パターンが全体的に弱く押し下げられたオフセット状態(N≦(−y))を維持して時間T1〜T2に至る。このように弱いオフセット状態で、乗りかご内気圧が大気圧のS字線に対してわずかに上下関係を繰り返しながら目的階手前に至る。ここで、扉を開ける前に、既に内外気圧差の無い状態となっているので、ことさらに所定時間をかけて緩慢にオフセット状態を相殺するための第2与圧は不要である。 In the representative pattern of FIG. 2, the strong first pressurization is maintained from time T1 to T2, but not in the pattern of FIG. In FIG. 4, as a result of the strong first pressurization being controlled stepwise for the first purpose before the time T1, as a result, the atmospheric pressure pattern is weakly depressed as a whole (N≦(−y)). Is maintained until time T1 to T2 is reached. In such a weak offset state, the inside pressure of the car reaches the front of the target floor while slightly repeating the vertical relationship with respect to the S-line of the atmospheric pressure. Here, since there is no difference between the internal pressure and the external pressure before the door is opened, the second pressurization for slowly offsetting the offset state over a predetermined time is unnecessary.

図5は、図2の代表パターンの変形例を示すグラフであり、第1与圧を陰圧、最高速手前で陰圧から陽圧へと切り替えて、後半陽圧、第2与圧は適宜とする前陰後陽パターンである。図5において、乗りかご内気圧と、大気圧のS字線と、の上下関係を反転させるタイミングがあるとする。その上下反転タイミングは、エレベーター走行が最高速度となる時間T1〜T2を避けるようにパターン設定することが望ましい。 FIG. 5 is a graph showing a modified example of the representative pattern of FIG. 2, in which the first pressurization is switched to negative pressure and negative pressure to positive pressure before the highest speed, and the latter half positive pressure and the second pressurization are appropriately set. It is a pattern of Yin and Yin. In FIG. 5, it is assumed that there is a timing at which the vertical relationship between the car interior pressure and the atmospheric pressure S-shaped line is reversed. It is desirable that the vertical inversion timing be set in a pattern so as to avoid the times T1 and T2 when the elevator travel reaches the maximum speed.

その上下反転タイミングで、内外気圧差がゼロになるので、弁構造を開弁動作となり、かご1の外部から内部への漏洩音を遮断できない。その上下反転タイミングが、時間0〜Tの何れかで発生する可能性が高いとすれば、時間T1〜T2を避けるようにパターン設定することは、さほど困難ではない。そこで、図5のパターンを設定すれば、エレベーター走行が最高速度で最も大きな騒音が発生する時間T1〜T2には、弁構造が閉弁動作となり、かご1の外部から内部への漏洩音を遮断できる。なお、その上下反転タイミングを時間T2〜Tの範囲に設定しても同様の効果が得られるので図6に例示する。 At the upside-down reversal timing, the pressure difference between the inside and the outside becomes zero, so the valve structure is opened, and the sound leaking from the outside of the car 1 to the inside cannot be blocked. If the upside-down inversion timing is likely to occur at any of the times 0 to T, it is not so difficult to set the pattern so as to avoid the times T1 to T2. Therefore, if the pattern of FIG. 5 is set, the valve structure is closed during the time T1 to T2 when the elevator travels at maximum speed and the loudest noise is generated, and the leakage noise from the outside of the car 1 to the inside is shut off. it can. It should be noted that the same effect can be obtained even if the vertical inversion timing is set in the range from time T2 to time T, and therefore it is illustrated in FIG.

図6は、図4及び図5のパターンを合わせた変形例を示すグラフであり、第1与圧を陰圧、最高速の後で陰圧から弱陽圧へと切り替えて、第2与圧を不要とする前陰後弱陽パターンである。図6に示すように、第1与圧を陰圧として、最高速の峠を超えるT2に至るまでの過程を、乗りかご内気圧が大気圧のS字線に対して大きく陰圧にオフセットされた状態で維持する。つぎに、最高速T2から減速する過程で、乗りかご内気圧が大気圧のS字線に対して上下関係を反転させる。この場合は乗りかご内気圧を陰圧から陽圧へと昇圧するような制御パターンに近づけるように、本装置10の制御部5が吸排気部2を制御する。 FIG. 6 is a graph showing a modified example in which the patterns of FIGS. 4 and 5 are combined, in which the first pressurization is negative pressure, and the second pressurization is performed by switching from negative pressure to weak positive pressure after the highest speed. It is a weak-yang pattern before and after the yin. As shown in FIG. 6, when the first pressurization is negative pressure, the car internal pressure is largely offset to the S-shaped line of the atmospheric pressure to the negative pressure in the process of reaching T2 which exceeds the highest speed pass. Keep it in the open state. Next, in the process of decelerating from the highest speed T2, the vertical relationship is reversed with respect to the S-shaped line in which the car internal pressure is atmospheric pressure. In this case, the control unit 5 of the device 10 controls the intake/exhaust unit 2 so as to approach a control pattern in which the car internal pressure is increased from negative pressure to positive pressure.

図6に示す制御パターンによれば、時間0〜T2において、陰圧による強い第1与圧が付与されている。この強い第1与圧が、時間T2以前まで維持されている。したがって、時間T1〜T2の大きな騒音は、かご1へ侵入できないように弁構造が閉弁して遮断される。また、最高速の峠を超えたT2から減速する過程で、乗りかご内気圧を陰圧から陽圧へと、比較的緩慢に昇圧する傾向である。この傾向のなかで、第1目的のため階段状に制御された結果、乗りかご内気圧が大気圧のS字線に対してわずかに上下関係を繰り返しながら目的階手前に至る。ここで、扉を開ける前に、既に内外気圧差の無い状態となっているので、ことさらに所定時間をかけて緩慢にオフセット状態を相殺するための第2与圧は不要である。この点について、図6のパターンは、図4のパターンに似ている。 According to the control pattern shown in FIG. 6, at time 0 to T2, the strong first pressurization by negative pressure is applied. This strong first pressurization is maintained before time T2. Therefore, the loud noise from the time T1 to T2 is shut off by closing the valve structure so that it cannot enter the car 1. In addition, in the process of decelerating from T2, which exceeds the highest speed pass, the car interior pressure tends to increase relatively slowly from negative pressure to positive pressure. In this tendency, as a result of being controlled stepwise for the first purpose, the car interior pressure reaches the front of the target floor while slightly repeating the vertical relationship with respect to the S-line of the atmospheric pressure. Here, since there is no difference between the internal pressure and the external pressure before the door is opened, the second pressurization for slowly offsetting the offset state over a predetermined time is unnecessary. In this regard, the pattern of FIG. 6 is similar to the pattern of FIG.

なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and various modifications are included. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all configurations. Further, it is possible to add/delete/replace other configurations with respect to a part of the configurations of the embodiment.

以下、本発明の要点を特許請求の範囲に基づいて説明する。
[1]本装置10は、エレベーターのかご1に、内側と外側との内外気圧差P,Nを利用して気密保持する弁構造を備えたエレベーターに付設し、かご1内の気圧を制御するために好適なものである。本装置10は、吸排気部2と、気圧測定装置3と、制御部5と、を備えて構成される。吸排気部2は、かご1の内側に対して吸排気することで内側の気圧を任意に加減する。気圧測定装置3は、内外のどちらが高いか判別しながら内外気圧差P,Nを測定可能である。制御部5は、気圧測定装置3で測定された内外気圧差P,Nをエレベーターの運行に対応して予め設定されたパターンに近づけるように吸排気部2を制御する。
Hereinafter, the essential points of the present invention will be described with reference to the claims.
[1] The present device 10 is attached to an elevator car 1 equipped with a valve structure for maintaining airtightness by utilizing the internal and external atmospheric pressure differences P and N between the inside and outside, and controls the atmospheric pressure inside the car 1. It is suitable for. The device 10 includes an intake/exhaust unit 2, an atmospheric pressure measuring device 3, and a control unit 5. The intake/exhaust unit 2 intakes/exhausts the inside of the car 1 to arbitrarily adjust the inside air pressure. The atmospheric pressure measuring device 3 can measure the internal and external atmospheric pressure differences P and N while discriminating which is higher, inside or outside. The control unit 5 controls the intake/exhaust unit 2 so that the internal/external atmospheric pressure difference P, N measured by the atmospheric pressure measuring device 3 approaches a preset pattern corresponding to the operation of the elevator.

本装置10は、制御部5が、かご1の内外気圧差P,Nをエレベーターの運行に対応して予め設定されたパターンに近づけるように、吸排気部2を制御する。このパターンには第1、第2で示す2つの目的がある。第1に、かご1の昇降開始から目的階到着による昇降終了までの昇降時間Tの中で、内外気圧差P,Nを段階的に変化させることによって、乗客に嚥下を誘発させて耳詰まりの不快感を解消させる目的である。 The present apparatus 10 controls the intake/exhaust unit 2 so that the control unit 5 brings the internal and external atmospheric pressure differences P and N of the car 1 closer to a pattern preset corresponding to the operation of the elevator. This pattern has two purposes, first and second. Firstly, by gradually changing the inner and outer air pressure differences P and N during the ascending/descending time T from the start of the ascending/descending of the car 1 to the end of the ascending/descending at the arrival at the destination floor, swallowing is induced in the passengers to prevent clogging of the ear The purpose is to eliminate discomfort.

このパターンの第2目的として、かご1の外では、最高速度時に最も大きな騒音が発生するので、かご1の中にかご外からの漏洩音を侵入させないようかご1の内外を密閉する目的がある。そのため、内側と外側との内外気圧差P,Nを利用して気密保持する弁構造に対し、最高速度時に内外気圧差P,Nを得て密閉する。 As the second purpose of this pattern, the largest noise is generated outside the car 1 at the maximum speed, so there is a purpose to seal the inside and outside of the car 1 so as to prevent the sound leaking from outside the car from entering the car 1. .. Therefore, with respect to the valve structure that uses the inside and outside pressure differences P and N between the inside and outside to maintain airtightness, the inside and outside pressure differences P and N are obtained and sealed at the maximum speed.

パターンの第2目的のため、かご1に対して昇降時間Tの半分よりも昇降開始に近い時点で陰圧か陽圧かを定めた第1与圧する。この第1与圧入力よって、乗りかご外気圧に対する差圧を設けることができる。この差圧によって、最高速度時にも弁構造を気密保持する。その結果、最高速度時に発生する最も大きな騒音が、かご1の中に侵入しないので、かご1の乗客は目的階へ到着するまでの間を静粛に過ごせる。 For the second purpose of the pattern, the first pressurization that determines negative pressure or positive pressure is applied to the car 1 at a time point closer to the start of elevating than half of the elevating time T. By this first pressurization input, a differential pressure with respect to the car outside air pressure can be provided. Due to this pressure difference, the valve structure is kept airtight even at the maximum speed. As a result, the loudest noise generated at the maximum speed does not enter the car 1, so that passengers of the car 1 can quietly wait until they reach the destination floor.

さらに、目的階へ到着する際、第1与圧による差圧が残っていれば、かご1の扉が開いたとき、瞬時に差圧を解消するため、その気圧変化が大きくて、乗客に不快感を与えることもある。残っている差圧の程度にもよるが、もし必要なら、かご1の扉を開く前、すなわち昇降終了の直前に、第1与圧とは逆の第2与圧すると良い。これにより、第1与圧を相殺して乗りかご外気圧に合わせられるので、瞬時に差圧解消する不快感も緩和される。 Furthermore, if the differential pressure due to the first pressurization remains when arriving at the destination floor, the differential pressure is canceled instantly when the door of the car 1 is opened, so that the change in atmospheric pressure is large and the passengers are uncomfortable. It may give a pleasant feeling. Depending on the level of the remaining differential pressure, if necessary, it is advisable to apply the second pressurization opposite to the first pressurization before opening the door of the car 1, that is, immediately before the end of lifting. As a result, the first pressurization is offset and adjusted to the outside atmospheric pressure of the car, so that the discomfort of instantly eliminating the differential pressure is alleviated.

[2]パターンは、昇降時間Tの半分を経過した半分経過時点を含めて、半分経過時点に対する前後の所定時間T1〜T2にわたって、弁構造が気密保持するように内外気圧差P,Nを設定されていることが好ましい。
[3]パターンは、所定時間T1〜T2にわたって、かご1の内側と外側で、それぞれ気圧の変化率が一致するように設定されていることが好ましい。
[4]パターンは、所定時間T1〜T2にわたって、内外気圧差P,Nを略一定に保持するように設定されていることが好ましい。
[2]〜[4]の要件により、昇降時間Tの半分を経過した半分経過時点で、かご1の速度が最高のときに弁構造が気密保持される。その結果、この最高速度時に発生する最も大きな騒音を、かご1の中に侵入させない効果が得られる。
[2] In the pattern, the internal and external atmospheric pressure differences P and N are set so that the valve structure is kept airtight for a predetermined time T1 to T2 before and after the half elapsed time including the half elapsed time after half the elevating time T has elapsed. Is preferably provided.
[3] The pattern is preferably set so that the rate of change in atmospheric pressure is the same on the inside and the outside of the car 1 over a predetermined time T1 to T2.
[4] The pattern is preferably set so as to keep the internal and external atmospheric pressure differences P and N substantially constant over a predetermined time T1 to T2.
According to the requirements of [2] to [4], the valve structure is kept airtight when the speed of the car 1 is the highest at the time when half the elevating time T has elapsed. As a result, the effect of preventing the loudest noise generated at the maximum speed from entering the car 1 is obtained.

[5]パターンは、かご1の1走行行程中に1回だけ、所定時間T1〜T2以外の時間に、かご1の内側と外側で、陰圧と陽圧を逆転させるように設定されていることが好ましい。ところで、このパターンの第1目的は、上述のように、かご1の昇降時間Tの中で、内外気圧差P,Nを段階的に変化させることによって、乗客に嚥下を誘発させて耳詰まりの不快感を解消させる目的である。 [5] The pattern is set so that the negative pressure and the positive pressure are reversed inside and outside the car 1 only once in one traveling stroke of the car 1 at times other than the predetermined time T1 and T2. Preferably. By the way, as described above, the first purpose of this pattern is to cause the passenger to swallow by changing the internal and external atmospheric pressure differences P and N stepwise during the ascending/descending time T of the car 1 to prevent the ear clogging. The purpose is to eliminate discomfort.

一方、段階的に変化させたことで、陰圧と陽圧との関係が逆転するタイミングが、所定時間T1〜T2以内に含まれると、逆転時に内外差圧がゼロになることがある。そのとき、弁構造が気密保持を解消してしまうので、大きな騒音をかご1の中に侵入させてしまう。このような望ましくない現象を避ける第2目的を達成するように、予め設定された制御パターンによって、かご1の1走行行程中に1回だけ、所定時間T1〜T2以外の時間に、かご1の内側と外側で、陰圧と陽圧を逆転させることが好ましい。 On the other hand, if the timing at which the relationship between the negative pressure and the positive pressure reverses is included within the predetermined time T1 to T2 due to the stepwise change, the internal and external differential pressure may become zero during the reverse rotation. At that time, since the valve structure eliminates the airtightness, a large noise is introduced into the car 1. In order to achieve the second purpose of avoiding such an undesired phenomenon, a preset control pattern is used, and only once during one traveling stroke of the car 1, at a time other than the predetermined time T1 and T2, the car 1 is driven. It is preferable to reverse the negative and positive pressures inside and outside.

[6]本方法は、内側と外側との内外気圧差P,Nを利用して気密保持する弁構造を備えたかご1に付設された吸排気部2でかご1の内側を吸排気することにより任意の気圧に加減するようにした、エレベーターかご内気圧制御方法である。本方法は、つぎの手順によって、制御部5が、吸排気部2を制御する(ステップS3〜S5)。 [6] In this method, the inside/outside of the car 1 is sucked/exhausted by the intake/exhaust part 2 attached to the car 1 provided with a valve structure for keeping airtightness by utilizing the difference P, N between the inside and outside pressures. This is a method for controlling the internal pressure of an elevator car, in which the air pressure is adjusted to an arbitrary atmospheric pressure. In this method, the control unit 5 controls the intake/exhaust unit 2 according to the following procedure (steps S3 to S5).

エレベーターの運行に対応して予め設定されたパターンに近づけるように、気圧測定装置3が、かご1の内外のどちらが高いかを判別しながら内外気圧差P,Nを測定した結果に基づいて、制御部5が、吸排気部2を制御する(ステップS3〜S5)。まず、そのパターンは、かご1に対して1走行行程に要する昇降時間Tの半分よりも昇降開始に近い時点で陰圧か陽圧かを定めて第1与圧する(ステップS6)。 Based on the result of measuring the pressure difference P, N between the inside and outside while the atmospheric pressure measuring device 3 determines which of the inside and outside of the car 1 is higher, the control is performed so as to approach a preset pattern corresponding to the operation of the elevator. The part 5 controls the intake/exhaust part 2 (steps S3 to S5). First, the pattern determines whether negative pressure or positive pressure is applied to the car 1 at a time point closer to the start of ascending/descending than half the ascending/descending time T required for one traveling stroke, and the first pressurization is performed (step S6).

つぎに、そのパターンは、かご1が昇降開始後に目的階へ到着して昇降終了するまでの昇降時間Tの中で、内外気圧差P,Nを段階的に変化させる(ステップS3〜S5)。最後に、そのパターンは、昇降終了の直前に、かご1の内側で第1与圧の影響が残っているならば、第1与圧とは逆の第2与圧により第1与圧を相殺して乗りかご外気圧に合わせる(ステップS8〜S9)。本方法によれば、上記[1]に示した本装置10による作用効果と概ね同等の作用効果が得られる。 Next, the pattern is to change the internal and external atmospheric pressure differences P and N stepwise during the ascending/descending time T after the car 1 reaches the target floor after the ascending/descending start and ends ascending/descending (steps S3 to S5). Finally, the pattern cancels the first pressurization by the second pressurization opposite to the first pressurization if the influence of the first pressurization remains inside the car 1 immediately before the end of the lifting. And adjust to the outside pressure of the car (steps S8 to S9). According to this method, an operation effect substantially the same as the operation effect of the present apparatus 10 shown in the above [1] can be obtained.

1…かご、2…吸排気部(送風機)、3…気圧測定装置、4…配管、5…制御部、10…エレベーターかご内気圧制御装置(本装置)、N…陰圧による内外気圧差、P…陽圧による内外気圧差、T…昇降時間、Y…気圧、yd…陰圧による第1与圧、ys…昇降開始時の大気圧、yu…陽圧による第1与圧 1...Car, 2...Intake/exhaust part (blower), 3...Atmospheric pressure measuring device, 4...Piping, 5...Control part, 10...Elevator car inside air pressure control device (this device), N...Inside/outside air pressure difference due to negative pressure, P... Internal/external atmospheric pressure difference due to positive pressure, T... Ascent/descent time, Y... Atmospheric pressure, yd... First pressurization due to negative pressure, ys... Atmospheric pressure at the start of ascending/descending, yu... First pressurization due to positive pressure

Claims (10)

エレベーターのかごに、内側と外側との内外気圧差を利用して気密保持する弁構造を備えたエレベーターかご内気圧制御装置であって、
前記かごの内側に対して吸排気することで該内側の気圧を任意に加減する吸排気部と、
内外のどちらが高いか判別しながら前記内外気圧差を測定可能な気圧測定装置と、
該気圧測定装置で測定された前記内外気圧差を前記エレベーターの運行に対応して予め設定されたパターンに近づけるように前記吸排気部を制御する制御部と、
を備え、
前記パターンは、
前記かごの昇降開始から目的階到着による昇降終了までの昇降時間の中で、前記内外気圧差を段階的に変化させるのみならず、
前記かごに対して前記昇降時間の半分よりも昇降開始に近い時点で陰圧か陽圧かを定めた第1与圧するとともに、
必要なら前記第1与圧とは逆の第2与圧することにより昇降終了の直前に前記第1与圧を相殺して乗りかご外気圧に合わせる、
エレベーターかご内気圧制御装置。
An elevator car internal pressure control device comprising a valve structure for maintaining airtightness in an elevator car by utilizing an internal and external pressure difference between the inside and outside,
An intake/exhaust unit that arbitrarily adjusts the air pressure inside the car by performing intake/exhaust with respect to the inside of the car,
An atmospheric pressure measuring device capable of measuring the internal and external pressure difference while determining which is higher, inside or outside,
A control unit that controls the intake and exhaust units so that the internal and external atmospheric pressure differences measured by the atmospheric pressure measuring device approach a preset pattern corresponding to the operation of the elevator;
Equipped with
The pattern is
During the ascending/descending time from the start of the ascending/descending of the car to the end of the ascending/descending at the arrival at the destination floor, not only the internal/external pressure difference is changed stepwise
A first pressurization that determines negative pressure or positive pressure is applied to the car at a time closer to the start of elevating than half of the elevating time, and
If necessary, the second pressurization opposite to the first pressurization is applied to cancel the first pressurization just before the end of the ascending/descending so as to match the outside pressure of the car.
Elevator cage internal pressure control device.
前記パターンは、前記昇降時間の半分を経過した半分経過時点を含めて、該半分経過時点に対する前後の所定時間にわたって、前記弁構造が前記気密保持するように前記内外気圧差を設定した、
請求項1に記載のエレベーターかご内気圧制御装置。
The pattern includes the half elapsed time after half of the ascending/descending time, and the internal/external pressure difference is set so that the valve structure maintains the airtightness for a predetermined time before and after the half elapsed time.
The elevator car internal pressure control device according to claim 1.
前記パターンは、前記所定時間にわたって、前記かごの内側と外側で、それぞれ気圧の変化率が一致する、
請求項2に記載のエレベーターかご内気圧制御装置。
In the pattern, the rate of change in atmospheric pressure is the same on the inside and the outside of the car over the predetermined time.
The elevator car internal pressure control device according to claim 2.
前記パターンは、前記所定時間にわたって、前記内外気圧差を略一定に保持する、
請求項2に記載のエレベーターかご内気圧制御装置。
The pattern holds the internal-external pressure difference substantially constant over the predetermined time,
The elevator car internal pressure control device according to claim 2.
前記パターンは、前記かごの1走行行程中に1回だけ、前記所定時間以外の時間に、前記かごの内側と外側で、陰圧と陽圧を逆転させる、
請求項2に記載のエレベーターかご内気圧制御装置。
In the pattern, the negative pressure and the positive pressure are reversed inside and outside the car only once during one traveling stroke of the car, at a time other than the predetermined time.
The elevator car internal pressure control device according to claim 2.
内側と外側との内外気圧差を利用して気密保持する弁構造を備えたかごに付設された吸排気部で前記かごの内側を吸排気することにより任意の気圧に加減できるエレベーターかご内気圧制御方法であって、
前記吸排気部は、
気圧測定装置が、前記かごの内外のどちらが高いかを判別しながら前記内外気圧差を測定した結果に基づいて、前記エレベーターの運行に対応して予め設定されたパターンに近づけるように、制御部により制御され、
前記パターンは、
前記かごに対して1走行行程に要する昇降時間の半分よりも昇降開始に近い時点で陰圧か陽圧かを定めて第1与圧し、
前記かごが昇降開始後に目的階へ到着して昇降終了するまでの昇降時間の中で、前記内外気圧差を段階的に変化させ、
昇降終了の直前に、前記かご1の内側で前記第1与圧の影響が残っているならば、該第1与圧とは逆の第2与圧により前記第1与圧を相殺して乗りかご外気圧に合わせる、
エレベーターかご内気圧制御方法。
Elevator cage internal pressure control that can adjust to any pressure by sucking and exhausting the inside of the car with the intake and exhaust part attached to the car equipped with a valve structure that keeps airtightness by utilizing the internal and external atmospheric pressure difference between the inside and the outside Method,
The intake and exhaust section is
Based on the result of measuring the pressure difference between the inside and outside while determining whether the inside or outside of the car is higher, the atmospheric pressure measuring device is controlled by the control unit so as to approach a preset pattern corresponding to the operation of the elevator. Controlled,
The pattern is
For the car, the negative pressure or the positive pressure is determined at a point closer to the start of lifting than the half of the lifting time required for one traveling stroke, and the first pressurization is performed,
During the ascending/descending time until the car reaches the destination floor after the ascending/descending start and ends ascending/descending, the internal/external pressure difference is changed stepwise,
If the influence of the first pressurization remains inside the car 1 immediately before the end of the ascent/descent, the second pressurization opposite to the first pressurization cancels the first pressurization. Adjust to the cage outside air pressure,
Elevator cage internal pressure control method.
前記パターンは、前記昇降時間の半分を経過した半分経過時点を含み、該半分経過時点に対する前後の所定時間にわたって、前記弁構造が前記気密保持するように前記内外気圧差を設定する、
請求項6に記載のエレベーターかご内気圧制御方法。
The pattern includes a half elapsed time after half the elevating time has elapsed, and the internal/external atmospheric pressure difference is set such that the valve structure maintains the airtightness for a predetermined time before and after the half elapsed time.
The elevator car internal pressure control method according to claim 6.
前記パターンは、前記所定時間にわたって、前記かごの内側と外側で、それぞれ気圧の変化率を一致させる、
請求項7に記載のエレベーターかご内気圧制御方法。
The pattern matches the rate of change of atmospheric pressure inside and outside the car over the predetermined time,
The elevator car internal pressure control method according to claim 7.
前記パターンは、前記所定時間にわたって、前記内外気圧差を略一定に保持する、
請求項7に記載のエレベーターかご内気圧制御方法。
The pattern holds the internal-external pressure difference substantially constant over the predetermined time,
The elevator car internal pressure control method according to claim 7.
前記パターンは、前記かご1の1走行行程中に1回だけ、前記所定時間以外の時間に、前記かごの内側と外側で、陰圧と陽圧を逆転させる、
請求項7に記載のエレベーターかご内気圧制御方法。
In the pattern, the negative pressure and the positive pressure are reversed inside and outside the car only once in one traveling stroke of the car 1 at times other than the predetermined time.
The elevator car internal pressure control method according to claim 7.
JP2018219762A 2018-11-22 2018-11-22 Elevator car inside air pressure control device and method therefor Pending JP2020083544A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018219762A JP2020083544A (en) 2018-11-22 2018-11-22 Elevator car inside air pressure control device and method therefor
CN201911022848.3A CN111204639B (en) 2018-11-22 2019-10-25 Air pressure control device in elevator car and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018219762A JP2020083544A (en) 2018-11-22 2018-11-22 Elevator car inside air pressure control device and method therefor

Publications (1)

Publication Number Publication Date
JP2020083544A true JP2020083544A (en) 2020-06-04

Family

ID=70785485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018219762A Pending JP2020083544A (en) 2018-11-22 2018-11-22 Elevator car inside air pressure control device and method therefor

Country Status (2)

Country Link
JP (1) JP2020083544A (en)
CN (1) CN111204639B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111960226A (en) * 2020-08-14 2020-11-20 安徽迅立达电梯有限公司 Elevator internal environment adjusting system based on data acquisition
CN113063195A (en) * 2021-03-05 2021-07-02 上海三菱电梯有限公司 Elevator car ventilation device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113104690B (en) * 2021-03-16 2022-08-30 嘉兴市特种设备检验检测院 Detection device and detection system for detecting air pressure in high-speed elevator car

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112879A (en) * 1993-10-18 1995-05-02 Shimizu Corp Elevator device
JP3630723B2 (en) * 1994-09-09 2005-03-23 株式会社東芝 Elevator equipment and buildings
JP4023877B2 (en) * 1997-08-29 2007-12-19 東芝エレベータ株式会社 Elevator car pressure control device
JP4339451B2 (en) * 1999-07-07 2009-10-07 三菱電機株式会社 Elevator car equipment
JP3783523B2 (en) * 2000-05-11 2006-06-07 三菱電機株式会社 Elevator equipment
JP4270917B2 (en) * 2003-03-17 2009-06-03 東芝エレベータ株式会社 Elevator car pressure control device
JP4582769B2 (en) * 2004-06-23 2010-11-17 大成建設株式会社 Winter draft countermeasure system for high-rise buildings
JP2005119882A (en) * 2004-11-10 2005-05-12 Toshiba Corp Elevator device, method for controlling elevator device, and building
JP5225286B2 (en) * 2007-11-09 2013-07-03 三菱電機株式会社 Elevator pressure control device
EP2298682B1 (en) * 2008-06-13 2015-07-22 Mitsubishi Electric Corporation Elevator controller and elevator apparatus
JP5773720B2 (en) * 2011-04-14 2015-09-02 三菱電機株式会社 Elevator cab
JP5970362B2 (en) * 2012-12-13 2016-08-17 株式会社日立製作所 Elevator car pressure control method
JP6272167B2 (en) * 2014-07-16 2018-01-31 株式会社日立製作所 Elevator car pressure control device
JP6435185B2 (en) * 2014-12-22 2018-12-05 株式会社日立製作所 Elevator apparatus and elevator pressure control method
JP2017024880A (en) * 2015-07-27 2017-02-02 株式会社日立製作所 Elevator and atmospheric pressure control method for elevator
JP6694077B2 (en) * 2016-12-27 2020-05-13 株式会社日立製作所 Elevator equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111960226A (en) * 2020-08-14 2020-11-20 安徽迅立达电梯有限公司 Elevator internal environment adjusting system based on data acquisition
CN113063195A (en) * 2021-03-05 2021-07-02 上海三菱电梯有限公司 Elevator car ventilation device

Also Published As

Publication number Publication date
CN111204639B (en) 2021-10-01
CN111204639A (en) 2020-05-29

Similar Documents

Publication Publication Date Title
JP2020083544A (en) Elevator car inside air pressure control device and method therefor
KR101228249B1 (en) Elevator controller and elevator apparatus
JP5225286B2 (en) Elevator pressure control device
JP5393253B2 (en) Elevator equipment
JP3229230B2 (en) Elevator equipment
JP5063093B2 (en) Elevator equipment
JP6272167B2 (en) Elevator car pressure control device
JP5585582B2 (en) Elevator equipment
JP5970362B2 (en) Elevator car pressure control method
JP2014076879A (en) Elevator including apparatus for controlling atmospheric pressure in elevator car
JPH11171409A (en) Elevator device
JP4023877B2 (en) Elevator car pressure control device
JPH10226477A (en) Air pressure adjusting device in elevator car
WO2018122942A1 (en) Elevator device
JP3251863B2 (en) Elevator equipment
JP3630723B2 (en) Elevator equipment and buildings
JP5023564B2 (en) Elevator equipment
JP4270917B2 (en) Elevator car pressure control device
JPH10330050A (en) Method and device for adjusting air pressure of elevator
JP2005119882A (en) Elevator device, method for controlling elevator device, and building
JPH06312890A (en) Elevator car
JPH0977428A (en) Elevator
JPWO2017002229A1 (en) elevator
JPH04213586A (en) Building and elevator device therefor and elevator operation method
US20190100409A1 (en) Elevator pressurization