JP4022687B2 - Construction method for underground structures - Google Patents

Construction method for underground structures Download PDF

Info

Publication number
JP4022687B2
JP4022687B2 JP2002212302A JP2002212302A JP4022687B2 JP 4022687 B2 JP4022687 B2 JP 4022687B2 JP 2002212302 A JP2002212302 A JP 2002212302A JP 2002212302 A JP2002212302 A JP 2002212302A JP 4022687 B2 JP4022687 B2 JP 4022687B2
Authority
JP
Japan
Prior art keywords
floor
construction method
shield hole
shield
underground structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002212302A
Other languages
Japanese (ja)
Other versions
JP2004052398A (en
Inventor
耕一 田中
義信 鈴木
新一 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2002212302A priority Critical patent/JP4022687B2/en
Publication of JP2004052398A publication Critical patent/JP2004052398A/en
Application granted granted Critical
Publication of JP4022687B2 publication Critical patent/JP4022687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、比較的浅い位置に構築される地下構造物の構築工法に関し、開削で施工できない場合の大断面トンネル特に幅の狭い道路や限られた用地の下に地下構造物を構築する場合に適し、例えば地下道、地下鉄などの地下交通施設、電力、ガス、上下水道などのライフライン施設、さらには地下鉄の駅舎、地下街、地下駐車場などの都市施設として広く利用される地下構造物の建設に用いられるものである。
【0002】
【従来の技術】
これまで、都市部における道路、鉄道、河川、公園などの公共施設の限られた施設内の地盤面下に地下交通施設などの地下構造物を構築する方法としては、敷地面積が広く敷地に比較的余裕があるときは、地上から施工する開削工法が用いられ、他の施工方法として円形または矩形の大断面シールド工法、さらに大断面トンネルの外殻部を複数の小断面または中断面シールドマシンで構築した後、内部を掘削して大断面地下空間を完成するMMST工法などが用いられている。
【0003】
【発明が解決しようとする課題】
しかし、開削工法の場合、掘削規模が非常に大きいと周囲の地山を保持する山止め壁、支持杭、支保工などの仮設工事が大規模なものとなり、また大量の掘削土と埋戻し土が発生し、その処理・取り扱いが大きな課題になっていた。
【0004】
特に、非常に限られた敷地内で比較的面積が広く、しかも掘削断面幅が途中で変化するような地下構造物を開削工法で構築する場合、掘削のための山止め壁を周辺構造物に近接させて施工する必要があるため、大規模掘削に伴い発生する周辺地盤の変形・沈下が周辺の地上構造物に大きな影響を及ぼし、その影響を低減するには地盤改良などの防護工が必要であった。
【0005】
また施工中、地上に広大な作業帯が必要になることから、地上の道路や公園などの地上施設の使用を一部制限せざるを得ず、交通渋滞を招く等して市民生活に大きな影響を及ぼす場合もあった。
【0006】
一方、大断面シールド工法の場合、シールドマシンが大掛りなものとなる等してきわめて不経済な施工を強いられ、特に円形断面シールド工法の場合、形状的にいわゆるデットスペースが生じ、しかも掘削土量が膨大になり、トンネルの掘削コストが嵩み、きわめて不経済なものとなり、残土処理などの環境上の課題があった。
【0007】
また、間口の広い断面や断面幅が途中で変化する地下構造物を施工するには、特殊仕様のシールドマシンが必要になり、施工可能なシールド孔の断面も非常に限られたものになる等の課題があった。
【0008】
本願発明は、以上の課題を解決するためになされたもので、近隣の既存構造物への影響がきわめて少なく、かつ都市部などのきわめて限られた道路や用地の下に可能な限り大きな空間を持つ地下構造物をきわめて効率的に、かつ安全に構築できる地下構造物の構築工法を提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1記載の地下構造物の構築工法は、複数階をなす地下構造物を構築する地下構造物の構築工法であって、シールド孔を掘進する工程と、当該シールド孔より下方に山止め壁を構築する工程と、前記シールド孔より下方の地盤を掘削する工程と、各階の床スラブを構築する工程と、各階の側壁を構築する工程とからなり、前記シールド孔は地下一階分の空間を有する矩形断面形に掘進すると共に、鋼殻または鋼製セグメントと中柱によって地山を保持しつつ掘進し、前記山止め壁は前記シールド孔を作業空間にして構築し、前記各階の床スラブと側壁のうち地下一階の床スラブは前記シールド孔の床部分に構築し、前記地下一階の側壁は前記シールド孔内に構築し、当該地下一階の床スラブおよび側壁より下方に地下二階以降の各階の床スラブと側壁を構築することを特徴とするものである。
【0010】
この場合のシールド孔は、施工後地下構造物の地下一階として用いられる部分であり、また施工に際しては、地下構造物を構築する際の作業空間として利用する部分であるため、少なくとも地下一階分の空間を有するシールド孔とする必要がある。
【0011】
また、シールド孔の地山は、例えば図6に図示するような鋼殻または鋼製セグメントで覆工するが、他にRCセグメント等の既成セグメントで覆工してもよく、特に鋼殻は厚手の鋼板からシールド孔の大きさや形状に応じて任意大きさのものまで比較的容易にしかも廉価に形成することができ、また必要に応じてコンクリートを充填して全体または部分的に補強できるので、製作および施工時の自由度が高く、この場合の覆工材として適している。
【0012】
また、地下構造物の間口(幅)が非常に大きい場合には、複数のシールド孔を所定間隔離して並列に掘進した後、各シールド孔間の地盤部を掘削して一つの大空間を形成し、この大空間を作業空間として山止め壁を施工し、地下構造物を構築することもできる。
【0013】
請求項2記載の地下構造物の構築工法は、請求項1記載の地下構造物の構築工法において、地下二階以降の各階の床スラブと側壁は、シールド孔より下方の地盤を掘削しながら最下階まで順に構築することを特徴とするものである。
【0014】
本工法は、いわゆる逆巻きコンクリート工法であり、本工法によれば構築後の側壁および床スラブを、次の階の側壁と床スラブを構築する際の山止めと切り梁として利用することにより施工の効率化を図ることができる。
【0015】
請求項3記載の地下構造物の構築工法は、請求項1記載の地下構造物の構築工法において、地下二階以降の各階の床スラブと側壁は、シールド孔より下方の地盤を最下階まで掘削した後、最下階から上階に順に構築工することを特徴とするものである。
【0016】
請求項4記載の地下構造物の構築工法は、請求項1〜3のいずれかに記載の地下構造物の構築工法において、シールド孔の鋼殻または鋼製セグメントに、当該鋼殻または鋼製セグメントより下方に山止め壁を構築するための開口部を前記シールド孔の掘進方向に連続して設け、その両側に補強梁を設置し、当該補強梁間に複数の横梁を設置することを特徴とするものである。
【0017】
請求項5記載の地下構造物の構築工法は、請求項1〜4のいずれかに記載の地下構造物の構築工法において、山止め壁を柱列式地中連続壁工法でシールド孔より構築することを特徴とするものである。
【0018】
柱列式地中連続壁工法の一例として、SMW工法があり、例えば先端に削孔ビットを備えた削孔機を用い、この削孔機で掘削した掘削土と注入したセメントミルク等を攪拌混合して柱列体を造成し、この柱列体に芯杭としてH形鋼などの形鋼を挿入する地中連続壁の施工方法である。この他に地中連続壁RC工法などを用いることもできる。
【0019】
請求項6記載の地下構造物の構築工法は、請求項1〜5のいずれかに記載の地下構造物の構築工法において、シールド孔より下方に中間杭を施工することを特徴するものである。本工法は、地下構造物の間口(幅)が非常に広い場合や施工地盤が必ずしも安定しない場合などにシールド孔の下方に支持杭として中間杭を施工することにより、必要な支持力を確保するものである。
【0020】
なお、請求項1〜6記載のいずれの工法においても、各シールド孔の断面形状は特に限定されるものではないが、シールド孔の掘削断面を矩形断面とした場合、地下空間として利用する上で無駄な空間が発生しにくく、また掘削土量も掘削断面に比して少なく望ましい。
【0021】
【発明の実施の形態】
図1は、本願発明の地下構造物の構築工法によって構築された地下構造物の一例を示し、図において比較的浅い位置に地下一階の天井スラブ1が配置され、その下側に各階の床スラブ2a,2bと基礎スラブ3が配置され、その両側に各階の側壁4a,4b,4cが配置されている。
【0022】
また、地下一階の天井スラブ1と床スラブ2aとの間、各階の床スラブ2a,2bの間、および基礎スラブ3とその直上階の床スラブ2bとの間には各階の柱または間仕切り壁5a,5b,5cがそれぞれ配置されていることもある。
【0023】
地下一階の天井スラブ1、各階の床スラブ2a,2b、基礎スラブ3および各階の側壁4a,4b,4c、そして各階の柱または間仕切り壁5a,5b,5cは、いずれもRC構造やSRC構造などによって構築されている。
【0024】
このような構成において、次に地下構造物の構築工法の一例を図2〜図8に示す例に基いて説明する。
【0025】
▲1▼ 最初に、シールドマシンの発進基地として予め構築した立坑(図省略)内にシールドマシン(図省略)を組み立てる。この場合のシールドマシンには、切り羽を掘削するための複数の面板とシールド孔の径を変更するための拡径および縮径の機能を備え、偏平な矩形状に構成されたシールドマシンを用いる。
【0026】
▲2▼ 次に、この立坑からシールドマシンを推進させて構築しようとする地下構造物Aの地下一階分の空間を有するシールド孔6を矩形断面形に掘進する。同時に、シールドマシンのテール部において鋼殻7を組立て、シールド孔6の地山を複数の鋼殻7からなる鋼殻セグメント7Aによって覆工する。また、鋼殻セグメント7A内に中柱8を建て付ける(STEP.1参照)。
この場合、必要に応じてシールドマシンの拡径および縮径機能を作動させてシールド孔6の径を変える。
【0027】
ここで用いる鋼殻7には、例えば図8(a),(b)に図示するように、ほぼ平行に設置された複数の主桁板7a,7aとこの主桁板7a,7aの端部間にそれぞれ設置された継手板7b,7bと主桁板7a,7a間に所定間隔おきに設置された複数のリブ板7cと、これらの部材からなる枠体の地山側に設置されたスキンプレート7dとから矩形板状に形成されたものを用いる。
【0028】
また特に、後述する中間杭を打ち込む位置の鋼殻7には、例えば図8(c)に図示するように中間杭を打ち込むための杭建込み孔7eが形成され、かつその周囲に補強リブ7fが取り付けられた鋼殻を用いる。
【0029】
そして、このように形成された鋼殻7は、シールド孔6の地山にその周方向と掘進方向にそれぞれ互いに隣接させて設置し、かつシールド孔6の周方向と掘進方向に隣接する鋼殻7どうしを継手ボルト等の継手金具によってそれぞれ接合する。
【0030】
中柱8は鋼殻セグメント7Aの補強材であり、H形鋼などの形鋼を用い、シールド孔6内に掘進方向に所定間隔おきに建て付ける。この場合、鋼殻リング7Aの床部と天井部に受け土台(図省略)と受け梁(図省略)をシールド孔6の掘進方向または径方向に架け渡し、この受け土台と受け針梁との間に中柱8を建て込むものとする。
【0031】
▲3▼ 次に、シールド孔6内の空間を作業空間にして、シールド孔6より下方の地盤中に中間杭9を打ち込む(STEP.2参照)。中間杭9は杭建込み孔7eから地盤中に打ち込む。
この場合の中間杭9にはH形鋼などの形鋼を用い、シールド孔6内において形鋼を適宜継ぎ足しながら打ち込む。また、各中間杭9の上端部に中柱8と同様の目的で中柱9aを建て込み、その上端部は中柱8の上端部と同様に受け梁(図省略)で受ける。
【0032】
▲4▼ 次に、鋼殻セグメント7Aの床部の両端部分イに、鋼殻セグメント7Aの一部を撤去してシールド孔6の掘進方向に連続する開口部10を形成する(STEP.3参照)。また、例えば図6(c)および図7に図示するように、開口部10の両側に補強梁11,11をシールド孔6の掘進方向に連続させて設置し、かつこの補強梁11,11間に横梁12を所定間隔おきに架け渡すことにより、開口部10を形成したことによる鋼殻セグメント7Aの強度低下を防ぐ。なお、この場合の補強梁11と横梁12にはH形鋼などを用いるものとする。
【0033】
▲5▼ 次に、開口部10より下方に山止め壁13を施工する(STEP.4〜6参照)。この場合の山止め壁13は、例えば先端に削孔ビットを備えた削孔機を用い、この削孔機で掘削した掘削土と注入したセメントミルクとを攪拌混合して柱列体13aを造成し、この柱列体13aに芯杭13bとしてH形鋼などの形鋼や鋼管を挿入する柱列式地中連続壁工法などによって施工する。なお、開口部10は山止め壁13を施工した後、コンクリート13cを打設して埋める。
【0034】
▲6▼ 次に、山止め壁13の上端部に中柱14を建て付け、かつ中柱14,14間に切梁15を架け渡して鋼殻セグメント7Aを補強し、そして鋼殻セグメント7Aの床部の鋼殻7と中柱8を撤去する(STEP.7参照)。なお、この場合の中柱14と切梁15にはH形鋼などの形鋼を用いる。
【0035】
▲7▼ 次に、鋼殻7を撤去した位置に地下一階の床スラブ2aを構築し、また地下一階の天井スラブ1、側壁4a,4aおよび地下一階の柱または間仕切り壁5aをそれぞれ構築する(STEP.8参照)。この場合、中柱14は側壁4aの鉄骨材として用い、中柱9aは柱または間仕切り壁5aの鉄骨材として用いる。
【0036】
▲8▼ 次に、床スラブ2aの下側の地盤を地下二階分の深さまで掘り下げ、そしてその底部に地下二階の床スラブ2bを構築し、また地下二階の側壁4b,4bをそれぞれ構築する(STEP.9参照)。
以下、同様にして床スラブ2bの下側の地盤を地下三階分の深さまで掘り下げた後、地下三階の床スラブとともに基礎スラブ3、側壁4c,4cをそれぞれ構築する(STEP.10,11参照)。
【0037】
▲9▼ そして、切梁15と不要な中柱を撤去して工事を完了する(STEP.12参照)。
なおこの場合、山止め壁13,13と各階の床スラブ2a,2b,2cおよび基礎スラブ3を先に構築し、その後から各階の側壁4a,4b,4cおよび各階の柱または間仕切り5a,5b,5cを構築してもよい。
【0038】
また特に、地下構造物Aの間口(幅)が特に広い場合には、例えば図9に図示するように、複数のシールド孔6,6を所定間隔離して並列に掘進した後、各シールド孔6,6間の地盤部Bを掘削して一つの大空間6Aを形成し、この大空間6Aを作業空間として山止め壁13を施工し、地下構造物Aを構築することもできる。
【0039】
この場合、シールド孔6,6間の地盤部Bを掘削するには、例えばシールド孔6,6の上端部間に山止め材として鋼管や形鋼などを並列に架け渡し、その後シールド孔6側から山止め材の下側の地盤部Bを掘削して大空間6Aを形成し、そして地山を鋼殻で覆工し、さらに鋼殻セグメントの補強材として複数の中柱を建て付ける。
【0040】
【発明の効果】
本願発明は以上説明したとおりであり、必要な地下空間を有する地下構造物を非開削工法により容易に構築することができ、特に大規模な掘削が不要なことから地上施設の構造変更、供用制限は不要であり、また仮設構造物、掘削土量を最少に抑えることができ、しかも埋め戻し土量は発生せず、さらに周囲の既存構造物に対して悪影響を及ぼすことも少ない。
【0041】
また、掘削断面を自由に変更できるため、非開削工法でありながら幅の広い断面や幅が変化する地下構造物をも、限られた用地幅、既存の埋設物で挟まれた空間を有効に利用して容易に構築することができる。
【図面の簡単な説明】
【図1】図1は、地下構造物の一例を示す縦断面図である。
【図2】(a)〜(c)は、施工工程を示す縦断面図である。
【図3】(a)〜(c)は、施工工程を示す縦断面図である。
【図4】(a)〜(c)は、施工工程を示す縦断面図である。
【図5】(a)〜(c)は、施工工程を示す縦断面図である。
【図6】シールド孔の一例を示し、(a)はシールド孔の一部斜視図、(b)は(c)におけるA部拡大図、(c)は(a)におけるB−B線断面図である。
【図7】図6(a)におけるC部拡大断面図である。
【図8】鋼殻の一例を示し、(a),(b)は鋼殻の平面図、(c)は鋼殻の断面図である。
【図9】(a)〜(d)は、施工工程を示す平面図である。
【符号の説明】
1 地下一階の天井スラブ
2a 各階の床スラブ
2b 各階の床スラブ
3 基礎スラブ
4a 各階の側壁
4b 各階の側壁
4c 各階の側壁
5a 各階の柱または間仕切り壁
5b 各階の柱または間仕切り壁
5c 各階の柱または間仕切り壁
6 シールド孔
7 鋼殻
7A 鋼殻セグメント
8 中柱
9 中間杭
10 開口部
11 補強梁
12 横梁
13 山止め壁
14 中柱
15 切梁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a construction method of an underground structure that is constructed at a relatively shallow position, in the case of constructing an underground structure under a narrow-section road or a limited site, especially when a large-section tunnel is used when excavation cannot be performed. Suitable for construction of underground structures that are widely used as urban facilities such as underground transportation facilities such as underground passages and subways, lifeline facilities such as electric power, gas, and water and sewage, as well as subway station buildings, underground shopping centers, underground parking lots, etc. It is used.
[0002]
[Prior art]
Up to now, as a method of constructing underground structures such as underground transportation facilities under the ground level in limited facilities such as roads, railways, rivers, parks, etc. in urban areas, the site area is wide compared to the site When there is a sufficient margin, the open-cut method of construction from the ground is used.Other construction methods include a circular or rectangular large cross-section shield method, and the outer shell of a large cross-section tunnel with multiple small or medium cross-section shield machines. After construction, the MMST method, which excavates the interior to complete the large section underground space, is used.
[0003]
[Problems to be solved by the invention]
However, in the case of the excavation method, if the excavation scale is very large, temporary works such as retaining walls, supporting piles and support works that hold the surrounding natural ground will be large, and a large amount of excavated and backfilled soil will be required. The processing and the handling became a big subject.
[0004]
In particular, when constructing an underground structure that has a relatively large area within a very limited site and the excavation cross-sectional width changes midway using the open-cut method, the retaining wall for excavation is used as the surrounding structure. Since it is necessary to install them close to each other, the deformation and settlement of the surrounding ground caused by large-scale excavation has a large effect on the surrounding ground structure, and protective work such as ground improvement is necessary to reduce the influence. Met.
[0005]
In addition, since a vast work zone is required on the ground during construction, the use of ground facilities such as roads and parks on the ground must be partially restricted, and traffic congestion will be caused, resulting in a significant impact on citizens' lives. There was also a case.
[0006]
On the other hand, in the case of the large cross-section shield method, the shield machine becomes large and forced to be very uneconomical.In particular, in the case of the circular cross-section shield method, a so-called dead space is generated and the excavated soil The volume became enormous, the tunnel excavation cost increased, making it extremely uneconomical, and there were environmental issues such as residual soil disposal.
[0007]
In addition, to construct an underground structure with a wide cross-section and cross-sectional width that changes in the middle, a special specification shield machine is required, and the cross-section of shield holes that can be constructed is very limited. There was a problem.
[0008]
The present invention has been made in order to solve the above-mentioned problems, and it has little influence on neighboring existing structures, and a space as large as possible under an extremely limited road or site such as an urban area. An object of the present invention is to provide a construction method of an underground structure capable of constructing the underground structure possessed very efficiently and safely.
[0009]
[Means for Solving the Problems]
The construction method of an underground structure according to claim 1 is a construction method of an underground structure for constructing an underground structure having a plurality of floors, and includes a step of excavating a shield hole, and a retaining wall below the shield hole. A step of excavating the ground below the shield hole, a step of constructing a floor slab of each floor, and a step of constructing a side wall of each floor, wherein the shield hole is a space for one underground floor And excavating while holding a natural mountain by a steel shell or a steel segment and a middle pillar, the mountain retaining wall is constructed using the shield hole as a work space, and the floor slab of each floor The floor slab of the first basement is built in the floor portion of the shield hole, the side wall of the first basement is built in the shield hole, and the second floor below the floor slab and the side wall of the first basement. Subsequent floors It is characterized in that to construct Love and sidewalls.
[0010]
The shield hole in this case is a part used as the first basement of the underground structure after construction, and is also used as a work space when constructing the underground structure during construction. It is necessary to make a shield hole having a space of minutes.
[0011]
Further, the ground of the shield hole is covered with a steel shell or a steel segment as shown in FIG. 6, for example, but it may be covered with an existing segment such as an RC segment. It can be formed relatively easily and inexpensively from any steel plate to any size depending on the size and shape of the shield hole, and can be reinforced as a whole or partly by filling concrete as required, It has a high degree of freedom during production and construction, and is suitable as a lining material in this case.
[0012]
In addition, when the frontage (width) of the underground structure is very large, multiple shield holes are separated from each other by a predetermined distance, and then the ground between the shield holes is excavated to form one large space. However, it is also possible to construct an underground structure by constructing mountain retaining walls using this large space as a work space.
[0013]
The construction method of the underground structure according to claim 2 is the construction method of the underground structure according to claim 1, wherein the floor slab and the side wall of each floor after the second basement floor are bottomed while excavating the ground below the shield hole. It is characterized by building sequentially up to the floor.
[0014]
This construction method is a so-called reverse-winding concrete construction method. According to this construction method, the side wall and floor slab after construction are used as mountain stops and beams when constructing the side wall and floor slab of the next floor. Efficiency can be improved.
[0015]
The construction method of the underground structure according to claim 3 is the construction method of the underground structure according to claim 1, wherein the floor slabs and side walls of the second and subsequent floors are excavated from the ground below the shield hole to the lowest floor. After that, the construction is performed in order from the lowest floor to the upper floor.
[0016]
The construction method for an underground structure according to claim 4 is the construction method for an underground structure according to any one of claims 1 to 3 , wherein the steel shell or the steel segment of the shield hole is provided with the steel shell or the steel segment. An opening for constructing a mountain retaining wall is provided below the shield hole continuously in the digging direction, reinforcing beams are installed on both sides thereof, and a plurality of transverse beams are installed between the reinforcing beams. Is.
[0017]
The construction method of the underground structure according to claim 5 is the construction method of the underground structure according to any one of claims 1 to 4, wherein the mountain retaining wall is constructed from the shield hole by the column-type underground continuous wall construction method. It is characterized by this.
[0018]
One example of a columnar underground continuous wall method is the SMW method. For example, a drilling machine equipped with a drilling bit at the tip is used, and the excavated soil excavated with this drilling machine and the cement milk injected are mixed with stirring. This is a construction method of an underground continuous wall in which a column array is formed and a section steel such as H-section steel is inserted into the column array as a core pile. In addition, an underground continuous wall RC method or the like can also be used.
[0019]
The construction method for an underground structure according to claim 6 is characterized in that in the construction method for an underground structure according to any one of claims 1 to 5, an intermediate pile is constructed below the shield hole. This construction method ensures the necessary bearing capacity by constructing an intermediate pile as a support pile below the shield hole when the frontage (width) of the underground structure is very wide or the construction ground is not always stable. Is.
[0020]
In any of the construction methods according to claims 1 to 6, the cross-sectional shape of each shield hole is not particularly limited, but when the excavation cross-section of the shield hole is a rectangular cross-section, it is used as an underground space. It is desirable that a useless space is hardly generated and the amount of excavated soil is smaller than that of the excavated section.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an example of an underground structure constructed by an underground structure construction method according to the present invention. In the figure, a ceiling slab 1 on the first basement floor is arranged at a relatively shallow position, and floors of the respective floors are arranged below it. Slabs 2a and 2b and a basic slab 3 are arranged, and side walls 4a, 4b and 4c of each floor are arranged on both sides thereof.
[0022]
In addition, between the ceiling slab 1 and the floor slab 2a on the first basement floor, between the floor slabs 2a and 2b on each floor, and between the foundation slab 3 and the floor slab 2b on the floor immediately above, a column or partition wall on each floor 5a, 5b, and 5c may be arranged, respectively.
[0023]
The ceiling slab 1 on the first basement floor, the floor slabs 2a and 2b on each floor, the foundation slab 3 and the side walls 4a, 4b and 4c on each floor, and the pillars or partition walls 5a, 5b and 5c on each floor are all RC structures or SRC structures. It is built by etc.
[0024]
Next, an example of the construction method of the underground structure will be described based on the examples shown in FIGS.
[0025]
(1) First, a shield machine (not shown) is assembled in a vertical shaft (not shown) constructed in advance as a starting base for the shield machine. For the shield machine in this case, a shield machine having a plurality of face plates for excavating the face and a function of expanding and reducing the diameter to change the diameter of the shield hole and configured in a flat rectangular shape is used. .
[0026]
{Circle around (2)} Next, a shield hole 6 having a space corresponding to the first floor of the underground structure A to be constructed by propelling a shield machine from this shaft is dug into a rectangular cross section. At the same time, the steel shell 7 is assembled at the tail portion of the shield machine, and the ground of the shield hole 6 is covered with a steel shell segment 7A composed of a plurality of steel shells 7. Moreover, the middle pillar 8 is built in the steel shell segment 7A (refer to STEP.1).
In this case, the diameter of the shield hole 6 is changed by operating the diameter expansion and contraction functions of the shield machine as necessary.
[0027]
As shown in FIGS. 8A and 8B, for example, the steel shell 7 used here includes a plurality of main girder plates 7a and 7a installed substantially in parallel and end portions of the main girder plates 7a and 7a. A plurality of rib plates 7c installed at predetermined intervals between the joint plates 7b, 7b and the main girder plates 7a, 7a respectively installed between them, and a skin plate installed on the natural ground side of the frame made of these members 7d formed in a rectangular plate shape is used.
[0028]
Further, in particular, the steel shell 7 at the position where the intermediate pile to be described later is driven is formed with a pile erection hole 7e for driving the intermediate pile, as shown in FIG. 8C, for example, and a reinforcing rib 7f around the hole. Use a steel shell to which is attached.
[0029]
And the steel shell 7 formed in this way is installed in the ground of the shield hole 6 adjacent to each other in the circumferential direction and the excavation direction, and adjacent to the circumferential direction and the excavation direction of the shield hole 6. 7 are joined together by joint fittings such as joint bolts.
[0030]
The middle column 8 is a reinforcing material for the steel shell segment 7A, and is formed by using a shape steel such as an H-section steel in the shield hole 6 at predetermined intervals in the direction of excavation. In this case, a receiving base (not shown) and a receiving beam (not shown) are bridged in the digging direction or radial direction of the shield hole 6 on the floor and ceiling of the steel shell ring 7A, and the receiving base and the receiving needle beam are connected to each other. The middle pillar 8 shall be built in between.
[0031]
(3) Next, the space inside the shield hole 6 is set as a work space, and the intermediate pile 9 is driven into the ground below the shield hole 6 (see STEP 2). The intermediate pile 9 is driven into the ground through the pile piercing hole 7e.
In this case, a shape steel such as an H-section steel is used for the intermediate pile 9 and the shape steel is driven into the shield hole 6 while being appropriately added. Moreover, the middle pillar 9a is built in the upper end part of each intermediate | middle pile 9 for the same purpose as the middle pillar 8, and the upper end part is received by a receiving beam (illustration omitted) similarly to the upper end part of the middle pillar 8.
[0032]
(4) Next, a part of the steel shell segment 7A is removed at both end portions a of the floor portion of the steel shell segment 7A to form an opening 10 continuous in the digging direction of the shield hole 6 (see STEP.3). ). Further, for example, as shown in FIGS. 6C and 7, reinforcing beams 11 and 11 are continuously installed on both sides of the opening 10 in the direction in which the shield hole 6 is advanced, and between the reinforcing beams 11 and 11. Further, the strength of the steel shell segment 7A due to the formation of the opening 10 is prevented by bridging the cross beam 12 at predetermined intervals. In this case, H-shaped steel or the like is used for the reinforcing beam 11 and the lateral beam 12.
[0033]
(5) Next, the mountain retaining wall 13 is constructed below the opening 10 (see STEP. 4 to 6). In this case, the retaining wall 13 is formed with a columnar body 13a by, for example, using a drilling machine having a drilling bit at the tip and stirring and mixing the excavated soil excavated by the drilling machine and the injected cement milk. Then, it is constructed by a column-column type underground continuous wall construction method in which a section steel such as H-section steel or a steel pipe is inserted as the core pile 13b in the column column body 13a. The opening 10 is filled with concrete 13c after the mountain retaining wall 13 is constructed.
[0034]
(6) Next, the middle column 14 is built at the upper end of the mountain retaining wall 13 and the steel beam segment 7A is reinforced by spanning the beam 15 between the middle columns 14, 14, and the steel shell segment 7A The steel shell 7 and the middle pillar 8 in the floor are removed (see STEP 7). In this case, the middle pillar 14 and the cut beam 15 are made of a section steel such as H-section steel.
[0035]
(7) Next, the floor slab 2a on the first basement is constructed at the position where the steel shell 7 is removed, and the ceiling slab 1, the side walls 4a and 4a on the first basement, and the pillar or partition wall 5a on the first basement are respectively provided. Build (see STEP.8). In this case, the middle column 14 is used as a steel frame material of the side wall 4a, and the middle column 9a is used as a steel frame material of the column or the partition wall 5a.
[0036]
(8) Next, the ground below the floor slab 2a is dug down to the depth of the second basement floor, and the floor slab 2b of the second basement floor is constructed at the bottom, and the side walls 4b and 4b of the basement second floor are constructed respectively ( (See STEP 9).
Similarly, after digging the lower ground of the floor slab 2b to the depth of the third basement floor, the foundation slab 3 and the side walls 4c, 4c are constructed together with the floor slab of the third basement floor (STEP. 10, 11). reference).
[0037]
{Circle over (9)} Then, the beam 15 and unnecessary middle pillars are removed to complete the construction (see STEP 12).
In this case, the mountain retaining walls 13, 13 and the floor slabs 2a, 2b, 2c and the foundation slab 3 of each floor are constructed first, and then the side walls 4a, 4b, 4c of each floor and the pillars or partitions 5a, 5b of each floor, 5c may be constructed.
[0038]
In particular, when the frontage (width) of the underground structure A is particularly wide, for example, as shown in FIG. , 6 can be excavated to form one large space 6A, and the mountain retaining wall 13 can be constructed by using the large space 6A as a work space to construct the underground structure A.
[0039]
In this case, in order to excavate the ground portion B between the shield holes 6, 6, for example, a steel pipe or a section steel is bridged in parallel between the upper ends of the shield holes 6, 6, and then the shield hole 6 side The ground portion B below the mountain stopper is excavated to form a large space 6A, the ground is covered with a steel shell, and a plurality of middle pillars are built as a reinforcing material for the steel shell segment.
[0040]
【The invention's effect】
The invention of the present application is as described above, and an underground structure having a necessary underground space can be easily constructed by a non-open-cutting method. Is unnecessary, and the amount of temporary structures and excavated soil can be minimized, and the amount of backfilled soil is not generated, and the surrounding existing structures are hardly adversely affected.
[0041]
In addition, since the excavation cross section can be changed freely, it is possible to effectively use the limited land width and the space sandwiched between existing buried objects, even for underground structures that have a wide cross section or change in width, even though it is a non-open cutting method. It can be easily constructed using it.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an example of an underground structure.
FIGS. 2A to 2C are longitudinal sectional views showing a construction process. FIGS.
FIGS. 3A to 3C are longitudinal sectional views showing a construction process. FIGS.
FIGS. 4A to 4C are longitudinal sectional views showing a construction process. FIGS.
FIGS. 5A to 5C are longitudinal sectional views showing a construction process. FIGS.
6A and 6B show an example of a shield hole, where FIG. 6A is a partial perspective view of the shield hole, FIG. 6B is an enlarged view of portion A in FIG. 5C, and FIG. 6C is a cross-sectional view along line BB in FIG. It is.
7 is an enlarged cross-sectional view of a portion C in FIG.
FIG. 8 shows an example of a steel shell, (a) and (b) are plan views of the steel shell, and (c) is a cross-sectional view of the steel shell.
FIGS. 9A to 9D are plan views showing a construction process. FIGS.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Basement ceiling slab 2a Floor slab 2b of each floor Floor slab 3 of each floor 3 Side slab 4a Side wall 4b of each floor Side wall 4c of each floor Side wall 5a Column or partition wall 5b of each floor Column or partition wall 5c of each floor Column of each floor Or partition wall 6 Shield hole 7 Steel shell 7A Steel shell segment 8 Middle column 9 Middle pile 10 Opening 11 Reinforcement beam 12 Cross beam 13 Stop wall 14 Middle column 15 Cut beam

Claims (6)

複数階をなす地下構造物を構築する地下構造物の構築工法であって、シールド孔を掘進する工程と、当該シールド孔より下方に山止め壁を構築する工程と、前記シールド孔より下方の地盤を掘削する工程と、各階の床スラブを構築する工程と、各階の側壁を構築する工程とからなり、前記シールド孔は地下一階分の空間を有する矩形断面形に掘進すると共に、鋼殻または鋼製セグメントと中柱によって地山を保持しつつ掘進し、前記山止め壁は前記シールド孔を作業空間にして構築し、前記各階の床スラブと側壁のうち地下一階の床スラブは前記シールド孔の床部分に構築し、前記地下一階の側壁は前記シールド孔内に構築し、当該地下一階の床スラブおよび側壁より下方に地下二階以降の各階の床スラブと側壁を構築することを特徴とする地下構造物の構築工法。A construction method of an underground structure for constructing an underground structure having a plurality of floors, the step of digging a shield hole, the step of constructing a retaining wall below the shield hole, and the ground below the shield hole And a step of constructing a floor slab of each floor, and a step of constructing a side wall of each floor, and the shield hole is excavated into a rectangular cross section having a space for one underground floor, and a steel shell or Digging while holding a natural mountain by a steel segment and a middle pillar, the mountain retaining wall is constructed using the shield hole as a work space, and the floor slab and floor slab of each floor are the shield Build in the floor part of the hole, build the side wall of the first basement floor in the shield hole, and construct the floor slab and side wall of each floor after the second basement floor below the floor slab of the first basement floor and the side wall. Characterize Construction method of the lower structure. 地下二階以降の各階の床スラブと側壁は、シールド孔より下方の地盤を掘削しながら最下階まで順に構築することを特徴とする請求項1記載の地下構造物の構築工法。The construction method of an underground structure according to claim 1, wherein the floor slab and the side wall of each floor after the second basement floor are constructed in order up to the lowest floor while excavating the ground below the shield hole. 地下二階以降の各階の床スラブと側壁は、シールド孔より下方の地盤を最下階まで掘削した後、最下階から上階に順に構築工することを特徴とする請求項1記載の地下構造物の構築工法。 2. The underground structure according to claim 1, wherein the floor slab and the side wall of each floor after the second basement floor are constructed in order from the bottom floor to the upper floor after excavating the ground below the shield hole to the bottom floor. Construction method of things. シールド孔の鋼殻または鋼製セグメントに、当該鋼殻または鋼製セグメントより下方に山止め壁を構築するための開口部を前記シールド孔の掘進方向に連続して設け、その両側に補強梁を設置し、当該補強梁間に複数の横梁を設置することを特徴とする請求項1〜3のいずれかに記載の地下構造物の構築工法。 In the steel shell or steel segment of the shield hole, openings for constructing a retaining wall below the steel shell or steel segment are continuously provided in the direction of the shield hole, and reinforcing beams are provided on both sides thereof. The construction method of an underground structure according to any one of claims 1 to 3, wherein a plurality of horizontal beams are installed between the reinforcing beams. 山止め壁を柱列式地中連続壁工法によってシールド孔よりで構築することを特徴とする請求項1〜4のいずれかに記載の地下構造物の構築工法。  The construction method for an underground structure according to any one of claims 1 to 4, wherein the mountain retaining wall is constructed from a shield hole by a columnar underground continuous wall construction method. シールド孔より下方に中間杭を施工することを特徴する請求項1〜5のいずれかに記載の地下構造物の構築工法。  The construction method for an underground structure according to any one of claims 1 to 5, wherein an intermediate pile is constructed below the shield hole.
JP2002212302A 2002-07-22 2002-07-22 Construction method for underground structures Expired - Fee Related JP4022687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002212302A JP4022687B2 (en) 2002-07-22 2002-07-22 Construction method for underground structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002212302A JP4022687B2 (en) 2002-07-22 2002-07-22 Construction method for underground structures

Publications (2)

Publication Number Publication Date
JP2004052398A JP2004052398A (en) 2004-02-19
JP4022687B2 true JP4022687B2 (en) 2007-12-19

Family

ID=31935270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002212302A Expired - Fee Related JP4022687B2 (en) 2002-07-22 2002-07-22 Construction method for underground structures

Country Status (1)

Country Link
JP (1) JP4022687B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110080287A (en) * 2019-04-23 2019-08-02 中铁第四勘察设计院集团有限公司 A kind of assembled flat-top has the open cutting construction method of column underground structure

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100882127B1 (en) 2007-08-31 2009-02-06 (주)세일엔지니어링 Construction method for installation escalator of subway outside entrance
KR100803921B1 (en) * 2007-11-08 2008-02-15 쌍용건설 주식회사 Pit working method forr undergrund floor railroad operation of elevator
CN103669400A (en) * 2013-12-03 2014-03-26 国家电网公司 Typical construction method for prefabricated tube bank
CN103775110A (en) * 2014-01-22 2014-05-07 上海市城市建设设计研究总院 Underground excavation construction method for multilayer underground space of soft soil area
CN104675403B (en) * 2014-12-18 2017-07-21 上海建工集团股份有限公司 A kind of underground space construction method and supporting construction
CN105464134B (en) * 2015-12-31 2017-07-25 上海建工集团股份有限公司 Multi-layer underground space is along inverse combining construction method and supporting construction under existing facility
CN108842819B (en) * 2018-09-07 2020-06-16 中国能源建设集团安徽电力建设第一工程有限公司 Urban rail transit cable line tunnel construction method
US11879224B2 (en) 2021-02-08 2024-01-23 Round Shield LLC Devices, assemblies, and methods for shoring temporary surface excavations
CN113215910A (en) * 2021-05-21 2021-08-06 中铁隧道局集团有限公司 Temporary pavement structure based on construction of limited-site subway station and application thereof
CN116043916A (en) * 2023-03-02 2023-05-02 中铁二院工程集团有限责任公司 Cover excavation reverse construction method for assembled underground structure and assembled underground structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110080287A (en) * 2019-04-23 2019-08-02 中铁第四勘察设计院集团有限公司 A kind of assembled flat-top has the open cutting construction method of column underground structure

Also Published As

Publication number Publication date
JP2004052398A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
CN108868778B (en) Non-excavation construction method for large underground structure
JP3211673B2 (en) Simple temporary bridge temporary pier construction method
KR100794609B1 (en) Construction method of underground structure using concrete filled pipe roof and concrete wall
JP2006322222A (en) Construction method of large-sectional tunnel
JPH08253946A (en) Reverse placing method for concrete of underground structure under road
JP4022687B2 (en) Construction method for underground structures
KR20070076553A (en) Construction method of underground structure using concrete filled pipe roof and concrete wall
JP2007308995A (en) Under path and construction method for the same
KR20070052109A (en) Down-ward construction method of the underground slabs and retaining walls by the slim-type composit floor system consisted of the architectural conposit deep deck and unsymmetric h-beam without preliminary wall-attached support beams and sub-beams of the floor
KR100806867B1 (en) Steel pipe roof assembly and the construction method for Tunnel using thereof
JP4083334B2 (en) Underground structure having arch roof and method for constructing the same
JP2000291398A (en) Underground structure and construction method therefor
KR102059051B1 (en) Method for excavating vertical shaft
JP3948655B2 (en) Construction method of retaining wall and underground structure
JP3930954B2 (en) Construction method of structure
JP3646698B2 (en) Construction method for underground structures
JP2813807B2 (en) How to build an underground tunnel
JP4440152B2 (en) Construction method of underground penetrating body and steel shell element therefor
JPS6317999B2 (en)
JPS62220616A (en) Construction work for underground space
JP2004316125A (en) Work execution method for large sectional tunnel and deformed section shield machine
CN117211302B (en) Assembled steel-concrete guide wall and construction method thereof
JP2003206697A (en) Construction method of underground structure
JPH09111754A (en) Soldier pile cut-of wall construction method
JP3900684B2 (en) Construction method for underground structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

R150 Certificate of patent or registration of utility model

Ref document number: 4022687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees