JP4022646B2 - Pressure control device using servo motor - Google Patents

Pressure control device using servo motor Download PDF

Info

Publication number
JP4022646B2
JP4022646B2 JP2004336138A JP2004336138A JP4022646B2 JP 4022646 B2 JP4022646 B2 JP 4022646B2 JP 2004336138 A JP2004336138 A JP 2004336138A JP 2004336138 A JP2004336138 A JP 2004336138A JP 4022646 B2 JP4022646 B2 JP 4022646B2
Authority
JP
Japan
Prior art keywords
pressure
servo motor
force
injection
molding machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004336138A
Other languages
Japanese (ja)
Other versions
JP2006142659A (en
Inventor
行雄 吉沢
晃一 景山
勝行 真島
潔 大石
勢時 吹矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology
Niigata Machine Techno Co Ltd
Original Assignee
Nagaoka University of Technology
Niigata Machine Techno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology, Niigata Machine Techno Co Ltd filed Critical Nagaoka University of Technology
Priority to JP2004336138A priority Critical patent/JP4022646B2/en
Publication of JP2006142659A publication Critical patent/JP2006142659A/en
Application granted granted Critical
Publication of JP4022646B2 publication Critical patent/JP4022646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、サーボモータにより動力伝達手段を介して作動体を動作させて受圧体に力を作用させる機械において、受圧体に作用する力をロードセル等の力検出器を使わずに制御する圧力制御方法および圧力制御装置に関するものである。   The present invention relates to a pressure control that controls a force acting on a pressure receiving body without using a force detector such as a load cell in a machine that operates a working body via a power transmission means by a servo motor to apply a force to the pressure receiving body. The present invention relates to a method and a pressure control device.

従来、電動射出成形機の圧力制御装置として、射出圧力の閉ループ制御部と、射出速度の閉ループ制御部と、外乱オブザーバ演算部と、射出圧力を検出するロードセルと、射出速度を検出するエンコーダとを備え、前記射出圧力の閉ループ制御部で圧力設定値とロードセルで検出された圧力検出値とから得られる動作信号を制御器で調節して射出速度指令値を出力し、この射出速度指令値と外乱オブザーバ演算部で推定した無効速度推定値とから得られる動作信号により、射出軸用の電動モータに入力するトルクを演算して、射出軸の圧力を圧力設定値と一致させるべくフィードバック制御するようにしたものが知られている(例えば、特許文献1,2参照)。
特開平10−44206号公報 特開平10−244571号公報
Conventionally, as a pressure control device for an electric injection molding machine, a closed loop control unit for injection pressure, a closed loop control unit for injection speed, a disturbance observer calculation unit, a load cell for detecting injection pressure, and an encoder for detecting injection speed The injection pressure closed loop control unit adjusts the operation signal obtained from the pressure set value and the pressure detection value detected by the load cell by the controller, and outputs the injection speed command value. The torque input to the electric motor for the injection shaft is calculated based on the operation signal obtained from the estimated invalid speed estimated by the observer calculation unit, and feedback control is performed so that the pressure of the injection shaft matches the pressure set value. (For example, refer to Patent Documents 1 and 2).
JP-A-10-44206 Japanese Patent Laid-Open No. 10-244571

前記電動射出成形機の制御装置では、前記射出圧力の閉ループ制御部にフィードバック制御信号として入力させるためと、前記外乱オブザーバ演算部で無効速度推定値を求めるために、それぞれ、射出軸に作用する圧力を検出するロードセル等の力検出器を必要としている。しかし、ロードセルは、電動モータから射出スクリューに至る射出軸系において機械に組み込むための構造が複雑になると共に、検出器自体が高価であるうえに、歪みゲージを検出部に貼り付ける構造のために、検出器不良が発生するおそれがある。圧力のフィードバックシステムを構築する射出成形機において重要な役目を果たしているロードセルに不具合が発生すると、圧力制御が正しく行われずに成形精度が悪くなり、成形品に不良が発生する等の問題がある。   In the control device for the electric injection molding machine, the pressure acting on the injection shaft in order to cause the closed pressure control unit for the injection pressure to be input as a feedback control signal and to determine the invalid speed estimated value in the disturbance observer calculation unit, respectively. It requires a force detector such as a load cell to detect. However, the load cell has a complicated structure for incorporation into the machine in the injection shaft system from the electric motor to the injection screw, and the detector itself is expensive, and because of the structure for attaching the strain gauge to the detection unit There is a risk of detector failure. When a failure occurs in a load cell that plays an important role in an injection molding machine that constructs a pressure feedback system, there is a problem that pressure control is not performed correctly, molding accuracy is deteriorated, and a molded product is defective.

本発明は、上記事情に鑑みてなされたものであって、電動射出成形機等のように、サーボモータにより動力伝達手段を介して作動体を動作させて受圧体に力を作用させる機械において、受圧体に作用する力をロードセル等の力検出器を使わずに正確に制御するサーボモータを用いた圧力制御方法および圧力制御装置を提供することを目的とする。
また、本発明の他の目的は、機械の構成を簡単にすることができ、信頼性が得られるサーボモータを用いた圧力制御装置を提供することである。
The present invention has been made in view of the above circumstances, such as an electric injection molding machine, etc., in a machine that operates a working body via a power transmission means by a servo motor and applies a force to a pressure receiving body. An object of the present invention is to provide a pressure control method and a pressure control device using a servo motor that accurately controls the force acting on the pressure receiving body without using a force detector such as a load cell.
Another object of the present invention is to provide a pressure control device using a servo motor that can simplify the construction of the machine and obtain reliability.

本発明は、前記課題を解決するために、以下の点を特徴としている。
すなわち、請求項1に係るサーボモータを用いた圧力制御方法は、サーボモータによりプーリ及びベルトを介して作動体を作動させ、該作動体によって受圧体に力を作用させる電動射出成形機において、前記受圧体に作用させる力の制御を、前記サーボモータの出力トルクを制御して行う圧力制御方法であって、
前記電動射出成形機を駆動部とプーリ及びベルトと被駆動部とからなる2慣性系制御モデルとして構築し、該制御モデルに対して、前記駆動部への電流指令と駆動部からの回転情報とにもとづいて前記被駆動部が受ける力を推定するオブザーバを構築し、該オブザーバが前記電動射出成形機のサーボモータへの指令電流とサーボモータからの回転位置とから前記作動体が受圧体から受ける力を推定し、この推定した力を利用して前記作動体が受圧体に作用させる力をフィードバック制御することを特徴としている。
The present invention is characterized by the following points in order to solve the above problems.
That is, the pressure control method using the servo motor according to claim 1 is an electric injection molding machine in which an operating body is operated by a servo motor via a pulley and a belt , and a force is applied to the pressure receiving body by the operating body. A pressure control method for controlling the force acting on the pressure receiving body by controlling the output torque of the servo motor,
The electric injection molding machine is constructed as a two-inertia control model including a drive unit, a pulley, a belt, and a driven unit, and with respect to the control model, a current command to the drive unit and rotation information from the drive unit An observer that estimates the force received by the driven part is constructed based on the command current received from the pressure receiver by the command current to the servo motor of the electric injection molding machine and the rotational position from the servo motor. A force is estimated, and the force that the operating body acts on the pressure receiving body is feedback-controlled using the estimated force.

請求項2に係るサーボモータを用いた圧力制御装置は、サーボモータによりプーリ及びベルトを介して作動体を作動させ、該作動体によって受圧体に力を作用させる電動射出成形機において、前記受圧体に作用させる力の制御を、制御手段により前記サーボモータの出力トルクを制御して行う圧力制御装置であって、
前記制御手段は、駆動部とプーリ及びベルトと被駆動部とから構築された前記電動射出成形機の2慣性系制御モデルに対して構築され、かつ前記駆動部への電流指令と駆動部からの回転情報とにもとづいて前記被駆動部が受ける力を推定するオブザーバと、前記サーボモータに対する電流指令とサーボモータの回転位置とにより前記オブザーバが推定した力を入力して、前記作動体が受圧体に作用させる力をフィードバック制御するフィードバック制御部とを備えていることを特徴としている。
A pressure control device using a servo motor according to claim 2 is an electric injection molding machine in which an operating body is operated by a servo motor via a pulley and a belt , and a force is applied to the pressure receiving body by the operating body. A pressure control device for controlling the force acting on the servo motor by controlling the output torque of the servo motor by a control means,
The control means is constructed for a two-inertia control model of the electric injection molding machine constructed from a drive unit, a pulley, a belt , and a driven unit, and a current command to the drive unit from the drive unit An observer that estimates a force received by the driven part based on rotation information, and a force estimated by the observer based on a current command to the servomotor and a rotation position of the servomotor, and the operating body is a pressure receiver And a feedback control unit that feedback-controls the force acting on the device.

請求項3に係るサーボモータを用いた圧力制御装置は、請求項2に記載の圧力制御装置において、電動射出成形機は、サーボモータによりプーリ及びベルトを介してボールねじ軸またはボールナットを回転させ、これらに螺合するボールナットまたはボールねじ軸を介して射出機構の射出スクリューを作動させて、型締機構によって型締めされた金型に溶融樹脂を圧力を制御しながら射出して成形を行うようにしたことを特徴としている。 The pressure control device using the servo motor according to claim 3 is the pressure control device according to claim 2, wherein the electric injection molding machine rotates the ball screw shaft or the ball nut through the pulley and the belt by the servo motor. Then, the injection screw of the injection mechanism is operated via a ball nut or a ball screw shaft that is screwed to these, and the molten resin is injected into the mold clamped by the mold clamping mechanism while controlling the pressure to perform molding. It is characterized in that the the like.

本発明は以下の優れた効果を奏する。
すなわち、請求項1に係るサーボモータを用いた圧力制御方法および請求項2に係るサーボモータを用いた圧力制御装置によれば、電動射出成形機の2慣性系制御モデルに対して適切に構築されたオブザーバにより、サーボモータによりプーリ及びベルトを介して作動される作動体が受圧体から受ける力を正確に推定することができるので、その力にもとづいてサーボモータの動作をフィードバック制御することにより、作動体が受圧体に作用させる力をロードセル等の力検出器を使わずに正確に制御することができる。
これにより、電動射出成形機にロードセルを組み込む格別の手段が不要となるので、電動射出成形機の構成を簡単にすることができると共に、サーボモータを用いた圧力制御装置の信頼性を高めることができる。
The present invention has the following excellent effects.
That is, according to the pressure control method using the servo motor according to claim 1 and the pressure control device using the servo motor according to claim 2, the pressure control method using the servo motor according to claim 2 is appropriately constructed for the two-inertia control model of the electric injection molding machine. The observer can accurately estimate the force received from the pressure receiving body by the actuating body operated by the servo motor via the pulley and the belt , and by feedback controlling the operation of the servo motor based on the force, The force that the operating body acts on the pressure receiving body can be accurately controlled without using a force detector such as a load cell.
Thus, the special unit incorporating a load cell to an electric injection molding machine is not required, it is possible to simplify the configuration of an electric injection molding machine, to increase the reliability of the pressure control device using a servo motor it can.

また、請求項3に係るサーボモータを用いた圧力制御装置によれば、電動射出成形機において射出スクリューによる射出圧力の制御を行う圧力フィードバック制御システムをロードセルを使用せずに構築することができるので、圧力フィードバック制御システムの信頼性が高まり、射出圧力の制御を正確に行って成形精度を向上させることができ、成形品に不良が発生するのを確実に防止することができる。   Further, according to the pressure control apparatus using the servo motor according to claim 3, a pressure feedback control system for controlling the injection pressure by the injection screw in the electric injection molding machine can be constructed without using the load cell. Further, the reliability of the pressure feedback control system is improved, the injection pressure is accurately controlled, the molding accuracy can be improved, and the occurrence of defects in the molded product can be reliably prevented.

以下、本発明の一実施の形態に係るサーボモータを用いた圧力制御装置を添付図面を参照して説明する。
図1は、本発明の一実施の形態に係るサーボモータを用いた圧力制御装置を、電動射出成形機の射出圧力を制御する制御装置に適用した一例を示す。図1において、1は電動射出成形機(機械)であり、支持盤2に取り付けられた先端にノズル3を有する加熱筒4と、該加熱筒4内に軸回りに回転自在にかつ軸方向に移動自在に挿入された射出スクリュー(受圧体)5と、該射出スクリュー5の外端を回転自在に支持する支持台6とを有する。また、前記支持台6は、前記支持盤2とこれに対向配置した他の支持盤7に対して回転自在に支承された一対のボールねじ軸8に、該ボールねじ軸8に螺合されたボールナット9を介して2箇所で支持されている。
Hereinafter, a pressure control device using a servo motor according to an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows an example in which a pressure control device using a servo motor according to an embodiment of the present invention is applied to a control device for controlling the injection pressure of an electric injection molding machine. In FIG. 1, reference numeral 1 denotes an electric injection molding machine (machine), a heating cylinder 4 having a nozzle 3 at a tip attached to a support plate 2, and a rotation around the axis in the heating cylinder 4 in an axial direction. An injection screw (pressure receiving body) 5 that is movably inserted and a support base 6 that rotatably supports the outer end of the injection screw 5 are provided. The support base 6 is screwed to the ball screw shaft 8 with a pair of ball screw shafts 8 rotatably supported with respect to the support plate 2 and another support plate 7 disposed opposite thereto. It is supported at two locations via a ball nut 9.

また、各ボールねじ軸8の一端にはプーリ10がそれぞれ取り付けられ、これらのプーリ10とサーボモータ11の出力軸に取り付けられたプーリ12との間に、タイミングベルト(ベルト)13が張設され、前記サーボモータ11の回転により、タイミングベルト13と各プーリ10,12を介して各ボールねじ軸8が回転され、これらに螺合されたボールナット9を介して前記支持台6が往復移動し、これにより、前記射出スクリュー5がその軸方向に移動して、射出スクリュー5の回転で加熱筒4内の先端部に計量された溶融樹脂を、型締機構によって型締めされた金型(図示せず)内に射出するようになっている。また、14はサーボモータ11の回転位置に応じたパルスを発生するパルスエンコーダである(位置検出器)。   A pulley 10 is attached to one end of each ball screw shaft 8, and a timing belt (belt) 13 is stretched between the pulley 10 and a pulley 12 attached to the output shaft of the servo motor 11. The rotation of the servo motor 11 causes the ball screw shafts 8 to rotate through the timing belt 13 and the pulleys 10 and 12, and the support base 6 reciprocates through the ball nuts 9 screwed into these. As a result, the injection screw 5 moves in the axial direction thereof, and a mold (FIG. 3) is obtained by clamping the molten resin measured at the tip of the heating cylinder 4 by the rotation of the injection screw 5 by a mold clamping mechanism. (Not shown). Reference numeral 14 denotes a pulse encoder (position detector) that generates a pulse corresponding to the rotational position of the servo motor 11.

一方、前記金型に溶融樹脂を射出する射出圧力を制御する制御装置(制御手段)15は、オペレータが射出速度設定値VSVを設定する射出速度設定部16と、射出圧力設定値を設定する射出圧力設定部17と、前記パルスエンコーダ14が検出したサーボモータ11の現在の回転位置(回転情報)θと電流検出器18が検出するサーボモータ11に対する現在の電流値(電流指令)Iとから射出圧力フィードバック値を推定するオブザーバ19と、射出圧力フィードバック制御部20とを備えている。該射出圧力フィードバック制御部20は、前記オブザーバ19が推定した射出圧力フィードバック値と前記射出圧力設定部17による射出圧力設定値との偏差値を求める加算器21と、その偏差値に対しPID演算を実行する第1のPID演算器22と、このPID演算器22の出力値MV と前記射出速度設定部16による射出速度設定値VSVとを比較する比較器23と、該比較器23でMV >VSVのときPID演算器22の積分要素22aを回路から切り離すスイッチ25とから構成されている。   On the other hand, a control device (control means) 15 for controlling the injection pressure for injecting the molten resin into the mold includes an injection speed setting unit 16 for setting the injection speed set value VSV by the operator, and an injection for setting the injection pressure set value. Injection from the pressure setting unit 17, the current rotation position (rotation information) θ of the servomotor 11 detected by the pulse encoder 14, and the current value (current command) I for the servomotor 11 detected by the current detector 18. An observer 19 for estimating a pressure feedback value and an injection pressure feedback control unit 20 are provided. The injection pressure feedback control unit 20 includes an adder 21 for obtaining a deviation value between the injection pressure feedback value estimated by the observer 19 and the injection pressure setting value by the injection pressure setting unit 17, and performs PID calculation on the deviation value. The first PID calculator 22 to be executed, the comparator 23 for comparing the output value MV of the PID calculator 22 with the injection speed set value VSV by the injection speed setting unit 16, and MV> VSV in the comparator 23 In this case, the PID calculator 22 is composed of a switch 25 for disconnecting the integration element 22a from the circuit.

さらに、前記制御装置15は、前記出力値MV から速度指令値SV を得る射出速度指令部26と、該射出速度指令部26から入力された速度指令値SV を射出速度設定値VSVによってクランプ(制限)して出力値VLIN(VSV>SV のときVLIN=SV 、VSV≦SV のときVLIN=VSVとなる)を出力する射出速度制限部27と、前記パルスエンコーダ14からの回転位置θを速度値に変換する射出速度フィードバック入力回路28と、加算器29によって前記射出速度制限部27の出力値VLINと射出速度フィードバック入力回路28から出力された速度値との偏差値を求め、該偏差値に対し第2のPID演算器30によってPID演算を実行する射出速度フィードバック制御部31と、前記電流検出器18からのフィードバック電流と前記第2のPID演算器30の演算出力との偏差値を求める加算器32と、該加算器32が求めた偏差値のPID演算を行う電流制御用のPID演算器33とを備えている。該電流制御用のPID演算器33の出力電流が最終的にサーボモータ11への電流指令値(電流指令)Iとなる。なお、前記各PID演算器22,30は可変できる制御定数である。   Further, the control device 15 clamps (limits) the injection speed command unit 26 for obtaining the speed command value SV from the output value MV, and the speed command value SV input from the injection speed command unit 26 by the injection speed set value VSV. ) To output an output value VLIN (VLIN = SV when VSV> SV, VLIN = VSV when VSV ≦ SV), and the rotational position θ from the pulse encoder 14 as a speed value. A deviation value between the output value VLIN of the injection speed limiter 27 and the speed value output from the injection speed feedback input circuit 28 is obtained by the injection speed feedback input circuit 28 to be converted and the adder 29, and the deviation value The injection speed feedback control unit 31 that performs the PID calculation by the PID calculator 30 of the second, the feedback current from the current detector 18 and the second P An adder 32 for obtaining the deviation of the operation output of the D calculator 30, the adder 32 and a PID operator 33 for current control for PID calculation of the deviation value obtained. The output current of the current control PID calculator 33 finally becomes a current command value (current command) I to the servo motor 11. The PID calculators 22 and 30 are variable control constants.

次に、前記オブザーバ19は、前記電動射出成形機1を駆動部と動力伝達部と被駆動部とからなる2慣性系制御モデルとして構築して、該制御モデルの駆動部に対する動作指令と駆動部の回転位置(回転情報)から被駆動部が発生する力を推定するシミュレータ(推定器)として構築されている。
すなわち、前記電動射出成形機1の2慣性系制御モデル(制御モデル)38は、図2に示すように、前記サーボモータ11が、トルク定数Ktを有するトルク定数要素35aと、加え合わせ点35bを介して前記トルク定数要素35aに結合されたトルク/回転要素35cと、引き出し点35dを介してトルク/回転要素35cに結合された変換要素35eとを含む伝達要素からなる駆動部35として構成され、また、プーリ10,12およびタイミングベルト13が、前記駆動部35の加え合わせ点35bと引き出し点35dにそれぞれ結合されたギヤ比(回転比)Rgを有する一対の回転角速度変換要素36a,36bと、一方の回転角速度変換要素36aと結合された前記タイミングベルト13のバネ定数Ksを有するバネ定数要素36cと、該バネ定数要素36cに結合されると共に加え合わせ点36dを介して他方の回転角速度変換要素36bと結合された変換要素36eとを含む伝達要素からなる動力伝達部36として構成され、また、前記ボールねじ軸8、ボールナット9,支持台6等が、加え合わせ点37aを介して前記バネ定数要素36cに結合されると共に引き出し点37bから加え合わせ点36dを経て前記変換要素36eに結合された従動側要素37cと、引き出し点37bを介して前記従動側要素37cに結合された変換要素37dとを含む伝達要素からなる被駆動部37として構成されて構築されている。
Next, the observer 19 constructs the electric injection molding machine 1 as a two-inertia control model including a drive unit, a power transmission unit, and a driven unit, and an operation command and a drive unit for the drive unit of the control model It is constructed as a simulator (estimator) for estimating the force generated by the driven part from the rotation position (rotation information).
That is, in the two-inertia control model (control model) 38 of the electric injection molding machine 1, the servo motor 11 includes a torque constant element 35a having a torque constant Kt and an addition point 35b as shown in FIG. Configured as a drive unit 35 comprising a transmission element including a torque / rotation element 35c coupled to the torque constant element 35a via a conversion element 35e coupled to the torque / rotation element 35c via a withdrawal point 35d, The pulleys 10 and 12 and the timing belt 13 have a pair of rotational angular velocity conversion elements 36a and 36b each having a gear ratio (rotational ratio) Rg coupled to the addition point 35b and the drawing point 35d of the drive unit 35, respectively. A spring constant element 3 having a spring constant Ks of the timing belt 13 coupled to one rotational angular velocity conversion element 36a. c and a power transmission unit 36 comprising a transmission element coupled to the spring constant element 36c and including a conversion element 36e coupled to the other rotational angular velocity conversion element 36b via an addition point 36d. The ball screw shaft 8, the ball nut 9, the support base 6 and the like are coupled to the spring constant element 36c through an addition point 37a and coupled to the conversion element 36e from an extraction point 37b through an addition point 36d. The driven portion 37 is composed of a transmission element including the driven side element 37c and a conversion element 37d coupled to the driven side element 37c via a pull-out point 37b.

なお、前記トルク/回転要素35cは一次側の等価慣性モーメントJmと粘性係数Dmを含んで構成され、前記従動側要素37cは二次側の等価慣性モーメントJL と粘性係数DL を含んで構成されている。
そして、前記オブザーバ19が、前記駆動部35に対する電流指令(電流指令値)Icmdを引き出し点35fから入力すると共に、駆動部35からの出力である前記サーボモータ11の回転位置(回転情報)θmを引き出し点35gから入力して推定トルク(力または圧力)T^disを出力するようになっている。
図2において、39は前記加熱筒4内の溶融樹脂であって前記射出スクリュー5による射出圧の付加動作、背圧の付加動作に対して抵抗を及ぼす抵抗物モデルであり、定数Kpt,Krsを有するボールねじ軸8の回転変換要素40a,40bを介して前記被駆動部37の加え合わせ点37aと前記変換要素37dの出力側の引き出し点37eに結合されている。
The torque / rotating element 35c includes a primary-side equivalent inertia moment Jm and a viscosity coefficient Dm, and the driven-side element 37c includes a secondary-side equivalent inertia moment JL and a viscosity coefficient DL. Yes.
The observer 19 inputs a current command (current command value) Icmd to the drive unit 35 from the lead point 35f, and calculates the rotation position (rotation information) θm of the servo motor 11 as an output from the drive unit 35. The estimated torque (force or pressure) T ^ dis is input from the drawing point 35g and output.
In FIG. 2, reference numeral 39 denotes a molten resin in the heating cylinder 4, which is a resistor model that exerts resistance against the injection pressure applying operation and the back pressure adding operation by the injection screw 5, and constants Kpt and Krs are set as follows. The ball screw shaft 8 is connected to an addition point 37a of the driven portion 37 and a lead-out point 37e on the output side of the conversion element 37d via rotation conversion elements 40a and 40b of the ball screw shaft 8 having the ball screw shaft.

前記制御モデル38(図2参照)の作用においては、図6に示すように、前記駆動部35(サーボモータ11)のトルク定数要素35aに電流指令Icmdが入力される(ステップS1)と、動力伝達部36を介して被駆動部37を作動させることにより、駆動部35の出力としての回転位置θm(回転速度ωm)が変化する(ステップS2)ので、前記オブザーバ19が、前記電流指令Icmdと前記回転位置θmとを取り込み(ステップS3)、前記電流指令Icmdによって本来発生されるべき回転位置と前記取り込んだ実際の回転位置θm(回転速度ωm)との偏差を求め(ステップS4)、該偏差にもとづいて駆動部35に加わった反抗トルクを推定し(ステップS5)、該反抗トルクから被駆動部37が抵抗物モデル39から受ける力に対する反抗力(推定トルクT^dis)を推定する(ステップS6)。この推定トルクT^disが電動射出成形機1の射出圧力のフィードバック制御用の入力信号として使用されることとなる。   In the operation of the control model 38 (see FIG. 2), as shown in FIG. 6, when the current command Icmd is input to the torque constant element 35a of the drive unit 35 (servo motor 11) (step S1), the power By actuating the driven part 37 via the transmission part 36, the rotational position θm (rotational speed ωm) as the output of the driving part 35 changes (step S2), so that the observer 19 receives the current command Icmd and the current command Icmd. The rotational position θm is captured (step S3), and a deviation between the rotational position that should be originally generated by the current command Icmd and the captured actual rotational position θm (rotational speed ωm) is obtained (step S4). The resistance torque applied to the drive part 35 is estimated based on the resistance torque (step S5), and the driven part 37 receives from the resistor model 39 from the resistance torque. The reaction force against force (estimated torque T ^ dis) is estimated (step S6). This estimated torque T ^ dis is used as an input signal for feedback control of the injection pressure of the electric injection molding machine 1.

さらに、前記電動射出成形機1の制御モデル38は、図3に示すような状態変数線図38Aとして展開することができるので、負荷側(被駆動部37)の回転速度(回転情報)ωL 、サーボモータ側(駆動部35)と負荷側との回転位置の差(回転角度差)θs、サーボモータ側の回転速度ωm、樹脂圧力(オブザーバ19で推定する力)から射出スクリュー5が受ける外力トルクτL を状態変数xとして与えると、以下の状態方程式(1)(2)が、更に具体的には、状態方程式(3)(4)が得られる。   Furthermore, since the control model 38 of the electric injection molding machine 1 can be developed as a state variable diagram 38A as shown in FIG. 3, the rotational speed (rotation information) ωL on the load side (driven portion 37), External force torque received by the injection screw 5 from the difference in rotational position (rotational angle difference) θs between the servo motor side (drive unit 35) and the load side, the rotational speed ωm on the servo motor side, and the resin pressure (force estimated by the observer 19). When τL is given as the state variable x, the following state equations (1) and (2) are obtained, and more specifically, the state equations (3) and (4) are obtained.

Figure 0004022646
Figure 0004022646

そして、上記状態方程式(3)(4)にもとづいて、前記制御モデル38を図3に示す状態変数線図38Aのように展開し、さらに、図4に示すような状態変数線図38Bで示すことができ、この状態変数線図38Bにおける射出用のサーボモータ11に与える電流指令値Icmdと、サーボモータ11の回転角速度ωmとを前記オブザーバ19に入力することにより、状態変数x中の樹脂圧力(射出圧力)に相当する反抗トルクτL を推定するようにする。
そのために、図5に示すように、図4に示す状態変数線図38Bに対し前記オブザーバ19を状態変数線図で表したモデル19Aを適切に構築して結合するものとする。
Then, based on the state equations (3) and (4), the control model 38 is developed as shown in a state variable diagram 38A shown in FIG. 3, and is further shown as a state variable diagram 38B as shown in FIG. By inputting the current command value Icmd applied to the injection servomotor 11 in this state variable diagram 38B and the rotational angular velocity ωm of the servomotor 11 to the observer 19, the resin pressure in the state variable x can be obtained. The reaction torque τL corresponding to (injection pressure) is estimated.
Therefore, as shown in FIG. 5, a model 19A in which the observer 19 is represented by a state variable diagram is appropriately constructed and combined with the state variable diagram 38B shown in FIG.

すなわち、図5において、前記モデル19Aは、前記制御モデル38(状態変数線図38B)への電流指令Icmdを入力する制御行列Bnを有する制御要素41と、該制御要素41に加え合わせ点42を介して結合された積分要素43と、該積分要素43に引き出し点44を介して結合された出力行列Cnを有する推定量抽出要素45と、該推定量抽出要素45の出力を引き出し点46と加え合わせ点47を介して入力すると共に出力を前記加え合わせ点42に加える行列Kを有する偏差収束ゲイン要素48と、前記引き出し点44から前記加え合わせ点42に向け前記積分要素43に対して結合されたシステム行列Anを有する内部状態相互作用要素49とを備え、前記加え合わせ点47には前記制御モデル38(状態変数線図38B)の回転角速度ωmが引き出し点50aから加えられ、前記引き出し点44から状態変数x^中の反抗トルク(圧力推定値)τ^L 等が取り出されるようになっている。
なお、前記各行列An,Bn,Cnはノミナル値であり、前記行列Kは状態フィードバック行列で、An−KCnの固有値が指定した極gdとなる行列である。
That is, in FIG. 5, the model 19A includes a control element 41 having a control matrix Bn for inputting a current command Icmd to the control model 38 (state variable diagram 38B), and an addition point 42 to the control element 41. An integrative element 43 coupled to the integral element 43, an estimator extraction element 45 having an output matrix Cn coupled to the integral element 43 via an extraction point 44, and an output of the estimator extraction element 45 added to the extraction point 46 A deviation convergence gain element 48 having a matrix K for inputting via a matching point 47 and applying an output to the summing point 42 is coupled to the integration element 43 from the extraction point 44 toward the summing point 42. An internal state interaction element 49 having a system matrix An, and the addition point 47 includes the control model 38 (state variable diagram 38B). Rotational angular ωm is applied from the drawer point 50a, the defiant torque (pressure estimate value) of the state variable x ^ medium from the drawer point 44 tau ^ L or the like is adapted to be taken out.
The matrices An, Bn, and Cn are nominal values, the matrix K is a state feedback matrix, and the eigenvalue of An-KCn is a specified pole gd.

次に、前記オブザーバ19のモデル19A(図5参照)の作用について説明する。図7に示すように、電流流指令値Icmdが前記制御モデル38B(サーボモータ)に入力されると共に引き出し点50bを経て制御要素41に入力されると、該制御要素41で電流指令値Icmdに制御行列Bnが乗じられた(ステップS1)後、積分要素43を経て出力された状態変数x^が推定量抽出要素45で出力行列Cnを乗じられてサーボモータの推定回転速度ω^mが出力されるので、該推定回転速度ω^mは加え合わせ点47において制御モデル38Bから該加え合わせ点47に入力されるサーボモータの回転速度ωmとの偏差を求められ(ステップS2)、その偏差は偏差収束ゲイン要素48で行列Kを乗じられる(ステップS3)。そして、前記内部状態相互作用要素49で前記状態変数x^と出力行列Anとを乗じて得た出力値と、前記制御要素41の出力値と、前記偏差収束ゲイン要素48の出力値とを加え合わせ点42において加算して状態変数x^の微分値を得て(ステップS4)、該状態変数x^の微分値を積分要素43で積分して状態変数x^を得る(ステップS5)。しかる後に、前記推定量抽出要素45において前記状態変数x^に推定量抽出部分を乗じて反抗トルク(圧力推定値)τ^L 得る(ステップS6)。   Next, the operation of the model 19A (see FIG. 5) of the observer 19 will be described. As shown in FIG. 7, when the current flow command value Icmd is input to the control model 38B (servo motor) and input to the control element 41 through the lead point 50b, the control element 41 changes the current command value Icmd to the current command value Icmd. After the control matrix Bn is multiplied (step S1), the state variable x ^ output via the integration element 43 is multiplied by the output matrix Cn by the estimation amount extraction element 45, and the estimated rotational speed ω ^ m of the servo motor is output. Therefore, the estimated rotational speed ω ^ m is obtained at the addition point 47 from the control model 38B as a deviation from the rotation speed ωm of the servo motor input to the addition point 47 (step S2). The deviation convergence gain element 48 multiplies the matrix K (step S3). Then, the output value obtained by multiplying the state variable x ^ and the output matrix An by the internal state interaction element 49, the output value of the control element 41, and the output value of the deviation convergence gain element 48 are added. Addition is performed at the matching point 42 to obtain a differential value of the state variable x ^ (step S4), and the differential value of the state variable x ^ is integrated by the integration element 43 to obtain the state variable x ^ (step S5). Thereafter, the estimated amount extraction element 45 multiplies the state variable x ^ by the estimated amount extraction portion to obtain a repulsive torque (pressure estimated value) τ ^ L (step S6).

このように、モデル19Aの出力(y^)である前記推定回転速度ω^mと制御モデル38Bの出力(y)であるサーボモータの回転速度ωmの差分を加え合わせ点42側へフィードバックすることにより、制御モデル38B側の出力との誤差を少なく推定することができる。このオブザーバ19のモデル19Aを状態方程式で表すと、下記式(5)となり、その誤差eは下記式(6)として、前記式(5)から前記式(1)を引くと、下記式(7)と表すことができ、オブザーバ19のモデル19Aの極KによってAn−KCnを安定にできれば、e(t=∞)=0とすることができ、出力の推定誤差ををゼロに収束させることができる。これによって、状態変数x^から電動射出成形機1の制御モデル38(38B)の被駆動部37が抵抗物モデル39から受けるトルク(圧力推定値)τL を推定することが可能となる。   In this way, the difference between the estimated rotational speed ω ^ m, which is the output (y ^) of the model 19A, and the rotational speed ωm of the servo motor, which is the output (y) of the control model 38B, is added and fed back to the matching point 42 side. As a result, it is possible to estimate an error from the output on the control model 38B side with little. When the model 19A of the observer 19 is expressed by a state equation, the following equation (5) is obtained, and the error e is expressed as the following equation (6), and when the equation (1) is subtracted from the equation (5), the following equation (7) If the An-KCn can be stabilized by the pole K of the model 19A of the observer 19, e (t = ∞) = 0, and the output estimation error can be converged to zero. it can. This makes it possible to estimate the torque (pressure estimated value) τL received by the driven part 37 of the control model 38 (38B) of the electric injection molding machine 1 from the resistor model 39 from the state variable x ^.

Figure 0004022646
Figure 0004022646

因みに、図8(a)に矩形波の圧力指令値aに対して、前記制御モデル38の被駆動部37に結合された前記抵抗物モデル39に作用する圧力Pextをロードセルで測定して得た実際の圧力変化曲線bを示す。また、図8(b)に同一の圧力指令値aに対して、前記オブザーバ19のモデル19Aで推定した圧力推定値の変化曲線cを示す。これによると、前記モデル19Aで推定した圧力推定値cはロードセルで測定した実際の圧力変化曲線bと殆ど差異がなく、圧力指令値aに極めて良く追従していることが判明した。そのため、オブザーバ19のモデル19Aを、ロードセルに代えて、電動射出成形機1の制御装置15に組み込んで圧力のフィードバック制御を正確に行えることが明らかとなった。   Incidentally, the pressure Pext acting on the resistor model 39 coupled to the driven part 37 of the control model 38 is obtained by measuring with a load cell with respect to the rectangular wave pressure command value a in FIG. An actual pressure change curve b is shown. FIG. 8B shows a change curve c of the estimated pressure value estimated by the model 19A of the observer 19 for the same pressure command value a. According to this, it has been found that the estimated pressure value c estimated by the model 19A has almost no difference from the actual pressure change curve b measured by the load cell and follows the pressure command value a very well. Therefore, it has become clear that the model 19A of the observer 19 can be incorporated into the control device 15 of the electric injection molding machine 1 in place of the load cell to accurately perform pressure feedback control.

次に、前記のように構築されたオブザーバ19(モデル19A)を組み込んだ電動射出成形機の制御装置による射出動作について図1を参照して説明する。射出速度設定部16、射出圧力設定部17にそれぞれ射出速度設定値、射出圧力設定値を設定されて動作が開始されると、オブザーバ19はサーボモータ11に指令される電流値Iとパルスエンコーダ14からサーボモータ11の回転位置θ(θm)を入力し、前記電流値Iと前記回転位置θ(θm)を変換して得た回転速度ωmとを利用して、前記射出スクリュー5に作用する圧力を推定して、その推定値を射出圧力フィードバック値として前記加算器21に入力する。通常、射出工程の前半は射出圧力設定値に対して、前記オブザーバ19が推定する射出圧力フィードバック値が小さいため、射出圧力フィードバック制御部20の出力、すなわちPID演算器22の出力値MV が大きくなり、射出速度指令部26から出力される入力値SV も大きなるが、該入力値SV は射出速度制限部27で射出速度設定値VSVによってクランプされるため、実速度は、射出速度設定値VSVに一致して射出速度フィードバック制御によりサーボモータ11が駆動されて、射出スクリュー5により加熱筒4内の溶融樹脂が型締機構で型締めされた金型内に充填されることとなる。   Next, the injection operation by the control device of the electric injection molding machine incorporating the observer 19 (model 19A) constructed as described above will be described with reference to FIG. When the injection speed setting unit 16 and the injection pressure setting unit 17 are set with the injection speed setting value and the injection pressure setting value, respectively, and the operation is started, the observer 19 sends the current value I commanded to the servo motor 11 and the pulse encoder 14. Is input to the rotational position θ (θm) of the servo motor 11, and the pressure acting on the injection screw 5 using the current value I and the rotational speed ωm obtained by converting the rotational position θ (θm). And the estimated value is input to the adder 21 as an injection pressure feedback value. Usually, in the first half of the injection process, the injection pressure feedback value estimated by the observer 19 is small with respect to the injection pressure set value, so the output of the injection pressure feedback control unit 20, that is, the output value MV of the PID calculator 22 becomes large. The input value SV output from the injection speed command unit 26 is also large. However, since the input value SV is clamped by the injection speed set value VSV in the injection speed limit unit 27, the actual speed is set to the injection speed set value VSV. Accordingly, the servo motor 11 is driven by the injection speed feedback control, and the molten resin in the heating cylinder 4 is filled into the mold clamped by the mold clamping mechanism by the injection screw 5.

そして、射出速度が変速されながら溶融樹脂の充填が進んで、オブザーバ19が推定する射出圧力フィードバック値が高くなるにつれて、射出圧力フィードバック制御部20の出力値MV が小さくなり、入力値SV が射出速度設定値VSV以内になると実速度が減速する。こうして、オブザーバ19からの射出圧力フィードバック値がさらに高くなると、これが射出圧力設定値VSVに一致することとなり、ここで圧力のフィードバック制御に移行する。その際、圧力フィードバック制御部20内のPID演算器22の積分要素22aがスイッチ25の切り離しで停止されて圧力のジャンピング現象が防がれる。そして、圧力のフィードバック制御に移行して充填が進んで、射出スクリュー5が保圧工程の位置に達したことが前記パルスエンコーダ14で検出された後には、タイマ等で設定された時間毎に、前記射出圧力設定部17に該設定時間毎に対応して設定された保圧力設定値が順次切り換えられ、これらの保圧力設定値に対して、前記オブザーバ19で推定された推定圧力値が圧力フィードバック制御部20に逐次フィードバックされる。   As the injection of the molten resin progresses while the injection speed is changed and the injection pressure feedback value estimated by the observer 19 increases, the output value MV of the injection pressure feedback control unit 20 decreases and the input value SV becomes the injection speed. When it is within the set value VSV, the actual speed is reduced. Thus, when the injection pressure feedback value from the observer 19 is further increased, this coincides with the injection pressure set value VSV, and the process shifts to pressure feedback control. At that time, the integral element 22a of the PID computing unit 22 in the pressure feedback control unit 20 is stopped by the disconnection of the switch 25, and the pressure jumping phenomenon is prevented. Then, after the transition to the pressure feedback control and the filling progresses and the pulse encoder 14 detects that the injection screw 5 has reached the pressure holding step, every time set by a timer or the like, The holding pressure setting values set corresponding to the set time are sequentially switched in the injection pressure setting unit 17, and the estimated pressure value estimated by the observer 19 is pressure feedback with respect to these holding pressure setting values. Sequential feedback is provided to the control unit 20.

そして、圧力フィードバック制御部20はその加算器21において射出圧力設定値と推定圧力値との偏差値を求め、該偏差値に対しPID演算器22でPID演算を実行してその出力値MV を射出速度指令部26に入力させるので、該射出速度指令部26から指令される入力値SV が射出速度制限部27、射出速度フィードバック制御部31を経て加算器32に入力される。該加算器32はその入力値に電流検出器18からのフィードバック電流を加算してPID演算器33に入力させるので、その入力値がPID演算を実行されてPID演算器33から電流検出器18を経てサーボモータ11に対して指令電流Iが供給され、これにより、射出圧力設定部17に設定された保圧力設定値に正確に一致されて保圧力が制御される。   Then, the pressure feedback control unit 20 obtains a deviation value between the injection pressure set value and the estimated pressure value in the adder 21, performs a PID computation on the deviation value in the PID computing unit 22, and injects the output value MV. Since it is input to the speed command unit 26, the input value SV commanded from the injection speed command unit 26 is input to the adder 32 via the injection speed limiter 27 and the injection speed feedback control unit 31. Since the adder 32 adds the feedback current from the current detector 18 to the input value and inputs it to the PID calculator 33, the input value is subjected to the PID calculation and the current detector 18 is transferred from the PID calculator 33. After that, the command current I is supplied to the servo motor 11, and thereby, the holding pressure is controlled in accordance with the holding pressure setting value set in the injection pressure setting unit 17 accurately.

前記のように、実施の形態に係るサーボモータを用いた圧力制御方法は、サーボモータ11によりプーリ10,12とタイミングベルト13等を含む動力伝達手段を介して、ボールねじ軸8,ボールナット9および支持台6等を含む作動体を作動させ、該作動体8,9,6によって射出スクリュー5(受圧体)に力を作用させる電動射出成形機1において、前記射出スクリュー5に作用させる力(圧力)の制御を前記サーボモータ11の出力トルク(電流指令)を制御して行う場合、前記電動射出成形機1を駆動部35と動力伝達部36と被駆動部37とからなる2慣性系制御モデル38B(38)として構築し、該制御モデル38Bに対して、前記駆動部35への電流指令Icmdと駆動部35からの回転情報θmとにもとづいて前記被駆動部37が溶融樹脂(射出スクリュー5)から受ける力(圧力)Pextを推定するオブザーバ19A(19)を構築し、該オブザーバ19Aがサーボモータ11への指令電流Icmdとパルスエンコーダ14の回転位置とから前記作動体8,9,6が発生する力を推定し、この推定した力を利用して前記作動体8,9,6が射出スクリュー5に作用させる力をフィードバック制御する構成とされている。   As described above, in the pressure control method using the servo motor according to the embodiment, the ball screw shaft 8 and the ball nut 9 are driven by the servo motor 11 through the power transmission means including the pulleys 10 and 12 and the timing belt 13. In the electric injection molding machine 1 that operates an operating body including the support base 6 and the like and applies a force to the injection screw 5 (pressure receiving body) by the operating bodies 8, 9, 6, a force ( When controlling the pressure) by controlling the output torque (current command) of the servo motor 11, the electric injection molding machine 1 is controlled by a two-inertia system comprising a drive unit 35, a power transmission unit 36 and a driven unit 37. It is constructed as a model 38B (38), and the driven model is based on the current command Icmd to the drive unit 35 and the rotation information θm from the drive unit 35 with respect to the control model 38B. An observer 19A (19) for estimating the force (pressure) Pext received by the part 37 from the molten resin (injection screw 5) is constructed, and the observer 19A determines from the command current Icmd to the servo motor 11 and the rotational position of the pulse encoder 14. The force generated by the operating bodies 8, 9, 6 is estimated, and the force that the operating bodies 8, 9, 6 act on the injection screw 5 is feedback-controlled using the estimated force.

また、実施の形態に係るサーボモータを用いた圧力制御装置は、サーボモータ11によりプーリ10,12とタイミングベルト13等を含む動力伝達手段を介して、ボールねじ軸8,ボールナット9および支持台6等を含む作動体を作動させ、該作動体8,9,6によって射出スクリュー5(受圧体)に力を作用させる電動射出成形機1において、前記射出スクリュー5に作用する力(圧力)の制御を前記サーボモータ11の出力トルクを制御して行う制御装置(制御手段)15が、駆動部35と動力伝達部36と被駆動部37とから構築された前記電動射出成形機1の2慣性系制御モデル38B(38)に対して構築され、かつ前記駆動部35への電流指令Icmdと駆動部35からの回転位置θmとにもとづいて前記被駆動部37が受ける力を推定するオブザーバ19A(19)と、サーボモータ11に対する電流指令Icmdとパルスエンコーダ14の回転位置とにより前記オブザーバ19Aが推定した力を入力して、前記作動体8,9,6が射出スクリュー5に作用させる力(圧力)をフィードバック制御する射出圧力フィードバック制御部20とを備えた構成とされている。   Further, the pressure control device using the servo motor according to the embodiment includes the ball screw shaft 8, the ball nut 9, and the support base via the power transmission means including the pulleys 10 and 12 and the timing belt 13 by the servo motor 11. In the electric injection molding machine 1 in which an operating body including 6 is operated and a force is applied to the injection screw 5 (pressure receiving body) by the operating bodies 8, 9, 6, the force (pressure) applied to the injection screw 5 A control device (control means) 15 that controls the output torque of the servo motor 11 to control the two inertias of the electric injection molding machine 1 constructed by a drive unit 35, a power transmission unit 36, and a driven unit 37. The driven unit 37 is constructed based on the system control model 38B (38) and received based on the current command Icmd to the driving unit 35 and the rotational position θm from the driving unit 35. The force estimated by the observer 19A based on the observer 19A (19) for estimating the force, the current command Icmd for the servo motor 11 and the rotational position of the pulse encoder 14 is input, and the operating bodies 8, 9, 6 are injected into the injection screw. And an injection pressure feedback control unit 20 that feedback-controls the force (pressure) applied to 5.

したがって、実施の形態に係るサーボモータを用いた圧力制御方法および圧力制御装置を適用した電動射出成形機1によれば、電動射出成形機1の制御モデル38B(38)に対して適切に構築されたオブザーバ19A(19)により、サーボモータ11によりプーリ10,12とタイミングベルト13を介して作動されるボールねじ軸8,ボールナット9および支持台6等を含む作動体が射出スクリュー5から受ける力を正確に推定することができるので、その力にもとづいてサーボモータ11の射出動作を圧力フィードバック制御部20によってフィードバック制御することにより、前記作動体8,9,6が射出スクリュー5(加熱筒4内の溶融樹脂)に作用させる力(圧力)をロードセル等の力検出器を使わずに正確に制御することができる。
すなわち、射出スクリュー5による射出圧力を制御する圧力フィードバック制御システムをロードセルを使用せずに構築することができるので、圧力フィードバック制御システムの信頼性が高まり、射出圧力の制御を正確に行って成形精度を向上させることができ、成形品に不良が発生するのを確実に防止することができる。
これにより、電動射出成形機1に高価なロードセルを組み込む格別の手段が不要となるので、機械の構成を簡単にすることができると共に、サーボモータ11を用いた射出圧力の制御装置の信頼性を高めることができる。
Therefore, according to the electric injection molding machine 1 to which the pressure control method using the servo motor and the pressure control device according to the embodiment are applied, the electric injection molding machine 1 is appropriately constructed with respect to the control model 38B (38) of the electric injection molding machine 1. The force received from the injection screw 5 by the observer 19A (19) including the ball screw shaft 8, the ball nut 9, the support base 6 and the like operated by the servo motor 11 via the pulleys 10 and 12 and the timing belt 13 Can be estimated accurately, feedback control of the injection operation of the servo motor 11 based on the force is performed by the pressure feedback control unit 20, so that the operating bodies 8, 9, 6 are injected into the injection screw 5 (the heating cylinder 4). Can accurately control the force (pressure) applied to the molten resin without using a load cell or other force detector. Kill.
That is, since a pressure feedback control system for controlling the injection pressure by the injection screw 5 can be constructed without using a load cell, the reliability of the pressure feedback control system is increased, and the injection pressure is accurately controlled to achieve molding accuracy. Can be improved, and the occurrence of defects in the molded product can be reliably prevented.
This eliminates the need for special means for incorporating an expensive load cell into the electric injection molding machine 1, thereby simplifying the construction of the machine and improving the reliability of the injection pressure control device using the servo motor 11. Can be increased.

なお、前記においては、本発明に係るサーボモータを用いた圧力制御装置を、電動射出成形機1の射出機構において射出スクリューによって射出圧力を制御する場合に適用した例を示したが、本発明はこれに限らず、計量時に射出スクリューに付加する背圧の制御に適用したり、サーボモータによりボールねじ軸にボールナットを螺合してなる直線移動機構を介して可動盤を直接または間接に移動させ、可動盤と固定盤との間で金型を型締めする型締機構において金型の型締め圧力を制御する場合や、エジェクタの突き出し圧力を制御する場合にも適用することができる。さらに、電動モータにより伝動機構を介してねじ軸にナットを螺合してなる直線移動機構を作動させ、該直線移動機構に連結された加圧盤を移動させて、該加圧盤と固定盤との間でワークを加圧成形するプレス機械において、加圧盤に加える圧力(力)を制御する場合、その他の産業機械において圧力(力)の制御を行う場合にも適用することができる。   In the above description, the example in which the pressure control device using the servo motor according to the present invention is applied to the case where the injection pressure is controlled by the injection screw in the injection mechanism of the electric injection molding machine 1 has been shown. Not limited to this, it can be applied to control of the back pressure applied to the injection screw during weighing, or the movable plate can be moved directly or indirectly via a linear movement mechanism in which a ball nut is screwed onto the ball screw shaft by a servo motor. The present invention can also be applied to the case of controlling the mold clamping pressure in the mold clamping mechanism for clamping the mold between the movable platen and the fixed platen, or the case of controlling the ejecting pressure of the ejector. Furthermore, the linear movement mechanism formed by screwing the nut onto the screw shaft via the transmission mechanism by the electric motor is operated, and the pressure plate connected to the linear movement mechanism is moved, and the pressure plate and the fixed plate are moved. In a press machine that press-molds a workpiece in between, the pressure (force) applied to the pressure platen can be controlled, and the pressure (force) can be controlled in other industrial machines.

本発明の一実施の形態に係るサーボモータを用いた圧力制御装置を適用した電動射出成形機の制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of the electric injection molding machine to which the pressure control apparatus using the servomotor which concerns on one embodiment of this invention is applied. 電動射出成形機の制御モデルを示すブロック図である。It is a block diagram which shows the control model of an electric injection molding machine. 同じく制御モデルの状態変数線図である。Similarly, it is a state variable diagram of the control model. 同じく制御モデルを他の形式で示した状態変数線図である。It is the state variable diagram which similarly showed the control model in the other form. 同じく外乱オブザーバを付加した制御モデルの状態変数線図である。It is the state variable diagram of the control model which similarly added the disturbance observer. 制御モデルの作用を示すフロー図である。It is a flowchart which shows the effect | action of a control model. オブザーバの作用を示すフロー図である。It is a flowchart which shows the effect | action of an observer. 制御モデルへの圧力指令値に対する、ロードセルによる実圧力測定値とオブザーバによる圧力推定値との追従性を比較した線図である。It is the diagram which compared the followable | trackability of the actual pressure measured value by a load cell, and the estimated pressure value by an observer with respect to the pressure command value to a control model.

符号の説明Explanation of symbols

1 電動射出成形機(機械)
4 加熱筒
5 射出スクリュー(受圧体)
6 支持台
8 ボールねじ軸
9 ボールナット
10,12 プーリ
13 タイミングベルト(ベルト)
14 パルスエンコーダ(位置検出器)
15 制御装置
16 射出速度設定部
17 射出圧力設定部
18 電流検出器
19 オブザーバ
19A オブザーバのモデル
20 射出圧力フィードバック制御部
35 駆動部
36 動力伝達部
37 被駆動部
38,38A,38B 制御モデル
39 抵抗物モデル
1 Electric injection molding machine (machine)
4 Heating cylinder 5 Injection screw (pressure receiving body)
6 Support base 8 Ball screw shaft 9 Ball nut 10, 12 Pulley 13 Timing belt (belt)
14 Pulse encoder (position detector)
DESCRIPTION OF SYMBOLS 15 Control apparatus 16 Injection speed setting part 17 Injection pressure setting part 18 Current detector 19 Observer 19A Observer model 20 Injection pressure feedback control part 35 Drive part 36 Power transmission part 37 Driven part 38, 38A, 38B Control model 39 Resistor model

Claims (3)

サーボモータによりプーリ及びベルトを介して作動体を作動させ、該作動体によって受圧体に力を作用させる電動射出成形機において、前記受圧体に作用させる力の制御を、前記サーボモータの出力トルクを制御して行う圧力制御方法であって、
前記電動射出成形機を駆動部とプーリ及びベルトと被駆動部とからなる2慣性系制御モデルとして構築し、該制御モデルに対して、前記駆動部への電流指令と駆動部からの回転情報とにもとづいて前記被駆動部が受ける力を推定するオブザーバを構築し、該オブザーバが前記電動射出成形機のサーボモータへの指令電流とサーボモータからの回転位置とから前記作動体が受圧体から受ける力を推定し、この推定した力を利用して前記作動体が受圧体に作用させる力をフィードバック制御することを特徴とするサーボモータを用いた圧力制御方法。
In an electric injection molding machine in which an operating body is operated by a servo motor via a pulley and a belt and a force is applied to the pressure receiving body by the operating body, the force applied to the pressure receiving body is controlled by controlling the output torque of the servo motor. A pressure control method performed by controlling,
The electric injection molding machine is constructed as a two-inertia control model including a drive unit, a pulley, a belt, and a driven unit, and with respect to the control model, a current command to the drive unit and rotation information from the drive unit An observer that estimates the force received by the driven part is constructed based on the command current received from the pressure receiver by the command current to the servo motor of the electric injection molding machine and the rotational position from the servo motor. A pressure control method using a servo motor, wherein a force is estimated, and the force that the operating body acts on the pressure receiving body is feedback-controlled using the estimated force.
サーボモータによりプーリ及びベルトを介して作動体を作動させ、該作動体によって受圧体に力を作用させる電動射出成形機において、前記受圧体に作用させる力の制御を、制御手段により前記サーボモータの出力トルクを制御して行う圧力制御装置であって、
前記制御手段は、駆動部とプーリ及びベルトと被駆動部とから構築された前記電動射出成形機の2慣性系制御モデルに対して構築され、かつ前記駆動部への電流指令と駆動部からの回転情報とにもとづいて前記被駆動部が受ける力を推定するオブザーバと、前記サーボモータに対する電流指令とサーボモータの回転位置とにより前記オブザーバが推定した力を入力して、前記作動体が受圧体に作用させる力をフィードバック制御するフィードバック制御部とを備えていることを特徴とするサーボモータを用いた圧力制御装置。
In an electric injection molding machine in which a working body is actuated by a servo motor via a pulley and a belt , and a force is applied to the pressure receiving body by the working body, control of the force acting on the pressure receiving body is controlled by a control means. A pressure control device for controlling output torque,
The control means is constructed for a two-inertia control model of the electric injection molding machine constructed from a drive unit, a pulley, a belt , and a driven unit, and a current command to the drive unit from the drive unit An observer that estimates a force received by the driven part based on rotation information, and a force estimated by the observer based on a current command to the servomotor and a rotation position of the servomotor, and the operating body is a pressure receiver A pressure control device using a servomotor, comprising: a feedback control unit that feedback-controls the force acting on the servomotor.
前記電動射出成形機は、サーボモータによりプーリ及びベルトを介してボールねじ軸またはボールナットを回転させ、これらに螺合するボールナットまたはボールねじ軸を介して射出機構の射出スクリューを作動させて、型締機構によって型締めされた金型に溶融樹脂を圧力を制御しながら射出して成形を行うようにしたことを特徴とする請求項2に記載のサーボモータを用いた圧力制御装置。 The electric injection molding machine rotates a ball screw shaft or a ball nut via a pulley and a belt by a servo motor, and operates an injection screw of an injection mechanism via a ball nut or a ball screw shaft that is screwed to these, pressure control apparatus using a servo motor as set forth molten resin into the mold clamping by the mold by mold clamping mechanism according to claim 2, characterized in that to perform the molding by injection while controlling the pressure.
JP2004336138A 2004-11-19 2004-11-19 Pressure control device using servo motor Active JP4022646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004336138A JP4022646B2 (en) 2004-11-19 2004-11-19 Pressure control device using servo motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004336138A JP4022646B2 (en) 2004-11-19 2004-11-19 Pressure control device using servo motor

Publications (2)

Publication Number Publication Date
JP2006142659A JP2006142659A (en) 2006-06-08
JP4022646B2 true JP4022646B2 (en) 2007-12-19

Family

ID=36622888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004336138A Active JP4022646B2 (en) 2004-11-19 2004-11-19 Pressure control device using servo motor

Country Status (1)

Country Link
JP (1) JP4022646B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013182604A (en) * 2012-03-05 2013-09-12 Niigata Machine Techno Co Ltd Pressure controller and pressure control method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929026B2 (en) * 2007-04-17 2012-05-09 株式会社日本製鋼所 Pressure control device and pressure control method for injection molding machine
JP5093750B2 (en) * 2007-07-19 2012-12-12 宇部興産機械株式会社 Control method of electric injection molding machine
WO2010134359A1 (en) 2009-05-18 2010-11-25 Akasaka Noriyuki Pressure control device and pressure control method for electric injection molding machine
JP4678894B1 (en) * 2010-02-09 2011-04-27 則之 赤坂 Plasticization control device and plasticization control method for electric injection molding machine
JP5590298B2 (en) * 2010-03-05 2014-09-17 株式会社ニイガタマシンテクノ Pressure control device and pressure control method
AT510879B1 (en) * 2010-12-27 2012-10-15 Engel Austria Gmbh CONTROL AND / OR CONTROL DEVICE FOR CONTROLLING AND / OR REGULATING AN INJECTION PUNCH OF AN INJECTION MOLDING MACHINE
JP6603260B2 (en) * 2017-04-27 2019-11-06 ファナック株式会社 Numerical controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013182604A (en) * 2012-03-05 2013-09-12 Niigata Machine Techno Co Ltd Pressure controller and pressure control method

Also Published As

Publication number Publication date
JP2006142659A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
CA1257757A (en) Injection control method of injection molding machine and its apparatus
EP1584445B1 (en) Mold clamping force adjustment method of toggle type injection molding machine
JP4459467B2 (en) Electric injection molding machine and injection speed / injection pressure control method of electric injection molding machine
KR100648072B1 (en) Method of controlling injection molding machine
JP4589460B1 (en) Pressure control device and pressure control method for electric injection molding machine
JP4627250B2 (en) Control method of injection molding machine
US6325954B1 (en) Method of controlling electric injection unit of injection molding machine
MXPA05005291A (en) Ring rolling simulation press.
JP4022646B2 (en) Pressure control device using servo motor
US20060145379A1 (en) Method and device for pressure control of electric injection molding machine
US5380181A (en) Control device for an electric injection molding machine
EP1640136B1 (en) Molding device and control method thereof
JP4929026B2 (en) Pressure control device and pressure control method for injection molding machine
JP2000006217A (en) Starting point adjusting method of load cell in motorized injection molder
JP5590298B2 (en) Pressure control device and pressure control method
JP5093750B2 (en) Control method of electric injection molding machine
JP4540597B2 (en) Injection control method and apparatus for injection molding machine
US5336073A (en) Injection pressure limiting device for injection molding machine
JP6004315B2 (en) Pressure control device and pressure control method
JP3168289B2 (en) Pressure control method and pressure control device for injection molding machine
JP3169567B2 (en) Pressure control method and pressure control device for injection molding machine
KR102181653B1 (en) Injection molding machine
JP4528450B2 (en) Mold clamping control method and molding machine
JP2634246B2 (en) Injection process controller for electric injection molding machine
JP3052187B2 (en) Back pressure control method of electric injection molding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070215

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070911

R150 Certificate of patent or registration of utility model

Ref document number: 4022646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250