JP4020666B2 - Shaft coupling - Google Patents

Shaft coupling Download PDF

Info

Publication number
JP4020666B2
JP4020666B2 JP2002067852A JP2002067852A JP4020666B2 JP 4020666 B2 JP4020666 B2 JP 4020666B2 JP 2002067852 A JP2002067852 A JP 2002067852A JP 2002067852 A JP2002067852 A JP 2002067852A JP 4020666 B2 JP4020666 B2 JP 4020666B2
Authority
JP
Japan
Prior art keywords
resin plate
rubber
shaft
shaft coupling
plate member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002067852A
Other languages
Japanese (ja)
Other versions
JP2003269483A (en
Inventor
稔 片山
勝敏 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Kako Co Ltd
Original Assignee
Kurashiki Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Kako Co Ltd filed Critical Kurashiki Kako Co Ltd
Priority to JP2002067852A priority Critical patent/JP4020666B2/en
Publication of JP2003269483A publication Critical patent/JP2003269483A/en
Application granted granted Critical
Publication of JP4020666B2 publication Critical patent/JP4020666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、駆動軸と被動軸の間に設けられて駆動軸の回転を被動軸に伝達する軸継手に関する。
【0002】
【従来の技術】
従来より、特開平7−71471号公報に開示されているように、駆動軸と被動軸の間に設けられて回転力を伝達する軸継手が知られている。この種の軸継手は、例えば、自動車のステアリングシャフトやプロペラシャフトに設けられる。ここでは、上記公報に開示されている軸継手について、図25を参照しながら説明する。
【0003】
この軸継手は、一つの樹脂盤体aと、四つのゴム弾性体bと、四つの筒体cとを備えており、全体としてやや厚肉の円板状に形成されている。合成樹脂製の樹脂盤体aは、円板の四箇所を切り欠いたような十字状に形成されている。ゴム製の各ゴム弾性体bは、樹脂盤体aの切欠き部分に対応した形状に形成され、この切欠き部分にはめ込まれた状態で樹脂盤体aと加硫接着されている。金属製の筒体cは、短いパイプ状に形成され、各ゴム弾性体bに一つずつ設けられている。各筒体cは、ゴム弾性体bをその厚さ方向へ貫通し、ゴム弾性体bと加硫接着されている。また、四つの筒体cは、一つのピッチ円上に90°間隔で配置されている。
【0004】
この軸継手では、180°離れて位置する二つの筒体cに駆動軸が係合され、残りの二つの筒体cに被動軸が係合される。そして、この軸継手は、駆動軸の回転力を被動軸へと伝達する。また、この軸継手は、駆動軸や被動軸の軸方向と捻り方向の振動等を緩和できるように構成されている。例えば、軸方向の振動が軸継手に加えられると、図25における紙面の手前側又は奥側へ筒体cが移動し、その際にゴム弾性体bが変形することで振動が緩和される。また、捻り方向の振動が軸継手に加えられると、図25における円周方向へ筒体cが移動し、その際にゴム弾性体bが変形することで振動が緩和される。
【0005】
【発明が解決しようとする課題】
上述のように、上記軸継手においては、それぞれ材料の異なる樹脂盤体aとゴム弾性体bと筒体cとが互いに加硫接着されている。一方、この軸継手を廃棄する際には、各部材のリサイクルを行うために、材料ごとに部材を分別するのが望ましい。ところが、上記軸継手では、材料の異なる部材が互いに加硫接着されている。このため、上記軸継手の廃棄時に部材を材料ごとに分別する作業に多大な時間を要し、リサイクル性に劣るという問題があった。
【0006】
また、軸継手の製造時においても、各部材を加硫接着する工程が必要となる。このため、軸継手の製造工程の複雑化や生産効率の低下を招き、ひいては製造コストの増大を招くと行った問題もあった。
【0007】
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、異なる材料の部材で構成された軸継手のリサイクル性を向上させ、更にはその製造工程を簡素化することにある。
【0008】
【課題を解決するための手段】
本発明が講じた第1の解決手段は、駆動軸の軸端部及び被動軸の軸端部に複数ずつ設けられた棒状突起部に連結されて駆動軸の回転を被動軸へ伝達する軸継手を対象としている。そして、平板状に形成された平板部と該平板部の前面側に一体形成された複数の突出部とをそれぞれが有すると共に、それぞれの突出部が互いに当接するように向かい合って配置される一対のゴム状弾性部材と、互いに向かい合うゴム状弾性部材の平板部によって挟み込まれる樹脂板部材と、互いに当接し合う2つの上記突出部を貫通するように設けられて駆動軸又は被動軸の棒状突起部が挿通される管状部材とを備え、上記ゴム状弾性部材と樹脂板部材と管状部材とが互いに非接着状態で組み合わされるものである。
【0009】
本発明が講じた第2の解決手段は、上記第1の解決手段において、樹脂板部材には、該樹脂板部材の周側面から中心に向かって延びる切欠き部が複数形成される一方、向かい合う2つの突出部は、上記切欠き部にはめ込まれた状態で互いに当接しているものである。
【0010】
本発明が講じた第3の解決手段は、上記第1の解決手段において、樹脂板部材には、該樹脂板部材を板厚方向に貫通する貫通孔が複数形成される一方、向かい合う2つの突出部は、上記貫通孔に挿入された状態で互いに当接しているものである。
【0011】
本発明が講じた第4の解決手段は、上記第2の解決手段において、樹脂板部材は、その両側面における切欠き部の周囲が座ぐり状に一段低く形成されるものである。
【0012】
本発明が講じた第5の解決手段は、上記第3の解決手段において、樹脂板部材は、その両側面における貫通孔の周囲が座ぐり状に一段低く形成されるものである。
【0013】
本発明が講じた第6の解決手段は、上記第1,第2又は第3の解決手段において、ゴム状弾性部材には、平板部における突出部の周囲と樹脂板部材との間に隙間が形成されるように該平板部の前面側へ盛り上がって樹脂板部材に当接する膨出部が形成されるものである。
【0014】
本発明が講じた第7の解決手段は、上記第1,第2又は第3の解決手段において、複数設けられた管状部材が一つのピッチ円上に配置される一方、樹脂板部材とゴム状弾性部材の相対的な位置は、少なくとも上記ピッチ円の周方向において突出部と樹脂板部材の間に隙間が形成されるように定められるものである。
【0015】
本発明が講じた第8の解決手段は、上記第1,第2又は第3の解決手段において、複数設けられた管状部材が一つのピッチ円上に配置される一方、樹脂板部材とゴム状弾性部材の相対的な位置は、少なくとも上記ピッチ円の半径方向において突出部と樹脂板部材の間に隙間が形成されるように定められるものである。
【0016】
本発明が講じた第9の解決手段は、上記第3の解決手段において、複数設けられた管状部材が一つのピッチ円上に配置され、ゴム状弾性部材の突出部は、樹脂板部材の貫通孔に挿入された状態で該突起部の周側面全体が樹脂板部材と密着するような形状に形成される一方、上記突起部には、上記ピッチ円の半径方向における管状部材の両側に空洞部が一つずつ形成されるものである。
【0017】
−作用−
上記第1の解決手段では、ゴム状弾性部材、樹脂板部材、及び管状部材を互いに非接着状態で組み合わせることによって軸継手が構成される。この軸継手では、樹脂板部材を挟んで2つのゴム状弾性部材が設けられる。互いに向かい合うゴム状弾性部材は、それぞれの平板部が樹脂板部材を挟み込み、それぞれの突出部が互いに当接する。互いに当接して対となった2つの突出部には、1つの管状部材が取り付けられる。つまり、軸継手には、一つのゴム状弾性部材に形成された突出部と同数の管状部材が設けられる。
【0018】
本解決手段の軸継手では、複数設けられた管状部材のうちの半数に駆動軸の棒状突起部が挿通され、残りの半数に被動軸の棒状突起部が挿通される。つまり、この軸継手は、駆動軸の軸端部と被動軸の軸端部とによって挟み込まれた状態となる。従って、樹脂板部材とこれを挟み込むゴム状弾性部材とが非接着状態となる構成であっても、少なくとも軸継手が駆動軸や被動軸に連結された状態において軸継手の形態は保持される。
【0019】
上記第2の解決手段では、樹脂板部材に複数の切欠き部が形成される。各切欠き部は、樹脂板部材の周側面に開口している。樹脂板部材の切欠き部には、ゴム状弾性部材の突出部がはめ込まれる。互いに向かい合って対となる2つの突出部は、1つの切欠き部にはめ込まれた状態で互いに当接する。
【0020】
上記第3の解決手段では、樹脂板部材に複数の貫通孔が形成される。各貫通孔は、樹脂板部材をその板厚方向へ貫通している。樹脂板部材の貫通孔には、ゴム状弾性部材の突出部が挿入される。互いに向かい合って対となる2つの突出部は、1つの貫通孔に挿入された状態で互いに当接する。
【0021】
上記第4の解決手段では、樹脂板部材における切欠き部の周囲が、座ぐり状に一段低く形成される。駆動軸又は被動軸がそれらの軸方向へ変位すると、それに伴って軸継手のゴム状弾性部材が変形する。その際、切欠き部の周囲に形成された一段低い部分の深さに対し、ゴム状弾性部材の変形量がその深さ未満であれば、ゴム状弾性部材の平板部は、樹脂板部材における切欠き部の周縁と接触しない。一方、ゴム状弾性部材の変形量がその深さ以上であれば、ゴム状弾性部材の平板部は、樹脂板部材における切欠き部の周縁と接触する。
【0022】
上記第5の解決手段では、樹脂板部材における貫通孔の周囲が、座ぐり状に一段低く形成される。駆動軸又は被動軸がそれらの軸方向へ変位すると、それに伴って軸継手のゴム状弾性部材が変形する。その際、貫通孔の周囲に形成された一段低い部分の深さに対し、ゴム状弾性部材の変形量がその深さ未満であれば、ゴム状弾性部材の平板部は、樹脂板部材における貫通孔の周縁と接触しない。一方、ゴム状弾性部材の変形量がその深さ以上であれば、ゴム状弾性部材の平板部は、樹脂板部材における貫通孔の周縁と接触する。
【0023】
上記第6の解決手段では、ゴム状弾性部材の平板部に膨出部が形成される。この膨出部は、突出部と同様に平板部の前面側に形成される。本解決手段の軸継手では、この膨出部が樹脂板部材に当接することで、平板部における突出部の周囲と樹脂板部材との間には隙間が形成される。
【0024】
ここで、駆動軸又は被動軸がそれらの軸方向へ変位すると、それに伴って軸継手のゴム状弾性部材が変形する。その際、平板部における突出部の周囲と樹脂板部材との間隔に対し、ゴム状弾性部材の変形量がその間隔未満であれば、平板部における突出部の周囲は、樹脂板部材と接触しない。一方、ゴム状弾性部材の変形量がその間隔以上であれば、平板部における突出部の周囲は、樹脂板部材と接触する。
【0025】
上記第7の解決手段では、複数の管状部材が同一ピッチ円上に配置される。突出部と樹脂板部材の間には、少なくとも管状部材のピッチ円の周方向に隙間が形成される。樹脂板部材とゴム状弾性部材の相対的な位置は、このような隙間が形成されるように定められる。
【0026】
ここで、駆動軸からの回転力が軸継手に伝わると、その回転力によって軸継手のゴム状弾性部材が変形する。その際、ゴム状弾性部材の突出部と樹脂板部材との間隔に対し、ゴム状弾性部材の変形量がその間隔未満であれば、ゴム状弾性部材の突出部は樹脂板部材と接触しない。一方、ゴム状弾性部材の変形量がその間隔以上であれば、ゴム状弾性部材の突出部は樹脂板部材と接触する。
【0027】
上記第8の解決手段では、複数の管状部材が同一ピッチ円上に配置される。突出部と樹脂板部材の間には、少なくとも管状部材のピッチ円の半径方向に隙間が形成される。樹脂板部材とゴム状弾性部材の相対的な位置は、このような隙間が形成されるように定められる。
【0028】
上記第9の解決手段では、複数の管状部材が同一ピッチ円上に配置される。ゴム状弾性部材の突出部は、樹脂板部材の貫通孔と同じような形状に形成され、その周側面全体が樹脂板部材と密着する。また、各突出部には、管状部材のピッチ円の半径方向における管状部材の両側に空洞部が形成される。従って、突出部を貫通する管状部材のピッチ円の半径方向へ多少傾いても、この傾きは空洞部が変形することによって吸収される。
【0029】
【発明の効果】
本発明では、軸継手の構造を樹脂板部材が一対のゴム状弾性部材で挟み込まれる構造とし、その上でゴム状弾性部材、樹脂板部材、及び管状部材を互いに非接着状態としている。このため、ゴム状弾性部材と樹脂板部材と管状部材とを互いに接着することなく、少なくとも駆動軸や被動軸の軸端部に軸継手が連結された状態でこれら3種類の部材を互いに組み合わされた状態に保持できる。
【0030】
このように、本発明によれば、軸継手を構成する各部材を互いに接着することなく、一つの軸継手を形成することができる。このため、本発明に係る軸継手の廃棄時には、この軸継手を分解する作業を短時間で容易に行うことができる。また、軸継手の各部材が互いに接着されている場合に比べ、その部材を材料ごとに確実に分別できる。従って、本発明によれば、軸継手を廃棄する際の分別作業を短時間で確実に行うことが可能となり、軸継手のリサイクル性を向上させることができる。
【0031】
また、上述のように、本発明によれば、複数の部材を互いに接着せずに一つの軸継手を構成できる。このため、本発明に係る軸継手の製造時には、部材同士を接着する工程が全く不要となる。従って、本発明によれば、軸継手の製造工程を簡略化してその生産効率を高めることができ、更にはその製造コストの低減を図ることができる。
【0032】
ここで、駆動軸の軸心と被動軸の軸心は完全に一致していないのが普通であり、一方の軸心に対して他方の軸心が傾いている場合も多い。このような場合には、駆動軸や被動軸の棒状突起部が挿通された管状部材が傾けられる。そして、突出部の周側面全体が樹脂板部材と密着していると、傾いた管状部材と樹脂板部材によって突出部が押し潰され、ゴム状弾性部材が変形する際の特性が変化してしまう。
【0033】
これに対し、上記第2の解決手段では、樹脂板部材の切欠き部にゴム状弾性部材の突出部をはめ込んでいる。このため、切欠き部の開口側へ管状部材が傾いた状態でも、管状部材と樹脂板部材に挟まれて突出部が押し潰されることはない。また、上記第8の解決手段では、樹脂板部材とゴム状弾性部材を組み合わせた状態において、突出部と樹脂板部材の間に隙間が形成される。このため、この隙間の方へ管状部材が傾いた状態でも、管状部材と樹脂板部材に挟まれて突出部が押し潰されることはない。また、上記第9の解決手段では、ゴム状弾性部材の突出部に空洞部を形成している。このため、空洞部の方へ管状部材が傾いた状態でも、管状部材と樹脂板部材に挟まれて突出部が押し潰されることはない。従って、これら上記第2,第8,第9の解決手段によれば、傾いた筒状部材と樹脂板部材に挟まれて突出部が押し潰されるのを回避でき、ゴム状弾性部材が変形する際の特性を一定に保つことができる。
【0034】
上記第4,第5,第6の解決手段によれば、駆動軸や被動軸の軸方向へゴム状弾性部材が変形する際の特性を、二段特性とすることができる。具体的に、第4の解決手段によれば、ゴム状弾性部材の平板部が樹脂板部材における切欠き部の周縁に接している状態と接していない状態とで、ゴム状弾性部材のバネ定数を変化させることができる。また、第5の解決手段によれば、ゴム状弾性部材の平板部が樹脂板部材における貫通孔の周縁に接している状態と接していない状態とで、ゴム状弾性部材のバネ定数を変化させることができる。また、第6の解決手段によれば、平板部における突出部の周囲が樹脂板部材に接している状態と接していない状態とで、ゴム状弾性部材のバネ定数を変化させることができる。
【0035】
このように、これら第4,第5,第6の解決手段によれば、駆動軸や被動軸の軸方向へのゴム状弾性部材の変形量に応じて、ゴム状弾性部材のバネ定数を変化させることができる。従って、軸継手の設計自由度を高めることができ、軸継手の特性をその用途に応じて的確に設定することが可能となる。
【0036】
上記第7の解決手段によれば、駆動軸や被動軸の捻り方向へゴム状弾性部材が変形する際の特性を、二段特性とすることができる。具体的には、ゴム状弾性部材の突出部が樹脂板部材に接している状態と接していない状態とで、ゴム状弾性部材のバネ定数を変化させることができる。このように、本解決手段によれば、駆動軸や被動軸の捻り方向へのゴム状弾性部材の変形量に応じて、ゴム状弾性部材のバネ定数を変化させることができる。従って、軸継手の設計自由度を高めることができ、軸継手の特性をその用途に応じて的確に設定することが可能となる。
【0037】
【発明の実施の形態1】
以下、本発明の実施形態を図面に基づいて詳細に説明する。本実施形態は、自動車のステアリング装置1であって、本発明に係る軸継手6を備えるものである。
【0038】
図1に示すように、上記ステアリング装置1は、メインシャフト2と、連結シャフト3と、ステアリングギアボックス4とを備えている。メインシャフト2は、その上端にステアリングホイール5が取り付けられている。メインシャフト2の下端は、自在継手を介して連結シャフト3の上端に連結されている。連結シャフト3の下端は、自在継手を介してステアリングギアボックス4の入力軸に連結されている。ステアリングギアボックス4の出力軸は、図示しないが、自動車の左右の前輪に連結されている。
【0039】
連結シャフト3は、メインシャフト2側の第一シャフト11と、ステアリングギアボックス4側の第二シャフト14とを備えている。そして、上記軸継手6は、第一シャフト11の下端と第二シャフト14の上端との間に設けられている。
【0040】
図2に示すように、第一シャフト11の下端と第二シャフト14の上端には、端板12,15が一つずつ設けられている。端板12,15は、まゆ状の中央がくびれた形状に形成され、その中央部が第一シャフト11又は第二シャフト14の軸端に固定されている。第一シャフト11の端板12には、その端部に連結用ボルト13が一本ずつ下向きに突設されている。第二シャフト14の端板15には、その端部に連結用ボルト16が一本ずつ上向きに突設されている。つまり、第一シャフト11の端板12と第二シャフト14の端板15には、それぞれ二本ずつの連結用ボルト13,16が棒状突起部として設けられている。
【0041】
同じく図2に示すように、上記軸継手6は、二つのゴム部材20と、一つの樹脂板部材30と、四つのカラー40とを備えている。これらの部材は、互いに接着されることなく組み合わされて一つの軸継手6を構成している。
【0042】
図3に示すように、ゴム部材20は、一つの平板部21と四つの突出部22とを備えている。このゴム部材20は、天然ゴム製や合成ゴム製の部材であって、ゴム状弾性部材を構成している。
【0043】
平板部21は、やや薄肉の円板状に形成されている。突出部22は、やや短い円柱状に形成され、平板部21の前面側(図3における上面側)に平板部21と一体成形されている。四つの突出部22は、平板部21と同心のピッチ円上に90°間隔で配置されている。また、円柱状の突出部22には、これと同軸に挿入孔23が形成されている。この挿入孔23は、突出部22だけでなく平板部21をも貫通している。
【0044】
図4に示すように、樹脂板部材30は、ナイロン樹脂等の合成樹脂からなる部材であって、やや厚肉の円板状に形成されている。この樹脂板部材30は、その直径がゴム部材20の平板部21の直径と等しく、その厚みが突出部22の高さの二倍となっている。
【0045】
樹脂板部材30には、これを貫通する円形の貫通孔31が四つ形成されている。つまり、樹脂板部材30には、一つのゴム部材20に形成された突出部22と同数の貫通孔31が形成されている。この四つの貫通孔31は、樹脂板部材30と同心のピッチ円上に90°間隔で形成されている。尚、樹脂板部材30における貫通孔31のピッチ円直径は、ゴム部材20における突出部22のピッチ円直径と同じである。また、貫通孔31の直径は、突出部22の外径とほぼ同じになっている。
【0046】
樹脂板部材30の両側面(図4における上下面)において、各貫通孔31の周囲には座ぐり部32が形成されている。即ち、樹脂板部材30の両側面では、各貫通孔31の周囲が一定の幅に亘って座ぐり状に一段低くなっており、この一段低くなった部分が座ぐり部32を構成している。
【0047】
カラー40は、合成樹脂製あるいは金属製の部材であって、管状に形成されている。このカラー40の高さは、突出部22の高さと平板部21の厚みの和を二倍した値となっている。また、カラー40の直径は、ゴム部材20における貫通孔31の直径とほぼ同じになっている。
【0048】
図5,図6,図7に示すように、二つのゴム部材20は、一つの樹脂板部材30を挟んで向かい合うように配置されている。互いに向かい合ったゴム部材20の平板部21は、その間に設けられた樹脂板部材30を挟み込んでいる。
【0049】
各ゴム部材20の突出部22は、樹脂板部材30の貫通孔31に挿入されている。その際、一つの貫通孔31には、一方の側から第一のゴム部材20の突出部22が挿入され、その反対側から第二のゴム部材20の突出部22が挿入される。そして、一つの貫通孔31に挿入された二つの突出部22は、それぞれの端面において互いに当接している。また、貫通孔31に挿入された状態で、各突出部22はその全周に亘って樹脂板部材30と接触している(図6,図7参照)。
【0050】
カラー40は、互いに当接する二つの突出部22の挿入孔23に挿入されている。つまり、このカラー40は、一つの貫通孔31に挿入された二つの突出部22を貫通して設けられている。また、各カラー40は、挿入孔23に挿入された状態で、その周側面がゴム部材20と密着している。そして、カラー40とゴム部材20の間の摩擦力により、二つのゴム部材20が保持されて軸継手6の形態が保たれる。
【0051】
軸継手6において、四つのカラー40は、一つのピッチ円上に90°間隔で配置されている(図5参照)。これら四つのカラー40のうち、180°離れて位置する二つのカラー40には第一シャフト11の連結用ボルト13が挿通され、残りの二つのカラー40には第二シャフト14の連結用ボルト16が挿通される(図2参照)。
【0052】
例えば、運転者がステアリングホイール5を回して操舵を行う場合には、第一シャフト11が駆動軸となり、第二シャフト14が被動軸となる。この場合、第一シャフト11の回転力は、軸継手6を介して第二シャフト14へ伝達される。
【0053】
ここで、連結シャフト3に振動や衝撃が加わると、第一シャフト11や第二シャフト14がそれらの軸方向へ変位する場合がある。第一シャフト11や第二シャフト14が軸方向へ変位すると、それに伴って軸継手6のカラー40がその軸方向(図6,図7における上下方向)へ移動し、ゴム部材20が変形する。その際、カラー40の変位量が座ぐり部32の深さdよりも小さければ、ゴム部材20の平板部21は樹脂板部材30の座ぐり部32に接触しない。一方、カラー40の変位量が座ぐり部32の深さd以上になれば、ゴム部材20の平板部21は樹脂板部材30の座ぐり部32に接触する。
【0054】
ゴム部材20の平板部21が樹脂板部材30の座ぐり部32に接触している状態と両者が接触していない状態とでは、ゴム部材20のバネ定数が変化する。即ち、同じだけ荷重が増えた場合でも、平板部21が座ぐり部32に接している状態におけるカラー40の変位量の増分は、平板部21が座ぐり部32に接していない状態におけるカラー40の変位量の増分よりも小さくなる。このように、ゴム部材20のバネ定数は、カラー40の変位量によって二段階に変化する。
【0055】
例えば、振幅の小さい軸方向の振動がカラー40に伝わった場合には、ゴム部材20のバネ定数が小さい状態となり、この振動がゴム部材20の変形によって緩和される。一方、大きな荷重がカラー40に伝わった場合には、ゴム部材20のバネ定数が大きい状態となり、この大荷重をゴム部材20が確実に支える。
【0056】
−実施形態1の効果−
本実施形態では、軸継手6の構造を樹脂板部材30が一対のゴム部材20で挟み込まれる構造とし、その上でゴム部材20、樹脂板部材30、及びカラー40を互いに非接着状態としている。このため、ゴム製のゴム部材20と、合成樹脂製の樹脂板部材30と、合成樹脂製又は金属製のカラー40とを、互いに接着することなく組み合わされた状態に保持できる。
【0057】
このように、本実施形態によれば、軸継手6を構成する各部材を互いに接着することなく、一つの軸継手6を形成することができる。このため、本実施形態の軸継手6を廃棄する際には、この軸継手6を分解する作業を短時間で容易に行うことができる。また、軸継手6の各部材が互いに接着されている場合に比べ、その部材を材料ごとに確実に分別できる。従って、本実施形態によれば、軸継手6を廃棄する際の分別作業を短時間で確実に行うことが可能となり、軸継手6のリサイクル性を向上させることができる。
【0058】
また、上述のように、本実施形態によれば、複数の部材を互いに接着せずに一つの軸継手6を構成できる。このため、本実施形態の軸継手6を製造する際には、部材同士を接着する工程が全く不要となる。従って、本実施形態によれば、軸継手6の製造工程を簡略化してその生産効率を高めることができ、更にはその製造コストの低減を図ることができる。
【0059】
また、本実施形態によれば、カラー40がその軸方向へ変位する際のゴム部材20のバネ定数を、カラー40の変位量に応じて二段階に変化させることができる。このため、軸継手6を設計する際の設計自由度を高めることができ、軸継手6の特性をその用途に応じて的確に設定することが可能となる。
【0060】
ここで、図25に示す従来の軸継手において、同図に現れるゴム弾性体bの最も幅の狭い部分は、その幅が長さL'となる。そして、筒体cがその軸方向(同図における紙面に垂直方向)へ変位すると、この狭い幅L'の部分が筒体cの変位量と同じだけのせん断変形を受けることになる。一方、図6に示す本実施形態の軸継手6は、樹脂板部材30の両側面をゴム部材20の平板部21で覆ったような構造を採り、更には樹脂板部材30とゴム部材20を非接着状態としている。従って、カラー40がその軸方向(同図における上下方向)へ変位した場合には、ゴム部材20のうち同図の長さLに亘る部分が変形する。そして、軸継手の直径が同程度と仮定すると、本実施形態の軸継手6における長さLは、従来の軸継手における長さL'に比べて大幅に長くなる。
【0061】
このように、本実施形態によれば、カラー40の軸方向変位によって変形を受けるゴム部材20の長さLを、従来の軸継手においてこれに対応する長さL'よりも長くすることができる。従って、カラー40が軸方向に変位した場合におけるゴム部材20の歪みを小さくすることができ、ゴム部材20の耐久性、ひいては軸継手6の耐久性を向上させることができる。
【0062】
−実施形態1の変形例−
本実施形態では、カラー40がその軸方向へ変位した場合におけるゴム部材20のバネ定数を二段階に変化させるため、樹脂板部材30に座ぐり部32を形成しているが、これに代えて次のような構成としてもよい。
【0063】
図8に示すように、本変形例のゴム部材20には、平板部21の前面側(同図における上面側)へ盛り上がるように十字状の膨出部24が形成されている。この膨出部24は、平板部21の前面における突出部22の周囲以外の部分に形成されている。
【0064】
一方、図9に示すように、本変形例の樹脂板部材30には、座ぐり部32が形成されておらず、四つの貫通孔31だけが形成されている。そして、この樹脂板部材30には各平板部21の膨出部24が当接し、平板部21における突出部22の周囲と樹脂板部材30の間には隙間が形成される。
【0065】
第一シャフト11や第二シャフト14が軸方向へ変位すると、それに伴って軸継手6のカラー40がその軸方向(図9における上下方向)へ移動し、ゴム部材20が変形する。その際、カラー40の変位量が膨出部24の高さhよりも小さければ、平板部21における突出部22の周囲は樹脂板部材30に接触しない。一方、カラー40の変位量が膨出部24の高さh以上になれば、平板部21における突出部22の周囲は樹脂板部材30に接触する。
【0066】
平板部21における突出部22の周囲が樹脂板部材30に接触している状態と両者が接触していない状態とでは、ゴム部材20のバネ定数が変化する。即ち、同じだけ荷重が増えた場合でも、両者が接している状態におけるカラー40の変位量の増分は、両者が接していない状態におけるカラー40の変位量の増分よりも小さくなる。このように、ゴム部材20のバネ定数は、カラー40の変位量によって二段階に変化する。
【0067】
【発明の実施の形態2】
本発明の実施形態2は、上記実施形態1の軸継手6において、ゴム部材20及び樹脂板部材30の構成を変更したものである。ここでは、本実施形態の軸継手6について、上記実施形態1と異なる点を説明する。
【0068】
図10,図11に示すように、本実施形態のゴム部材20では、突出部22の形状が上記実施形態1のものと相違している。本実施形態の突出部22は、平板部21の外周から中心に向かって延びると共に、内側の端部が半円弧状となるような形状に形成されている。この突出部22において、平板部21の外周側に位置する側面は、平板部21の外周面に連続している。
【0069】
図12に示すように、本実施形態の樹脂板部材30には、上記実施形態の貫通孔31に代えて、切欠き部33が形成されている。つまり、この樹脂板部材30には、四つの切欠き部33が形成されている。尚、樹脂板部材30の直径や厚みは、上記実施形態1と同じである。
【0070】
具体的に、この切欠き部33は、円板形状の一部をその外周側から中心に向かって切除したような形状に形成されている。それぞれの切欠き部33は、樹脂板部材30の半径方向へ延びると共に、その中心側端部が半円弧状となっている。つまり、各切欠き部33は、ゴム部材20の突出部22に対応した形状となっている。そして、四つの切欠き部33は、90°間隔で配置されている。
【0071】
樹脂板部材30の両側面(図12における上下面)において、各切欠き部33の周囲には座ぐり部32が形成されている。即ち、樹脂板部材30の両側面では、各切欠き部33の周囲が一定の幅に亘って座ぐり状に一段低くなっており、この一段低くなった部分が座ぐり部32を構成している。
【0072】
図10,図13,図14に示すように、二つのゴム部材20は、一つの樹脂板部材30を挟んで向かい合うように配置されている。互いに向かい合ったゴム部材20の平板部21は、その間に設けられた樹脂板部材30を挟み込んでいる。これらの点は、上記実施形態1と同様である。
【0073】
各ゴム部材20の突出部22は、樹脂板部材30の切欠き部33にはめ込まれている。その際、一つの切欠き部33には、一方の側から第一のゴム部材20の突出部22がはめ込まれ、その反対側から第二のゴム部材20の突出部22がはめ込まれる。そして、一つの切欠き部33に挿入された二つの突出部22は、それぞれの端面において互いに当接している。また、切欠き部33にはめ込まれた状態で、各突出部22は、円板部の外周側に位置する側面以外の側面が樹脂板部材30と接触している(図13,図14参照)。つまり、各突出部22において、円板部の外周側に位置する側面は、樹脂板部材30の外周面と共に軸継手6の外周面を形成している。
【0074】
カラー40は、上記実施形態1と同様に、互いに当接する二つの突出部22の挿入孔23に挿入されている。つまり、このカラー40は、一つの切欠き部33にはめ込まれた二つの突出部22を貫通して設けられている。
【0075】
本実施形態の軸継手6では、上記実施形態1と同様に、四つのカラー40のうちの二つに第一シャフト11の連結用ボルト13が挿通され、残りの二つには第二シャフト14の連結用ボルト16が挿通される。そして、運転者がステアリングホイール5を回して操舵を行う場合には、第一シャフト11の回転力が軸継手6を介して第二シャフト14へ伝達される。
【0076】
ここで、第一シャフト11の軸心と第二シャフト14の軸心が完全に一致するのは希であり、一方の軸心に対して他方の軸心が傾いている場合も多い。このような場合には、第一シャフト11や第二シャフト14の連結用ボルト13,16が挿通されたカラー40が傾けられる。そして、仮に突出部22の周側面全体が樹脂板部材30と密着していると、傾いたカラー40と樹脂板部材30によってゴム製の突出部22が押し潰され、ゴム部材20が変形する際の特性が変化してしまう。つまり、ゴム部材20に作用する荷重が同じ大きさであっても、突出部22が押し潰された状態と押し潰されていない状態とでは、ゴム部材20の変形量が相違してしまう。
【0077】
一方、本実施形態の軸継手6では、樹脂板部材30に切欠き部33を形成し、この切欠き部33にゴム部材20の突出部22をはめ込んでいる。このため、突出部22を貫通するカラー40が軸継手6の外側へ多少傾いても、突出部22におけるカラー40よりも外側の部分が押し潰されることはない。従って、第一シャフト11の軸心に対して第二シャフト14の軸心が傾いた状態であっても、傾いたカラー40で突出部22が押し潰されることに起因するゴム部材20の特性変化は抑制される。
【0078】
また、本実施形態の軸継手6では、上記実施形態1と同様に、ゴム部材20のバネ定数が二段階に変化する。つまり、軸継手6のカラー40がその軸方向(図14における上下方向)へ移動してゴム部材20が変形する際には、カラー40の変位量が座ぐり部32の深さdよりも小さい場合と、カラー40の変位量が座ぐり部32の深さd以上の場合とで、ゴム部材20のバネ定数が変化する。
【0079】
−実施形態2の効果−
本実施形態2によれば、上記実施形態1において得られる効果に加え、以下のような効果が発揮される。
【0080】
つまり、本実施形態によれば、第一シャフト11の軸心と第二シャフト14の軸心が一致していない状態でも、ゴム部材20の突出部22が押し潰されることに起因するゴム部材20の特性変化を抑制することができる。この結果、軸継手6を使用する際の制約条件を緩和でき、軸継手6の使い勝手を向上させることができる。
【0081】
【発明の実施の形態3】
本発明の実施形態3は、上記実施形態1の軸継手6において、樹脂板部材30の構成を変更したものである。ここでは、本実施形態の軸継手6について、上記実施形態1と異なる点を説明する。
【0082】
図15,図16に示すように、本実施形態の樹脂板部材30において、各貫通孔31は、樹脂板部材30の半径方向に長い長円形に形成されている。具体的に、この貫通孔31は、上記実施形態1のものに比べ、樹脂板部材30の半径方向の内側と外側の両方へ同じだけ延ばされている。また、この貫通孔31において、樹脂板部材30の半径方向と直交する方向の幅は、上記実施形態1における貫通孔31の直径と同じである。
【0083】
尚、本実施形態の樹脂板部材30においても、貫通孔31の周囲には座ぐり部32が形成されている。また本実施形態の軸継手6におけるゴム部材20は、上記実施形態1と全く同じものである(図3参照)。
【0084】
ゴム部材20に形成された円柱状の突出部22は、樹脂板部材30に形成された長円形の貫通孔31に挿入される。その際、ゴム部材20の突出部22は、その中心が貫通孔31の中心に一致するような姿勢で貫通孔31に挿入されている。従って、樹脂板部材30の半径方向において、突出部22の両側には樹脂板部材30との間に隙間45が形成されている。一方、樹脂板部材30の半径方向に直交する方向では、突出部22の周側面が樹脂板部材30と接している。
【0085】
ここで、上述したように、第一シャフト11の軸心と第二シャフト14の軸心が一致していない場合には、傾いたカラー40によってゴム製の突出部22が押し潰されてゴム部材20の特性が変化するおそれがある。
【0086】
これに対し、本実施形態の軸継手6では、樹脂板部材30の貫通孔31を長円形に形成し、突出部22と樹脂板部材30の間に隙間45を形成している。このため、突出部22を貫通するカラー40が多少傾いたとしても、この傾いたカラー40と樹脂板部材30に挟まれて突出部22が押し潰されることはない。従って、本実施形態によれば、第一シャフト11の軸心に対して第二シャフト14の軸心が傾いた状態であっても、傾いたカラー40でゴム製の突出部22が押し潰されることに起因するゴム部材20の特性変化を防止できる。そして、軸継手6を使用する際の制約条件を緩和でき、軸継手6の使い勝手を向上させることができる。
【0087】
−実施形態3の変形例−
本実施形態の軸継手6においては、ゴム部材20の構成を次のように変更してもよい。
【0088】
図17,図18に示すように、本変形例のゴム部材20では、各突出部22が長円形の柱状に形成されている。具体的に、この突出部22は、その周側面全体が樹脂板部材30と接するように、貫通孔31の形状に対応した長円形に形成されている。尚、突出部22の個数や配置は、上記実施形態1と同じである。
【0089】
本変形例のゴム部材20において、突出部22には一対の空洞部25が形成されている。具体的に、それぞれの突出部22では、その長手方向(即ち平板部21の半径方向)における挿入孔23の両側に空洞部25が一つずつ形成されている。この空洞部25は、突出部22の端面(図17における上面)に開口する有底の穴状に形成されている。また、空洞部25は、突出部22の幅方向へ細長く延びると共に、突出部22の端部へ向かってやや湾曲する形状となっている。尚、この空洞部25は、ゴム部材20の突出部22及び平板部21を貫通するように形成されていてもよい。
【0090】
このように、本変形例では、突出部22に一対の空洞部25を形成している。このため、第一シャフト11の軸心と第二シャフト14の軸心が一致していなくてカラー40が傾いてしまっても、突出部22の空洞部25がひしゃげるだけで、突出部22のゴムの部分が押し潰されることはない。従って、本変形例によっても、第一シャフト11の軸心に対して第二シャフト14の軸心が傾いた状態であっても、傾いたカラー40でゴム製の突出部22が押し潰されることに起因するゴム部材20の特性変化を防止できる。
【0091】
【発明の実施の形態4】
本発明の実施形態4は、上記実施形態1の軸継手6において、ゴム部材20及び樹脂板部材30の構成を変更したものである。本実施形態の軸継手6では、突出部22の全周に亘って樹脂板部材30との間に隙間46が形成されている。ここでは、本実施形態の軸継手6について、上記実施形態1と異なる点を説明する。
【0092】
図19に示すように、本実施形態のゴム部材20には、十字状の凸部26が形成されている。この凸部26は、ゴム部材20における平板部21の前面側(同図における上面側)へ盛り上がっている。また、この凸部26は、その十字の中心が平板部21の中心と一致するように、平板部21の中央に配置されている。
【0093】
図20に示すように、本実施形態の樹脂板部材30には、その両側面(同図における上下面)に十字状の凹部34が形成されている。この凹部34は、樹脂板部材30の側面から一段低くなるように形成され、その深さが凸部26の高さと同じになっている。また、この凹部34は、その十字の中心が樹脂板部材30の中心と一致するように、樹脂板部材30の中央に配置されている。更に、本実施形態の樹脂板部材30において、貫通孔31の内径は、ゴム部材20における突出部22の外径よりも大きくなっている。
【0094】
図21,図22に示すように、二つのゴム部材20で樹脂板部材30を挟み込んだ状態では、ゴム部材20の突出部22が樹脂板部材30の貫通孔31へ挿入されると同時に、ゴム部材20の凸部26が樹脂板部材30の凹部34にぴったりとはまり込む。このように凸部26が凹部34にはまり込むことで、各ゴム部材20と樹脂板部材30の相対的な位置が定められる。そして、凸部26と凹部34でゴム部材20と樹脂板部材30の相対位置を定めることで、貫通孔31に挿入された突出部22と樹脂板部材30の間には、一定幅の隙間46が突出部22の全周に亘って形成される。
【0095】
ここで、連結シャフト3で回転力を伝える場合、軸継手6のカラー40は、第一シャフト11や第二シャフト14の連結用ボルト13,16によって押され、軸継手6の円周方向(図22における左右方向)へ変位する。このようにカラー40が変位すると、それに伴ってゴム部材20が変形する。その際、カラー40の変位量が隙間46の幅δよりも小さければ、ゴム部材20の突出部22は樹脂板部材30に接触しない。一方、カラー40の変位量が隙間46の幅δ以上になれば、ゴム部材20の突出部22は樹脂板部材30に接触する。
【0096】
ゴム部材20の突出部22が樹脂板部材30に接触している状態と両者が接触していない状態とでは、ゴム部材20のバネ定数が変化する。即ち、同じだけ荷重が増えた場合でも、突出部22が樹脂板部材30に接している状態におけるカラー40の変位量の増分は、突出部22が樹脂板部材30に接していない状態におけるカラー40の変位量の増分よりも小さくなる。このように、ゴム部材20のバネ定数は、カラー40の変位量によって二段階に変化する。
【0097】
例えば、連結シャフト3の捻り方向の振幅の小さい振動がカラー40に伝わった場合には、ゴム部材20のバネ定数が小さい状態となり、この振動がゴム部材20の変形によって緩和される。一方、運転者の操舵等によって大きな荷重がカラー40に伝わった場合には、ゴム部材20のバネ定数が大きい状態となり、この大きな荷重をゴム部材20が確実に支える。
【0098】
また、上述したように、第一シャフト11の軸心と第二シャフト14の軸心が一致していない場合には、傾いたカラー40によってゴム製の突出部22が押し潰されてゴム部材20の特性が変化するおそれがある。これに対し、本実施形態の軸継手6では、樹脂板部材30の貫通孔31をゴム部材20の突出部22よりも大径に形成し、突出部22と樹脂板部材30の間に隙間46を形成している。このため、突出部22を貫通するカラー40が多少傾いたとしても、この傾いたカラー40と樹脂板部材30に挟まれて突出部22が押し潰されることはない。
【0099】
−実施形態4の効果−
本実施形態4によれば、上記実施形態1において得られる効果に加え、以下のような効果が発揮される。
【0100】
つまり、本実施形態によれば、軸継手6の円周方向へカラー40が変位する際のゴム部材20のバネ定数を、カラー40の変位量に応じて二段階に変化させることができる。このため、軸継手6を設計する際の設計自由度を高めることができ、軸継手6の特性をその用途に応じて的確に設定することが可能となる。
【0101】
更に、本実施形態によれば、第一シャフト11の軸心に対して第二シャフト14の軸心が傾いた状態であっても、傾いたカラー40でゴム製の突出部22が押し潰されることに起因するゴム部材20の特性変化を防止できる。そして、軸継手6を使用する際の制約条件を緩和でき、軸継手6の使い勝手を向上させることができる。
【0102】
−実施形態4の変形例−
本実施形態の軸継手6では、ゴム部材20の凸部26と樹脂板部材30の凹部34とによってゴム部材20と樹脂板部材30の相対位置を定めているが、これに代えて、次のような構成としてもよい。
【0103】
第1の変形例について説明する。図23に示すように、本変形例の軸継手6において、ゴム部材20の突出部22には位置決め突起27が形成されている。尚、本変形例のゴム部材20において、凸部26は形成されていない。また、本変形例の樹脂板部材30において、凹部34は形成されていない。
【0104】
位置決め突起27は、突出部22における突端付近の周側面から突き出すように形成されている。また、この位置決め突起27は、突出部22の全周に亘って鍔状に形成され、その外径が樹脂板部材30の貫通孔31の内径と同じになっている。だたし、この位置決め突起27は、必ずしも突出部22の全周に亘って形成されていなくてもよい。例えば、突出部22の周方向へ90°ごとに四つの位置決め突起27を形成してもよい。
【0105】
突出部22を貫通孔31に挿入した状態では、位置決め突起27が貫通孔31の内面に当接し、ゴム部材20と樹脂板部材30の相対位置が定められる。そして、本変形例においても、貫通孔31に挿入された突出部22と樹脂板部材30との間には、突出部22の全周に亘って隙間46が形成されている。
【0106】
第2の変形例について説明する。図示しないが、本変形例の軸継手6において、ゴム部材20にはピン状突起が複数形成される。また、樹脂板部材30には、ゴム部材20のピン状突起に対応して複数のピン穴が形成される。そして、ゴム部材20の各ピン状突起をそれぞれ対応する樹脂板部材30のピン穴に挿入することで、ゴム部材20と樹脂板部材30の相対位置が定められる。そして、本変形例においても、貫通孔31に挿入された突出部22と樹脂板部材30との間には、突出部22の全周に亘って隙間46が形成される。
【0107】
【発明のその他の実施の形態】
上記各実施形態の軸継手6は、次のような構成としてもよい。ここでは、本変形例を上記実施形態3の軸継手6に適用したものについて説明する。
【0108】
図24に示すように、本変形例の樹脂板部材30は、該樹脂板部材30の両側面に突設された係合突起35を備えている。この係合突起35は、樹脂板部材30における各側面の中央に一つずつ形成されている。また、この係合突起35は、軸部36と大径部37とによって構成されている。軸部36は、樹脂板部材30の側面から延びる短い円柱状に形成されている。大径部37は、軸部36の突端に形成され、その直径が軸部36の直径よりも大きくなっている。
【0109】
一方、本変形例のゴム部材20は、上記係合突起35が挿入される係合孔28を備えている。この係合孔28は、平板部21の中央に形成されている。係合孔28の直径は、係合突起35の軸部36よりも僅かに大径で、その大径部37よりも小径になっている。
【0110】
樹脂板部材30の係合突起35をゴム部材20の係合孔28へ押し込むと、係合突起35の大径部37にゴム部材20の平板部21が引っ掛かる。そして、この係合突起35がゴム部材20に引っ掛かることで、一対のゴム部材20が樹脂板部材30に保持される。
【図面の簡単な説明】
【図1】実施形態1におけるステアリング装置の概略斜視図である。
【図2】実施形態1における軸継手と連結シャフトの要部とを示す斜視図である。
【図3】実施形態1におけるゴム部材を示す斜視図である。
【図4】実施形態1における樹脂板部材を示す斜視図である。
【図5】実施形態1における軸継手を示す平面図である。
【図6】図5におけるA-A断面を示す軸継手の断面図である。
【図7】図5におけるB-B断面を示す軸継手の断面図である。
【図8】実施形態1の変形例におけるゴム部材を示す斜視図である。
【図9】実施形態1の変形例における軸継手の断面を示す図6相当の断面図である。
【図10】実施形態2における軸継手を示す斜視図である。
【図11】実施形態2におけるゴム部材を示す斜視図である。
【図12】実施形態2における樹脂板部材を示す斜視図である。
【図13】実施形態2における軸継手を示す平面図である。
【図14】図13におけるC-C断面を示す軸継手の断面図である。
【図15】実施形態3における軸継手を示す平面図である。
【図16】図15におけるD-D断面を示す軸継手の断面図である。
【図17】実施形態3の変形例におけるゴム部材を示す斜視図である。
【図18】実施形態3の変形例における軸継手の断面を示す図16相当の断面図である。
【図19】実施形態4におけるゴム部材を示す斜視図である。
【図20】実施形態4における樹脂板部材を示す斜視図である。
【図21】実施形態4における軸継手を示す平面図である。
【図22】図21におけるE-E断面を示す軸継手の断面図である。
【図23】実施形態4の変形例における軸継手の断面を示す図22相当の断面図である。
【図24】その他の実施形態における軸継手の断面を示す図16相当の断面図である。
【図25】従来の軸継手を示す平面図である。
【符号の説明】
6 軸継手
11 第一シャフト(駆動軸)
13 連結用ボルト(棒状突起部)
14 第二シャフト(被動軸)
16 連結用ボルト(棒状突起部)
20 ゴム部材(ゴム状弾性部材)
21 平板部
22 突出部
24 膨出部
25 空洞部
30 樹脂板部材
31 貫通孔
33 切欠き部
40 カラー(管状部材)
45 隙間
46 隙間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a shaft coupling that is provided between a drive shaft and a driven shaft and transmits the rotation of the drive shaft to the driven shaft.
[0002]
[Prior art]
Conventionally, as disclosed in JP-A-7-71471, a shaft coupling that is provided between a drive shaft and a driven shaft and transmits a rotational force is known. This type of shaft coupling is provided, for example, on a steering shaft or propeller shaft of an automobile. Here, the shaft coupling disclosed in the above publication will be described with reference to FIG.
[0003]
This shaft coupling includes one resin board body a, four rubber elastic bodies b, and four cylinder bodies c, and is formed in a slightly thick disk shape as a whole. The synthetic resin resin disc body a is formed in a cross shape in which four portions of a disk are cut out. Each rubber elastic body b made of rubber is formed in a shape corresponding to a notch portion of the resin disc body a, and is vulcanized and bonded to the resin disc body a in a state of being fitted into the notch portion. The metal cylinder c is formed in a short pipe shape, and is provided for each rubber elastic body b. Each cylinder c penetrates the rubber elastic body b in the thickness direction, and is vulcanized and bonded to the rubber elastic body b. Further, the four cylinders c are arranged at 90 ° intervals on one pitch circle.
[0004]
In this shaft coupling, the drive shaft is engaged with the two cylinders c positioned 180 ° apart, and the driven shaft is engaged with the remaining two cylinders c. The shaft coupling transmits the rotational force of the drive shaft to the driven shaft. In addition, the shaft coupling is configured so as to reduce vibrations in the axial direction and torsional direction of the drive shaft and the driven shaft. For example, when an axial vibration is applied to the shaft coupling, the cylindrical body c moves to the front side or the back side of the paper surface in FIG. 25, and the rubber elastic body b is deformed at that time, so that the vibration is alleviated. Further, when vibration in the torsional direction is applied to the shaft coupling, the cylindrical body c moves in the circumferential direction in FIG. 25, and at that time, the rubber elastic body b is deformed so that the vibration is mitigated.
[0005]
[Problems to be solved by the invention]
As described above, in the shaft coupling, the resin disc body a, the rubber elastic body b, and the cylindrical body c, which are different from each other, are vulcanized and bonded to each other. On the other hand, when discarding the shaft coupling, it is desirable to separate the members for each material in order to recycle each member. However, in the shaft coupling, members of different materials are vulcanized and bonded to each other. For this reason, when disposing of the shaft coupling, it takes a lot of time to separate the members for each material, and there is a problem that the recyclability is poor.
[0006]
In addition, a process for vulcanizing and bonding each member is also required when manufacturing the shaft coupling. For this reason, there has been a problem that the manufacturing process of the shaft coupling is complicated and the production efficiency is lowered, and as a result, the manufacturing cost is increased.
[0007]
The present invention has been made in view of the above points, and the object of the present invention is to improve the recyclability of a shaft coupling composed of members made of different materials and to further simplify the manufacturing process. is there.
[0008]
[Means for Solving the Problems]
The first solving means provided by the present invention is a shaft coupling that is connected to a plurality of rod-like projections provided at the shaft end portion of the drive shaft and the shaft end portion of the driven shaft to transmit the rotation of the drive shaft to the driven shaft. Is targeted. And each has the flat plate part formed in flat form, and the some protrusion part integrally formed in the front side of this flat plate part, and a pair of each arrange | positioned facing each other so that each protrusion part may mutually contact | abut There are provided a rubber-like elastic member, a resin plate member sandwiched between flat plate portions of the rubber-like elastic member facing each other, and a rod-like projection portion of the drive shaft or driven shaft provided so as to pass through the two protruding portions that abut each other. The rubber-like elastic member, the resin plate member, and the tubular member are combined in a non-adhered state.
[0009]
According to a second solving means of the present invention, in the first solving means described above, the resin plate member is formed with a plurality of notches extending from the peripheral side surface of the resin plate member toward the center while facing each other. The two protrusions are in contact with each other in a state of being fitted into the notch.
[0010]
According to a third solving means of the present invention, in the first solving means, the resin plate member is formed with a plurality of through-holes penetrating the resin plate member in the plate thickness direction, and two protrusions facing each other. The parts are in contact with each other while being inserted into the through hole.
[0011]
According to a fourth solving means provided by the present invention, in the second solving means described above, the resin plate member is formed so that the periphery of the notch portions on both side surfaces thereof is formed in a spot shape.
[0012]
According to a fifth solving means of the present invention, in the third solving means, the resin plate member is formed so that the periphery of the through-holes on both side faces thereof is formed in a spot shape.
[0013]
According to a sixth solving means of the present invention, in the first, second, or third solving means, the rubber-like elastic member has a gap between the periphery of the protruding portion of the flat plate portion and the resin plate member. A bulging portion that rises to the front side of the flat plate portion and contacts the resin plate member is formed.
[0014]
The seventh solving means taken by the present invention is that, in the first, second or third solving means, a plurality of tubular members are arranged on one pitch circle, while a resin plate member and a rubber-like member are arranged. The relative position of the elastic member is determined so that a gap is formed between the protruding portion and the resin plate member at least in the circumferential direction of the pitch circle.
[0015]
According to an eighth solving means of the present invention, in the first, second, or third solving means, a plurality of tubular members are arranged on one pitch circle, while a resin plate member and a rubber-like member are arranged. The relative position of the elastic member is determined such that a gap is formed between the protruding portion and the resin plate member at least in the radial direction of the pitch circle.
[0016]
According to a ninth solving means of the present invention, in the third solving means, a plurality of tubular members are arranged on one pitch circle, and the protruding portion of the rubber-like elastic member penetrates the resin plate member. While the entire peripheral side surface of the protrusion is in close contact with the resin plate member when inserted into the hole, the protrusion has a cavity on both sides of the tubular member in the radial direction of the pitch circle. Are formed one by one.
[0017]
-Action-
In the first solving means, the shaft coupling is configured by combining the rubber-like elastic member, the resin plate member, and the tubular member in a non-adhered state. In this shaft coupling, two rubber-like elastic members are provided with a resin plate member interposed therebetween. In the rubber-like elastic members facing each other, the respective flat plate portions sandwich the resin plate member, and the respective protruding portions are in contact with each other. One tubular member is attached to the two projecting portions that are in contact with each other to form a pair. That is, the shaft coupling is provided with the same number of tubular members as the protrusions formed on one rubber-like elastic member.
[0018]
In the shaft coupling of the present means for solution, the rod-like projections of the drive shaft are inserted into half of the plurality of tubular members, and the rod-like projections of the driven shaft are inserted into the other half. That is, the shaft coupling is sandwiched between the shaft end portion of the drive shaft and the shaft end portion of the driven shaft. Therefore, even if the resin plate member and the rubber-like elastic member sandwiching the resin plate member are in the non-bonded state, the shape of the shaft coupling is maintained at least in a state where the shaft coupling is connected to the drive shaft or the driven shaft.
[0019]
In the second solution means, a plurality of notches are formed in the resin plate member. Each notch is open to the peripheral side surface of the resin plate member. The protruding portion of the rubber-like elastic member is fitted into the notch portion of the resin plate member. The two protrusions facing each other and making a pair come into contact with each other in a state of being fitted into one notch.
[0020]
In the third solving means, a plurality of through holes are formed in the resin plate member. Each through hole penetrates the resin plate member in the plate thickness direction. The protruding portion of the rubber-like elastic member is inserted into the through hole of the resin plate member. The two protrusions that face each other and make a pair come into contact with each other while being inserted into one through hole.
[0021]
In the fourth solving means, the periphery of the notch portion in the resin plate member is formed in a spot-like shape one step lower. When the drive shaft or the driven shaft is displaced in the axial direction, the rubber-like elastic member of the shaft joint is deformed accordingly. At that time, if the amount of deformation of the rubber-like elastic member is less than the depth of the lower portion formed around the notch, the flat portion of the rubber-like elastic member is in the resin plate member. Do not touch the periphery of the notch. On the other hand, if the deformation amount of the rubber-like elastic member is equal to or greater than the depth, the flat plate portion of the rubber-like elastic member is in contact with the peripheral edge of the notch portion in the resin plate member.
[0022]
In the fifth solving means, the periphery of the through hole in the resin plate member is formed in a counterbore shape one step lower. When the drive shaft or the driven shaft is displaced in the axial direction, the rubber-like elastic member of the shaft joint is deformed accordingly. At this time, if the amount of deformation of the rubber-like elastic member is less than the depth of the lower portion formed around the through-hole, the flat portion of the rubber-like elastic member penetrates the resin plate member. Do not touch the periphery of the hole. On the other hand, if the deformation amount of the rubber-like elastic member is equal to or greater than the depth, the flat plate portion of the rubber-like elastic member contacts the periphery of the through hole in the resin plate member.
[0023]
In the sixth solving means, the bulging portion is formed in the flat plate portion of the rubber-like elastic member. This bulging portion is formed on the front side of the flat plate portion in the same manner as the protruding portion. In the shaft coupling of the present means for solution, a gap is formed between the periphery of the protruding portion of the flat plate portion and the resin plate member by the bulging portion coming into contact with the resin plate member.
[0024]
Here, when the drive shaft or the driven shaft is displaced in the axial direction, the rubber-like elastic member of the shaft joint is deformed accordingly. At this time, if the amount of deformation of the rubber-like elastic member is less than the distance between the periphery of the protrusion in the flat plate portion and the resin plate member, the periphery of the protrusion in the flat plate portion does not contact the resin plate member. . On the other hand, if the amount of deformation of the rubber-like elastic member is equal to or greater than the interval, the periphery of the protruding portion in the flat plate portion contacts the resin plate member.
[0025]
In the seventh solving means, the plurality of tubular members are arranged on the same pitch circle. A gap is formed at least in the circumferential direction of the pitch circle of the tubular member between the protruding portion and the resin plate member. The relative positions of the resin plate member and the rubber-like elastic member are determined so that such a gap is formed.
[0026]
Here, when the rotational force from the drive shaft is transmitted to the shaft coupling, the rubber-like elastic member of the shaft coupling is deformed by the rotational force. At this time, if the deformation amount of the rubber-like elastic member is less than the distance between the protrusion of the rubber-like elastic member and the resin plate member, the protrusion of the rubber-like elastic member does not contact the resin plate member. On the other hand, if the amount of deformation of the rubber-like elastic member is equal to or greater than the distance, the protruding portion of the rubber-like elastic member contacts the resin plate member.
[0027]
In the eighth solving means, the plurality of tubular members are arranged on the same pitch circle. A gap is formed at least in the radial direction of the pitch circle of the tubular member between the protruding portion and the resin plate member. The relative positions of the resin plate member and the rubber-like elastic member are determined so that such a gap is formed.
[0028]
In the ninth solving means, the plurality of tubular members are arranged on the same pitch circle. The protruding portion of the rubber-like elastic member is formed in the same shape as the through hole of the resin plate member, and the entire peripheral side surface thereof is in close contact with the resin plate member. Moreover, a cavity part is formed in each protrusion in the both sides of the tubular member in the radial direction of the pitch circle of a tubular member. Therefore, even if the pitch of the tubular member penetrating the protrusion is slightly inclined in the radial direction, this inclination is absorbed by the deformation of the cavity.
[0029]
【The invention's effect】
In the present invention, the structure of the shaft coupling is a structure in which the resin plate member is sandwiched between a pair of rubber-like elastic members, and the rubber-like elastic member, the resin plate member, and the tubular member are in an unbonded state. For this reason, these three kinds of members are combined with each other in a state where the shaft coupling is connected to at least the shaft end portion of the drive shaft or the driven shaft without bonding the rubber-like elastic member, the resin plate member, and the tubular member to each other. It can be kept in the state.
[0030]
Thus, according to the present invention, one shaft coupling can be formed without bonding the members constituting the shaft coupling to each other. For this reason, when the shaft coupling according to the present invention is discarded, the operation of disassembling the shaft coupling can be easily performed in a short time. Moreover, compared with the case where each member of a shaft coupling is mutually adhere | attached, the member can be reliably classified for every material. Therefore, according to the present invention, it is possible to reliably perform the sorting operation when discarding the shaft coupling in a short time, and the recyclability of the shaft coupling can be improved.
[0031]
Further, as described above, according to the present invention, one shaft joint can be configured without bonding a plurality of members to each other. For this reason, the process which adhere | attaches members at the time of manufacture of the shaft coupling which concerns on this invention becomes completely unnecessary. Therefore, according to this invention, the manufacturing process of a shaft coupling can be simplified, the production efficiency can be improved, and also the manufacturing cost can be reduced.
[0032]
Here, it is normal that the axis of the drive shaft and the axis of the driven shaft do not completely coincide with each other, and the other axis is often inclined with respect to one axis. In such a case, the tubular member into which the rod-like protrusion of the drive shaft or the driven shaft is inserted is tilted. If the entire peripheral side surface of the protruding portion is in close contact with the resin plate member, the protruding portion is crushed by the inclined tubular member and the resin plate member, and the characteristics when the rubber-like elastic member is deformed change. .
[0033]
On the other hand, in the said 2nd solution means, the protrusion part of the rubber-like elastic member is inserted in the notch part of the resin board member. For this reason, even if the tubular member is inclined toward the opening side of the notch, the protruding portion is not crushed between the tubular member and the resin plate member. Moreover, in the said 8th solution means, in the state which combined the resin board member and the rubber-like elastic member, a clearance gap is formed between the protrusion part and the resin board member. For this reason, even if the tubular member is inclined toward the gap, the protruding portion is not crushed between the tubular member and the resin plate member. In the ninth solving means, a hollow portion is formed in the protruding portion of the rubber-like elastic member. For this reason, even if the tubular member is inclined toward the hollow portion, the protruding portion is not crushed between the tubular member and the resin plate member. Therefore, according to these second, eighth, and ninth solving means, the protruding portion can be prevented from being crushed by being sandwiched between the inclined cylindrical member and the resin plate member, and the rubber-like elastic member is deformed. The characteristics can be kept constant.
[0034]
According to the fourth, fifth, and sixth solving means, the characteristic when the rubber-like elastic member is deformed in the axial direction of the drive shaft or the driven shaft can be a two-stage characteristic. Specifically, according to the fourth solving means, the spring constant of the rubber-like elastic member between the state in which the flat plate portion of the rubber-like elastic member is in contact with the peripheral edge of the notch portion in the resin plate member and the state in which it is not in contact. Can be changed. Further, according to the fifth solving means, the spring constant of the rubber-like elastic member is changed between the state where the flat plate portion of the rubber-like elastic member is in contact with the peripheral edge of the through hole in the resin plate member and the state where it is not in contact. be able to. Moreover, according to the 6th solution means, the spring constant of a rubber-like elastic member can be changed with the state which the circumference | surroundings of the protrusion part in a flat plate part is in the state which is in contact with the resin plate member.
[0035]
As described above, according to the fourth, fifth, and sixth solving means, the spring constant of the rubber-like elastic member is changed according to the deformation amount of the rubber-like elastic member in the axial direction of the drive shaft and the driven shaft. Can be made. Accordingly, the degree of freedom in designing the shaft coupling can be increased, and the characteristics of the shaft coupling can be accurately set according to the application.
[0036]
According to the seventh solving means, the characteristic when the rubber-like elastic member is deformed in the twisting direction of the drive shaft or the driven shaft can be a two-stage characteristic. Specifically, the spring constant of the rubber-like elastic member can be changed depending on whether the protruding portion of the rubber-like elastic member is in contact with the resin plate member or not. Thus, according to this solution, the spring constant of the rubber-like elastic member can be changed according to the deformation amount of the rubber-like elastic member in the twisting direction of the drive shaft or the driven shaft. Accordingly, the degree of freedom in designing the shaft coupling can be increased, and the characteristics of the shaft coupling can be accurately set according to the application.
[0037]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present embodiment is a steering apparatus 1 for an automobile, and includes a shaft coupling 6 according to the present invention.
[0038]
As shown in FIG. 1, the steering device 1 includes a main shaft 2, a connecting shaft 3, and a steering gear box 4. The main shaft 2 has a steering wheel 5 attached to the upper end thereof. The lower end of the main shaft 2 is connected to the upper end of the connecting shaft 3 through a universal joint. The lower end of the connecting shaft 3 is connected to the input shaft of the steering gear box 4 via a universal joint. Although not shown, the output shaft of the steering gear box 4 is connected to the left and right front wheels of the automobile.
[0039]
The connecting shaft 3 includes a first shaft 11 on the main shaft 2 side and a second shaft 14 on the steering gear box 4 side. The shaft coupling 6 is provided between the lower end of the first shaft 11 and the upper end of the second shaft 14.
[0040]
As shown in FIG. 2, one end plate 12 and 15 is provided at each of the lower end of the first shaft 11 and the upper end of the second shaft 14. The end plates 12 and 15 are formed in a constricted shape at the center of the eyebrows, and the center is fixed to the shaft end of the first shaft 11 or the second shaft 14. The end plate 12 of the first shaft 11 has a connecting bolt 13 projecting downward at the end thereof one by one. The end plate 15 of the second shaft 14 is provided with a connecting bolt 16 projecting upward at one end thereof. That is, two connecting bolts 13 and 16 are provided as rod-shaped protrusions on the end plate 12 of the first shaft 11 and the end plate 15 of the second shaft 14, respectively.
[0041]
Similarly, as shown in FIG. 2, the shaft coupling 6 includes two rubber members 20, one resin plate member 30, and four collars 40. These members are combined without being bonded to each other to form one shaft joint 6.
[0042]
As shown in FIG. 3, the rubber member 20 includes one flat plate portion 21 and four projecting portions 22. The rubber member 20 is a member made of natural rubber or synthetic rubber, and constitutes a rubber-like elastic member.
[0043]
The flat plate portion 21 is formed in a slightly thin disk shape. The protruding portion 22 is formed in a slightly short cylindrical shape, and is integrally formed with the flat plate portion 21 on the front surface side (upper surface side in FIG. 3) of the flat plate portion 21. The four protruding portions 22 are arranged at 90 ° intervals on a pitch circle concentric with the flat plate portion 21. An insertion hole 23 is formed coaxially with the cylindrical protrusion 22. The insertion hole 23 penetrates not only the protruding portion 22 but also the flat plate portion 21.
[0044]
As shown in FIG. 4, the resin plate member 30 is a member made of synthetic resin such as nylon resin, and is formed in a slightly thick disk shape. The resin plate member 30 has a diameter equal to the diameter of the flat plate portion 21 of the rubber member 20, and its thickness is twice the height of the protruding portion 22.
[0045]
The resin plate member 30 has four circular through holes 31 penetrating therethrough. In other words, the resin plate member 30 has the same number of through holes 31 as the protrusions 22 formed in one rubber member 20. The four through holes 31 are formed at 90 ° intervals on a pitch circle concentric with the resin plate member 30. The pitch circle diameter of the through holes 31 in the resin plate member 30 is the same as the pitch circle diameter of the protrusions 22 in the rubber member 20. Further, the diameter of the through hole 31 is substantially the same as the outer diameter of the protruding portion 22.
[0046]
Counterbore portions 32 are formed around each through hole 31 on both side surfaces (upper and lower surfaces in FIG. 4) of the resin plate member 30. That is, on both side surfaces of the resin plate member 30, the periphery of each through-hole 31 is stepped down in a counterbore shape over a certain width, and this stepped portion constitutes the counterbore portion 32. .
[0047]
The collar 40 is a synthetic resin or metal member, and is formed in a tubular shape. The height of the collar 40 is a value obtained by doubling the sum of the height of the protruding portion 22 and the thickness of the flat plate portion 21. The diameter of the collar 40 is substantially the same as the diameter of the through hole 31 in the rubber member 20.
[0048]
As shown in FIGS. 5, 6, and 7, the two rubber members 20 are arranged to face each other with one resin plate member 30 interposed therebetween. The flat plate portions 21 of the rubber members 20 facing each other sandwich the resin plate member 30 provided therebetween.
[0049]
The protrusion 22 of each rubber member 20 is inserted into the through hole 31 of the resin plate member 30. At that time, the protruding portion 22 of the first rubber member 20 is inserted into one through hole 31 from one side, and the protruding portion 22 of the second rubber member 20 is inserted from the opposite side. And the two protrusion parts 22 inserted in the one through-hole 31 are mutually contact | abutted in each end surface. Moreover, in the state inserted in the through-hole 31, each protrusion part 22 is contacting the resin board member 30 over the perimeter (refer FIG. 6, FIG. 7).
[0050]
The collar 40 is inserted into the insertion holes 23 of the two protrusions 22 that are in contact with each other. That is, the collar 40 is provided through the two protrusions 22 inserted into the single through hole 31. Each collar 40 is in close contact with the rubber member 20 in a state where the collar 40 is inserted into the insertion hole 23. And the two rubber members 20 are hold | maintained with the frictional force between the collar 40 and the rubber member 20, and the form of the shaft coupling 6 is maintained.
[0051]
In the shaft coupling 6, the four collars 40 are arranged at intervals of 90 ° on one pitch circle (see FIG. 5). Of these four collars 40, the connecting bolts 13 of the first shaft 11 are inserted into the two collars 40 that are separated by 180 °, and the connecting bolts 16 of the second shaft 14 are inserted into the remaining two collars 40. Is inserted (see FIG. 2).
[0052]
For example, when the driver performs steering by turning the steering wheel 5, the first shaft 11 serves as a drive shaft and the second shaft 14 serves as a driven shaft. In this case, the rotational force of the first shaft 11 is transmitted to the second shaft 14 via the shaft coupling 6.
[0053]
Here, when vibration or impact is applied to the connecting shaft 3, the first shaft 11 and the second shaft 14 may be displaced in the axial direction thereof. When the first shaft 11 and the second shaft 14 are displaced in the axial direction, the collar 40 of the shaft coupling 6 is moved in the axial direction (the vertical direction in FIGS. 6 and 7), and the rubber member 20 is deformed. At this time, if the displacement amount of the collar 40 is smaller than the depth d of the spot facing portion 32, the flat plate portion 21 of the rubber member 20 does not contact the spot facing portion 32 of the resin plate member 30. On the other hand, when the amount of displacement of the collar 40 is greater than or equal to the depth d of the spot facing portion 32, the flat plate portion 21 of the rubber member 20 contacts the spot facing portion 32 of the resin plate member 30.
[0054]
The spring constant of the rubber member 20 changes between the state in which the flat plate portion 21 of the rubber member 20 is in contact with the spot facing portion 32 of the resin plate member 30 and the state in which both are not in contact. That is, even if the load increases by the same amount, the increment of the displacement amount of the collar 40 in a state where the flat plate portion 21 is in contact with the counterbore portion 32 is the collar 40 in a state where the flat plate portion 21 is not in contact with the counterbore portion 32. It becomes smaller than the increment of the displacement amount. Thus, the spring constant of the rubber member 20 changes in two steps depending on the amount of displacement of the collar 40.
[0055]
For example, when axial vibration with a small amplitude is transmitted to the collar 40, the rubber member 20 has a small spring constant, and this vibration is mitigated by deformation of the rubber member 20. On the other hand, when a large load is transmitted to the collar 40, the rubber member 20 has a large spring constant and the rubber member 20 reliably supports the large load.
[0056]
-Effect of Embodiment 1-
In the present embodiment, the structure of the shaft coupling 6 is a structure in which the resin plate member 30 is sandwiched between the pair of rubber members 20, and the rubber member 20, the resin plate member 30, and the collar 40 are not bonded to each other. Therefore, the rubber member 20 made of rubber, the resin plate member 30 made of synthetic resin, and the collar 40 made of synthetic resin or metal can be held in a combined state without being bonded to each other.
[0057]
Thus, according to this embodiment, one shaft coupling 6 can be formed without adhering each member which comprises the shaft coupling 6 mutually. For this reason, when discarding the shaft coupling 6 of this embodiment, the operation | work which decomposes | disassembles this shaft coupling 6 can be performed easily in a short time. Moreover, compared with the case where each member of the shaft coupling 6 is mutually adhere | attached, the member can be reliably classified for every material. Therefore, according to the present embodiment, it is possible to reliably perform the sorting operation when discarding the shaft coupling 6 in a short time, and the recyclability of the shaft coupling 6 can be improved.
[0058]
Further, as described above, according to the present embodiment, one shaft coupling 6 can be configured without bonding a plurality of members to each other. For this reason, when manufacturing the shaft coupling 6 of this embodiment, the process which adhere | attaches members is completely unnecessary. Therefore, according to this embodiment, the manufacturing process of the shaft coupling 6 can be simplified to increase its production efficiency, and further its manufacturing cost can be reduced.
[0059]
Further, according to the present embodiment, the spring constant of the rubber member 20 when the collar 40 is displaced in the axial direction can be changed in two stages according to the amount of displacement of the collar 40. For this reason, the design freedom at the time of designing the shaft coupling 6 can be increased, and the characteristics of the shaft coupling 6 can be accurately set according to the application.
[0060]
Here, in the conventional shaft coupling shown in FIG. 25, the narrowest portion of the rubber elastic body b appearing in the drawing has a width L ′. When the cylindrical body c is displaced in the axial direction (perpendicular to the paper surface in the figure), the narrow width L ′ portion is subjected to shear deformation as much as the displacement amount of the cylindrical body c. On the other hand, the shaft coupling 6 of the present embodiment shown in FIG. 6 adopts a structure in which both side surfaces of the resin plate member 30 are covered with the flat plate portions 21 of the rubber member 20, and further, the resin plate member 30 and the rubber member 20 are connected. Non-adhesive state. Therefore, when the collar 40 is displaced in the axial direction (vertical direction in the figure), the portion of the rubber member 20 that extends over the length L in the figure is deformed. Assuming that the diameters of the shaft couplings are approximately the same, the length L of the shaft coupling 6 of the present embodiment is significantly longer than the length L ′ of the conventional shaft coupling.
[0061]
Thus, according to the present embodiment, the length L of the rubber member 20 that is deformed by the axial displacement of the collar 40 can be made longer than the corresponding length L ′ in the conventional shaft coupling. . Therefore, the distortion of the rubber member 20 when the collar 40 is displaced in the axial direction can be reduced, and the durability of the rubber member 20 and thus the durability of the shaft joint 6 can be improved.
[0062]
-Modification of Embodiment 1-
In this embodiment, the counterbore portion 32 is formed on the resin plate member 30 in order to change the spring constant of the rubber member 20 in two stages when the collar 40 is displaced in the axial direction. It is good also as the following structures.
[0063]
As shown in FIG. 8, the rubber member 20 of the present modification has a cross-shaped bulging portion 24 formed so as to rise to the front side of the flat plate portion 21 (upper surface side in the figure). The bulging portion 24 is formed in a portion other than the periphery of the protruding portion 22 on the front surface of the flat plate portion 21.
[0064]
On the other hand, as shown in FIG. 9, the counterbore part 32 is not formed in the resin plate member 30 of this modification, and only the four through-holes 31 are formed. The bulging portion 24 of each flat plate portion 21 abuts on the resin plate member 30, and a gap is formed between the periphery of the protruding portion 22 in the flat plate portion 21 and the resin plate member 30.
[0065]
When the first shaft 11 and the second shaft 14 are displaced in the axial direction, the collar 40 of the shaft coupling 6 is moved in the axial direction (the vertical direction in FIG. 9), and the rubber member 20 is deformed. At this time, if the amount of displacement of the collar 40 is smaller than the height h of the bulging portion 24, the periphery of the protruding portion 22 in the flat plate portion 21 does not contact the resin plate member 30. On the other hand, when the amount of displacement of the collar 40 is equal to or greater than the height h of the bulging portion 24, the periphery of the protruding portion 22 in the flat plate portion 21 contacts the resin plate member 30.
[0066]
The spring constant of the rubber member 20 changes between the state in which the periphery of the protruding portion 22 in the flat plate portion 21 is in contact with the resin plate member 30 and the state in which both are not in contact. That is, even when the load increases by the same amount, the increment of the displacement amount of the collar 40 in a state where the two are in contact with each other is smaller than the increment of the displacement amount of the collar 40 in a state where the two are not in contact with each other. Thus, the spring constant of the rubber member 20 changes in two stages depending on the amount of displacement of the collar 40.
[0067]
Second Embodiment of the Invention
The second embodiment of the present invention is obtained by changing the configuration of the rubber member 20 and the resin plate member 30 in the shaft coupling 6 of the first embodiment. Here, the difference between the shaft coupling 6 of the present embodiment and the first embodiment will be described.
[0068]
As shown in FIGS. 10 and 11, in the rubber member 20 of the present embodiment, the shape of the protruding portion 22 is different from that of the first embodiment. The protruding portion 22 of the present embodiment is formed in a shape that extends from the outer periphery of the flat plate portion 21 toward the center, and that the inner end portion has a semicircular arc shape. In the protruding portion 22, the side surface located on the outer peripheral side of the flat plate portion 21 is continuous with the outer peripheral surface of the flat plate portion 21.
[0069]
As shown in FIG. 12, the resin plate member 30 of this embodiment has a notch 33 formed in place of the through hole 31 of the above embodiment. That is, the four notches 33 are formed in the resin plate member 30. The diameter and thickness of the resin plate member 30 are the same as those in the first embodiment.
[0070]
Specifically, the notch 33 is formed in a shape such that a part of the disk shape is cut from the outer peripheral side toward the center. Each notch 33 extends in the radial direction of the resin plate member 30, and the center side end thereof has a semicircular arc shape. That is, each notch 33 has a shape corresponding to the protrusion 22 of the rubber member 20. And the four notch parts 33 are arrange | positioned at 90 degree intervals.
[0071]
Counterbore portions 32 are formed around the notches 33 on both side surfaces (upper and lower surfaces in FIG. 12) of the resin plate member 30. That is, on both side surfaces of the resin plate member 30, the periphery of each notch 33 is stepped down in a counterbore shape over a certain width, and this stepped down portion constitutes the counterbore portion 32. Yes.
[0072]
As shown in FIGS. 10, 13, and 14, the two rubber members 20 are arranged to face each other with one resin plate member 30 interposed therebetween. The flat plate portions 21 of the rubber members 20 facing each other sandwich the resin plate member 30 provided therebetween. These points are the same as in the first embodiment.
[0073]
The protrusion 22 of each rubber member 20 is fitted in the notch 33 of the resin plate member 30. At that time, the protruding portion 22 of the first rubber member 20 is fitted into one notch portion 33 from one side, and the protruding portion 22 of the second rubber member 20 is fitted from the opposite side. And the two protrusion parts 22 inserted in the one notch part 33 are mutually contact | abutted in each end surface. Further, in a state in which the protrusions 22 are fitted into the notches 33, the side surfaces other than the side surfaces located on the outer peripheral side of the disk portion are in contact with the resin plate member 30 (see FIGS. 13 and 14). . That is, in each protrusion 22, the side surface located on the outer peripheral side of the disk portion forms the outer peripheral surface of the shaft joint 6 together with the outer peripheral surface of the resin plate member 30.
[0074]
Similar to the first embodiment, the collar 40 is inserted into the insertion holes 23 of the two protrusions 22 that are in contact with each other. That is, the collar 40 is provided so as to penetrate through the two projecting portions 22 fitted into one notch portion 33.
[0075]
In the shaft coupling 6 of the present embodiment, the connection bolt 13 of the first shaft 11 is inserted into two of the four collars 40, and the second shaft 14 is inserted into the remaining two, as in the first embodiment. The connecting bolt 16 is inserted. When the driver turns the steering wheel 5 to perform steering, the rotational force of the first shaft 11 is transmitted to the second shaft 14 via the shaft coupling 6.
[0076]
Here, the axial center of the first shaft 11 and the axial center of the second shaft 14 rarely coincide with each other, and the other axial center is often inclined with respect to one axial center. In such a case, the collar 40 through which the connecting bolts 13 and 16 of the first shaft 11 and the second shaft 14 are inserted is tilted. If the entire peripheral side surface of the protruding portion 22 is in close contact with the resin plate member 30, the rubber protruding portion 22 is crushed by the inclined collar 40 and the resin plate member 30, and the rubber member 20 is deformed. Changes its characteristics. That is, even if the load acting on the rubber member 20 is the same magnitude, the deformation amount of the rubber member 20 differs between the state in which the protrusion 22 is crushed and the state in which the protrusion 22 is not crushed.
[0077]
On the other hand, in the shaft coupling 6 of the present embodiment, a notch 33 is formed in the resin plate member 30, and the protruding portion 22 of the rubber member 20 is fitted into the notch 33. For this reason, even if the collar 40 penetrating the protruding portion 22 is slightly inclined to the outside of the shaft coupling 6, the portion outside the collar 40 in the protruding portion 22 is not crushed. Therefore, even when the axis of the second shaft 14 is inclined with respect to the axis of the first shaft 11, the characteristic change of the rubber member 20 due to the protrusion 22 being crushed by the inclined collar 40. Is suppressed.
[0078]
Further, in the shaft coupling 6 of the present embodiment, the spring constant of the rubber member 20 changes in two stages, as in the first embodiment. That is, when the collar 40 of the shaft joint 6 moves in the axial direction (vertical direction in FIG. 14) and the rubber member 20 is deformed, the displacement amount of the collar 40 is smaller than the depth d of the spot facing portion 32. The spring constant of the rubber member 20 changes depending on the case and the case where the amount of displacement of the collar 40 is greater than or equal to the depth d of the spot facing portion 32.
[0079]
-Effect of Embodiment 2-
According to the second embodiment, in addition to the effects obtained in the first embodiment, the following effects are exhibited.
[0080]
That is, according to the present embodiment, the rubber member 20 caused by the protrusion 22 of the rubber member 20 being crushed even when the axis of the first shaft 11 and the axis of the second shaft 14 are not aligned. The characteristic change of can be suppressed. As a result, it is possible to relax the constraint conditions when using the shaft coupling 6 and to improve the usability of the shaft coupling 6.
[0081]
Embodiment 3 of the Invention
The third embodiment of the present invention is obtained by changing the configuration of the resin plate member 30 in the shaft coupling 6 of the first embodiment. Here, the difference between the shaft coupling 6 of the present embodiment and the first embodiment will be described.
[0082]
As shown in FIGS. 15 and 16, in the resin plate member 30 of this embodiment, each through hole 31 is formed in an oval shape that is long in the radial direction of the resin plate member 30. Specifically, the through hole 31 is extended by the same amount to both the inside and the outside in the radial direction of the resin plate member 30 as compared with that of the first embodiment. Further, the width of the through hole 31 in the direction orthogonal to the radial direction of the resin plate member 30 is the same as the diameter of the through hole 31 in the first embodiment.
[0083]
In the resin plate member 30 of the present embodiment, a spot facing portion 32 is formed around the through hole 31. Further, the rubber member 20 in the shaft coupling 6 of the present embodiment is exactly the same as that of the first embodiment (see FIG. 3).
[0084]
The columnar protrusion 22 formed on the rubber member 20 is inserted into an oval through hole 31 formed on the resin plate member 30. At this time, the protruding portion 22 of the rubber member 20 is inserted into the through hole 31 in such a posture that the center thereof coincides with the center of the through hole 31. Accordingly, a gap 45 is formed between the protruding portion 22 and the resin plate member 30 in the radial direction of the resin plate member 30. On the other hand, the circumferential side surface of the protrusion 22 is in contact with the resin plate member 30 in the direction orthogonal to the radial direction of the resin plate member 30.
[0085]
Here, as described above, when the axis of the first shaft 11 and the axis of the second shaft 14 do not coincide with each other, the rubber protruding portion 22 is crushed by the inclined collar 40 and the rubber member 20 characteristics may change.
[0086]
On the other hand, in the shaft coupling 6 of the present embodiment, the through hole 31 of the resin plate member 30 is formed in an oval shape, and a gap 45 is formed between the protrusion 22 and the resin plate member 30. For this reason, even if the collar 40 penetrating the protrusion 22 is slightly inclined, the protrusion 22 is not crushed between the inclined collar 40 and the resin plate member 30. Therefore, according to the present embodiment, even when the axis of the second shaft 14 is inclined with respect to the axis of the first shaft 11, the rubber protrusion 22 is crushed by the inclined collar 40. The change in the characteristics of the rubber member 20 due to the above can be prevented. And the restriction condition at the time of using the shaft coupling 6 can be relieved, and the usability of the shaft coupling 6 can be improved.
[0087]
-Modification of Embodiment 3-
In the shaft coupling 6 of the present embodiment, the configuration of the rubber member 20 may be changed as follows.
[0088]
As shown in FIGS. 17 and 18, in the rubber member 20 of this modification, each protrusion 22 is formed in an oval column shape. Specifically, the projecting portion 22 is formed in an oval shape corresponding to the shape of the through hole 31 so that the entire peripheral side surface thereof is in contact with the resin plate member 30. The number and arrangement of the protrusions 22 are the same as those in the first embodiment.
[0089]
In the rubber member 20 of this modification, a pair of cavities 25 are formed in the protrusion 22. Specifically, in each protrusion 22, one cavity 25 is formed on each side of the insertion hole 23 in the longitudinal direction (that is, the radial direction of the flat plate 21). The cavity 25 is formed in a bottomed hole shape that opens on the end surface (upper surface in FIG. 17) of the protrusion 22. The cavity 25 extends in the width direction of the protrusion 22 and is slightly curved toward the end of the protrusion 22. The hollow portion 25 may be formed so as to penetrate the protruding portion 22 and the flat plate portion 21 of the rubber member 20.
[0090]
Thus, in this modification, a pair of hollow portions 25 are formed in the protruding portion 22. For this reason, even if the axial center of the first shaft 11 and the axial center of the second shaft 14 do not coincide with each other and the collar 40 is inclined, the hollow portion 25 of the projecting portion 22 is merely sluggish. The rubber part is not crushed. Therefore, even in this modification, even when the axis of the second shaft 14 is inclined with respect to the axis of the first shaft 11, the rubber protrusion 22 is crushed by the inclined collar 40. The characteristic change of the rubber member 20 resulting from the can be prevented.
[0091]
Embodiment 4 of the Invention
In the fourth embodiment of the present invention, the configuration of the rubber member 20 and the resin plate member 30 in the shaft coupling 6 of the first embodiment is changed. In the shaft coupling 6 of the present embodiment, a gap 46 is formed between the protrusion 22 and the resin plate member 30 over the entire circumference. Here, the difference between the shaft coupling 6 of the present embodiment and the first embodiment will be described.
[0092]
As shown in FIG. 19, the rubber member 20 of the present embodiment has a cross-shaped convex portion 26 formed therein. The convex portion 26 swells to the front surface side (upper surface side in the figure) of the flat plate portion 21 in the rubber member 20. Further, the convex portion 26 is arranged at the center of the flat plate portion 21 so that the center of the cross coincides with the center of the flat plate portion 21.
[0093]
As shown in FIG. 20, the resin plate member 30 of the present embodiment is formed with a cross-shaped recess 34 on both side surfaces (upper and lower surfaces in the figure). The concave portion 34 is formed to be one step lower than the side surface of the resin plate member 30, and the depth thereof is the same as the height of the convex portion 26. The recess 34 is disposed at the center of the resin plate member 30 so that the center of the cross coincides with the center of the resin plate member 30. Further, in the resin plate member 30 of the present embodiment, the inner diameter of the through hole 31 is larger than the outer diameter of the protruding portion 22 in the rubber member 20.
[0094]
As shown in FIGS. 21 and 22, when the resin plate member 30 is sandwiched between the two rubber members 20, the protrusion 22 of the rubber member 20 is inserted into the through hole 31 of the resin plate member 30 and at the same time, the rubber The convex portion 26 of the member 20 fits into the concave portion 34 of the resin plate member 30 exactly. Thus, when the convex part 26 fits into the concave part 34, the relative position of each rubber member 20 and the resin board member 30 is defined. Then, by defining the relative positions of the rubber member 20 and the resin plate member 30 with the convex portion 26 and the concave portion 34, a gap 46 having a constant width is provided between the protruding portion 22 inserted into the through hole 31 and the resin plate member 30. Is formed over the entire circumference of the protrusion 22.
[0095]
Here, when transmitting the rotational force with the connecting shaft 3, the collar 40 of the shaft coupling 6 is pushed by the connecting bolts 13 and 16 of the first shaft 11 and the second shaft 14, and the circumferential direction of the shaft coupling 6 (see FIG. 22 in the left-right direction). When the collar 40 is displaced in this way, the rubber member 20 is deformed accordingly. At this time, if the displacement amount of the collar 40 is smaller than the width δ of the gap 46, the protruding portion 22 of the rubber member 20 does not contact the resin plate member 30. On the other hand, when the amount of displacement of the collar 40 is equal to or greater than the width δ of the gap 46, the protrusion 22 of the rubber member 20 contacts the resin plate member 30.
[0096]
The spring constant of the rubber member 20 changes between the state in which the protruding portion 22 of the rubber member 20 is in contact with the resin plate member 30 and the state in which both are not in contact. That is, even when the load increases by the same amount, the increment of the displacement amount of the collar 40 in a state where the protruding portion 22 is in contact with the resin plate member 30 increases the collar 40 in a state where the protruding portion 22 is not in contact with the resin plate member 30. It becomes smaller than the increment of the displacement amount. Thus, the spring constant of the rubber member 20 changes in two stages depending on the amount of displacement of the collar 40.
[0097]
For example, when vibration with a small amplitude in the twisting direction of the connecting shaft 3 is transmitted to the collar 40, the rubber member 20 has a small spring constant, and this vibration is mitigated by deformation of the rubber member 20. On the other hand, when a large load is transmitted to the collar 40 by the driver's steering or the like, the spring constant of the rubber member 20 becomes large, and the rubber member 20 reliably supports this large load.
[0098]
As described above, when the axial center of the first shaft 11 and the axial center of the second shaft 14 do not coincide with each other, the rubber protruding portion 22 is crushed by the inclined collar 40 and the rubber member 20. There is a risk of changes in the characteristics. On the other hand, in the shaft coupling 6 of the present embodiment, the through hole 31 of the resin plate member 30 is formed to have a larger diameter than the protruding portion 22 of the rubber member 20, and a gap 46 is formed between the protruding portion 22 and the resin plate member 30. Is forming. For this reason, even if the collar 40 penetrating the protrusion 22 is slightly inclined, the protrusion 22 is not crushed between the inclined collar 40 and the resin plate member 30.
[0099]
-Effect of Embodiment 4-
According to the fourth embodiment, in addition to the effects obtained in the first embodiment, the following effects are exhibited.
[0100]
That is, according to the present embodiment, the spring constant of the rubber member 20 when the collar 40 is displaced in the circumferential direction of the shaft coupling 6 can be changed in two stages according to the displacement amount of the collar 40. For this reason, the design freedom at the time of designing the shaft coupling 6 can be increased, and the characteristics of the shaft coupling 6 can be accurately set according to the application.
[0101]
Further, according to the present embodiment, even when the axis of the second shaft 14 is inclined with respect to the axis of the first shaft 11, the rubber protrusion 22 is crushed by the inclined collar 40. The change in the characteristics of the rubber member 20 due to the above can be prevented. And the restriction condition at the time of using the shaft coupling 6 can be relieved, and the usability of the shaft coupling 6 can be improved.
[0102]
-Modification of Embodiment 4-
In the shaft coupling 6 of the present embodiment, the relative positions of the rubber member 20 and the resin plate member 30 are determined by the convex portion 26 of the rubber member 20 and the concave portion 34 of the resin plate member 30. It is good also as such a structure.
[0103]
A first modification will be described. As shown in FIG. 23, in the shaft coupling 6 of this modification, a positioning protrusion 27 is formed on the protrusion 22 of the rubber member 20. In addition, in the rubber member 20 of this modification, the convex part 26 is not formed. Moreover, in the resin plate member 30 of this modification, the recessed part 34 is not formed.
[0104]
The positioning protrusion 27 is formed so as to protrude from the peripheral side surface of the protrusion 22 near the protrusion. The positioning protrusion 27 is formed in a bowl shape over the entire circumference of the protruding portion 22, and the outer diameter thereof is the same as the inner diameter of the through hole 31 of the resin plate member 30. However, the positioning protrusion 27 does not necessarily have to be formed over the entire circumference of the protrusion 22. For example, four positioning protrusions 27 may be formed every 90 ° in the circumferential direction of the protrusion 22.
[0105]
In a state in which the protruding portion 22 is inserted into the through hole 31, the positioning projection 27 contacts the inner surface of the through hole 31, and the relative position between the rubber member 20 and the resin plate member 30 is determined. Also in this modified example, a gap 46 is formed over the entire circumference of the protruding portion 22 between the protruding portion 22 inserted into the through hole 31 and the resin plate member 30.
[0106]
A second modification will be described. Although not shown, a plurality of pin-shaped protrusions are formed on the rubber member 20 in the shaft coupling 6 of this modification. The resin plate member 30 has a plurality of pin holes corresponding to the pin-like protrusions of the rubber member 20. And the relative position of the rubber member 20 and the resin board member 30 is defined by inserting each pin-shaped protrusion of the rubber member 20 in the pin hole of the corresponding resin board member 30, respectively. Also in this modification, a gap 46 is formed over the entire circumference of the protrusion 22 between the protrusion 22 inserted into the through hole 31 and the resin plate member 30.
[0107]
Other Embodiments of the Invention
The shaft coupling 6 of each of the above embodiments may have the following configuration. Here, what applied this modification to the shaft coupling 6 of the said Embodiment 3 is demonstrated.
[0108]
As shown in FIG. 24, the resin plate member 30 of this modification includes engagement protrusions 35 protruding from both side surfaces of the resin plate member 30. One engagement protrusion 35 is formed at the center of each side surface of the resin plate member 30. Further, the engaging protrusion 35 is constituted by a shaft portion 36 and a large diameter portion 37. The shaft portion 36 is formed in a short columnar shape extending from the side surface of the resin plate member 30. The large diameter portion 37 is formed at the protruding end of the shaft portion 36, and the diameter thereof is larger than the diameter of the shaft portion 36.
[0109]
On the other hand, the rubber member 20 of this modification includes an engagement hole 28 into which the engagement protrusion 35 is inserted. The engagement hole 28 is formed at the center of the flat plate portion 21. The diameter of the engagement hole 28 is slightly larger than the shaft portion 36 of the engagement protrusion 35 and smaller than the large diameter portion 37.
[0110]
When the engagement protrusion 35 of the resin plate member 30 is pushed into the engagement hole 28 of the rubber member 20, the flat plate portion 21 of the rubber member 20 is caught by the large diameter portion 37 of the engagement protrusion 35. Then, the engagement protrusion 35 is hooked on the rubber member 20, whereby the pair of rubber members 20 are held by the resin plate member 30.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a steering device according to a first embodiment.
FIG. 2 is a perspective view showing a shaft coupling and a main part of a connecting shaft in the first embodiment.
3 is a perspective view showing a rubber member in Embodiment 1. FIG.
4 is a perspective view showing a resin plate member in Embodiment 1. FIG.
FIG. 5 is a plan view showing a shaft coupling in the first embodiment.
6 is a cross-sectional view of the shaft coupling showing the AA cross section in FIG. 5. FIG.
7 is a cross-sectional view of a shaft coupling showing a BB cross section in FIG. 5. FIG.
FIG. 8 is a perspective view showing a rubber member in a modification of the first embodiment.
9 is a cross-sectional view corresponding to FIG. 6 showing a cross-section of a shaft coupling in a modification of the first embodiment.
10 is a perspective view showing a shaft coupling in Embodiment 2. FIG.
FIG. 11 is a perspective view showing a rubber member in the second embodiment.
12 is a perspective view showing a resin plate member in Embodiment 2. FIG.
13 is a plan view showing a shaft coupling in Embodiment 2. FIG.
14 is a cross-sectional view of a shaft coupling showing a CC cross section in FIG. 13; FIG.
15 is a plan view showing a shaft coupling in Embodiment 3. FIG.
16 is a cross-sectional view of a shaft coupling showing a DD cross section in FIG. 15;
FIG. 17 is a perspective view showing a rubber member in a modified example of the third embodiment.
18 is a cross-sectional view corresponding to FIG. 16, showing a cross section of a shaft coupling in a modification of the third embodiment.
19 is a perspective view showing a rubber member in Embodiment 4. FIG.
20 is a perspective view showing a resin plate member in Embodiment 4. FIG.
FIG. 21 is a plan view showing a shaft coupling according to a fourth embodiment.
22 is a cross-sectional view of the shaft coupling showing the EE cross section in FIG. 21. FIG.
23 is a cross-sectional view corresponding to FIG. 22 and showing a cross section of a shaft coupling in a modification of the fourth embodiment.
FIG. 24 is a cross-sectional view corresponding to FIG. 16 and showing a cross section of a shaft coupling in another embodiment.
FIG. 25 is a plan view showing a conventional shaft coupling.
[Explanation of symbols]
6 shaft coupling
11 First shaft (drive shaft)
13 Connecting bolt (bar-shaped protrusion)
14 Second shaft (driven shaft)
16 Connecting bolt (bar-shaped protrusion)
20 Rubber member (rubber-like elastic member)
21 Flat plate
22 Protrusion
24 bulge
25 Cavity
30 Resin plate members
31 Through hole
33 Notch
40 color (tubular member)
45 Clearance
46 Clearance

Claims (9)

駆動軸の軸端部及び被動軸の軸端部に複数ずつ設けられた棒状突起部に連結されて駆動軸の回転を被動軸へ伝達する軸継手であって、
平板状に形成された平板部と該平板部の前面側に一体形成された複数の突出部とをそれぞれが有すると共に、それぞれの突出部が互いに当接するように向かい合って配置される一対のゴム状弾性部材と、
互いに向かい合うゴム状弾性部材の平板部によって挟み込まれる樹脂板部材と、
互いに当接し合う2つの上記突出部を貫通するように設けられて駆動軸又は被動軸の棒状突起部が挿通される管状部材とを備え、
上記ゴム状弾性部材と樹脂板部材と管状部材とが互いに非接着状態で組み合わされている軸継手。
A shaft coupling connected to a plurality of rod-shaped protrusions provided at a plurality of shaft ends of the drive shaft and a shaft end of the driven shaft to transmit the rotation of the drive shaft to the driven shaft,
A pair of rubber-like members each having a flat plate portion formed in a flat plate shape and a plurality of protrusions integrally formed on the front surface side of the flat plate portion and disposed so as to face each other so that the respective protrusion portions are in contact with each other An elastic member;
A resin plate member sandwiched between flat plate portions of rubber-like elastic members facing each other;
A tubular member provided so as to pass through the two projecting portions that come into contact with each other, and through which the rod-like projection portion of the drive shaft or the driven shaft is inserted,
A shaft coupling in which the rubber-like elastic member, the resin plate member, and the tubular member are combined in a non-adhered state.
請求項1記載の軸継手において、
樹脂板部材には、該樹脂板部材の周側面から中心に向かって延びる切欠き部が複数形成される一方、
向かい合う2つの突出部は、上記切欠き部にはめ込まれた状態で互いに当接している軸継手。
The shaft coupling according to claim 1,
While the resin plate member is formed with a plurality of notches extending from the peripheral side surface of the resin plate member toward the center,
The two joints facing each other are shaft couplings that are in contact with each other in a state of being fitted into the notch.
請求項1記載の軸継手において、
樹脂板部材には、該樹脂板部材を板厚方向に貫通する貫通孔が複数形成される一方、
向かい合う2つの突出部は、上記貫通孔に挿入された状態で互いに当接している軸継手。
The shaft coupling according to claim 1,
The resin plate member is formed with a plurality of through holes penetrating the resin plate member in the thickness direction,
The two joints facing each other are shaft couplings that are in contact with each other while being inserted into the through hole.
請求項2記載の軸継手において、
樹脂板部材は、その両側面における切欠き部の周囲が座ぐり状に一段低く形成されている軸継手。
The shaft coupling according to claim 2,
The resin plate member is a shaft coupling in which the periphery of the notch portion on both side surfaces thereof is formed in a counterbore shape one step lower.
請求項3記載の軸継手において、
樹脂板部材は、その両側面における貫通孔の周囲が座ぐり状に一段低く形成されている軸継手。
In the shaft coupling according to claim 3,
The resin plate member is a shaft coupling in which the periphery of the through-holes on both side surfaces thereof is formed to be one step lower in a spot shape.
請求項1,2又は3記載の軸継手において、
ゴム状弾性部材には、平板部における突出部の周囲と樹脂板部材との間に隙間が形成されるように該平板部の前面側へ盛り上がって樹脂板部材に当接する膨出部が形成されている軸継手。
In the shaft coupling according to claim 1, 2, or 3,
The rubber-like elastic member is formed with a bulging portion that rises to the front side of the flat plate portion and contacts the resin plate member so that a gap is formed between the periphery of the protruding portion of the flat plate portion and the resin plate member. Shaft coupling.
請求項1,2又は3記載の軸継手において、
複数設けられた管状部材が一つのピッチ円上に配置される一方、
樹脂板部材とゴム状弾性部材の相対的な位置は、少なくとも上記ピッチ円の周方向において突出部と樹脂板部材の間に隙間が形成されるように定められている軸継手。
In the shaft coupling according to claim 1, 2, or 3,
While a plurality of provided tubular members are arranged on one pitch circle,
A shaft coupling in which a relative position between the resin plate member and the rubber-like elastic member is determined so that a gap is formed between the protruding portion and the resin plate member in at least the circumferential direction of the pitch circle.
請求項1,2又は3記載の軸継手において、
複数設けられた管状部材が一つのピッチ円上に配置される一方、
樹脂板部材とゴム状弾性部材の相対的な位置は、少なくとも上記ピッチ円の半径方向において突出部と樹脂板部材の間に隙間が形成されるように定められている軸継手。
In the shaft coupling according to claim 1, 2, or 3,
While a plurality of provided tubular members are arranged on one pitch circle,
A shaft coupling in which a relative position between the resin plate member and the rubber-like elastic member is determined such that a gap is formed between the protruding portion and the resin plate member in at least the radial direction of the pitch circle.
請求項3記載の軸継手において、
複数設けられた管状部材が一つのピッチ円上に配置され、
ゴム状弾性部材の突出部は、樹脂板部材の貫通孔に挿入された状態で該突起部の周側面全体が樹脂板部材と密着するような形状に形成される一方、
上記突起部には、上記ピッチ円の半径方向における管状部材の両側に空洞部が一つずつ形成されている軸継手。
In the shaft coupling according to claim 3,
A plurality of provided tubular members are arranged on one pitch circle,
While the protruding portion of the rubber-like elastic member is formed in a shape such that the entire peripheral side surface of the protruding portion is in close contact with the resin plate member while being inserted into the through hole of the resin plate member,
A shaft coupling in which a hollow portion is formed on each side of the tubular member in the radial direction of the pitch circle on the protrusion.
JP2002067852A 2002-03-13 2002-03-13 Shaft coupling Expired - Fee Related JP4020666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002067852A JP4020666B2 (en) 2002-03-13 2002-03-13 Shaft coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002067852A JP4020666B2 (en) 2002-03-13 2002-03-13 Shaft coupling

Publications (2)

Publication Number Publication Date
JP2003269483A JP2003269483A (en) 2003-09-25
JP4020666B2 true JP4020666B2 (en) 2007-12-12

Family

ID=29199100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002067852A Expired - Fee Related JP4020666B2 (en) 2002-03-13 2002-03-13 Shaft coupling

Country Status (1)

Country Link
JP (1) JP4020666B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2993964A1 (en) * 2017-02-06 2018-08-06 Hunter Douglas Inc. Methods and apparatus to reduce noise in motor assemblies

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118952U (en) * 1978-02-09 1979-08-20
JP3398160B2 (en) * 1991-11-16 2003-04-21 株式会社ブリヂストン Shaft coupling
JPH06101720A (en) * 1992-09-18 1994-04-12 Bridgestone Corp Shaft coupling
JPH06185538A (en) * 1992-12-15 1994-07-05 Bridgestone Corp Shaft coupling
JPH07224855A (en) * 1994-02-07 1995-08-22 Bridgestone Corp Coupling
JP2696307B2 (en) * 1994-07-08 1998-01-14 株式会社ブリヂストン Shaft coupling
JPH09264330A (en) * 1996-03-28 1997-10-07 Nippon Piston Ring Co Ltd Elastic flexible shaft coupling
JP3570230B2 (en) * 1998-07-24 2004-09-29 トヨタ自動車株式会社 Radiator lower support
JP2002046407A (en) * 2000-08-07 2002-02-12 Ohtsu Tire & Rubber Co Ltd :The Agricultural wheel

Also Published As

Publication number Publication date
JP2003269483A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
US9434405B2 (en) Electric power steering device and shaft coupler used therefor
JP5728457B2 (en) Flexible shaft coupling and manufacturing method thereof
JP4903710B2 (en) Flexible bushing device
US7258615B2 (en) Elastic shaft joint
JP2008249113A (en) Torque rod and its manufacturing method
JP3772792B2 (en) Anti-vibration bush
CN109416097B (en) Adapter for isolated mount design
JP4020666B2 (en) Shaft coupling
JP2002061665A (en) Power transmission shaft for vehicle
JPH07224855A (en) Coupling
JP2000193003A (en) Engine roll mount for automobile
JP4046073B2 (en) Torque rod
US6554713B2 (en) Coupling for coupling two shafts
JP4028165B2 (en) Mount insulator
JP3952172B2 (en) Shaft coupling for steering shaft
JPH07238981A (en) Liquid sealed bush
JP3883380B2 (en) Vehicle shaft coupling
JP3628746B2 (en) Elastic shaft coupling
JPS6340653Y2 (en)
JP2001012490A (en) Yoke for universal joint
JP2007232189A (en) Vibration-proof bush
JPH0893782A (en) Coupling
JP4624728B2 (en) Elastic shaft coupling
JP2008128259A (en) Elastic coupling and its manufacturing process
JPH0587337U (en) Flexible joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees