JP4020117B2 - Exhaust gas recirculation control device for diesel engine - Google Patents

Exhaust gas recirculation control device for diesel engine Download PDF

Info

Publication number
JP4020117B2
JP4020117B2 JP2004322407A JP2004322407A JP4020117B2 JP 4020117 B2 JP4020117 B2 JP 4020117B2 JP 2004322407 A JP2004322407 A JP 2004322407A JP 2004322407 A JP2004322407 A JP 2004322407A JP 4020117 B2 JP4020117 B2 JP 4020117B2
Authority
JP
Japan
Prior art keywords
exhaust gas
gas recirculation
air flow
flow rate
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004322407A
Other languages
Japanese (ja)
Other versions
JP2005048775A (en
Inventor
英二 相吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004322407A priority Critical patent/JP4020117B2/en
Publication of JP2005048775A publication Critical patent/JP2005048775A/en
Application granted granted Critical
Publication of JP4020117B2 publication Critical patent/JP4020117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、ディーゼル機関の排気還流 (以下EGRという) 制御装置に関する。   The present invention relates to an exhaust gas recirculation (hereinafter referred to as EGR) control device for a diesel engine.

従来の、ディーゼル機関のEGR制御装置として例えば特許文献1に開示されるようなものがある。このものでは、EGR制御弁の開度を実測値と目標値とが一致するように制御することにより、弁体へのカーボン付着等により制御開度が減少することを抑制している(特許文献1参照)。
特開昭57−44760号公報
As a conventional EGR control device for a diesel engine, there is one disclosed in, for example, Patent Document 1. In this system, the opening degree of the EGR control valve is controlled so that the actual measurement value and the target value coincide with each other, thereby suppressing the control opening degree from decreasing due to carbon adhesion to the valve body (Patent Literature). 1).
Japanese Unexamined Patent Publication No. 57-44760

しかしながら、一般に、機関毎に同一運転条件においても、吸気系のバラツキにより吸入空気流量にバラツキは生じるものであり、また吸気通路の開口面積を多段に変化させる吸気絞り弁の開度にもバラツキを生じ、EGR制御中の吸入空気流量にもバラツキは生じる。   However, generally, even under the same operating conditions for each engine, the intake air flow varies due to variations in the intake system, and the opening of the intake throttle valve that changes the opening area of the intake passage in multiple stages also varies. As a result, the intake air flow rate during EGR control also varies.

このため、予め設定された目標値のまま制御を行うと高負荷側でスモーク排出特性が悪化したり、EGR制御中も適正なEGR量とはならず、NOx低減効果が薄れたり、スモーク排出特性の悪化を招いたりするという問題があった。   For this reason, if the control is performed with the preset target value, the smoke discharge characteristic deteriorates on the high load side, the EGR amount is not appropriate even during EGR control, the NOx reduction effect is reduced, and the smoke discharge characteristic is reduced. There was a problem of inviting deterioration.

本発明は、このような従来の問題点に鑑みなされたもので、前記バラツキに応じてEGR制御中の各種制御量を修正することにより、適正なEGR制御が行われるようにしたディーゼル機関のEGR制御装置を提供することを目的とする。   The present invention has been made in view of such a conventional problem. EGR of a diesel engine in which proper EGR control is performed by correcting various control amounts during EGR control according to the variation. An object is to provide a control device.

このため、請求項1に係る発明は図1に示すように、
ディーゼル機関の排気通路から分岐して吸気通路に合流する排気還流通路と、該排気還流通路に介装された排気還流制御弁と、前記排気還流通路の合流部より上流側の吸気通路に設けられ通路開口面積を制御する通路開口面積制御手段と、前記排気還流制御弁の開度を機関運転状態に応じて制御する排気還流制御弁制御手段と、前記吸気通路に設けられ吸入空気流量を検出する吸入空気流量検出手段と、を備えたディーゼル機関の排気還流制御装置において、
機関への燃料供給が停止される運転状態で、該運転状態に基づいて前記通路開口面積制御手段により吸気通路の開口面積が所定値に制御されるときに前記吸入空気流量検出手段によって検出された吸入空気流量と、当該条件時の機関運転状態に基づいて設定される目標吸入空気流量と、を比較する比較手段と、
前記目標吸入空気流量が検出された吸入空気流量より大きいときは、排気還流制御弁の開度を減少し、目標吸入空気流量が検出された吸入空気流量より小さいときは、排気還流制御弁の開度を増大するように、排気還流制御弁の開度の制御量を修正する修正量を設定して記憶する制御量修正量設定手段と、
を含んで構成したことを特徴とする。
For this reason, as shown in FIG.
An exhaust gas recirculation passage branched from the exhaust passage of the diesel engine and joined to the intake air passage, an exhaust gas recirculation control valve interposed in the exhaust gas recirculation passage, and an intake air passage upstream of the junction of the exhaust gas recirculation passage A passage opening area control means for controlling the passage opening area, an exhaust gas recirculation control valve control means for controlling the opening degree of the exhaust gas recirculation control valve according to the engine operating state, and an intake air flow rate provided in the intake passage. In an exhaust gas recirculation control device for a diesel engine comprising an intake air flow rate detection means,
Detected by the intake air flow rate detecting means when the opening area of the intake passage is controlled to a predetermined value by the passage opening area control means based on the operating state in the operating state where fuel supply to the engine is stopped A comparison means for comparing the intake air flow rate with a target intake air flow rate set based on the engine operating state under the conditions;
When the target intake air flow rate is larger than the detected intake air flow rate, the opening degree of the exhaust gas recirculation control valve is decreased, and when the target intake air flow rate is smaller than the detected intake air flow rate, the exhaust gas recirculation control valve is opened. A control amount correction amount setting means for setting and storing a correction amount for correcting the control amount of the opening degree of the exhaust gas recirculation control valve so as to increase the degree ,
It is characterized by including.

請求項1の発明によると、燃料供給が停止されるときに吸気通路開口面積が所定値に制御され、そのときの機関運転状態に基づいて設定される目標吸入空気流量と実際の吸入空気流量とが比較され、目標吸入空気流量が検出された吸入空気流量より大きいときは、排気還流制御弁の開度を減少し、目標吸入空気流量が検出された吸入空気流量より小さいときは、排気還流制御弁の開度を増大するように、排気還流制御弁の開度の制御量を修正する修正量を設定し、この修正量を用いて該制御量を修正することによって、吸入空気流量の差による影響を低減することができる。 According to the first aspect of the invention, when the fuel supply is stopped, the intake passage opening area is controlled to a predetermined value, and the target intake air flow rate and the actual intake air flow rate set based on the engine operating state at that time are When the target intake air flow rate is larger than the detected intake air flow rate, the opening degree of the exhaust gas recirculation control valve is decreased, and when the target intake air flow rate is smaller than the detected intake air flow rate, the exhaust gas recirculation control By setting a correction amount for correcting the control amount of the exhaust gas recirculation control valve so as to increase the valve opening, and correcting the control amount using this correction amount, The influence can be reduced.

以下に本発明の実施例を図に基づいて説明する。
実施形態の構成を示す図1において、機関本体100 に接続された吸気通路1には吸入空気流量を検出するエアフローメータ23と吸気絞り弁3が設けられている。また、同じく機関本体100 に接続された排気通路4から分岐して前記吸気絞り弁3下流の吸気通路1に合流するEGR通路5が接続され、該EGR通路5にはEGR制御弁6が介装されている。そして、EGR量の制御は、予めエンジンコントロールユニット7内に記憶してあるエアフローメータ出力となるように前記吸気絞り弁3及びEGR制御弁6の開度を調整して行われる。
Embodiments of the present invention will be described below with reference to the drawings.
In FIG. 1 showing the configuration of one embodiment, an air flow meter 23 and an intake throttle valve 3 for detecting an intake air flow rate are provided in an intake passage 1 connected to an engine body 100. Similarly, an EGR passage 5 branched from the exhaust passage 4 connected to the engine body 100 and joined to the intake passage 1 downstream of the intake throttle valve 3 is connected, and an EGR control valve 6 is interposed in the EGR passage 5. Has been. The EGR amount is controlled by adjusting the opening of the intake throttle valve 3 and the EGR control valve 6 so that the air flow meter output stored in advance in the engine control unit 7 is obtained.

前記吸気絞り弁3の開度は、図示しないバキュームポンプで発生した負圧を負圧通路9,10,11を介して第1の電磁弁12及び第2の電磁弁13で負圧制御を行うことにより、全開,半開,全閉の3段階に切換制御される。
具体的には、第1の電磁弁12,第2の電磁弁13共に通電がOFFの場合は吸気絞り弁3の圧力室3Aには大気圧が導入されて吸気絞り弁3は全開となり、第1の電磁弁12をON,第2の電磁弁13をOFFの場合はバキュームポンプからの負圧を大気で希釈した圧力が圧力室3Aに導入されて、吸気絞り弁3は予め設定された半開位置にセットされ、第1の電磁弁12,第2の電磁弁13共にONの場合にはバキュームポンプからの負圧がそのまま圧力室3Aに導入されて、吸気絞り弁3は予め設定された全開位置にセットされる。
The opening degree of the intake throttle valve 3 is such that negative pressure generated by a vacuum pump (not shown) is negatively controlled by the first solenoid valve 12 and the second solenoid valve 13 via the negative pressure passages 9, 10, 11. Thus, switching control is performed in three stages of fully open, half open, and fully closed.
Specifically, when the energization of both the first solenoid valve 12 and the second solenoid valve 13 is OFF, the atmospheric pressure is introduced into the pressure chamber 3A of the intake throttle valve 3 and the intake throttle valve 3 is fully opened. When the first solenoid valve 12 is turned on and the second solenoid valve 13 is turned off, the pressure obtained by diluting the negative pressure from the vacuum pump in the atmosphere is introduced into the pressure chamber 3A, and the intake throttle valve 3 is opened halfway. When the first solenoid valve 12 and the second solenoid valve 13 are both ON, the negative pressure from the vacuum pump is directly introduced into the pressure chamber 3A, and the intake throttle valve 3 is fully opened. Set to position.

一方、前記EGR制御弁5には開度 (弁体のリフト量) を検出するリフトセンサ24が装着され、EGR制御弁5の開度は、バキュームポンプで発生した負圧を負圧通路9,14を介してデューティ制御弁8に送り、デューティ比を増減することによって大気を適宜に導入して信号負圧を希釈することによって、前記リフトセンサ15で実際の開度を検出しつつ予めコントロールユニット7に記憶してある開度となるようにフィードバック制御する。   On the other hand, the EGR control valve 5 is equipped with a lift sensor 24 for detecting the opening degree (the lift amount of the valve body), and the opening degree of the EGR control valve 5 is set so that the negative pressure generated by the vacuum pump is reduced to the negative pressure passage 9, 14 is sent to the duty control valve 8 through 14 to increase or decrease the duty ratio, thereby appropriately introducing the atmosphere to dilute the signal negative pressure, thereby detecting the actual opening degree with the lift sensor 15 in advance. The feedback control is performed so that the opening degree stored in FIG.

これら吸気絞り弁3及びEGR制御弁6の開度制御は、コントロールユニット7が機関運転状態例えば機関回転速度と負荷と冷却水温度等に基づいて前記第1の電磁弁12,第2の電磁弁13及びデューティ制御弁8を制御することにより行われる。   The opening control of the intake throttle valve 3 and the EGR control valve 6 is performed when the control unit 7 controls the first solenoid valve 12 and the second solenoid valve based on the engine operating state, for example, the engine rotational speed, the load, and the coolant temperature. 13 and the duty control valve 8 are controlled.

図3はコントロールユニット7の詳細を示すブロック図である。CPU71、ROM72、RAM73、入出力回路 (以下I/Oと記す) 74とから構成されている。I/O74には機関回転速度Nを検出する回転速度センサ21、アクセル開度 (アクセルペダル踏込み量) を検出するアクセル開度センサ22、吸入空気流量を検出するエアフローメータ23、前記EGR制御弁5の開度を検出するリフトセンサ24、冷却水温度を検出する水温センサ25、燃料温度を検出する燃温センサ26等の出力が入力される。CPU71は、ROM72に記憶されたプログラムに従ってI/O74からの情報を取り込んで演算処理し、燃料噴射量,燃料噴射時期を制御する燃料噴射ポンプ31、前記デューティ制御弁8、第1の電磁弁12、第2の電磁弁13を制御するための制御量であるデータをI/O74にセットし、これにより、燃料噴射量,燃料噴射時期,EGR量及び吸入空気流量が制御される。尚、RAM73はCPU71の演算処理に関連したデータを一時退避するために使用される。   FIG. 3 is a block diagram showing details of the control unit 7. The CPU 71, ROM 72, RAM 73, and input / output circuit (hereinafter referred to as I / O) 74 are included. The I / O 74 includes a rotational speed sensor 21 that detects an engine rotational speed N, an accelerator opening sensor 22 that detects an accelerator opening (accelerator pedal depression amount), an air flow meter 23 that detects an intake air flow rate, and the EGR control valve 5. Outputs such as a lift sensor 24 for detecting the opening degree, a water temperature sensor 25 for detecting the cooling water temperature, and a fuel temperature sensor 26 for detecting the fuel temperature are input. The CPU 71 fetches information from the I / O 74 according to a program stored in the ROM 72 and performs arithmetic processing to control the fuel injection amount and fuel injection timing, the fuel injection pump 31, the duty control valve 8, and the first solenoid valve 12. Then, data that is a control amount for controlling the second electromagnetic valve 13 is set in the I / O 74, whereby the fuel injection amount, the fuel injection timing, the EGR amount, and the intake air flow rate are controlled. The RAM 73 is used to temporarily save data related to the arithmetic processing of the CPU 71.

前記各制御の実施例を図4及び図5のフローチャートに従って説明する。ここで、本発明では、吸気系の各種バラツキに応じて燃料噴射量や吸気絞り弁3及びEGR制御弁5の開度目標値を修正するようになっている。
ステップ (図ではSと記す。以下同様) 310では、機関回転速度Ne,アクセル開度Acc,エアフローメータ出力Va,EGR制御弁開度Le,冷却水温度Tw,燃料温度Tf等の運転条件の諸データの読み込みを行う。
An example of each control will be described with reference to the flowcharts of FIGS. Here, in the present invention, the fuel injection amount and the target opening values of the intake throttle valve 3 and the EGR control valve 5 are corrected according to various variations in the intake system.
Step (denoted as S in the figure. The same applies hereinafter) In 310, various operating conditions such as engine speed Ne, accelerator opening Acc, air flow meter output Va, EGR control valve opening Le, cooling water temperature Tw, fuel temperature Tf, etc. Read data.

次に、ステップ320では、機関回転速度Neとアクセル開度Accとを基に、ROM72に記憶させておいた図6〜図11に示す特性に基づいて基本噴射量QN,基本噴射時期ITN,基本空気流量GaN,基本EGR弁開度LeN又は基本デューティ比DpN,吸気絞り弁制御用の電磁弁制御信号Vs1,Vs2を算出する。   Next, at step 320, based on the characteristics shown in FIGS. 6 to 11 stored in the ROM 72 based on the engine speed Ne and the accelerator opening Acc, the basic injection amount QN, the basic injection timing ITN, Air flow rate GaN, basic EGR valve opening degree LeN or basic duty ratio DpN, and intake valve control signals Vs1, Vs2 are calculated.

次に、ステップ330で、ステップ310で読み込んだアクセル開度Accの値を基に、アクセル全開即ち全負荷状態であるかどうかを判定する。もし、アクセル全開でなければ、後述するステップ410以降へ進む。そして、ステップ330でアクセル全開であると判定された場合には、ステップ340へ進み、前記ステップ320で読み込んだ基本空気流量 (目標空気流量) GaNと実際に検出された空気流量Gaとの差 (GaN−Ga) であるΔGaを算出する。
ステップ350では、ステップ340で算出されたΔGaの値を基に、例えばROM72に記憶させておいた図12〜図17の特性に基づいて、補正燃料噴射量ΔQ,補正空気流量ΔGae,補正EGR弁開度ΔLe又は補正デューティ比ΔDpを算出する。
Next, at step 330, based on the value of the accelerator opening Acc read at step 310, it is determined whether or not the accelerator is fully opened, that is, is in a full load state. If the accelerator is not fully opened, the process proceeds to step 410 and later described. If it is determined in step 330 that the accelerator is fully open, the process proceeds to step 340, and the difference between the basic air flow rate (target air flow rate) GaN read in step 320 and the actually detected air flow rate Ga ( ΔGa which is GaN-Ga) is calculated.
In step 350, based on the value of ΔGa calculated in step 340, for example, based on the characteristics of FIGS. 12 to 17 stored in the ROM 72, the corrected fuel injection amount ΔQ, the corrected air flow rate ΔGae, the corrected EGR valve The opening degree ΔLe or the correction duty ratio ΔDp is calculated.

ここで、例えばΔGaが正の値で大きいとき、つまり目標空気流量GaNに対して実空気流量Gaの不足量が大きいほど空気不足によりカーボン排出量が増大しやすくなるので、燃料噴射量Qを減少すべく補正燃料噴射量ΔQが負の値で大きく設定され、同様の理由で補正空気流量ΔGaeは空気流量を増大させるべく正の値で大きく設定され、補正EGR弁開度ΔLe,補正デューティ比ΔDpについては空気不足により過剰となるEGR率を減少補正すべく負の値で大きく設定されている。逆に実空気流量Gaの方が目標空気流量GaNより大きい場合は、逆方向の補正がなされるように設定されている。   Here, for example, when ΔGa is a positive value and large, that is, the larger the shortage amount of the actual air flow rate Ga with respect to the target air flow rate GaN, the more easily the carbon discharge amount increases due to the shortage of air. Therefore, the corrected fuel injection amount ΔQ is set to a large negative value, and for the same reason, the corrected air flow rate ΔGae is set to a large positive value to increase the air flow rate, and the corrected EGR valve opening ΔLe and the corrected duty ratio ΔDp are set. Is set to a large negative value in order to reduce and correct the excess EGR rate due to air shortage. On the contrary, when the actual air flow rate Ga is larger than the target air flow rate GaN, it is set so that correction in the reverse direction is performed.

最後に、ステップ360で補正燃料噴射量ΔQ,補正空気流量ΔGae,補正EGR弁開度ΔLe及び補正デューティ比ΔDpを所定のアドレスに格納して終了する。
一方、前記ステップ330でアクセル全開でないと判定された場合は、ステップ430へ進み、ステップ310で読み込んだ機関回転速度Ne及びアクセル開度Accの値を基に、エンジンブレーキ作動時等の燃料カット状態であるか否かを判定する。燃料カット状態でなければ、本ルーチンを終了する。
Finally, in step 360, the corrected fuel injection amount ΔQ, the corrected air flow rate ΔGae, the corrected EGR valve opening degree ΔLe, and the corrected duty ratio ΔDp are stored at predetermined addresses, and the process is terminated.
On the other hand, if it is determined in step 330 that the accelerator is not fully opened, the routine proceeds to step 430, where the fuel cut state such as when the engine brake is operated is based on the values of the engine speed Ne and the accelerator opening Acc read in step 310. It is determined whether or not. If it is not in the fuel cut state, this routine is terminated.

ステップ430で燃料カット状態と判定された場合は、ステップ440へ進み例えばアクセル開度Acc=15%時の機関回転速度Nに応じた吸気絞り弁開度となるように電磁弁制御信号Vs1,Vs2を出力し、吸気絞り弁開度を制御する。次に、ステップ450で、再度エアフローメータ出力Vaを読み込む。
次に、ステップ460で、ROM72に記憶させておいた空気流量の目標値GaNと実際の空気流量Gaとの差ΔGaを算出する。
If it is determined in step 430 that the fuel is cut, the process proceeds to step 440. For example, the solenoid valve control signals Vs1, Vs2 are set so that the intake throttle valve opening corresponds to the engine speed N when the accelerator opening Acc = 15%. To control the intake throttle valve opening. Next, in step 450, the air flow meter output Va is read again.
Next, in step 460, a difference ΔGa between the target value GaN of the air flow rate stored in the ROM 72 and the actual air flow rate Ga is calculated.

次にステップ470で、ステップ460で算出されたΔGaの値を基に、図16,図17に示す特性に基づいて補正EGR弁開度ΔLe又は補正デューティ比ΔDpを算出する。この特性は、吸気絞り弁3が絞られるので図14,図15に示した特性に比較してΔGa (絶対値) に対する補正量を大きく設定してある。
最後に、ステップ480で補正EGR弁開度ΔLe又は補正デューティ比ΔDpを所定のアドレスに格納して本ルーチンを終了する。
Next, in step 470, based on the value of ΔGa calculated in step 460, the corrected EGR valve opening degree ΔLe or the corrected duty ratio ΔDp is calculated based on the characteristics shown in FIGS. In this characteristic, since the intake throttle valve 3 is throttled, a correction amount for ΔGa (absolute value) is set larger than the characteristics shown in FIGS.
Finally, in step 480, the corrected EGR valve opening degree ΔLe or the corrected duty ratio ΔDp is stored at a predetermined address, and this routine is terminated.

このようにすれば、吸入空気流量や吸気絞り弁開度等吸気系のバラツキに対して燃料噴射量,吸入空気流量,EGR制御弁開度を補正してスモーク排出特性,EGRによるNOx低減性能を良好に維持することができる。 In this way, the fuel injection amount, the intake air flow rate, and the EGR control valve opening are corrected for variations in the intake system such as the intake air flow rate and intake throttle valve opening, so that the smoke emission characteristics and the NOx reduction performance by EGR can be achieved. It can be maintained well .

本発明の構成・機能を示すブロック図。The block diagram which shows the structure and function of this invention. 本発明の一実施例に係るEGR制御装置のシステム構成図。The system block diagram of the EGR control apparatus which concerns on one Example of this invention. 同上実施例のコントロールユニットの内部構成を示すブロック図。The block diagram which shows the internal structure of the control unit of an Example same as the above. 同上実施例の制御ルーチンの前段を示すフローチャート。The flowchart which shows the front | former stage of the control routine of an Example same as the above. 同じく後段を示すフローチャート。The flowchart which shows a back | latter stage similarly. 基本噴射量の特性図。The characteristic diagram of basic injection quantity. 基本噴射時期の特性図。The characteristic diagram of basic injection timing. 基本空気流量の特性図。The characteristic diagram of basic air flow rate. 基本EGR制御弁開度の特性図。The characteristic view of the basic EGR control valve opening. 基本デューティ比の特性図。The characteristic diagram of basic duty ratio. 電磁弁のON−OFF特性図。ON-OFF characteristic diagram of solenoid valve. 補正噴射量の特性図。The characteristic figure of correction | amendment injection amount. 補正空気流量の特性図。The characteristic figure of correction | amendment air flow rate. EGR制御弁の補正開度の特性図。The characteristic view of the correction opening degree of an EGR control valve. EGR制御弁の補正デューティ比の特性図。The characteristic figure of the correction | amendment duty ratio of an EGR control valve. 燃料カット状態でのEGR制御弁の補正開度の特性図。The characteristic view of the correction opening degree of the EGR control valve in a fuel cut state. 同上のEGR制御弁の補正デューティ比の特性図。The characteristic figure of the correction | amendment duty ratio of an EGR control valve same as the above.

符号の説明Explanation of symbols

1 吸気通路
3 吸気絞り弁
4 排気通路
5 EGR通路
6 EGR制御弁
7 コントロールユニット
8 デューティ制御弁
12 第1の電磁弁
13 第2の電磁弁
15 リフトセンサ
23 エアフローメータ
DESCRIPTION OF SYMBOLS 1 Intake passage 3 Intake throttle valve 4 Exhaust passage 5 EGR passage 6 EGR control valve 7 Control unit 8 Duty control valve
12 First solenoid valve
13 Second solenoid valve
15 Lift sensor
23 Air flow meter

Claims (2)

ディーゼル機関の排気通路から分岐して吸気通路に合流する排気還流通路と、該排気還流通路に介装された排気還流制御弁と、前記排気還流通路の合流部より上流側の吸気通路に設けられ通路開口面積を制御する通路開口面積制御手段と、前記排気還流制御弁の開度を機関運転状態に応じて制御する排気還流制御弁制御手段と、前記吸気通路に設けられ吸入空気流量を検出する吸入空気流量検出手段と、を備えたディーゼル機関の排気還流制御装置において、
機関への燃料供給が停止される運転状態で、該運転状態に基づいて前記通路開口面積制御手段により吸気通路の開口面積が所定値に制御されるときに前記吸入空気流量検出手段によって検出された吸入空気流量と、当該条件時の機関運転状態に基づいて設定される目標吸入空気流量と、を比較する比較手段と、
前記目標吸入空気流量が検出された吸入空気流量より大きいときは、排気還流制御弁の開度を減少し、目標吸入空気流量が検出された吸入空気流量より小さいときは、排気還流制御弁の開度を増大するように、排気還流制御弁の開度の制御量を修正する修正量を設定して記憶する制御量修正量設定手段と、
を含んで構成したことを特徴とするディーゼル機関の排気還流制御装置。
An exhaust gas recirculation passage branched from the exhaust passage of the diesel engine and joined to the intake air passage, an exhaust gas recirculation control valve interposed in the exhaust gas recirculation passage, and an intake air passage upstream of the junction of the exhaust gas recirculation passage A passage opening area control means for controlling the passage opening area, an exhaust gas recirculation control valve control means for controlling the opening degree of the exhaust gas recirculation control valve according to the engine operating state, and an intake air flow rate provided in the intake passage. In an exhaust gas recirculation control device for a diesel engine comprising an intake air flow rate detection means,
Detected by the intake air flow rate detecting means when the opening area of the intake passage is controlled to a predetermined value by the passage opening area control means based on the operating state in the operating state where fuel supply to the engine is stopped A comparison means for comparing the intake air flow rate with a target intake air flow rate set based on the engine operating state under the conditions;
When the target intake air flow rate is larger than the detected intake air flow rate, the opening degree of the exhaust gas recirculation control valve is decreased, and when the target intake air flow rate is smaller than the detected intake air flow rate, the exhaust gas recirculation control valve is opened. A control amount correction amount setting means for setting and storing a correction amount for correcting the control amount of the opening degree of the exhaust gas recirculation control valve so as to increase the degree ,
An exhaust gas recirculation control device for a diesel engine, characterized by comprising:
前記排気還流制御弁は、負圧導入室に導入される信号負圧を導入時間割合がデューティ制御される大気により希釈して調整された圧力により開度制御されるデューティ式の制御弁で構成され、前記制御量修正量設定手段は、デューティ比を修正することによって前記排気還流制御弁の開度を修正する制御量の修正量を設定することを特徴とする請求項1に記載のディーゼル機関の排気還流制御装置。 The exhaust gas recirculation control valve is composed of a duty-type control valve whose opening degree is controlled by a pressure adjusted by diluting a signal negative pressure introduced into the negative pressure introduction chamber by an atmosphere whose introduction time ratio is duty controlled. the control amount correction amount setting means, the diesel engine according to claim 1, characterized in that to set the correction amount of the control amount for correcting the opening degree of the exhaust gas recirculation control valve by modifying the duty ratio Exhaust gas recirculation control device.
JP2004322407A 2004-11-05 2004-11-05 Exhaust gas recirculation control device for diesel engine Expired - Fee Related JP4020117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004322407A JP4020117B2 (en) 2004-11-05 2004-11-05 Exhaust gas recirculation control device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004322407A JP4020117B2 (en) 2004-11-05 2004-11-05 Exhaust gas recirculation control device for diesel engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7004838A Division JPH08193534A (en) 1995-01-17 1995-01-17 Exhaust gas recirculation controller of diesel engine

Publications (2)

Publication Number Publication Date
JP2005048775A JP2005048775A (en) 2005-02-24
JP4020117B2 true JP4020117B2 (en) 2007-12-12

Family

ID=34270418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004322407A Expired - Fee Related JP4020117B2 (en) 2004-11-05 2004-11-05 Exhaust gas recirculation control device for diesel engine

Country Status (1)

Country Link
JP (1) JP4020117B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102840042A (en) * 2012-09-26 2012-12-26 潍柴动力股份有限公司 Engine with EGR (Exhaust Gas Recirculation) device and method and device for controlling EGR rate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032402A (en) * 2005-07-26 2007-02-08 Yanmar Co Ltd Exhaust gas recirculation device for internal combustion engine
KR102518657B1 (en) * 2018-07-12 2023-04-06 현대자동차주식회사 Method for Exhaust Gas Recirculation Control using Differentiated Valve Duty and EGR System thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102840042A (en) * 2012-09-26 2012-12-26 潍柴动力股份有限公司 Engine with EGR (Exhaust Gas Recirculation) device and method and device for controlling EGR rate
CN102840042B (en) * 2012-09-26 2015-05-13 潍柴动力股份有限公司 Engine with EGR (Exhaust Gas Recirculation) device and method and device for controlling EGR rate

Also Published As

Publication number Publication date
JP2005048775A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
US10309298B2 (en) Control device of an engine
JP2005220888A (en) Supercharging pressure presuming device of internal combustion engine with supercharger
JP6259246B2 (en) Control device for internal combustion engine
US6450148B2 (en) Fuel pressure control device of engine
CN104343581A (en) Exhaust gas recirculation control
JP4020117B2 (en) Exhaust gas recirculation control device for diesel engine
JP2006152932A (en) Controller of internal combustion engine
JP2002155783A (en) Fuel injection control device of diesel engine
JP2000008962A (en) Actuator control device for internal combustion engine
JP2007303380A (en) Exhaust gas control device for internal combustion engine
US20190195175A1 (en) Exhaust gas recirculation system for internal combustion engine
JP2007321658A (en) Exhaust gas recirculating device of internal combustion engine
JPH08193534A (en) Exhaust gas recirculation controller of diesel engine
JP5249889B2 (en) Control device for internal combustion engine
JP2007303355A (en) Egr control device for internal combustion engine
JPH08210195A (en) Exhaust rotary flow control device of diesel engine
JP2006249962A (en) Exhaust gas recirculation controller for internal combustion engine
JP4345400B2 (en) Control device for internal combustion engine
JP2008157085A (en) Operation control method in exhaust gas recirculation device, and exhaust gas recirculation device
JP5503238B2 (en) Control device for internal combustion engine
JP3821517B2 (en) Engine supercharging pressure control device
JP2007231829A (en) Control device for internal combustion engine
JPH08218946A (en) Exhaust gas recirculation controller for diesel engine
JP7052669B2 (en) Engine control unit
JP2018071357A (en) Exhaust emission recirculation device of internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees