JP4017921B2 - Air circulation device in heating room - Google Patents

Air circulation device in heating room Download PDF

Info

Publication number
JP4017921B2
JP4017921B2 JP2002171022A JP2002171022A JP4017921B2 JP 4017921 B2 JP4017921 B2 JP 4017921B2 JP 2002171022 A JP2002171022 A JP 2002171022A JP 2002171022 A JP2002171022 A JP 2002171022A JP 4017921 B2 JP4017921 B2 JP 4017921B2
Authority
JP
Japan
Prior art keywords
air
room
window
along
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002171022A
Other languages
Japanese (ja)
Other versions
JP2004019951A (en
Inventor
富夫 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2002171022A priority Critical patent/JP4017921B2/en
Publication of JP2004019951A publication Critical patent/JP2004019951A/en
Application granted granted Critical
Publication of JP4017921B2 publication Critical patent/JP4017921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air-Flow Control Members (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,暖房運転が行われる室内の温度分布むらを緩和する装置に関する。
【0002】
【従来の技術】
冬季などにおいて暖房運転が行われる室内では,天井面付近に暖気が溜まりやすく,床面付近では温度低下となり,高さ方向に温度分布のバラツキが生じやすい。特に近年のOA機器類の普及は,このような室内における温度分布のむら発生を助長させる傾向にある。
【0003】
また一方,特に内部発生熱が大きいオフイスなどでは,インテリアゾーンに比べて,窓などがある側面付近では,外壁熱負荷の影響で暖房負荷が大きくなる。従来より,このような暖房運転時における外壁熱負荷を軽減しつつ,床面付近での温度低下を軽減するために,種々の装置が検討されている。
【0004】
【発明が解決しようとする課題】
しかしながら,従来の装置は何れもダクトなどの機材を数多く必要とする大がかりのものがほとんどであり,イニシャルコストとランニングコストがかさむという問題がある。また,これらの装置は既存の建築物に適用するにはダクト配置や制御系などの大幅な改造を余儀なくされるという問題もあり,加えて,オフイスの配置替えや模様替えは常態化しているので,それの対応を見込んだ計画に腐心しなければならないという問題もある。
【0005】
本発明の目的は,暖房運転が行われる室内の温度分布むらを,簡単な設備で緩和できる装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明の暖房室内の空気循環装置は,暖房運転が行われる室内の天井面付近に,室内の窓が形成された側面の上部に向けて天井面に沿って送風するファンを配置し,該ファンの送風により下降流を生じる室内の窓が形成された側面付近の上部に,該下降流をに沿った平行な層状の下降流にさせる整流部材を配置し,窓に沿って整流されて下降していく層状の空気中に,窓からの距離にほぼ比例した温度勾配を形成させ,床面付近に到達した下降流を再び混合させて,ほぼ水平に90°方向変換して床面に沿って室内下方に流すことを特徴とする。整流部材は,窓に対して平行な姿勢のベーン板を有していても良い。
【0007】
この空気循環装置において,ファンの稼動で送風され,天井面に沿って流れた空気は,室内の側面付近の上部に達すると,方向転換して下降流となる。こうして下降流が生じる室内の側面は,外壁熱負荷の影響を受ける側面であり,この側面には窓が形成されている。そして,このように側面付近に発生した下降流は,室内の側面付近の上部に配置された整流部材により平行流にされた後,室内の側面に沿って下降していく。
【0008】
一方,このように室内の側面に沿って下降していく空気は,外気で冷却されている窓などに熱的に接触して外壁熱負荷の影響を受け,下降中の空気は次第に低温となる。この場合,前述の整流部材によって側面に沿った平行流が形成されていることにより,整流部材を通過した空気のうち室内の側面付近を下降していく空気は,室内において側面のすぐ近くを流れる空気は側面とほぼ同じ温度にまで低温となるが,側面から離れるに従って高温となり,室内において側面から充分に離れた位置を流れる空気(例えば整流部材を通過した空気の室内側に接した空気)は外壁熱負荷の影響を受けずに,ほぼ天井面付近から供給された高温の状態のままである。こうして,室内の側面に沿って下降していく間に,下降中の空気において,側面から離れるに従って高温となる温度勾配が形成される。
【0009】
そして,こうして室内の側面付近を下降してきた空気は,床面付近に到達すると再び混合され,方向変換して床面に沿って室内下方を流れて,在室者の足下部分に供給される。その際,前述のように室内の側面から離れるに従って高温となる温度勾配が形成された空気が混合され,室内において側面のすぐ近くを流れて低温となった空気と,側面から充分に離れた位置を流れてほぼ天井面付近から供給された状態のままの高温の空気が混合されることにより,快適性を損なわない程度の高温な空気を床面付近に送風することができる。これにより,在室者の足下の寒さが軽減され,室内の天井から床にかけての上下方向の温度分布むらを緩和することが可能となる。
【0010】
【発明の実施の形態】
以下,本発明の好ましい実施の形態を図面を参照にして説明する。図1は,本発明の実施の形態にかかる空気循環装置を備えた室内1に発生する気流状態を図解的に示す縦断面図であり,図2は,空気循環装置を室内1に設置した状態を示す斜視図である。
【0011】
図示の形態では,室内1として,通常のオフイス空間などを例示している。天井面10と床面11の間に形成された室内1には,OA機器類などを操作する在室者12がいる。天井面10のほぼ中央には,天井梁15が設けられている。この天井梁15の下方に,ブラケット16を介してファン17を吊下げることにより,ファン17は室内1の天井面10付近に配置される。ファン17は空調された空気を吸い込んで室内1に循環させる手段であり,回転翼18を備えており,ファン17の稼動で回転翼18が回転することにより,天井面10付近の空気を水平かもしくは水平よりもやや斜め上向きに送風するようになっている。こうして,ファン17の稼動で送風された空気は,室内1において,コアンダ効果によって天井面10の下面を這うようにほぼ水平方向に送風されるようになっている。
【0012】
図示の形態では,このファン17の稼動により,図1において左向きに送風が行われている。そして,天井面10に沿いながら室内1の左側面20の上部付近まで送風された空気は,室内1の左側面20付近の上部に達すると,室内1の内壁(左側面20)上部に突き当り,順次下向きにほぼ90°ずつ方向転換し,下降流となる。こうして下降流となった空気が,室内1の左側面20付近を,左側面20に沿いながら下向きに送風されるようになっている。
【0013】
図1において,室内1の左側面20は,窓21を備えた窓面に形成されている。この形態では,図2に示すように,窓21は左側面20の横幅全体に渡るように横に連なって配置されている。前述のように左側面20の上部付近で下向きに方向転換して左側面20に沿いながら下向きに送風される空気が,室内1において,窓21付近を下向きに流れるようになっている。
【0014】
また,このように窓面に形成された左側面20の上部には,左側面20(窓21)に沿いながら送風される下降流を,左側面20に沿った平行な下降流にさせる整流部材25が配置される。
【0015】
ここで図3は,整流部材25の斜視図であり,図4は,図3におけるA−A断面矢視図である。図示の整流部材25は,方形状をなす枠体26の長手方向にベーン板27を装着した構成である。枠体26は上下面が開口し,上から下に向って空気が抵抗なく通過できるようになっている。この枠体26の内方に,図示の例では2枚のベーン板27が何れもほぼ垂直で,互いに平行になるように配置されている。
【0016】
図示の形態では,図4に示すように各ベーン板27の角度は,枠体26に対して可変に構成されている。なお,図3,4では,枠体26の内方に2枚のベーン板27を配置した例を示したが,枠体26の内方に配置されるベーン板27の枚数は,例えば1〜5枚程度である。なお,図2に示す例では,熱負荷である窓21面の長さに応じ,整流部材を25を4つに分割して製作し,取り付けを容易にしてある。
【0017】
図2に示されるように,室内1の左側面20の上部において,整流部材25を窓21の上となる位置に(ただし,図示しないブラインドボックスの間隔をおいて室内1側に離間させて)取り付けている。また,左側面20の横幅全体に渡って配置された窓21に対応するように,整流部材25も左側面20の横幅全体に渡って取り付けている。こうして整流部材25を各窓21の上部に取り付けることにより,整流部材25に装着されたベーン板27が,左側面20(窓21)に対して平行な姿勢で設置されている。
【0018】
図1に示すように,室内1の右側方は,パーティション30で仕切られている。そして,パーティション30の背部には,廊下31が形成されている。
【0019】
また,室内1の片隅には,直吹型の床置式空調機35が配置してある。この空調機35の内部には,熱交換器36と送風ファン37を備えている。熱交換器36には,廊下31の上部に配置された配管40,41から,往管42及び還管43を介して,温熱媒が循環供給されている。そして,送風ファン37の稼動により,空調機35下部(床面11近くに位置する)の吸気口45から,室内1の空気を空調機35内に吸い込んで,その空気を熱交換器36によって加熱し,その加熱した空気を,空調機35上部の給気口46から,室内1に向って吹き出すようになっている。なお,空調機35の給気口46は,床面11から1800mm程度の高さにあり,ここから吹き出された暖気は,ファン17がなければ,図1に即して言うと,天井梁15のインテリア側に滞留しようとする。ファン17の吸込口を空調機35の給気口46に向けて(図1では左下がりに)設けることにより,暖気と周囲空気を誘引して天井梁15廻りの暖気のよどみを解消する。
【0020】
さて,以上のように構成された室内1では,空調機35に内蔵された送風ファン37の稼動により,空調機35上部の給気口46から室内1に向って加熱した空気が吹き出されて,通常の暖房運転が行われる。このような暖房運転が行われている室内1では,天井面10付近に暖気が溜まりやすく,一方で,床面11付近では温度低下となりやすい。
【0021】
そこで,このような暖房運転が行われている室内1において,天井面10付近に配置されたファン17の稼動で回転翼18を回転させることにより,室内1において,天井面10付近に溜まりがちの暖気を,左側面20の上部付近に向って天井面10に沿いながらほぼ水平方向に送風する。また,このように天井面10に沿って送風される空気は,室内1の天井面10付近の空気を誘引しながら,その誘引した空気をも左側面20の上部付近に向って一緒に搬送していく。
【0022】
こうしてファン17の稼動で送風され,天井面10に沿って流れた空気(天井面10付近の暖気)は,室内1の左側面20付近の上部に達すると,順次下向きにほぼ90°ずつ方向転換し,下降流となる。こうして下降流となった空気が,室内1の左側面20付近を,左側面20に沿いながら下降し,窓21付近を下向きに送風されることになる。
【0023】
一方,このように室内1の左側面20付近を流れる空気が,窓21付近を下向きに送風される際には,窓21の上部に取り付けられた整流部材25を空気が上から下に向って通過することになる。このように,整流部材25を通過する際には,垂直に配置されたベーン板27に沿って空気が流れることにより,室内1の左側面20付近を送風される空気は,強制的に窓21(左側面20)に沿った平行な層状の下降流にさせられる。
【0024】
一方,このように室内1の左側面20に沿って下降していく間に,外気によって冷却されている窓21などに熱的に接触して外壁熱負荷の影響を受けることにより,下降中の空気は次第に低温となる。この場合,前述の整流部材25によって平行流が形成されていることにより,図5に示すように,室内1の左側面20付近を下降中に,窓21のすぐ近くを流れる空気の温度Tは,外気で直接冷却されている窓21とほぼ同じ温度にまで冷却されて低温となるが,窓21から離れるに従って高温となり,室内1において窓21から充分に離れた位置を流れる空気の温度Tは外壁熱負荷の影響を受けずに,ほぼ天井面10付近から供給された高温の暖気の状態のままである。こうして,室内1の左側面20に沿って整流されて下降していく層状の空気中に,窓21からの距離Xにほぼ比例して下降中の空気の温度Tが高温になるといった温度勾配が形成される。
【0025】
そして,こうして室内1の左側面20付近を下降してきた空気は,床面11付近に到達すると再び混合され,ほぼ水平に90°方向変換して床面11に沿って室内1下方を流れていく。こうして,室内1下方を流れた空気が,在室者12の足下部分に供給される。この場合,前述のように整流部材25の作用によって室内1の左側面20に沿って下降していく空気中に温度勾配が形成されていることにより,床面11付近に到達して混合される際には,窓21のすぐ近くを流れて低温となった空気と,窓21から離れた位置を流れた高温のままの空気(暖気)を混合させることができ,快適性を損なわない程度の高温な空気を床面11付近に送風することができる。これにより,在室者12の足下の寒さが軽減され,室内1の温度分布むらを緩和することが可能となる。
【0026】
ここで,仮に整流部材25が無い場合を仮定すると,図6に示すように,ファン17の稼動で天井面10に沿って流れた空気は,室内1の左側面20付近の上部で方向転換して下降流となるが,この下降流は,整流部材25が無いために,室内1の左側面20付近を下向きに送風される際に,渦などを多く発生してしまう。このため,室内1の左側面20付近を流れる空気は,下降中に攪拌される。そして,この攪拌作用により,室内1の左側面20に沿って下降していく間に,室内1の左側面20付近を流れる空気全体が外気によって冷却されている窓21に熱的に接触し,外壁熱負荷の影響を受けることとなる。これにより,加熱する必要のない窓21を多くの空気で加熱することになってしまう。また,室内1の左側面20に沿って下降していく空気中には,窓21からの距離Xに比例した温度勾配は形成されなくなり,窓21のすぐ近くを流れる空気の温度Tと,室内1において窓21から離れた位置を流れる空気の温度Tが,何れも相当に低温となってしまう。そして,このような低温となった空気が,床面11付近に到達後,方向変換して床面11に沿って流れ,在室者12の足下に供給されることにより,足元を冷すことになってしまう。また,このような足元を冷す弊害を回避するために,空調機35の能力をより高める必要が生じてしまう。
【0027】
この点,本発明の実施の形態の如き整流部材25を用いれば,先に図5で説明したように,整流部材25によって平行流を形成していることにより,室内1の左側面20に沿って下降していく空気中に,窓21からの距離Xにほぼ比例して温度Tが高温になる温度勾配を形成することができ,窓21から離れた位置を流れる空気については,外壁熱負荷の影響がほとんど及ばないようにすることができる。このため,結果的に外壁熱負荷の影響を軽減することができる。また,空調機35の暖房能力を必要以上に上げなくとも,在室者12の足下の寒さを軽減でき,室内1の温度分布むらを緩和できる。
【0028】
以上,本発明の好ましい実施の形態の一例を説明したが,本発明は例示した形態に限定されない。例えば,室内1の天井面10付近に配置されるファン17の取付け数と位置は任意であり,室内1において外壁熱負荷の影響を受ける側面の上部に向けて送風できれば良く,オフイスなどの室内1の形状や大きさに応じて適切に選定される。例えば,室内1の天井面10付近にファン17を複数台設置しても良い。この場合,室内1において外壁熱負荷の影響を受ける側面が複数ある場合には,それら各側面の上部に向けてそれぞれ送風し,各側面に沿って空気を下降させるようにしても良い。また,ファン17に首振り機能を持たせ,図2に示すように,1台のファン17で広い範囲に送風できるようにしても良い。ファン17は,例えばクロスフローファンを窓21の横幅に相当する幅に組み立てて使用したり,複数台のファン17を横幅方向に分散させて配置することができる。また,1台の軸流ファンに首振り機構を持たせることで窓21幅相当の領域に暖気を供給してもよい。もっとも省コストを志向して1台のファン17を固定式で設置するだけでも,壁に暖気流がぶつかった後に広がるため,ある程度の効果はある。また,例示の設備では天井ボードを貼らない所謂直天の設備に適用するため,梁15にファン17を取り付けたが,天井ボードを貼る設備に適用する場合にはファン17と整流部材25を適宜の吊金物で支持することができる。
【0029】
また,整流部材25に備えられるベーン板27の高さ(鉛直方向の距離)は,例えば25〜100mm程度とすれば良く,室内1の側面から200〜400mm程度の範囲に,1〜5枚程度のベーン板27を等間隔で平行に配置することが好ましい。ベーン板27の長さ(水平方向の距離)は,適宜使いやすい長さに設定すれば良い。なお,ベーン板27は室内1の側面に対して平行に配置されるが,このベーン板27と直交するように別のベーン板を設けて,整流部材25を格子状に構成しても良い。また,図1,2に示したように,窓21の上部にブラインドを取り付けるためのスペース(ブラインドボックススペース)50が形成されている場合は,そのスペース50の上に整流部材25を配置すればよい。そうすれば,窓21にブラインドを装着する際に整流部材25が邪魔とならない。なお,冷房運転の場合にはファン17を停止すれば冷房に影響を与えない。
【0030】
【発明の効果】
本発明によれば,簡単な設備でありながら室内の天井面付近に溜まりがちの暖気を,外壁熱負荷の影響をなるべく受けずに,高温の状態を維持したまま床面に沿って供給することにより,室内の温度分布むらを緩和することができ,在室者の足下の寒さを軽減できる。特に本発明装置は,設備が簡単で低廉であるばかりでなく,仕切りや配置替え等の模様替えに際しても容易に対処でき,また既存の空調設備に変更を与えることなく設置でき,極めて実用的である。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかる空気循環装置を備えた室内に発生する気流状態を図解的に示す縦断面図である。
【図2】空気循環装置を室内に設置した状態を示す斜視図である。
【図3】整流部材の斜視図である。
【図4】図3におけるA−A断面矢視図である。
【図5】整流部材によって強制的に窓に沿った平行な下降流にさせられた空気中に,窓からの距離にほぼ比例して高温になる温度勾配が形成された状態を示す説明図である。
【図6】整流部材が無い場合の,窓に沿っって下降する空気中に生ずる温度分布の説明図である。
【符号の説明】
1 室内
10 天井面
11 床面
12 在室者
15 天井梁
17 ファン
20 左側面
21 窓
25 整流部材
26 枠体
27 ベーン板
30 パーティション
31 廊下
35 空調機
36 熱交換器
37 送風ファン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for mitigating uneven temperature distribution in a room where heating operation is performed.
[0002]
[Prior art]
In a room where heating operation is performed in winter, warm air tends to accumulate near the ceiling surface, and the temperature decreases near the floor surface, and variations in temperature distribution tend to occur in the height direction. In particular, the recent spread of OA equipment tends to promote the occurrence of such uneven temperature distribution in the room.
[0003]
On the other hand, especially in offices where the heat generated by the interior is large, the heating load is increased near the side surface with windows, etc. due to the influence of the thermal load on the outer wall, compared to the interior zone. Conventionally, various devices have been studied in order to reduce the temperature drop near the floor surface while reducing the external wall heat load during such heating operation.
[0004]
[Problems to be solved by the invention]
However, most of the conventional devices require a large number of equipment such as ducts, and there is a problem that initial cost and running cost are increased. In addition, there is a problem that these devices are forced to undergo major modifications such as duct arrangement and control system in order to be applied to existing buildings, and in addition, office relocation and redesign are normal. There is also the problem of having to devote themselves to plans that anticipate that response.
[0005]
An object of the present invention is to provide an apparatus that can alleviate uneven temperature distribution in a room where heating operation is performed with simple equipment.
[0006]
[Means for Solving the Problems]
The air circulation device for a heating room according to the present invention includes a fan that blows air along the ceiling surface toward the upper part of the side surface in which the indoor window is formed , near the ceiling surface of the room where the heating operation is performed. the top of the chamber near the side window is formed to produce a downward flow by the blowing of the downflow arranged rectifying member for the downward flow of the parallel layered along the window, is rectified along the window lowering In the layered air, a temperature gradient that is almost proportional to the distance from the window is formed, and the downflow that has reached the vicinity of the floor is mixed again. And flow downward in the room. The flow regulating member may have a vane plate in a posture parallel to the window.
[0007]
In this air circulation device, the air that is blown by the operation of the fan and flows along the ceiling surface changes direction and becomes a downward flow when it reaches the upper part near the side surface of the room. The side surface of the room where the downward flow is generated in this way is a side surface that is affected by the external wall heat load, and a window is formed on this side surface. Then, the downward flow generated in the vicinity of the side surface in this way is made parallel flow by the rectifying member disposed in the upper portion near the side surface of the room and then descends along the side surface of the room.
[0008]
On the other hand, the air descending along the side surface of the room in this way is in thermal contact with the window or the like cooled by the outside air and is affected by the external wall heat load, and the air that is descending gradually becomes colder . In this case, since the parallel flow along the side surface is formed by the rectifying member described above, the air descending near the side surface of the room out of the air passing through the rectifying member flows in the vicinity of the side surface in the room. The air is cooled to about the same temperature as the side surface, but becomes hot as it moves away from the side surface, and the air that flows sufficiently away from the side surface in the room (for example, the air that has passed through the rectifying member and is in contact with the indoor side) Without being affected by the heat load on the outer wall, the high temperature supplied from near the ceiling remains unchanged. Thus, while descending along the side surface of the room, a temperature gradient is formed in the descending air that becomes higher as the distance from the side surface increases.
[0009]
Then, the air descending near the side surface of the room in this way is mixed again when it reaches the vicinity of the floor surface, changes its direction, flows along the floor surface below the room, and is supplied to the feet of the occupants. At that time, as described above, air with a temperature gradient that increases in temperature as it moves away from the side surface of the room is mixed, and the air that flows in the immediate vicinity of the side surface and becomes low temperature in the room is located sufficiently away from the side surface. By mixing the high-temperature air that is supplied from the vicinity of the ceiling surface and is supplied from the vicinity of the ceiling surface, high-temperature air that does not impair the comfort can be blown to the vicinity of the floor surface. As a result, the cold in the feet of the occupants is reduced, and the uneven temperature distribution in the vertical direction from the indoor ceiling to the floor can be mitigated.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view schematically showing an air flow state generated in a room 1 having an air circulation device according to an embodiment of the present invention. FIG. 2 is a state in which the air circulation device is installed in the room 1. FIG.
[0011]
In the illustrated embodiment, a normal office space or the like is illustrated as the room 1. In the room 1 formed between the ceiling surface 10 and the floor surface 11, there are occupants 12 who operate OA devices and the like. A ceiling beam 15 is provided substantially at the center of the ceiling surface 10. The fan 17 is disposed near the ceiling surface 10 in the room 1 by suspending the fan 17 via the bracket 16 below the ceiling beam 15. The fan 17 is a means for sucking in the conditioned air and circulating it in the room 1. The fan 17 is provided with a rotor blade 18. When the fan 17 is rotated by the operation of the fan 17, the air near the ceiling surface 10 is leveled. Alternatively, the air is blown slightly upward from the horizontal. Thus, the air blown by the operation of the fan 17 is blown in a substantially horizontal direction in the room 1 so as to crawl the lower surface of the ceiling surface 10 by the Coanda effect.
[0012]
In the illustrated embodiment, the fan 17 is operated to blow air leftward in FIG. The air blown to the vicinity of the upper part of the left side surface 20 of the room 1 along the ceiling surface 10 reaches the upper part of the left side 20 of the room 1 and hits the upper part of the inner wall (left side 20) of the room 1, Sequentially turning downward by about 90 °, it becomes a downward flow. The air that has flowed down in this way is blown downward along the left side 20 near the left side 20 of the room 1.
[0013]
In FIG. 1, the left side surface 20 of the room 1 is formed as a window surface provided with a window 21. In this embodiment, as shown in FIG. 2, the windows 21 are arranged side by side so as to cover the entire width of the left side surface 20. As described above, the air that is turned downward near the upper portion of the left side surface 20 and blown downward along the left side surface 20 flows downward in the vicinity of the window 21 in the room 1.
[0014]
Further, on the upper part of the left side surface 20 formed on the window surface in this manner, a rectifying member that makes the downward flow blown along the left side surface 20 (window 21) into a parallel downward flow along the left side surface 20. 25 is arranged.
[0015]
3 is a perspective view of the rectifying member 25, and FIG. 4 is a cross-sectional view taken along the line AA in FIG. The illustrated rectifying member 25 has a configuration in which a vane plate 27 is mounted in the longitudinal direction of a rectangular frame 26. The frame body 26 is open at the top and bottom surfaces so that air can pass through without resistance from the top to the bottom. In the example shown in the figure, two vane plates 27 are arranged substantially vertically and parallel to each other inside the frame 26.
[0016]
In the illustrated embodiment, as shown in FIG. 4, the angle of each vane plate 27 is configured to be variable with respect to the frame body 26. 3 and 4 show an example in which two vane plates 27 are arranged inside the frame body 26, the number of vane plates 27 arranged inside the frame body 26 is, for example, 1 to 4. About 5 sheets. In the example shown in FIG. 2, the rectifying member is manufactured by dividing 25 into four parts according to the length of the surface of the window 21 that is a thermal load, thereby facilitating attachment.
[0017]
As shown in FIG. 2, in the upper part of the left side surface 20 of the room 1, the rectifying member 25 is positioned above the window 21 (however, separated from the room 1 by a not-shown blind box). It is attached. Further, the rectifying member 25 is also attached over the entire lateral width of the left side surface 20 so as to correspond to the windows 21 arranged over the entire lateral width of the left side surface 20. By attaching the rectifying member 25 to the upper part of each window 21 in this way, the vane plate 27 attached to the rectifying member 25 is installed in a posture parallel to the left side surface 20 (window 21).
[0018]
As shown in FIG. 1, the right side of the room 1 is partitioned by a partition 30. A hallway 31 is formed on the back of the partition 30.
[0019]
In addition, a direct-blowing floor-mounted air conditioner 35 is disposed at one corner of the room 1. A heat exchanger 36 and a blower fan 37 are provided inside the air conditioner 35. A heat medium is circulated and supplied to the heat exchanger 36 from the pipes 40 and 41 arranged in the upper part of the hallway 31 through the forward pipe 42 and the return pipe 43. Then, by operating the blower fan 37, the air in the room 1 is sucked into the air conditioner 35 from the air inlet 45 below the air conditioner 35 (located near the floor 11), and the air is heated by the heat exchanger 36. The heated air is blown out from the air supply port 46 at the top of the air conditioner 35 toward the room 1. Note that the air supply port 46 of the air conditioner 35 is at a height of about 1800 mm from the floor surface 11, and the warm air blown from here is the ceiling beam 15 in the case of the fan 17 without the fan 17. Try to stay on the interior side of the. By providing the suction port of the fan 17 toward the air supply port 46 of the air conditioner 35 (lower left in FIG. 1), the warm air and the ambient air are attracted and the stagnation of the warm air around the ceiling beam 15 is eliminated.
[0020]
Now, in the room 1 configured as described above, the heated air blown into the room 1 from the air supply port 46 at the top of the air conditioner 35 is blown out by the operation of the blower fan 37 built in the air conditioner 35. Normal heating operation is performed. In the room 1 in which such heating operation is performed, warm air tends to accumulate near the ceiling surface 10, while temperature tends to decrease near the floor surface 11.
[0021]
Therefore, in the room 1 in which such heating operation is performed, the rotating blades 18 are rotated by the operation of the fan 17 disposed in the vicinity of the ceiling surface 10, so that the room 1 tends to accumulate in the vicinity of the ceiling surface 10. Warm air is blown in a substantially horizontal direction along the ceiling surface 10 toward the vicinity of the upper portion of the left side surface 20. Further, the air blown along the ceiling surface 10 in this way attracts the air in the vicinity of the ceiling surface 10 of the room 1 and also conveys the attracted air toward the upper portion of the left side surface 20 together. To go.
[0022]
Thus, the air blown by the operation of the fan 17 and flowing along the ceiling surface 10 (warm air near the ceiling surface 10), when reaching the upper part near the left side surface 20 of the room 1, gradually turns downward by about 90 °. However, it becomes a downward flow. Thus, the air that has flowed down descends along the left side 20 near the left side 20 of the room 1 and is blown downward near the window 21.
[0023]
On the other hand, when the air flowing in the vicinity of the left side surface 20 of the room 1 is blown downward in the vicinity of the window 21 as described above, the air flows through the rectifying member 25 attached to the upper portion of the window 21 from the top to the bottom. Will pass. Thus, when passing through the flow regulating member 25, air flows along the vane plate 27 arranged vertically, so that the air blown around the left side surface 20 of the room 1 is forced to the window 21. It is made into the parallel laminar downward flow along (left side 20).
[0024]
On the other hand, while descending along the left side surface 20 of the room 1 in this way, it is in thermal contact with the window 21 or the like that is cooled by the outside air, and is affected by the external wall thermal load. The air gradually gets colder. In this case, since the parallel flow is formed by the rectifying member 25 described above, the temperature T of the air flowing in the immediate vicinity of the window 21 while descending the vicinity of the left side surface 20 of the room 1 is as shown in FIG. The temperature T of the air flowing in a position sufficiently separated from the window 21 in the room 1 is as follows. Without being affected by the heat load on the outer wall, the hot air supplied from the vicinity of the ceiling surface 10 remains in a hot state. Thus, in the layered air that is rectified and descending along the left side surface 20 of the room 1, there is a temperature gradient that the temperature T of the descending air becomes high in proportion to the distance X from the window 21. It is formed.
[0025]
The air descending in the vicinity of the left side surface 20 of the room 1 in this way is mixed again when it reaches the vicinity of the floor surface 11, and is converted into a substantially horizontal direction of 90 ° and flows below the room 1 along the floor surface 11. . In this way, the air that has flowed under the room 1 is supplied to the feet of the occupants 12. In this case, as described above, a temperature gradient is formed in the air descending along the left side surface 20 of the room 1 by the action of the rectifying member 25, so that it reaches the vicinity of the floor surface 11 and is mixed. In this case, the air that has flowed in the immediate vicinity of the window 21 and becomes cold and the high-temperature air (warm air) that has flowed away from the window 21 can be mixed, so that comfort is not impaired. Hot air can be blown near the floor 11. As a result, the cold in the feet of the occupant 12 is reduced, and the uneven temperature distribution in the room 1 can be alleviated.
[0026]
Assuming that there is no rectifying member 25, the air flowing along the ceiling surface 10 by the operation of the fan 17 changes direction at the upper part of the room 1 near the left side surface 20 as shown in FIG. However, since the downward flow is not provided with the rectifying member 25, a large amount of vortex or the like is generated when the air is blown downward near the left side surface 20 of the room 1. For this reason, the air flowing in the vicinity of the left side surface 20 of the room 1 is agitated while descending. And by this stirring action, while descending along the left side 20 of the room 1, the entire air flowing in the vicinity of the left side 20 of the room 1 is in thermal contact with the window 21 cooled by the outside air, It will be affected by the external wall heat load. As a result, the window 21 that does not need to be heated is heated with a large amount of air. Further, in the air descending along the left side surface 20 of the room 1, a temperature gradient proportional to the distance X from the window 21 is not formed, and the temperature T of the air flowing in the immediate vicinity of the window 21 and the room 1, the temperature T of the air flowing through the position away from the window 21 is considerably low. Then, after such low temperature air reaches the vicinity of the floor surface 11, the direction is changed, the air flows along the floor surface 11, and is supplied to the feet of the occupants 12 to cool the feet. Become. In addition, in order to avoid such an adverse effect of cooling the feet, it is necessary to further increase the capacity of the air conditioner 35.
[0027]
In this regard, if the rectifying member 25 as in the embodiment of the present invention is used, the parallel flow is formed by the rectifying member 25 as described above with reference to FIG. A temperature gradient in which the temperature T becomes high in proportion to the distance X from the window 21 can be formed in the descending air, and the outer wall heat load is applied to the air flowing away from the window 21. It is possible to prevent the influence of. As a result, the influence of the external wall heat load can be reduced. Further, even if the heating capacity of the air conditioner 35 is not increased more than necessary, it is possible to reduce the cold of the occupants 12 and to reduce the temperature distribution unevenness in the room 1.
[0028]
As mentioned above, although an example of preferable embodiment of this invention was demonstrated, this invention is not limited to the illustrated form. For example, the number and position of the fans 17 arranged in the vicinity of the ceiling surface 10 of the room 1 are arbitrary, and it is only necessary to blow air toward the upper part of the side surface of the room 1 that is affected by the heat load on the outer wall. Appropriately selected according to the shape and size. For example, a plurality of fans 17 may be installed near the ceiling surface 10 of the room 1. In this case, when there are a plurality of side surfaces in the room 1 that are affected by the outer wall thermal load, the air may be blown toward the upper portions of the respective side surfaces, and the air may be lowered along the respective side surfaces. Further, the fan 17 may be provided with a swing function so that a single fan 17 can blow air over a wide range as shown in FIG. For example, the fan 17 can be used by assembling a cross flow fan to a width corresponding to the width of the window 21, or a plurality of fans 17 can be arranged in the width direction. Further, warm air may be supplied to an area corresponding to the width of the window 21 by providing a swing mechanism for one axial fan. However, even if only one fan 17 is installed in a fixed manner in order to save costs, there is a certain effect because it spreads after the warm air hits the wall. Further, in the illustrated equipment, the fan 17 is attached to the beam 15 so as to be applied to a so-called direct ceiling equipment in which the ceiling board is not attached. However, in the case of applying to the equipment in which the ceiling board is attached, the fan 17 and the rectifying member 25 are appropriately connected. Can be supported by
[0029]
Further, the height (vertical distance) of the vane plate 27 provided in the rectifying member 25 may be, for example, about 25 to 100 mm, and about 1 to 5 sheets within a range of about 200 to 400 mm from the side surface of the room 1. The vane plates 27 are preferably arranged in parallel at equal intervals. The length of the vane plate 27 (the distance in the horizontal direction) may be appropriately set to a length that is easy to use. The vane plate 27 is arranged in parallel to the side surface of the room 1, but another vane plate may be provided so as to be orthogonal to the vane plate 27, and the rectifying member 25 may be configured in a lattice shape. As shown in FIGS. 1 and 2, when a space (blind box space) 50 for attaching a blind is formed on the upper portion of the window 21, the rectifying member 25 is disposed on the space 50. Good. If it does so, when attaching a blind to the window 21, the baffle member 25 will not become obstructive. In the cooling operation, if the fan 17 is stopped, the cooling is not affected.
[0030]
【The invention's effect】
According to the present invention, although it is a simple facility, warm air that tends to accumulate near the ceiling surface of the room is supplied along the floor surface while being maintained at a high temperature without being affected by the thermal load of the outer wall as much as possible. Therefore, it is possible to alleviate the uneven temperature distribution in the room and to reduce the coldness of the occupants' feet. In particular, the device according to the present invention is not only simple and inexpensive, but also can be easily dealt with when changing patterns such as partitioning and rearrangement, and can be installed without changing existing air-conditioning equipment. .
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view schematically showing an air flow state generated in a room provided with an air circulation device according to an embodiment of the present invention.
FIG. 2 is a perspective view showing a state in which an air circulation device is installed in a room.
FIG. 3 is a perspective view of a rectifying member.
4 is a cross-sectional view taken along the line AA in FIG. 3;
FIG. 5 is an explanatory diagram showing a state in which a temperature gradient is formed in the air that is forced into a parallel downward flow along the window by the rectifying member and becomes hot in proportion to the distance from the window. is there.
FIG. 6 is an explanatory diagram of a temperature distribution generated in the air descending along the window when there is no rectifying member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Indoor 10 Ceiling surface 11 Floor surface 12 Residents 15 Ceiling beam 17 Fan 20 Left side surface 21 Window 25 Rectification member 26 Frame 27 Vane board 30 Partition 31 Corridor 35 Air conditioner 36 Heat exchanger 37 Blower fan

Claims (2)

暖房運転が行われる室内の天井面付近に,室内の窓が形成された側面の上部に向けて天井面に沿って送風するファンを配置し,該ファンの送風により下降流を生じる室内の窓が形成された側面付近の上部に,該下降流をに沿った平行な層状の下降流にさせる整流部材を配置し
窓に沿って整流されて下降していく層状の空気中に,窓からの距離にほぼ比例した温度勾配を形成させ,床面付近に到達した下降流を再び混合させて,ほぼ水平に90°方向変換して床面に沿って室内下方に流すことを特徴とする,暖房室内の空気循環装置。
Near the ceiling surface of the room heating operation is performed, a fan for blowing air is arranged along the ceiling surface toward the top of the sides of Window is formed, indoor windows resulting in downward flow by the blowing of the fan A rectifying member for arranging the downward flow into a parallel laminar downward flow along the window is disposed near the formed side surface .
A temperature gradient approximately proportional to the distance from the window is formed in the layered air that is rectified and descends along the window, and the descending flow that has reached the floor surface is mixed again, so that it is 90 ° horizontally. An air circulation device in a heating room, which changes direction and flows downward along the floor surface .
整流部材は,窓に対して平行な姿勢のベーン板を有することを特徴とする,請求項1に記載の暖房室内の空気循環装置。The air circulation device in a heating room according to claim 1, wherein the rectifying member has a vane plate in a posture parallel to the window .
JP2002171022A 2002-06-12 2002-06-12 Air circulation device in heating room Expired - Fee Related JP4017921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002171022A JP4017921B2 (en) 2002-06-12 2002-06-12 Air circulation device in heating room

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002171022A JP4017921B2 (en) 2002-06-12 2002-06-12 Air circulation device in heating room

Publications (2)

Publication Number Publication Date
JP2004019951A JP2004019951A (en) 2004-01-22
JP4017921B2 true JP4017921B2 (en) 2007-12-05

Family

ID=31170987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002171022A Expired - Fee Related JP4017921B2 (en) 2002-06-12 2002-06-12 Air circulation device in heating room

Country Status (1)

Country Link
JP (1) JP4017921B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4574317B2 (en) * 2004-10-13 2010-11-04 高砂熱学工業株式会社 Heating air conditioning method and heating air conditioning system
JP2010121808A (en) * 2008-11-18 2010-06-03 Ihi Compressor & Machinery Co Ltd Method of heating large space and heating device for the same
ES2972934T3 (en) 2017-12-21 2024-06-17 Santen Pharmaceutical Co Ltd Combination of sepetaprost and ripasudil for use in the prophylaxis or treatment of glaucoma or ocular hypertension
KR20200103041A (en) 2017-12-21 2020-09-01 산텐 세이야꾸 가부시키가이샤 Combination of Omidenepak
CN117222851A (en) * 2021-03-31 2023-12-12 三菱电机楼宇解决方案株式会社 Air Conditioning System
JP7537037B1 (en) 2024-01-17 2024-08-20 Tis株式会社 Indoor heating equipment, sauna, and indoor heating method

Also Published As

Publication number Publication date
JP2004019951A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
US6213867B1 (en) Venturi type air distribution system
US11441796B2 (en) Construction method and design method of air-conditioning system
US6623353B1 (en) Venturi type air distribution system
JP2002372268A (en) Displacement ventilation system
JP4017921B2 (en) Air circulation device in heating room
JP2016070620A (en) Pneumatic radiation air conditioning device, and air conditioning system using the same
JP7503315B2 (en) How to install an air conditioning system
JP2023025275A (en) air conditioning system
JP4370461B2 (en) Indoor unit of air conditioner
JP4014906B2 (en) Task / ambient air conditioning method and air conditioning system
JP4203462B2 (en) Air conditioning system and air conditioning method
JP2017142009A (en) Ventilation system and ventilation method
JP4615267B2 (en) Double floor panel with built-in fan and indoor air conditioning system equipped with the same
JP4531201B2 (en) Air conditioning method and air conditioning system
JP7042524B2 (en) How to design an air conditioning system
JPH07158907A (en) Air-conditioning machine
JP2955519B2 (en) Air conditioning method
JP6484080B2 (en) Thermally stratified cooling system
JP3656077B2 (en) Lower outlet air conditioner with indoor circulation channel and outdoor air supply channel
JP3141179B2 (en) Large space air conditioning equipment for gymnasiums, etc.
JPH10238805A (en) Indoor machine for air conditioner
JPH10253149A (en) Air conditioner
JP2023118915A (en) Construction method of air conditioning system
JP2023041832A (en) air conditioner
JPH08312997A (en) Air conditioning apparatus using heat exchanging floor panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140928

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees