JP4017183B2 - Automotive temperature controller - Google Patents

Automotive temperature controller Download PDF

Info

Publication number
JP4017183B2
JP4017183B2 JP2002287077A JP2002287077A JP4017183B2 JP 4017183 B2 JP4017183 B2 JP 4017183B2 JP 2002287077 A JP2002287077 A JP 2002287077A JP 2002287077 A JP2002287077 A JP 2002287077A JP 4017183 B2 JP4017183 B2 JP 4017183B2
Authority
JP
Japan
Prior art keywords
thermistor
voltage
vehicle
control device
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002287077A
Other languages
Japanese (ja)
Other versions
JP2004127591A (en
Inventor
忠彦 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabe Industrial Co Ltd
Original Assignee
Kurabe Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabe Industrial Co Ltd filed Critical Kurabe Industrial Co Ltd
Priority to JP2002287077A priority Critical patent/JP4017183B2/en
Publication of JP2004127591A publication Critical patent/JP2004127591A/en
Application granted granted Critical
Publication of JP4017183B2 publication Critical patent/JP4017183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Resistance Heating (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、カーシートヒータやトラック用仮眠ヒータなどの車載用採暖物の温度調整に使用される車載用温度調節装置に関する。
【0002】
【従来の技術】
図4に示す如く、この種の車載用温度調節装置1は発熱線2の線条が蛇行配設されて成るカーシートヒータ等の車載用採暖物3に接続され、図5に示すように前記発熱線2の近傍に配置されたサーミスタ4からの温度信号電圧Vtによって発熱線2に直列に接続されたパワーMOS FET等の電流制御素子5を制御することで発熱線2の温度が調節される。
【0003】
車載用温度調節装置1においてはバッテリーの故障やバッテリー端子外れの際に異常高電圧が電源電圧に重畳されるため、この異常高電圧に耐え得る構成とする必要がある。これについては自動車規格(JASO D001)にロードダンプ時に発生する過渡電圧の試験方法が規定され、その試験電圧は70V、減衰時定数τは200000μsとなっている。前記の試験電圧が印加された時、電流制御素子5がONの状態では、発熱線2の抵抗値が3Ωの場合最大23.3Aの過大電流が電流制御素子5に流れることになり、電流制御素子5は著しく発熱してしまい電流制御素子5のサイズと電流定格が不適切であると電流制御素子5が故障に到る。そのため、図6に示すように、電流制御素子5は余裕度を見込んで樹脂モールド部5aのサイズが8.5mm×10mm以上の大型形状で、且つ、電流容量が過渡電圧の試験電圧を発熱線2の抵抗値で割った値に余裕度を加えた電流値以上の高電流容量の大型高電流定格のものを選択するとともに、急激に上昇する電流制御素子5の発熱を逃がすために大型の放熱板5bを具備する必要があった。又これらの制約のため、電流制御素子5は小型で低コストで面実装タイプは使用できず、リード電極を有したタイプに限られていた。
【0004】
しかし、前記の大型高電流定格で大型の放熱板5bを具備した電流制御素子5では、最近ますます要求が強くなっている車載用温度調節装置1の小型化と低コスト化への対応が困難になってきた。そこで、大型高電流定格で大型の放熱板5bを具備した電流制御素子5の使用を回避するためには、前記の異常高電圧が電源電圧に重畳されている期間は電流制御素子5をOFFさせることが考えられる。すなわち、電流制御素子5がON状態であると、電源電圧に重畳された異常高電圧の電圧値を発熱線2の抵抗値で割った値の電流が電流制御素子5に流れ、電流制御素子5の損失が熱となって電流制御素子5の温度を上昇させ、故障を引き起こすが、電流制御素子5がOFFならば電流が流れず電流制御素子5が発熱することはない。このように、異常高電圧が電源電圧に重畳されている期間、電流制御素子5をOFFするためには、図5に示すように電流制御素子5の制御端子に接続されたコンパレータ等の電圧比較器U3により、電源電圧とあらかじめ設定された電流制御素子5をOFFするための基準電圧とを比較し、電源電圧が前記基準電圧を上回っている期間、電流制御素子5の駆動信号Vdを強制的にローレベルにする異常高電圧保護回路6を設ける必要がある。
【0005】
【発明が解決しようとする課題】
このように車載用温度調節装置1においてはバッテリーの故障やバッテリー端子外れの際に異常高電圧が電源電圧に重畳されるため、この異常高電圧に耐え得る構成にする必要がある。そのために電流制御素子5を大型高電流定格のものを使用するとともに、急激に上昇する電流制御素子5の発熱を逃がすために大型の放熱板5bを具備する必要があるため、車載用温度調節装置1の小型化や低コスト化が困難であったが、異常高電圧が電源電圧に重畳されている期間は電流制御素子をOFFする方法により、大型高電流定格で大型の放熱板5bを具備した電流制御素子5の使用は回避できる。そのためには、前述の通り異常高電圧が電源電圧に重畳されている期間、電流制御素子をOFFする手段が考えられ、電流制御素子5の制御端子に接続されたコンパレータ等の電圧比較器により、電源電圧とあらかじめ設定された電流制御素子5をOFFするための基準電圧とを比較し、電源電圧が前記基準電圧を上回っている期間、電流制御素子5の駆動信号を強制的にローレベルにする異常高電圧保護回路6を設ける必要があった。
【0006】
しかし、車載用温度調節装置1においてはロードダンプ時の異常高電圧以外に、過電圧や逆極性ノイズに対する保護が必要であるため、サーミスタ4の温度信号電圧Vtと温度調節のための基準電圧Vsを比較して、電流制御素子5の駆動信号Vdを得る温度調節回路部12には、高電圧防止用ツェナーダイオードZD1や抵抗R4及び逆電圧防止用ダイオードD1などの保護用素子が用いられる。無論、前記の異常高電圧保護回路6にも同様な保護用素子が必要となるため、部品点数が大幅に増えてしまい、大型高電流定格で大型の放熱板5bを具備した電流制御素子5の使用を回避することによる小型化や低コスト化の効果が大幅に削減されることになってしまう問題あった。
【0007】
本発明はこのような点に基いてなされたもので、その目的とするところは、電源電圧に異常高電圧が重畳された場合でも安全で、且つ小型で低コストな車載用温度調節装置を実現することにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するべく本発明の請求項1による車載用温度調節装置は、サーミスタの温度信号で駆動される電流制御素子と、前記サーミスタが断線した時に前記電流制御素子に流れる電流を遮断するサーミスタ断線保護回路とを少なくとも備え、線条の発熱体が配設された車載用採暖物の温度を前記サーミスタの温度信号によって調節する車載用温度調節装置であって、車載用温度調節装置の電源電圧に異常高電圧が重畳された時にONするスイッチを前記サーミスタと直列に接続することで、前記サーミスタ断線保護回路を前記異常高電圧の重畳期間とほぼ同じ期間、擬似的に作動させることを特徴とするものである。
又、請求項2による車載用温度調節装置は、車載用温度調節装置の電源電圧に異常高電圧が重畳された時にONするスイッチを前記サーミスタと直列に接続し、前記スイッチと前記サーミスタの接続点の電圧を、前記サーミスタ断線保護回路を作動させる基準電圧と比較することで、前記サーミスタ断線保護回路を前記異常高電圧の重畳期間とほぼ同じ期間、擬似的に作動させるように構成したことを特徴とするものである。
又、請求項3による車載用温度調節装置は、前記電流制御素子は、樹脂モールド部が6mm×7mm以下の面実装タイプであり、放熱板を具備していないことを特徴とするものである。
【0009】
【発明の実施の形態】
本発明の実施の形態を、図1を参照しながら説明する。サーミスタ4の抵抗値は温度に対して負の温度特性を有しているが、図1に示すようにサーミスタ4に直列に抵抗R1を接続すると、サーミスタ4と抵抗R1で分圧された電圧は温度に対して正の温度特性になる。この電圧を温度信号電圧Vtとして電圧比較器であるコンパレータU1の反転入力端子に入力し、一方、電源線7に接続された抵抗R5で任意の値に設定された基準電圧Vsを前記コンパレータU1の非反転入力端子に入力すると、例えば発熱線2の温度が低い場合はサーミスタ4の抵抗値は高いため温度信号電圧Vtは基準電圧Vsより低くなる。するとコンパレータU1の出力はハイレベルとなる。このコンパレータU1の出力に電流制御素子5を接続してあれば発熱線2に電流が流れ発熱線2の温度が上昇する。一方、発熱線2の温度が高くなった場合はサーミスタ4の抵抗値は低下するため温度信号電圧Vtは上昇するが、基準電圧Vsより高くなると、コンパレータU1の出力はローレベルとなり発熱線2の電流が停止することで発熱線2の温度の上昇は止る。その後、時間の経過とともに発熱線2の温度が低下し温度信号電圧Vtが基準電圧Vs以下となると発熱線2の電流がONし再び温度が上昇する。これを繰り返すことにより発熱線2の温度は基準電圧Vsに相当する温度に調整されることになる。
【0010】
万が一、サーミスタ4が異常な外力や衝撃により断線した時は、サーミスタ4の抵抗値が無限大となるため、温度信号電圧Vtはほぼ0Vに低下することになる。この場合は温度信号電圧Vtが基準電圧Vsより低くなることで発熱線2の電流がONしてしまい、発熱線2の温度は無制限に上昇することになる。そこで温度信号電圧Vtが温度調節のための基準電圧Vsとは別の基準電圧Vc以下に低下した時、発熱線2の電流を遮断することで発熱線2の温度が無制限に上昇することを防止するサーミスタ断線保護回路8を内蔵することが一般的にとられる対策である。
【0011】
上記の構成の車載用温度調節装置1において、PNPトランジスタQ1のエミッタを抵抗R1とサーミスタ4の接続点に接続し、コレクタをコンパレータU1、U2のGND端子に接続し、ベースとコンパレータU1、U2のGND端子間にツェナーダイオードZD2を、電源線7とベース間に抵抗R5を接続すれば、異常高電圧が電源電圧に重畳され2次回路電圧Vaが上昇しベース電圧がツェナーダイオードZD2のツェナー電圧を上回った時点でトランジスタQ1がONし、抵抗R1の電圧はほぼ0Vになりサーミスタ4が断線した場合と全く同じ動作をさせることができる。このように擬似的にサーミスタ断線保護回路8を動作させることによりコンパレータU2の出力はローレベルとなり、電流制御素子5をOFFすることができる。前記のPNPトランジスタQ1、ツェナーダイオードZD2及び抵抗R1は、過電圧や逆極性ノイズに対する保護が及ぶ範囲に接続されているため、個々の保護回路は必要としないことから、部品点数が削減できることによる小型化と低コスト化に大きな効果を得ることができる。
【0012】
【実施例】
以下に本発明の実施例を、図面を参照しながら更に説明する。図1においてサーミスタ4は一端がコンパレータU1、U2のGND端子に接続された抵抗R1の他端に接続されるとともにコンパレータU1の反転入力端子及びコンパレータU2の非反転入力端子とPNPトランジスタQ1のエミッタにも接続されている。コンパレータU1の非反転入力端子には、2次回路電圧Vaを抵抗R6、抵抗R7及び抵抗R8で分圧した基準電圧Vsが印加される。コンパレータU1の出力はコンパレータU2の出力とワイヤードOR接続されるとともにトランジスタQ2及びダイオードD2,抵抗R9を介して電流制御素子5の制御端子に接続されている。コンパレータU2の反転入力端子には、2次回路電圧Vaを抵抗R6、抵抗R7及び抵抗R8で分圧した基準電圧Vcが印加される。前記のPNPトランジスタQ1のコレクタはコンパレータU1、U2のGND端子に接続され、ベースはツェナーダイオードZD2を介してコンパレータU1、U2のGND端子に接続されるとともに、抵抗R5を介してコンパレータU1、U2のVcc端子に接続されている。
【0013】
サーミスタ断線保護回路8はコンパレータU2と抵抗R6、R7、R8からなり、コンパレータU2の反転入力端子に入力される基準電圧VcよりコンパレータU2の非反転入力端子の温度信号電圧Vtが、サーミスタ4の断線故障により低下することにより、コンパレータU2の出力はローレベルとなり、同時にワイヤードOR接続されたコンパレータU1の出力に拘わらず電流制御素子5の制御端子をローレベルとすることで電流制御素子5をOFFする。
【0014】
一方、コンパレータU2の非反転入力端子にはPNPトランジスタQ1のエミッタも接続されており、図2(a)に示すように電源電圧に異常高電圧が重畳された場合はPNPトランジスタQ1のベース電圧がツェナーダイオードZD2のツェナー電圧を上回り、その結果ツェナーダイオードZD2に電流が流れることになる。するとPNPトランジスタQ1がONし、エミッタとコレクタ間の電圧が下がり、コンパレータU2の反転入力端子の電圧はほぼ0Vとなる。これによりコンパレータU2の出力はローレベルとなる。その結果、電流制御素子5がOFFし、発熱線2の印加電圧は図2(b)に示すように、電源電圧に異常高電圧が重畳された期間とほほ同じ期間OFFすることになる。このことは、サーミスタ4の断線故障によりサーミスタ断線保護回路8が作動したことと同様の動作であり、サーミスタ断線保護回路8を疑似的に作動させたと言うことができる。
【0015】
又、車載用温度調節装置1においてはロードダンプ時の異常高電圧以外に、過電圧や逆極性ノイズに対する保護が必要であるため、サーミスタ4の信号と温度調節のための基準電圧Vsを比較して、電流制御素子5の駆動信号を得る温度調節回路部12には、高電圧防止用ツェナーダイオードZD1や電圧ドロッパ抵抗R4及び逆電圧防止用ダイオードD1などの保護用素子が用いられる。しかし、前記のサーミスタ断線保護回路8を疑似的に作動させるためのPNPトランジスタQ1とツェナーダイオードZD2及び抵抗R5はいずれも前記の保護用素子の保護が及んでいるため個々の保護回路は不要である、
【0016】
尚、図1において、コンパレータU1,U2は、デュアルタイプ(BA10393:ローム製)を片電源で使用し、電流制御素子5は、図3に示すような、樹脂モールド部5aが5.5mm×6.5mmの面実装タイプのパワーMOS FET(2SK3483−Z:NEC製)を、放熱板を具備しない状態で実装した。ツェナーダイオードZD1,ZD2のツェナー電圧はそれぞれ、12V、9Vであり、PNPトランジスタQ1には2SA1587(東芝製)を使用した。
【0017】
上記の実施例において自動車規格(JASO D001)の試験方法に基き試験を実施したところ、発熱線2の抵抗値が3Ω(約60W)の車載用採暖物3を接続しても電流制御素子5の急激な発熱や故障は認められなかった。
【0018】
【発明の効果】
以上説明したように本発明によれば、サーミスタの温度信号で駆動される電流制御素子と、前記サーミスタが断線した時に前記電流制御素子に流れる電流を遮断するサーミスタ断線保護回路とを少なくとも備え、線条の発熱体が配設された車載用採暖物の温度を前記サーミスタの温度信号によって調節する車載用温度調節装置であって、車載用温度調節装置の電源電圧に異常高電圧が重畳された時、前記サーミスタ断線保護回路を前記異常高電圧の重畳期間とほぼ同じ期間、擬似的に作動させることで、大型高電流定格で大型の放熱板を具備した電流制御素子の使用を回避し、例えば、樹脂モールド部が6mm×7mm以下の面実装タイプの電流制御素子を、放熱板を具備せずに用いることができる。又、サーミスタ断線保護回路を擬似的に動作させるための回路を過電圧や逆極性ノイズに対する保護素子の保護の及んでいる範囲に配置することで、個々の保護素子が必要でなくなる。従って、異常高電圧が電源電圧に重畳された場合でも安全で、且つ小型で低コストな、例えば、カーシートヒータやトラック用仮眠ヒータなどの車載用採暖物の温度調整に使用される車載用温度調節装置を実現させることができる。
【図面の簡単な説明】
【図1】本発明による車載用温度調節装置の一実施例を示す回路図である。
【図2】本発明による車載用温度調節装置の各部の波形を示す図で、(a)は車載用温度調節装置の電源電圧に異常高電圧が重畳された波形を示し、(b)は(a)の波形が車載用温度調節装置に印加された時の発熱線に印加される波形を示す。
【図3】本発明の実施例で使用される電流制御素子の構成を説明する図で、(a)は上面図、(b)は側面図である。
【図4】車載用採暖物の構成を説明する図である。
【図5】従来例の車載用温度調節装置を示す回路図である。
【図6】従来例で使用される電流制御素子の構成を説明する図で、(a)は上面図、(b)は側面図である。
【符号の説明】
U1、U2 コンパレータ
R1〜R12 抵抗
D1,D2 ダイオード
ZD1、ZD2、ZD3 ツェナーダイオード
Q1、Q2 トランジスタ
E 直流電源
1 車載用温度調節装置
2 発熱線
3 車載用採暖物
4 サーミスタ
5 電流制御素子
5a 樹脂モールド部
5b 放熱板
6 異常高電圧保護回路
7 電源線
8 サーミスタ断線保護回路
12 温度調節回路部
Vt 温度信号電圧
Vs 温度調節のための基準電圧
Vc サーミスタの断線保護のための基準電圧
Va 2次回路電圧
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an on-vehicle temperature control device used for temperature adjustment of an on-vehicle warmed object such as a car seat heater or a truck nap heater.
[0002]
[Prior art]
As shown in FIG. 4, this type of in-vehicle temperature control apparatus 1 is connected to an in-vehicle warming object 3 such as a car seat heater in which the filaments of the heating wires 2 are meandered and arranged as shown in FIG. The temperature of the heating wire 2 is adjusted by controlling the current control element 5 such as a power MOS FET connected in series to the heating wire 2 by the temperature signal voltage Vt from the thermistor 4 disposed in the vicinity of the heating wire 2. .
[0003]
In the in-vehicle temperature control apparatus 1, an abnormally high voltage is superimposed on the power supply voltage when the battery is broken or the battery terminal is disconnected, so that it is necessary to have a configuration that can withstand the abnormally high voltage. Regarding this, a test method for transient voltage generated at the time of load dump is specified in the automobile standard (JASO D001), the test voltage is 70 V, and the decay time constant τ is 200000 μs. When the test voltage is applied and the current control element 5 is in an ON state, an excessive current of 23.3 A at the maximum flows to the current control element 5 when the resistance value of the heating wire 2 is 3Ω. The element 5 generates heat significantly, and if the size and current rating of the current control element 5 are inappropriate, the current control element 5 will fail. Therefore, as shown in FIG. 6, the current control element 5 has a large shape in which the size of the resin mold portion 5a is 8.5 mm × 10 mm or more in anticipation of a margin, and the test voltage whose current capacity is a transient voltage is used as a heating wire. In order to select a large high current rating with a high current capacity equal to or greater than the current value obtained by adding a margin to the value divided by the resistance value of 2 and to dissipate the heat of the current control element 5 that rises rapidly, It was necessary to provide the plate 5b. Also, due to these restrictions, the current control element 5 is small and low cost, and the surface mounting type cannot be used, and is limited to the type having a lead electrode.
[0004]
However, in the current control element 5 having the large heat sink 5b with the large high current rating described above, it is difficult to cope with the downsizing and cost reduction of the on-vehicle temperature control device 1 that has been increasingly demanded recently. It has become. Therefore, in order to avoid the use of the current control element 5 having the large heat sink 5b with the large high current rating, the current control element 5 is turned off during the period in which the abnormal high voltage is superimposed on the power supply voltage. It is possible. That is, when the current control element 5 is in the ON state, a current having a value obtained by dividing the voltage value of the abnormally high voltage superimposed on the power supply voltage by the resistance value of the heating wire 2 flows to the current control element 5. However, if the current control element 5 is OFF, no current flows and the current control element 5 does not generate heat. Thus, in order to turn off the current control element 5 while the abnormally high voltage is superimposed on the power supply voltage, a voltage comparison such as a comparator connected to the control terminal of the current control element 5 as shown in FIG. The unit U3 compares the power supply voltage with a preset reference voltage for turning off the current control element 5, and forcibly sets the drive signal Vd of the current control element 5 during a period when the power supply voltage exceeds the reference voltage. Therefore, it is necessary to provide an abnormal high voltage protection circuit 6 that is at a low level.
[0005]
[Problems to be solved by the invention]
Thus, since the abnormal high voltage is superimposed on the power supply voltage in the case of the battery failure or the battery terminal disconnection, the in-vehicle temperature control device 1 needs to be configured to withstand this abnormal high voltage. For this purpose, a current control element 5 having a large high current rating is used, and a large heat sink 5b must be provided in order to release the heat of the current control element 5 that rises rapidly. Although it was difficult to reduce the size and cost of 1, a large heat sink 5b with a large high current rating was provided by a method of turning off the current control element during the period when the abnormally high voltage was superimposed on the power supply voltage. Use of the current control element 5 can be avoided. For that purpose, a means for turning off the current control element can be considered during the period when the abnormally high voltage is superimposed on the power supply voltage as described above. By means of a voltage comparator such as a comparator connected to the control terminal of the current control element 5, The power supply voltage is compared with a preset reference voltage for turning off the current control element 5, and the drive signal of the current control element 5 is forcibly set to a low level while the power supply voltage exceeds the reference voltage. It was necessary to provide an abnormal high voltage protection circuit 6.
[0006]
However, since the on-vehicle temperature control device 1 needs to protect against overvoltage and reverse polarity noise in addition to the abnormally high voltage at the time of load dump, the temperature signal voltage Vt of the thermistor 4 and the reference voltage Vs for temperature control are set. In comparison, the temperature adjustment circuit unit 12 that obtains the drive signal Vd of the current control element 5 uses protective elements such as a high voltage preventing Zener diode ZD1, a resistor R4, and a reverse voltage preventing diode D1. Of course, since the above-described abnormal high voltage protection circuit 6 also requires a similar protection element, the number of parts is greatly increased, and the current control element 5 having a large heat sink 5b with a large high current rating is provided. There was a problem that the effect of miniaturization and cost reduction by avoiding the use would be greatly reduced.
[0007]
The present invention has been made based on such points, and the object of the present invention is to realize a vehicle-mounted temperature control device that is safe, small and low-cost even when an abnormally high voltage is superimposed on the power supply voltage. There is to do.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a vehicle-mounted temperature control device according to claim 1 of the present invention cuts off a current control element driven by a thermistor temperature signal and a current flowing through the current control element when the thermistor is disconnected. A temperature-control device for vehicle that includes at least a thermistor disconnection protection circuit and adjusts the temperature of a vehicle-mounted warmed object in which a heating element of the wire is disposed, according to a temperature signal of the thermistor, By connecting a switch that is turned on when an abnormally high voltage is superimposed on the voltage in series with the thermistor , the thermistor disconnection protection circuit is operated in a pseudo manner for substantially the same period as the abnormally high voltage superimposed period. It is a feature.
According to a second aspect of the present invention, there is provided the on-vehicle temperature control device, wherein a switch that is turned on when an abnormally high voltage is superimposed on the power supply voltage of the on-vehicle temperature control device is connected in series with the thermistor, and a connection point between the switch and the thermistor. Is compared with a reference voltage for operating the thermistor disconnection protection circuit, so that the thermistor disconnection protection circuit is operated in a pseudo manner for substantially the same period as the abnormal high voltage superposition period. It is what.
The on- vehicle temperature control device according to claim 3 is characterized in that the current control element is a surface mount type in which a resin mold portion is 6 mm × 7 mm or less and does not include a heat sink.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG. The resistance value of the thermistor 4 has a negative temperature characteristic with respect to temperature, but when a resistor R1 is connected in series to the thermistor 4 as shown in FIG. 1, the voltage divided by the thermistor 4 and the resistor R1 is The temperature characteristic is positive with respect to temperature. This voltage is input as a temperature signal voltage Vt to the inverting input terminal of the comparator U1 which is a voltage comparator, while the reference voltage Vs set to an arbitrary value by the resistor R5 connected to the power supply line 7 is input to the comparator U1. When input to the non-inverting input terminal, for example, when the temperature of the heating wire 2 is low, the resistance value of the thermistor 4 is high, so that the temperature signal voltage Vt is lower than the reference voltage Vs. Then, the output of the comparator U1 becomes high level. If the current control element 5 is connected to the output of the comparator U1, a current flows through the heating wire 2 and the temperature of the heating wire 2 rises. On the other hand, when the temperature of the heating wire 2 becomes high, the resistance value of the thermistor 4 decreases and the temperature signal voltage Vt rises. However, when the temperature signal voltage becomes higher than the reference voltage Vs, the output of the comparator U1 becomes low level and the heating wire 2 When the current stops, the temperature of the heating wire 2 stops increasing. Thereafter, when the temperature of the heating wire 2 decreases with the passage of time and the temperature signal voltage Vt becomes equal to or lower than the reference voltage Vs, the current of the heating wire 2 is turned on and the temperature rises again. By repeating this, the temperature of the heating wire 2 is adjusted to a temperature corresponding to the reference voltage Vs.
[0010]
If the thermistor 4 is disconnected due to an abnormal external force or impact, the resistance value of the thermistor 4 becomes infinite and the temperature signal voltage Vt drops to almost 0V. In this case, since the temperature signal voltage Vt becomes lower than the reference voltage Vs, the current of the heating wire 2 is turned on, and the temperature of the heating wire 2 rises without limit. Therefore, when the temperature signal voltage Vt drops below the reference voltage Vc different from the reference voltage Vs for temperature adjustment, the current of the heating wire 2 is cut off to prevent the temperature of the heating wire 2 from rising unlimitedly. A built-in thermistor disconnection protection circuit 8 is a countermeasure generally taken.
[0011]
In the on-vehicle temperature control device 1 configured as described above, the emitter of the PNP transistor Q1 is connected to the connection point between the resistor R1 and the thermistor 4, the collector is connected to the GND terminals of the comparators U1 and U2, and the base and the comparators U1 and U2 are connected. If the Zener diode ZD2 is connected between the GND terminals and the resistor R5 is connected between the power supply line 7 and the base, the abnormally high voltage is superimposed on the power supply voltage, the secondary circuit voltage Va rises, and the base voltage becomes the Zener voltage of the Zener diode ZD2. When the value exceeds the value, the transistor Q1 is turned on, the voltage of the resistor R1 becomes almost 0V, and the same operation as when the thermistor 4 is disconnected can be performed. Thus, by operating the thermistor disconnection protection circuit 8 in a pseudo manner, the output of the comparator U2 becomes low level, and the current control element 5 can be turned off. The PNP transistor Q1, the Zener diode ZD2, and the resistor R1 are connected in a range that can protect against overvoltage and reverse polarity noise, and therefore no individual protection circuit is required, so that the number of parts can be reduced, thereby reducing the size. A great effect can be obtained for cost reduction.
[0012]
【Example】
Embodiments of the present invention will be further described below with reference to the drawings. In FIG. 1, the thermistor 4 has one end connected to the other end of the resistor R1 connected to the GND terminals of the comparators U1 and U2, and the inverting input terminal of the comparator U1, the non-inverting input terminal of the comparator U2, and the emitter of the PNP transistor Q1. Is also connected. A reference voltage Vs obtained by dividing the secondary circuit voltage Va by the resistors R6, R7, and R8 is applied to the non-inverting input terminal of the comparator U1. The output of the comparator U1 is wired-ORed with the output of the comparator U2, and is connected to the control terminal of the current control element 5 through the transistor Q2, the diode D2, and the resistor R9. A reference voltage Vc obtained by dividing the secondary circuit voltage Va by the resistors R6, R7, and R8 is applied to the inverting input terminal of the comparator U2. The collector of the PNP transistor Q1 is connected to the GND terminals of the comparators U1 and U2, the base is connected to the GND terminals of the comparators U1 and U2 through the Zener diode ZD2, and the comparators U1 and U2 are connected through the resistor R5. Connected to the Vcc terminal.
[0013]
The thermistor disconnection protection circuit 8 comprises a comparator U2 and resistors R6, R7, R8, and the temperature signal voltage Vt at the non-inverted input terminal of the comparator U2 is disconnected from the thermistor 4 from the reference voltage Vc input to the inverted input terminal of the comparator U2. Due to the failure, the output of the comparator U2 becomes low level. At the same time, the current control element 5 is turned off by setting the control terminal of the current control element 5 to low level regardless of the output of the wired OR connected comparator U1. .
[0014]
On the other hand, the emitter of the PNP transistor Q1 is also connected to the non-inverting input terminal of the comparator U2. When the abnormal high voltage is superimposed on the power supply voltage as shown in FIG. 2A, the base voltage of the PNP transistor Q1 is This exceeds the Zener voltage of the Zener diode ZD2, and as a result, a current flows through the Zener diode ZD2. Then, the PNP transistor Q1 is turned ON, the voltage between the emitter and the collector is lowered, and the voltage at the inverting input terminal of the comparator U2 is almost 0V. As a result, the output of the comparator U2 becomes low level. As a result, the current control element 5 is turned off, and the voltage applied to the heating wire 2 is turned off for substantially the same period as the period when the abnormal high voltage is superimposed on the power supply voltage, as shown in FIG. This is the same operation as the thermistor disconnection protection circuit 8 is activated due to the disconnection failure of the thermistor 4, and it can be said that the thermistor disconnection protection circuit 8 is operated in a pseudo manner.
[0015]
In addition, since the on-vehicle temperature control device 1 needs to protect against overvoltage and reverse polarity noise in addition to the abnormally high voltage at the time of load dump, the signal of the thermistor 4 and the reference voltage Vs for temperature control are compared. The temperature adjusting circuit unit 12 that obtains a drive signal for the current control element 5 uses protective elements such as a high voltage preventing Zener diode ZD1, a voltage dropper resistor R4, and a reverse voltage preventing diode D1. However, since the PNP transistor Q1, the Zener diode ZD2 and the resistor R5 for operating the thermistor disconnection protection circuit 8 in a pseudo manner are protected by the protection elements, individual protection circuits are unnecessary. ,
[0016]
In FIG. 1, the comparators U1 and U2 use a dual type (BA10393: manufactured by ROHM) with a single power source, and the current control element 5 has a resin mold portion 5a as shown in FIG. A .5 mm surface mount type power MOS FET (2SK3483-Z: manufactured by NEC) was mounted without a heat sink. Zener voltages of the Zener diodes ZD1 and ZD2 are 12 V and 9 V, respectively, and 2SA1587 (manufactured by Toshiba) is used as the PNP transistor Q1.
[0017]
In the above embodiment, a test was performed based on the test method of the automobile standard (JASO D001). As a result, even if the on-vehicle warming object 3 having a resistance value of the heating wire 2 of 3Ω (about 60 W) was connected, No sudden heat generation or failure was observed.
[0018]
【The invention's effect】
As described above, according to the present invention, at least a current control element that is driven by a temperature signal of the thermistor and a thermistor disconnection protection circuit that interrupts a current flowing through the current control element when the thermistor is disconnected, A vehicle-mounted temperature control device that adjusts the temperature of the vehicle-mounted warmed object in which the heating element of the strip is arranged by the temperature signal of the thermistor, when an abnormally high voltage is superimposed on the power supply voltage of the vehicle-mounted temperature control device By operating the thermistor disconnection protection circuit in a pseudo manner for substantially the same period as the superposition period of the abnormal high voltage, the use of a current control element having a large heat sink with a large high current rating is avoided, for example, A surface mount type current control element having a resin mold portion of 6 mm × 7 mm or less can be used without a heat sink. Further, by arranging a circuit for operating the thermistor disconnection protection circuit in a pseudo manner within a range where the protection element protects against overvoltage and reverse polarity noise, individual protection elements are not necessary. Therefore, even when an abnormally high voltage is superimposed on the power supply voltage, it is safe, small, and low in cost, for example, an in-vehicle temperature used for temperature adjustment of an in-vehicle warming object such as a car seat heater or a truck nap heater. An adjusting device can be realized.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of an on-vehicle temperature control device according to the present invention.
FIGS. 2A and 2B are diagrams showing waveforms of respective parts of the on-vehicle temperature control device according to the present invention, wherein FIG. 2A shows a waveform in which an abnormally high voltage is superimposed on the power supply voltage of the on-vehicle temperature control device, and FIG. The waveform applied to the heating line when the waveform of a) is applied to the on-vehicle temperature control device is shown.
FIGS. 3A and 3B are diagrams illustrating a configuration of a current control element used in an embodiment of the present invention, where FIG. 3A is a top view and FIG. 3B is a side view.
FIG. 4 is a diagram for explaining the configuration of an in-vehicle warming object.
FIG. 5 is a circuit diagram showing a conventional on-vehicle temperature control device.
6A and 6B are diagrams illustrating a configuration of a current control element used in a conventional example, in which FIG. 6A is a top view and FIG. 6B is a side view.
[Explanation of symbols]
U1, U2 Comparators R1-R12 Resistors D1, D2 Diodes ZD1, ZD2, ZD3 Zener diodes Q1, Q2 Transistor E DC power supply 1 In-vehicle temperature control device 2 Heating wire 3 In-vehicle warming product 4 Thermistor 5 Current control element 5a Resin mold part 5b Heat sink 6 Abnormal high voltage protection circuit 7 Power supply line 8 Thermistor disconnection protection circuit 12 Temperature adjustment circuit Vt Temperature signal voltage Vs Reference voltage Vc for temperature adjustment Reference voltage Va for thermistor disconnection protection Secondary circuit voltage

Claims (3)

サーミスタの温度信号で駆動される電流制御素子と、前記サーミスタが断線した時に前記電流制御素子に流れる電流を遮断するサーミスタ断線保護回路とを少なくとも備え、線条の発熱体が配設された車載用採暖物の温度を前記サーミスタの温度信号によって調節する車載用温度調節装置であって、車載用温度調節装置の電源電圧に異常高電圧が重畳された時にONするスイッチを前記サーミスタと直列に接続することで、前記サーミスタ断線保護回路を前記異常高電圧の重畳期間とほぼ同じ期間、擬似的に作動させるように構成したことを特徴とする車載用温度調節装置。In-vehicle use in which at least a current control element driven by a temperature signal of the thermistor and a thermistor disconnection protection circuit for interrupting a current flowing through the current control element when the thermistor is disconnected are provided, and a heating element of the filament is disposed A vehicle-mounted temperature control device that adjusts the temperature of the warmed object according to the temperature signal of the thermistor, and a switch that is turned on when an abnormally high voltage is superimposed on the power supply voltage of the vehicle-mounted temperature control device is connected in series with the thermistor doing, vehicle temperature control apparatus characterized by being configured the thermistor disconnection protection circuit to operate substantially the same period, pseudo the overlap period of the abnormally high voltage. 請求項1記載の車載用温度調節装置において、車載用温度調節装置の電源電圧に異常高電圧が重畳された時にONするスイッチを前記サーミスタと直列に接続し、前記スイッチと前記サーミスタの接続点の電圧を、前記サーミスタ断線保護回路を作動させる基準電圧と比較することで、前記サーミスタ断線保護回路を前記異常高電圧の重畳期間とほぼ同じ期間、擬似的に作動させるように構成したことを特徴とする車載用温度調節装置。The on-vehicle temperature control device according to claim 1, wherein a switch that is turned on when an abnormally high voltage is superimposed on a power supply voltage of the on-vehicle temperature control device is connected in series with the thermistor, and a connection point between the switch and the thermistor is connected. By comparing the voltage with a reference voltage for operating the thermistor disconnection protection circuit, the thermistor disconnection protection circuit is configured to operate in a pseudo manner for substantially the same period as the abnormal high voltage superposition period. In-vehicle temperature control device. 請求項1又は請求項2記載の車載用温度調節装置において、前記電流制御素子は、樹脂モールド部が6mm×7mm以下の面実装タイプであり、放熱板を具備していないことを特徴とする車載用温度調節装置。The on-vehicle temperature control device according to claim 1 or 2 , wherein the current control element is a surface mount type in which a resin mold portion is 6 mm x 7 mm or less and does not include a heat sink. Temperature control device.
JP2002287077A 2002-09-30 2002-09-30 Automotive temperature controller Expired - Fee Related JP4017183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002287077A JP4017183B2 (en) 2002-09-30 2002-09-30 Automotive temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002287077A JP4017183B2 (en) 2002-09-30 2002-09-30 Automotive temperature controller

Publications (2)

Publication Number Publication Date
JP2004127591A JP2004127591A (en) 2004-04-22
JP4017183B2 true JP4017183B2 (en) 2007-12-05

Family

ID=32279986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002287077A Expired - Fee Related JP4017183B2 (en) 2002-09-30 2002-09-30 Automotive temperature controller

Country Status (1)

Country Link
JP (1) JP4017183B2 (en)

Also Published As

Publication number Publication date
JP2004127591A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
US6587338B2 (en) Electronic controller modules and methods for making and using same
US7622885B2 (en) Linear electric motor controller and system for providing linear control
US6630748B2 (en) Load control apparatus and method having single temperature detector
US7542251B2 (en) Auto-protected power modules and methods
JP3992017B2 (en) Vehicle power generation system
JP3191481B2 (en) Automotive air conditioners
JP2011078228A (en) Overcurrent protection circuit
CN105321934B (en) Circuit arrangement for the thermal protection of power semiconductors
JP4259006B2 (en) Electric vehicle power control system
US6906902B2 (en) Semiconductor integrated circuit
JP4017183B2 (en) Automotive temperature controller
US7064940B2 (en) Over heat protection circuit for a brushless dc motor
JP3246260B2 (en) PTC heater protection device for electric vehicles
KR100482456B1 (en) Blower fan motor circuit of vehicle
EP1320184A2 (en) Linear electric motor controller and system for providing linear speed control
WO2019235085A1 (en) Vehicle-mounted air conditioner control device, and vehicle
KR20060081245A (en) A driving control apparatus for car cooperation blower motor be possessed of protection function
JP3748343B2 (en) Switching control device, switching device, and vehicle power supply device
Graf Smart power switches for automobile and industrial applications
JP2007097355A (en) Inverter circuit
JPH0649113Y2 (en) Vehicle power supply
JP2000289452A (en) Air conditioner for electric vehicle
EP1117181B1 (en) Voltage protection and biasing circuit
KR0123497Y1 (en) A cooling device for a car
JP2004236485A (en) Overcurrent detecting circuit for voltage-driving element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees