JP4016849B2 - Die casting mold for radiator and radiator - Google Patents

Die casting mold for radiator and radiator Download PDF

Info

Publication number
JP4016849B2
JP4016849B2 JP2003037622A JP2003037622A JP4016849B2 JP 4016849 B2 JP4016849 B2 JP 4016849B2 JP 2003037622 A JP2003037622 A JP 2003037622A JP 2003037622 A JP2003037622 A JP 2003037622A JP 4016849 B2 JP4016849 B2 JP 4016849B2
Authority
JP
Japan
Prior art keywords
mold
radiator
fin
heat sink
sink body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003037622A
Other languages
Japanese (ja)
Other versions
JP2004243392A (en
Inventor
英司 北野
直嗣 ▲柳▼沢
雅宣 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003037622A priority Critical patent/JP4016849B2/en
Publication of JP2004243392A publication Critical patent/JP2004243392A/en
Application granted granted Critical
Publication of JP4016849B2 publication Critical patent/JP4016849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、放熱器用ダイカスト金型および放熱器、特に肉厚部と複数の放熱フィン部とを型取るキャビティ有する放熱器用ダイカストの金型およびその金型によって作られた放熱器に関する。
【0002】
【従来の技術】
発熱体の温度上昇を防ぐために放熱器は広く利用されている。例えば図1に示すように、その基本構成は、発熱体105に密接し熱を受け取るヒートシンク本体101とその熱を冷却媒体に放散するためにヒートシンク本体から外方へ突出した放熱フィン102とから成る。発熱体105の一例としてはモータ駆動用の電力制御装置がある。電力制御装置は近年、小型化が進んでおり、それに伴って、放熱器にも小型化の要求が強い。放熱特性を損なわず、放熱器の小型化を実現するためには、単位体積当たりの放熱フィン表面積を拡大する必要がある。そのためにはフィンピッチの極小化、ヒートシンク本体の一定面積に対する放熱フィンの取り付け数の増加が有効である。また、一般に、放熱器100と発熱体105との固定にはねじ104が使われており、従来、ヒートシンク本体101にはねじ穴が形成されていた。しかし放熱器の小型化を追求した結果、ヒートシンク本体101にもはやねじ穴等を形成する容積は無くなり、発熱体105を固定するためのねじ穴等を開けるための肉厚な固定部103を別途設けることが必要となっている。
【0003】
これらの複雑な構造を持った放熱器を生産する方法としては鋳造法がある。鋳造法とは所望の形状のキャビティを有する型に溶融した金属を流し込み、冷やして固め、所望の形状を造る方法である。型を金型、溶融した金属を溶湯という。この技術の特徴は、所望の形状がきわめて複雑なものであっても、それを一挙に造り上げることができるという成形能力にある。さらに鋳造の一種で、高い圧力をかけて鋳造する方法をダイカスト法という。ダイカスト法は寸法精度が高く肉薄のものをつくることができるという特徴を有し、また、後工程での加工を減らすことができることから大量生産に適する方法である。
【0004】
しかしながら、ダイカスト法においては、金属溶湯をキャビティ内に注入する際にキャビティ内に巻き込まれた空気や溶湯から発生するガスが溶湯内に残存し、製品に巣ができてしまう問題があった。特に、肉厚な構造部分は最後に凝固するため、溶湯の補給が行われず、ひけ巣(収縮巣)ができやすい。巣は放熱器の品質を左右する重大な欠陥となる。
【0005】
そこで、溶湯が金型に充填された後、厚肉な構造部分を局部的に加圧する局部加圧(スクイズ)法が開発され、鋳巣の少ないダイカスト技術として広く用いられている(例えば特許文献1参照)。
【0006】
【特許文献1】
特開平8−141723公報
【0007】
【発明が解決しようとする課題】
図2に従来の放熱器用ダイカスト金型の断面図を示す。金型200は上型201と下型202から構成されており、発熱体から熱を受け取るヒートシンク本体を型取るキャビティ203とヒートシンク本体から外方へ突出した肉厚部を型取るキャビティ205と、ヒートシンク本体から外方へ突出した複数の放熱フィンを型取るキャビティ208を有する。また金型は溶湯を注入する溶湯注入口(図示せず)、と局部加圧を行うための局部加圧口204を備える。局部加圧口204は肉厚部を型取る肉厚部キャビティ205に対向する位置に設けられている。放熱器は小型化しかつ、高い放熱特性を持たせるために、フィンピッチを小さくしてフィンの表面積を増やす必要がある。したがって、金型200においては、フィン型206、207および209の厚みは薄いものとなっている。
【0008】
この金型200において、溶湯注入後に行われる局部加圧について説明する。
【0009】
注入された溶湯に局部加圧口204から高圧が加えられると、溶湯はキャビティ内に巻き込んだ空気や発生したガスの空孔を埋める。圧力を加えながら凝固させるため、鋳巣のない放熱器の鋳造ができる。溶湯が空孔を埋める動きのため、溶湯全体としては局部加圧口からキャビテイの奥に向いた流れが生じることになる。この局部加圧による圧力は金型に、溶湯を介して局部加圧口から湯流れ方向に加わる。局部加圧口近傍のフィン型206、207には溶湯の流れの方向に向かって、特に高い圧力が加わることになる。この圧力により、局部加圧口近傍のフィン型206、207が変形したり崩れたりしてしまうという問題があった。
【0010】
本発明は、鋳巣の無いフィンピッチの小さい放熱ヒートシンクを形成し、しかも型崩れの起きない構造の金型の提供を目的とする。
【0011】
【課題を解決するための手段】
本発明の放熱器用ダイカスト金型は、ヒートシンク本体と、ヒートシンク本体から突出した肉厚部と、ヒートシンク本体から、ヒートシンク本体に対して肉厚部と同じ側に同じ向きに突出した複数の放熱フィン部と、を型取るキャビティを有するダイカスト金型において、ヒートシンク本体と、放熱フィン部より厚い肉厚部と、複数の放熱フィン部と、を型取るキャビティに注入された溶湯を局部加圧する局部加圧口が、肉厚部を型取る肉厚部キャビティに対向する位置に設けられ、局部加圧口近傍の放熱フィン部を型取るフィン型部は、局部加圧口から離れたフィン型部に比して、厚みが増加された構造からなることを特徴とする
【0012】
本発明の放熱器用ダイカスト金型の型取る肉厚部は、発熱体に固定するためのねじ穴を形成する固定部としてもよい。
【0014】
本発明の放熱器用ダイカスト金型のフィン型部は平板形状としてもよい。
【0015】
また、本発明の放熱器はこれらの金型によって製造された放熱器である。
【0016】
【発明の実施の形態】
本発明の実施の形態を実施例を用いて説明する。図3は、本発明の一実施例である放熱器用ダイカスト金型の断面図である。ダイカスト金型300は上型301と下型302とから構成されている。ダイカスト金型300のキャビティは発熱体に密接し、熱を受け取るヒートシンク本体303と発熱体に固定するためのヒートシンク本体303から外方へ突出した肉厚部305と熱を冷却媒体に放散するためにヒートシンク本体303から外方へ突出した放熱フィン部308を型取る。また、上型301には溶湯に局部加圧を行うための局部加圧口304が肉厚部キャビティ305に対向する位置に設けられている。肉厚部キャビティ305に十分な圧力を加えるために、局部加圧口304は肉厚部キャビティ305に対向する位置にあることが望ましい。放熱器は小型化しかつ、高い放熱特性を持たせるために、フィンピッチを小さくしてフィンの表面積を増やす必要がある。したがって、ダイカスト金型300においては、フィン型309の厚みは薄いものとなっているが、最も高い圧力の加わる局部加圧口近傍の放熱フィン型部306および307の湯流れ方向の厚みは、その外側の放熱フィン型309と比べて増加した構造となっている。
【0017】
この金型300において、溶湯注入後に行われる局部加圧について説明する。
【0018】
充填された溶湯に局部加圧口304から高圧が加えられると、溶湯はキャビティ内に巻き込んだ空気や発生したガスの空孔を埋める。溶湯の空孔を埋める動きのため、溶湯全体としては局部加圧口からキャビテイの奥に向いた流れが生じることになる。この局部加圧による圧力は金型に、溶湯を介して局部加圧口から湯流れ方向に加わる。局部加圧口近傍のフィン型306、307には溶湯の流れの方向に向かって、特に高い圧力が加わることになる。しかし、フィン型306および307の湯流れ方向の厚みは注入口から離れたフィン型部309に比べて増加しているため、強度が高く、変形や崩れは生じることは無い。この局部加圧により、肉厚の肉厚部キャビティ305およびヒートシンク本体キャビティ303にも溶湯が密度高く充填することとなり、鋳巣のない、緻密なヒートシンクを製造することができる。また、金型が溶湯の加圧注入方法に対して十分な強度を持つため金型寿命が伸び、生産性の向上・コストの低減が実現できる。
【0019】
本発明による放熱器の肉厚部は発熱体を固定するためのねじ穴等を設ける固定部として用いることができる。肉厚のある強度の高い固定部を形成できるため、例えば、自動車に搭載する電力制御装置の放熱に用いる場合、振動の激しい使用環境においても信頼性高く、電力制御装置の放熱を行うことできる。
【0020】
また、本発明による放熱器の肉厚部は冷却媒体路を輪郭するための構造部とすることができる。例えば、自動車に搭載する電力制御装置の発熱を放熱器を介して液体に放熱させる場合、冷媒液体の流路に放熱器を設置する。その流路の一部を放熱器の肉厚部とヒートシンク本体とによって輪郭させることによって、合理的な冷却構造を形成することができる。
【0021】
また、上記フィン型部は平板形状であってもよい。フィン型部が平板形状であれば、その金型によって製造された放熱器のフィンも平板形状となり、使用する冷却媒体環境によっては好ましい放熱特性を示すことができる。
【0022】
さらに、これらの特徴を有するダイカスト金型によって製造された放熱器は放熱フィンピッチが細かく、フィン厚も薄いため、小型でかつ放熱特性が良い。
【0023】
以上、本発明の実施の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々な形態で実施し得ることは勿論である。
【図面の簡単な説明】
【図1】 従来の放熱器の構造を示す構成図である。
【図2】 従来の放熱器用ダイカスト金型の断面図である。
【図3】 本発明の実施例の放熱器用ダイカスト金型の断面図である。
【符号の説明】
100 放熱器、101 ヒートシンク本体、102 放熱フィン、103 固定部、104 取付ねじ、105 発熱体、200 放熱器用ダイカスト金型、201 上型、202 下型、203 ヒートシンク本体キャビテイ、204局部加圧口、205 肉厚部キャビティ、206,207 局部加圧口近傍のフィン型部、208 放熱フィンキャビティ、209 局部加圧口から離れたフィン型部、300 放熱器用ダイカスト金型、301 上型、302 下型、303 ヒートシンク本体キャビテイ、304 局部加圧口、305 肉厚部キャビティ、306,307 局部加圧口近傍のフィン型部、308 放熱フィンキャビティ、309 局部加圧口から離れたフィン型部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a die-casting die for a radiator and a radiator, and more particularly, to a die-casting die for a radiator having a cavity that molds a thick portion and a plurality of radiating fin portions, and a radiator made by the die.
[0002]
[Prior art]
In order to prevent the temperature of the heating element from rising, heat radiators are widely used. For example, as shown in FIG. 1, the basic configuration includes a heat sink body 101 that is in close contact with the heating element 105 and receives heat, and heat radiating fins 102 that protrude outward from the heat sink body to dissipate the heat to the cooling medium. . An example of the heating element 105 is a power control device for driving a motor. In recent years, power control devices have been miniaturized, and accordingly, there is a strong demand for miniaturization of radiators. In order to reduce the size of the radiator without impairing the heat dissipation characteristics, it is necessary to increase the surface area of the heat dissipation fin per unit volume. To that end, minimizing the fin pitch and increasing the number of radiating fins attached to a certain area of the heat sink body are effective. In general, a screw 104 is used to fix the radiator 100 and the heating element 105, and a screw hole is conventionally formed in the heat sink body 101. However, as a result of pursuing downsizing of the radiator, the heat sink body 101 no longer has a capacity for forming a screw hole or the like, and a thick fixing portion 103 for opening a screw hole or the like for fixing the heating element 105 is separately provided. It is necessary.
[0003]
There is a casting method as a method for producing a radiator having such a complicated structure. The casting method is a method in which a molten metal is poured into a mold having a cavity having a desired shape, and is cooled and hardened to produce a desired shape. The mold is called a mold, and the molten metal is called molten metal. A feature of this technique is a molding ability that allows a desired shape to be created even if it is extremely complicated. Furthermore, a type of casting that involves casting under high pressure is called die casting. The die-casting method is characterized by being capable of producing thin ones with high dimensional accuracy and being suitable for mass production because it can reduce processing in the subsequent process.
[0004]
However, in the die casting method, there is a problem that when the molten metal is injected into the cavity, air entrained in the cavity or gas generated from the molten metal remains in the molten metal, and a nest is formed in the product. In particular, since the thick structural portion solidifies at the end, the molten metal is not replenished, and a sink nest (contracted nest) is likely to be formed. The nest is a serious defect that affects the quality of the radiator.
[0005]
Therefore, a local pressurization (squeeze) method for locally pressurizing a thick structural part after the molten metal is filled in a mold has been developed, and is widely used as a die casting technique with few cast holes (for example, Patent Documents) 1).
[0006]
[Patent Document 1]
JP-A-8-141723
[Problems to be solved by the invention]
FIG. 2 shows a cross-sectional view of a conventional radiator die casting mold. The mold 200 includes an upper mold 201 and a lower mold 202, a cavity 203 that molds a heat sink body that receives heat from a heating element, a cavity 205 that molds a thick portion protruding outward from the heat sink body, and a heat sink A cavity 208 is formed to mold a plurality of radiating fins protruding outward from the main body. The mold also includes a molten metal injection port (not shown) for injecting molten metal and a local pressurization port 204 for performing local pressurization. The local pressurizing port 204 is provided at a position facing the thick part cavity 205 that molds the thick part. In order to reduce the size of the radiator and provide high heat dissipation characteristics, it is necessary to reduce the fin pitch and increase the surface area of the fin. Therefore, in the mold 200, the fin molds 206, 207, and 209 are thin.
[0008]
In this mold 200, the local pressurization performed after molten metal injection | pouring is demonstrated.
[0009]
When a high pressure is applied to the injected molten metal from the local pressurization port 204, the molten metal fills the air entrapped in the cavity and the holes of the generated gas. Because it solidifies while applying pressure, it is possible to cast a radiator without a void. Due to the movement of the molten metal filling the holes, a flow from the local pressurizing port to the back of the cavity is generated as a whole. The pressure by this local pressurization is applied to the mold in the hot water flow direction from the local pressurization port via the molten metal. A particularly high pressure is applied to the fin dies 206 and 207 in the vicinity of the local pressurizing port in the direction of the molten metal flow. Due to this pressure, there is a problem that the fin dies 206 and 207 near the local pressurizing port are deformed or collapsed.
[0010]
It is an object of the present invention to provide a mold having a structure in which a heat sink having a small fin pitch without a cast hole is formed and the mold does not collapse.
[0011]
[Means for Solving the Problems]
The die casting mold for a radiator of the present invention includes a heat sink body, a thick portion protruding from the heat sink body, and a plurality of heat radiation fin portions protruding from the heat sink body in the same direction on the same side as the thick portion with respect to the heat sink body. When, in the die-casting die having a mold taking cavity and a heat sink body, and a thick wall thickness portion from the heat dissipating fin portion, a plurality of heat dissipating fins and, applying station unit pressure to the mold takes molten metal injected into the cavity the local pressure The pressure port is provided at a position opposite to the thick part cavity that molds the thick part, and the fin mold part that molds the heat dissipating fin part in the vicinity of the local pressure port is located on the fin mold part away from the local pressure port. It is characterized by having a structure with an increased thickness .
[0012]
The thick part of the die cast mold for a radiator according to the present invention may be a fixing part that forms a screw hole for fixing to a heating element.
[0014]
The fin part of the die-casting die for a radiator of the present invention may have a flat plate shape.
[0015]
The radiator of the present invention is a radiator manufactured by these molds.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described using examples. FIG. 3 is a cross-sectional view of a die-casting die for a radiator that is an embodiment of the present invention. The die casting mold 300 is composed of an upper mold 301 and a lower mold 302. The cavity of the die-casting mold 300 is in close contact with the heating element, and is used to dissipate the heat to the cooling medium, the heat sink body 303 that receives heat, the thick part 305 that protrudes outward from the heat sink body 303 for fixing to the heating element. A heat radiating fin portion 308 protruding outward from the heat sink body 303 is formed. Further, the upper die 301 is provided with a local pressurizing port 304 for locally pressurizing the molten metal at a position facing the thick portion cavity 305. In order to apply a sufficient pressure to the thick part cavity 305, it is desirable that the local pressurization port 304 is at a position facing the thick part cavity 305. In order to reduce the size of the radiator and provide high heat dissipation characteristics, it is necessary to reduce the fin pitch and increase the surface area of the fin. Therefore, in the die-cast mold 300, the fin mold 309 is thin, but the thickness of the heat dissipating fin mold sections 306 and 307 near the local pressurization port to which the highest pressure is applied is the thickness of the fin mold 309. The structure is increased as compared with the outer radiating fin type 309.
[0017]
In this mold 300, the local pressurization performed after the molten metal injection will be described.
[0018]
When a high pressure is applied to the filled molten metal from the local pressurization port 304, the molten metal fills the air entrapped in the cavity and the holes of the generated gas. Due to the movement of filling the vacancies of the molten metal, the flow of the molten metal as a whole is directed from the local pressurizing port to the back of the cavity. The pressure by this local pressurization is applied to the mold in the hot water flow direction from the local pressurization port via the molten metal. A particularly high pressure is applied to the fin molds 306 and 307 near the local pressurizing port in the direction of the flow of the molten metal. However, since the thickness of the fin molds 306 and 307 in the hot water flow direction is increased compared to the fin mold portion 309 that is away from the inlet, the strength is high and deformation and collapse do not occur. By this local pressurization, the thick wall portion cavity 305 and the heat sink body cavity 303 are filled with the molten metal with high density, and a dense heat sink without a cast hole can be manufactured. In addition, since the mold has sufficient strength with respect to the molten metal pressure injection method, the mold life can be extended, and the productivity can be improved and the cost can be reduced.
[0019]
The thick part of the radiator according to the present invention can be used as a fixing part provided with a screw hole or the like for fixing the heating element. Since a thick and high-strength fixing portion can be formed, for example, when used for heat dissipation of a power control device mounted on an automobile, heat dissipation of the power control device can be performed with high reliability even in an environment where vibration is severe.
[0020]
Moreover, the thick part of the heat radiator by this invention can be made into the structure part for contouring a cooling medium path. For example, when heat generated by a power control device mounted on an automobile is radiated to a liquid via a radiator, the radiator is installed in the flow path of the refrigerant liquid. A rational cooling structure can be formed by contouring a part of the flow path with the thick part of the radiator and the heat sink body.
[0021]
Further, the fin mold portion may have a flat plate shape. If the fin mold part has a flat plate shape, the fins of the radiator manufactured by the mold also have a flat plate shape, and a preferable heat radiation characteristic can be exhibited depending on the cooling medium environment to be used.
[0022]
Furthermore, the radiator manufactured by the die-casting mold having these characteristics has a small radiating fin pitch and a thin fin thickness, and thus is small in size and has good radiating characteristics.
[0023]
The embodiments of the present invention have been described using the embodiments. However, the present invention is not limited to these embodiments, and can be implemented in various forms without departing from the gist of the present invention. Of course you get.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a structure of a conventional radiator.
FIG. 2 is a cross-sectional view of a conventional radiator die casting mold.
FIG. 3 is a cross-sectional view of a die cast mold for a radiator according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 100 Radiator, 101 Heat sink body, 102 Radiation fin, 103 Fixing part, 104 Mounting screw, 105 Heating element, 200 Die casting mold for radiator, 201 Upper mold, 202 Lower mold, 203 Heat sink body cavity, 204 Local pressure port, 205 Thick part cavity, 206, 207 Fin mold part near local pressure port, 208 Radiation fin cavity, 209 Fin mold part away from local pressure port, 300 Die casting mold for radiator, 301 Upper mold, 302 Lower mold , 303 Heat sink body cavity, 304 Local pressurization port, 305 Thick part cavity, 306, 307 Fin mold part near local pressurization port, 308 Radiation fin cavity, 309 Fin mold part away from local pressurization port.

Claims (4)

ヒートシンク本体と、
ヒートシンク本体から突出した肉厚部と、
ヒートシンク本体から、ヒートシンク本体に対して肉厚部と同じ側に同じ向きに突出した複数の放熱フィン部と、
を型取るキャビティを有するダイカスト金型において、
ヒートシンク本体と、放熱フィン部より厚い肉厚部と、複数の放熱フィン部と、を型取るキャビティに注入された溶湯を局部加圧する局部加圧口が、肉厚部を型取る肉厚部キャビティに対向する位置に設けられ、
局部加圧口近傍の放熱フィン部を型取るフィン型部は、局部加圧口から離れたフィン型部に比して、厚みが増加された構造からなることを特徴とする放熱器用ダイカスト金型。
A heat sink body,
A thick part protruding from the heat sink body,
From the heat sink body , a plurality of radiating fin portions protruding in the same direction on the same side as the thick portion with respect to the heat sink body ,
In die casting molds with cavities to mold
A heat sink body, and a thick wall thickness portion from the heat dissipating fin portion, a plurality of heat dissipating fins and, applying station unit pressure to the mold takes molten metal injected into the cavity the local pressure port is thick portion which takes the mold wall thickness portion Provided at a position facing the cavity ,
The die mold for a radiator is characterized in that the fin mold part that molds the heat dissipating fin part in the vicinity of the local pressurizing port has a structure in which the thickness is increased as compared with the fin mold part that is separated from the local pressurizing port. .
前記肉厚部は、発熱体に固定するためのねじ穴を形成する固定部であることを特徴とする請求項1に記載の放熱器用ダイカスト金型。The die cast mold for a radiator according to claim 1, wherein the thick part is a fixing part that forms a screw hole for fixing to the heating element. 前記フィン型部は、平板形状からなることを特徴とする請求項1または請求項2に記載の放熱器用ダイカスト金型。The die casting mold for a radiator according to claim 1 or 2, wherein the fin mold part has a flat plate shape. 請求項1ないし請求項3のいずれか1つに記載の金型によって製造された放熱器。The heat radiator manufactured by the metal mold | die as described in any one of Claim 1 thru | or 3.
JP2003037622A 2003-02-17 2003-02-17 Die casting mold for radiator and radiator Expired - Fee Related JP4016849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037622A JP4016849B2 (en) 2003-02-17 2003-02-17 Die casting mold for radiator and radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037622A JP4016849B2 (en) 2003-02-17 2003-02-17 Die casting mold for radiator and radiator

Publications (2)

Publication Number Publication Date
JP2004243392A JP2004243392A (en) 2004-09-02
JP4016849B2 true JP4016849B2 (en) 2007-12-05

Family

ID=33022361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037622A Expired - Fee Related JP4016849B2 (en) 2003-02-17 2003-02-17 Die casting mold for radiator and radiator

Country Status (1)

Country Link
JP (1) JP4016849B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949608A (en) * 2014-04-30 2014-07-30 昆山长运电子工业有限公司 One-step forming mold for heat-dissipating air outlet of ultra-thin notebook computer
CN104668506A (en) * 2013-12-02 2015-06-03 苏州承源光电科技有限公司 Die-casting die for LED (Light-Emitting Diode) radiator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101209490B (en) * 2006-12-29 2011-03-30 富准精密工业(深圳)有限公司 Die casting die for shaping cooling component and method for manufacturing cooling component by the same
KR100879395B1 (en) 2007-08-01 2009-01-20 한국생산기술연구원 Forming apparatus for heat sink by foaming
CN108909007B (en) * 2018-07-03 2021-10-01 厦门泰启力飞科技有限公司 Graphene die-casting forming process
JP7215409B2 (en) * 2019-12-19 2023-01-31 トヨタ自動車株式会社 casting method
CN116652152B (en) * 2023-08-01 2023-11-14 宁波博威模具技术有限公司 Die casting die for radiator shell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104668506A (en) * 2013-12-02 2015-06-03 苏州承源光电科技有限公司 Die-casting die for LED (Light-Emitting Diode) radiator
CN103949608A (en) * 2014-04-30 2014-07-30 昆山长运电子工业有限公司 One-step forming mold for heat-dissipating air outlet of ultra-thin notebook computer

Also Published As

Publication number Publication date
JP2004243392A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP4016849B2 (en) Die casting mold for radiator and radiator
KR20130083934A (en) Monolithic structurally complex heat sink designs
JP2019181503A (en) Die casting mold, die cast product produced by die casting mold, and method for producing die cast product
JP5758735B2 (en) Mold
US5215140A (en) Method of making a heat sink
JP3106397B2 (en) Method of manufacturing a cast cylinder head
JP2000254768A (en) Metallic mold for inserting pipe as cast-in
KR102134137B1 (en) Chill vent for die casting mould
JP3306376B2 (en) Manufacturing method of aluminum die-cast molded product
JP3668304B2 (en) Manufacturing method of heat sink
JP4637609B2 (en) Chill vent nesting
JP4158597B2 (en) Cylinder block manufacturing method
CN209379895U (en) A kind of crowded type radiator flush type die-cast product
JP3893494B2 (en) Case for semiconductor module
US20030116309A1 (en) Heat exchanging apparatus and method of manufacture
CN108115099A (en) The method for solving 3D printing sand core ash ironware surface depression
JP2014210270A (en) Heat sink and method of manufacturing the same
CN113427317A (en) Temperature control structure of machine tool structural part and manufacturing method
JP7042569B2 (en) Manufacturing method of molds and cast parts
JP2005066676A (en) Plaster mold used for manufacture of die for tire vulcanization and method for manufacturing the same plaster mold
CN109304451A (en) A kind of crowded type radiator flush type die-casting process and its die-cast product
KR102447807B1 (en) injection mold
CN115240939B (en) Manufacturing method of casting type liquid cooling load
CN218134871U (en) Die casting die with heat dissipation mechanism
CN214920331U (en) Centrifugal casting device with heat radiation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees