JP4016573B2 - High-tensile steel plate excellent in ductility and impact resistance and method for producing the same, and method for producing structural member having impact resistance - Google Patents

High-tensile steel plate excellent in ductility and impact resistance and method for producing the same, and method for producing structural member having impact resistance Download PDF

Info

Publication number
JP4016573B2
JP4016573B2 JP2000160296A JP2000160296A JP4016573B2 JP 4016573 B2 JP4016573 B2 JP 4016573B2 JP 2000160296 A JP2000160296 A JP 2000160296A JP 2000160296 A JP2000160296 A JP 2000160296A JP 4016573 B2 JP4016573 B2 JP 4016573B2
Authority
JP
Japan
Prior art keywords
steel sheet
tensile
center
vickers hardness
impact resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000160296A
Other languages
Japanese (ja)
Other versions
JP2001335891A (en
Inventor
啓達 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000160296A priority Critical patent/JP4016573B2/en
Publication of JP2001335891A publication Critical patent/JP2001335891A/en
Application granted granted Critical
Publication of JP4016573B2 publication Critical patent/JP4016573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プレス加工や曲げ加工などによって成形される高強度構造部材の素材として好適な、延性と耐衝撃特性に優れた高張力鋼板およびその製造方法と、耐衝撃特性を有する構造部材製造方法に関する。
【0002】
【従来の技術】
自動車における衝突安全性の向上と軽量化に対応して、構造部材の高張力化が進められている。その際、高強度鋼板を自動車の構造部材に適用するにあたっていくつかの課題が指摘されている。
【0003】
一般的に鋼板の強度と成形性は相反する関係にあり、鋼板の強度が高くなるにつれてプレス成形が困難になり、高強度鋼板の適用が可能な部材が制限されるという問題がある。この課題に対しては、残留オーステナイトのTRIP(Transformaion Induced Plasticity)効果を利用した、強度−延性バランスに優れた鋼板が開発されている。
【0004】
例えば、特開平5−117761号公報には、化学組成が質量%で(以下、化学組成の%表示は質量%を意味する)、C:0.08〜0.30%、Mn:1.0〜2.0%、Si:0.5〜2.5%、Al:0.5〜1.5%を含有する熱間圧延鋼板または冷間圧延鋼板を特定条件で焼鈍することにより、残留オーステナイト相を有する結晶組織を備えて、強度と加工成形性を兼備した高強度薄鋼板の製造方法が開示されている。
【0005】
また、鋼板の強度を高めるにつれて静動比が小さくなり、高強度鋼板を使用した割には耐衝突特性が向上しない、という問題がある。ここで、静動比とは、静的引張試験(歪み速度が10-4/秒前後)での強度に対する、自動車が衝突する際に構造部材に作用する歪み速度(103 /秒前後)における強度の比を意味し、静動比が小さい鋼では静的強度が高くても高速変形時の強度が小さい。この課題に対しては、動的引張試験における強度もしくは静動比を高める方法が開示されている。
【0006】
例えば、特開平11−80879号公報には、C:0.04〜0.30%、SiとAlの一方または双方を合計で0.3〜3.0%含有し、フェライトと3体積%以上のオーステナイトを含む第2相からなり、予変形を加える前後におけるオーステナイト相の体積率変化と、予変形した鋼板の準静的変形強度と動的変形強度の差を特定した、動的変形特性に優れた加工誘起変態型高強度鋼板が開示されている。
【0007】
また、特開平7−34186号公報には、C:0.01%以下、Si:0.01〜1.5%、Mn:0.01〜3.0%、Al:0.02〜0.06%、P:0.15%以下を含有し、鋼板表面から50μmまでの領域がフェライト組織中にベイナイトまたはマルテンサイトを含む複合組織、それを除く領域がフェライト単相組織であり、成形、塗装焼付け後における鋼板の表面から1/4t(t:板厚)までの平均硬度が、板厚中央部(1/4t〜3/4t)の平均硬度の1.5倍以上の硬度になる組織を有する、耐衝撃性に優れる成形加工用薄鋼板が開示されている。
【0008】
【発明が解決しようとする課題】
以上述べたように、強度−延性バランスに優れた鋼板や静動比が高い鋼板が種々開発されてはいるものの、従来の方法では必ずしも満足な解決を得るに至っていないのが現状である。すなわち、特開平5−117761号公報に開示された技術では、残留オーステナイト鋼板を得る製造方法において熱延条件には言及されておらず、焼鈍前組織が好ましくない場合などでは必ずしも良好な特性向上効果が得られないという問題がある。特に残留オーステナイト鋼板は、局部延性が乏しく、孔拡げ加工や微小曲げ加工など局部延性が左右する加工に供するにはその性能が十分ではないという問題もある。
【0009】
また、特開平11−80879号公報においては成形の影響は相当歪みで評価され、動的強度は引張試験で評価されている。しかしながら実際のプレス製品は成形時にダイ肩部で曲げ曲げ戻し変形を受けるために機械的性質が板厚方向で異なったものになること、および、衝突時に鋼板に作用する変形様式は、上記のような単純な引張変形ではないこと、などから、上記方法では十分な効果が得られない場合があるという問題がある。例えば衝突時に鋼板が曲げ変形される時には表面ひずみが特に大きくなるので、鋼板表面の強度は高いことが望ましいが、引張試験方法では、板厚方向の平均値の強度しか評価できないので、正確な評価が困難であった。
【0010】
特開平7−34186号公報では、歪み速度感受性(静動比)を向上させるには、歪み速度感受性に関して異なる特性を有する組織を同一鋼板の組織内に分布させることが有効と記載されており、鋼板表面のみに硬質な複合組織を得る方法として、焼鈍中の表面浸炭や、表層部のみを二相域温度に加熱急冷することが述べられている。しかしながらこれらの方法は、鋼板の一般的な製造プロセスにて実現することは必ずしも容易ではない。
【0011】
本発明の目的はこれらの問題点を解決し、より成形性が良好で、耐衝突特性に優れ、かつ、低コストで製造できる高強度鋼板およびその製造方法と、耐衝撃特性を有する構造部材製造方法を提供することにある。
【0012】
【課題を解決するための手段】
衝突安全にかかわる構造部材においては、成形した部材を高速圧壊変形した際に吸収されるエネルギが大きいことが重要となる。構造部材としては薄鋼板で製造された閉断面構造のものが多いが、これらが高速圧壊変形されると蛇腹状に圧壊したり、折れ曲がり変形などが生じて運動エネルギを吸収する。
【0013】
高速圧壊変形時に薄鋼板製の部材に生じるこのような変形様式は単純な引張変形ではなく、曲げ曲げ戻し変形(曲げ変形に続いて曲げ戻しが生じる変形)が主体になっている。曲げ曲げ戻し変形に伴って、曲げの外側面では、引張変形の後に圧縮変形が生じ、曲げの内側面では圧縮変形の後に引張変形が生じる。いずれにしても鋼板の板厚中心部よりも表面部のほうが生じる歪みが大きい。
【0014】
本発明者の研究結果によれば、鋼板表面部の硬度と板厚中心部の硬度が特定の関係を満足する場合に、衝撃変形を加えた際に部材で吸収することができる衝突吸収エネルギ吸収能を飛躍的に改善できることを知った。
【0015】
図1は、構造部材で多用されている閉断面構造をした部材を模した試験体の斜視図であり、符号1はハット断面部品、符号12は平板部品で、両者はスポット溶接で接合されている。符号2はハット断面部品1の縦壁部、符号11はその底部である。
【0016】
図2はハット断面部品1のプレス成形状態を説明するための断面図であり、符号3はポンチ、符号4はポンチ肩、符号5はダイ、符号6はダイ肩、符号7はダイ溝、符号8はしわ押さえである。
【0017】
ダイ5としわ押さえ8間で挟持された鋼板は、ポンチ3の下降に伴ってポンチ肩6の曲面に沿って曲げ変形され、ダイ溝7に引き込まれる。ポンチ肩6を通過するした曲げ部はダイ側壁により曲げ戻しされる。
【0018】
縦壁部2はダイ肩6で曲げ曲げ戻し変形が加えられることにより、厚さ方向でひずみ量が異なり、硬度差が生じる。すなわち鋼板表面部の硬度が板厚中心部に比較して高くなる。また縦壁部2には、曲げ曲げ戻し変形に加えて、ポンチとしわ押さえ間で生じる引張り力が作用するので板厚ひずみが発生し、その厚さが薄くなる。
【0019】
プレス加工された部品は、溶接などにより構造部材として組み立てられ、塗装された後、170℃で20分間程度保持される塗装焼付け処理(以下、単に「焼付け処理」とも記す)が施される。この段階で鋼中の固溶原子(C、N原子など)が析出して歪み時効が発生し、鋼の硬度が高くなる。
【0020】
本発明者の研究結果によれば、特定の条件で製造された残留オーステナイト鋼は、上記のような引張り曲げ変形を伴う予成形と焼付け処理を施すと、表面部の硬化性が従来の鋼に比較して遙かに高くなり、これを構造部材に使用すれば、高速の軸方向圧壊変形する際のエネルギ吸収能が大幅に向上し、極めて優れた耐衝撃特性を発揮することが判明した。
【0021】
そのメカニズムは必ずしも明らかでないが、以下のように推定される。一般的な、曲げ曲げ戻しでは、表面部に大きい歪みが生じて加工硬化(転位密度が上昇することよる硬化)が生じるが、バウシンガ効果により、曲げによる加工硬化と曲げ戻しによる加工硬化は加算的にはならないと考えられる。
【0022】
残留オーステナイトを含有する鋼においては、歪みの増加に伴って転位が増殖して生じる加工硬化に加え、残留オーステナイトが硬質なマルテンサイトへ変態することによる硬化も生じる。このマルテンサイトによる硬化は、バウシンガ効果とは無関係であり、曲げと曲げ戻しの両方において、硬度が加算的に増加する結果、表面部の硬度が著しく高くなるものと考えられる。
【0023】
また、所望の表面硬化特性を得るために、残留オーステナイトを5体積%以上含有し、残部は実質的にフェライトからなる結晶組織を有する鋼が好ましいことを知った。実質的にとの意味は、冷間圧延後の焼鈍において残留オーステナイトを得る際に、不可避的に生成するベイナイト組織などが混在しても構わないことを意味する。
【0024】
本発明者はさらに、残留オーステナイト鋼板の成形性、特に従来の残留オーステナイト鋼板において問題とされている局部延性不足を改善する方法について種々研究を重ねた結果、残留オーステナイト鋼板の局部延性は、特定の化学組成を有する鋼を特定の条件で製造することにより、大幅に改善できることを知った。
【0025】
すなわち、残留オーステナイトを有する冷間圧延鋼板の局部延性向上には、冷間圧延鋼板の母材となる熱延板の製造に際して熱延条件を最適化し、熱延板の結晶組織における硬質第2相の体積率を低減させること、および、硬質第2相は、ベイナイトやマルテンサイトではなくて、より軟質なパーライトにするのが重要である。さらに、熱延板において、MnやPの凝固偏析に起因する第2相のバンド状組織(点列状組織)を低減させることが冷間圧延鋼板の延性向上に有効である。
【0026】
そのメカニズムは必ずしも明らかでないが、以下のように推定される。
フェライト相と第2相の間に大きな硬度差があると、冷間圧延時に一様に塑性変形が起きず、第2相との界面でミクロボイドが発生する。第2相の硬度が著しく高かったり、第2相が点列状に存在するバンド状組織であると、多数のミクロボイドが点列状に発生し、焼鈍後も残留してしまう。製品の成形時に、大きな歪みを受けた領域では、これらのミクロボイドが連結して破断に至りやすい。すなわち、このようなミクロボイドが多い場合には局部延性が著しく損なわれ、引張試験における局部伸びが小さくなってしまう。したがい、第2相の体積率と硬度を低下させ、バンド状組織を解消することが、局部延性の改善に有効であると考えられる。
【0027】
本発明はこれらの知見を基にして完成されたものであり、その要旨は下記(1)〜(8)にある。
【0028】
(1) 質量%で、C:0.05〜0.25%、Si:2.0%以下、Al:0.005〜2.0%、Mn:0.8〜2.5%、P:0.05%以下を含有し、かつ、(Si+Al):1.0〜2.5%を満足し、残部がFeおよび不可避的不純物からなる化学組成を備え、引張強さ(TS)と全伸び(El)との積(TS×El)が21900MPa・%以上であり、板厚ひずみにして10%の引張り曲げ変形を伴う予成形を施し、次いで170℃で20分間保持する焼付け処理を施した後の鋼板表面部と板厚中心部の硬度が下記式を満足することを特徴とする延性と耐衝撃特性に優れた高張力鋼板
(HVs−HVc)/HV ≧0.12、
ただし、HV :上記予成形前の板厚中心部のビッカース硬度、
HVc:上記予成形と焼付け処理後の板厚中心部のビッカース硬度、
HVs:上記予成形と焼付け処理後の表面部のビッカース硬度。
(2) 質量%で、C:0.05〜0.25%、Si:2.0%以下、Al:0.005〜2.0%、Mn:0.8〜2.5%、P:0.05%以下を含み、かつ、(Si+Al):1.0〜2.5%を満足し、さらに、Tiおよび/またはNbを、Ti:0.003〜0.05%、Nb:0.003〜0.05%、かつ、(Ti+Nb)≦0.05%を満足する範囲で含有し、残部がFeおよび不可避的不純物からなる化学組成を備え、引張強さ(TS)と全伸び(El)との積(TS×El)が21900MPa・%以上であり、板厚ひずみにして10%の引張り曲げ変形を伴う予成形を施し、次いで170℃で20分間保持する焼付け処理を施した後の鋼板表面部と板厚中心部の硬度が下記式を満足することを特徴とする延性と耐衝撃特性に優れた高張力鋼板
(HVs−HVc)/HV ≧0.12、
ただし、HV :上記予成形前の板厚中心部のビッカース硬度、
HVc:上記予成形と焼付け処理後の板厚中心部のビッカース硬度、
HVs:上記予成形と焼付け処理後の表面部のビッカース硬度。
(3) 化学組成がさらに、質量%で、Cu、Ni、Coからなる群の内の1種、または、2種以上を、Cu:0.2〜1.0%、Ni:0.1〜0.5%、Co:0.0005〜1.0%、かつ(Cu+Ni+Co)≦1.5%を満足する範囲で含有する、上記(1)または(2)に記載の延性と耐衝撃特性に優れた高張力鋼板。
【0029】
(4) 上記( ) ( ) のいずれかに記載の化学組成を備えた鋼片に、熱間仕上圧延開始温度が1050℃以下、終了温度が800℃以上である熱間仕上圧延を施した後、20℃/秒以上の冷却速度で750℃まで冷却し、700℃以下、下記式で計算されるTc(℃)以上で巻取る工程を有する熱間圧延を施し、得られた鋼板を酸洗し、その後、合計圧下率が40%以上、80%以下となる範囲で冷間圧延を施し、次いで、フェライト+オーステナイトの2相温度域で30秒以上、90秒以下保持し、その後700℃以下、450℃以上の温度範囲を30℃/秒以上で冷却し、450℃以下、370℃以上の温度範囲で200秒以上、400秒以下保持した後、室温まで冷却する焼鈍を施すことを特徴とする、引張強さ(TS)と全伸び(El)との積(TS×El)が21900MPa・%以上である延性と耐衝撃特性に優れた高張力鋼板の製造方法;
Tc(℃)=430+70×Mn(%)+1000×P(%)。
(5) 熱間仕上圧延を施す前の鋼片に補助加熱を施すことを特徴とする上記(4)に記載の延性と耐衝撃特性に優れた高張力鋼板の製造方法。
(6) 質量%で、C:0.05〜0.25%、Si:2.0%以下、Al:0.005〜2.0%、Mn:0.8〜2.5%、P:0.05%以下を含有し、かつ、(Si+Al):1.0〜2.5%を満足し、残部がFeおよび不可避的不純物からなる化学組成を備え、引張強さ(TS)と全伸び(El)との積(TS×El)が21900MPa・%以上であるとともに、板厚ひずみにして10%の引張り曲げ変形を伴う予成形を施し、次いで170℃で20分間保持する焼付け処理を施した後の鋼板表面部と板厚中心部の硬度が下記式を満足する高張力鋼板に、曲げ曲げ戻し変形を伴う成形を施したのちに塗装焼付け処理を施すことを特徴とする耐衝撃特性を有する構造部材の製造方法;
(HVs−HVc)/HV≧0.12、
ただし、HV:上記予成形前の板厚中心部のビッカース硬度、
HVc:上記予成形と焼付け処理後の板厚中心部のビッカース硬度、
HVs:上記予成形と焼付け処理後の表面部のビッカース硬度。
【0030】
(7) 質量%で、C:0.05〜0.25%、Si:2.0%以下、Al:0.005〜2.0%、Mn:0.8〜2.5%、P:0.05%以下を含み、かつ、(Si+Al):1.0〜2.5%を満足し、さらに、Tiおよび/またはNbを、Ti:0.003〜0.05%、Nb:0.003〜0.05%、かつ、(Ti+Nb)≦0.05%を満足する範囲で含有し、残部がFeおよび不可避的不純物からなる化学組成を備え、引張強さ(TS)と全伸び(El)との積(TS×El)が21900MPa・%以上であるとともに、板厚ひずみにして10%の引張り曲げ変形を伴う予成形を施し、次いで170℃で20分間保持する焼付け処理を施した後の鋼板表面部と板厚中心部の硬度が下記式を満足する高張力鋼板に、曲げ曲げ戻し変形を伴う成形を施したのちに塗装焼付け処理を施すことを特徴とする耐衝撃特性を有する構造部材の製造方法;
(HVs−HVc)/HV≧0.12、
ただし、HV:上記予成形前の板厚中心部のビッカース硬度、
HVc:上記予成形と焼付け処理後の板厚中心部のビッカース硬度、
HVs:上記予成形と焼付け処理後の表面部のビッカース硬度。
(8) 化学組成がさらに、質量%で、Cu、Ni、Coからなる群の内の1種、または、2種以上を、Cu:0.2〜1.0%、Ni:0.1〜0.5%、Co:0.0005〜1.0%、かつ(Cu+Ni+Co)≦1.5%を満足する範囲で含有する、上記(6)または(7)に記載の高張力鋼板に、曲げ曲げ戻し変形を伴う成形を施したのちに塗装焼付け処理を施すことを特徴とする耐衝撃特性を有する構造部材の製造方法。
【0033】
【発明の実施の形態】
本発明の実施の形態を詳細に述べる。
鋼板の化学組成;
C:最も強力なオーステナイト安定化元素であり、本発明の必須構成要素の一つである。焼鈍後室温において安定なオーステナイトを得るには、焼鈍温度におけるオーステナイトのC濃度を1%程度以上に高めておく必要がある。そのため鋼のC含有量を0.05%以上とする。
【0034】
C含有量を増すことにより、鋼の強度を高めることができるが、0.25%を超えて含有させると強度が高くなりすぎて塑性加工用途に適さず、溶接性も劣化する。従ってC含有量の上限は0.25%とする。好ましくは0.20%以下である。
【0035】
SiおよびAl:これらの元素はフェライト安定化元素である。これらを適量含有させることにより、焼鈍時のフェライト+オーステナイト2相域温度においてフェライトの体積率が増加し、平衡するオーステナイトのC濃度が高められて、オーステナイトが安定になるという効果が得られる。
【0036】
Siは必須元素ではないが、Siには炭化物の析出を抑制する作用があり、2相域焼鈍からの冷却時のベイナイト変態時にもオーステナイト中にCを濃縮させる効果も得られる。
【0037】
これらの効果を十分に得るために、Siおよび/またはAlを、Alはsol.Alとして、合計で1.0%以上含有させる。なお、本発明におけるAl含有量は、すべてsol.Alを意味する。これらの元素によるフェライト安定化作用は、その含有量が合計で2.5%を超えると飽和し、それを超えて含有させるのは経済性を損なうのみであるので、両元素の含有量合計で2.5%以下とする。
【0038】
Siはフェライトを強化する作用があるので鋼の強度を高めるのにも有用であるが、Si含有量が2.0%を超えると、Si添加鋼板特有の高Siスケールによる表面品質の劣化が顕著になる。これを避けるためにSi含有量は2.0%以下とする。Siには溶融亜鉛の濡れ性を阻害する作用があるので、溶融亜鉛めっきや合金化溶融亜鉛めっきを施す場合には、Si含有量を0.8%以下とすることが好ましい。より好ましくは0.6%以下である。
【0039】
Alは溶融亜鉛めっき時のめっき濡れ性を阻害しないので、溶融亜鉛めっきを施す場合にはAlを含有させるのが好ましい。また、Alは製鋼時に脱酸材として使われるが、十分な脱酸効果を得るために、0.005%以上含有させる。Al含有量が2.0%を超えると鋼板中に介在物が多くなり延性を損ねるので、Al含有量は2.0%以下とする。
【0040】
Mn:オーステナイト安定化作用があり、本発明の高張力鋼板の必須元素の一つである。2相域焼鈍後の冷却過程において、オーステナイトをマルテンサイトに変態させることなく室温まで残留させるためにMn含有量は0.8%以上とする。他方、Mnは凝固時に偏析し易い元素であり、過剰に含有させると偏析してバンド状組織が生じ、延性が低下する。これを避けるためにMn含有量は2.5%以下とする。好ましくは、2.0%以下である。
【0041】
P:必須元素ではないが、フェライトに固溶して鋼を強化する作用がある。また、Cuと共存させると鋼の表層に安定な保護皮膜を形成して耐食性を改善する作用もあるので、これらの効果を得るためにPを0.01%以上含有させてもよい。しかしながらPは凝固時に偏析し易く、過剰に含有させると偏析に起因するバンド状組織が生じて延性を損なううえ、鋼の溶接性も劣化する。したがって含有させる場合でも0.05%以下とする。好ましくは0.02%以下である。
【0042】
Ti、Nb:これらの元素は必須ではないが、いずれも炭化物生成元素であり、微細な析出物を形成し、熱延板結晶組織を微細化して鋼板の強度を高める作用がある。このような効果を得るためにこれらの元素のいずれかまたは双方を、0.003%以上、0.05%以下含有させても構わない。ただし、2種の合計含有量が0.05%を超えると強度の上昇よりも延性の低下が顕著になるので、2種類を同時に含有させる場合にはその合計量の上限は0.05%とする。
【0043】
またTiはNと結合し易く、AlNの析出に優先してTiNが析出し、AlNによるスラブ割れを防止する効果もある。この効果を得るためには、Tiを0.003%以上、かつ、(Ti/48)/(N/14)≧2を満足する範囲で含有させるのが好ましい。
【0044】
Cu、Ni、Co:これらの元素は必須ではないが、いずれも鉄炭化物中に溶け難く、ベイナイト変態時に炭化物の析出を抑制するので、残留オーステナイトが得やすくなるという効果が得られる。これらの効果を得るために、Cu、Ni、Coからなる群の内の1種または2種以上を、Cuは0.2%以上、Niは0.1%以上、Coは0.0005%以上含有させてもよい。いずれの元素も過剰に含有させるとベイナイト変態が不十分になるので、含有させる場合の上限は、Cuは1.0%、Niは0.5%、Coは1.0%、2種以上を含有させる場合にはその合計量で1.5%以下とする。また、CuはPと共存すると耐食性を向上するのでこの目的のために添加してもよい。
【0045】
なお、Cuはスラブ割れの要因となるので、Cuを含有させる場合には、Niを、Ni≧Cu/2を満足する範囲で複合して含有させるのが好ましい。
残部はFeおよび不可避的不純物である。不可避的不純物の中でも、Sは、MnSとして析出し、延性を阻害するのみならず、オーステナイト安定化元素として添加されるMnを析出物として消費するので、その含有量は0.01%以下とするのがよい。また、N含有量が多いとAlNにるスラブ割れの原因になるほか、製品中でもAlNの延性を低下させるので、その含有量は0.005%以下とするのがよい。
【0046】
表面硬化特性;
前述したように、予成形して焼付け処理を施した部材において、鋼板表面部の硬度が中心部の硬度よりも一定の割合以上に高いという表面硬化特性を備えていることが、本発明の高張力鋼板にとって極めて重要である。構造部材には種々の形状があり、成形方法、歪み分布などが様々であるので、この表面硬化特性は、鋼板に、板厚ひずみにして10%の引張り曲げ曲げ戻し変形(以下、単に「引張り曲げ変形」とも記す)を伴う予成形を施し、次いで170℃で20分間保持する焼付け処理を施した後の鋼板表面部と板厚中心部の硬度の差の、予成形前の鋼板の板厚中心部の硬度に対する比(下記式で表されるX、以下、単に「硬度比」とも記す)が、0.12以上となる関係を満足するもの、と規定する。
X=(HVs−HVc)/HV0
ここで、HV0 は、上記予成形前の鋼板の板厚中心部のビッカース硬度、HVcは、上記予成形と焼付け処理を施した後の板厚中心部のビッカース硬度、HVsは上記予成形と焼付け処理を施した後の表面部のビッカース硬度である。ここで、表面部のビッカース硬度とは、鋼板表面から板厚の1/8離れた部分で測定した硬度を両表面について平均した値を意味する。また、上記予成形における曲げ半径は板厚(t)の2.5倍(2.5t)とする。
【0047】
本発明の硬度比が高い鋼板によれば、高速変形した際の衝突吸収エネルギが高い構造部材を得ることができる。硬度比が0.12に満たない場合には得られる部材の衝突特性は不十分であり、良好な衝突特性を備えた構造部材を得るには、硬度比が0.12以上である鋼板を使用するのが有効である。従って本発明の高張力鋼板は、硬度比、つまりXが0.12以上のものとする。より優れた衝突特性を選るには、硬度比が0.15以上である鋼板が好ましい。
【0048】
本発明の高張力鋼板は、ダイ、ポンチおよびしわ押さえを有するプレス工具で成形され、その成形過程において少なくともダイ肩部近傍で曲げ曲げ戻し変形があり、成形後には通常の塗装焼付け処理が施される部品に使用すれば、優れた耐衝撃特性を有する構造部材が得られる。プレス工具がしわ押さえビードなどを備えている場合には、鋼板がそのビード部を通過する際に受ける曲げ曲げ戻しも、表面硬化に寄与する。
【0049】
上記曲げ曲げ戻し変形される部分は構造部材を構成する部品の一部分に使用するだけでも耐衝撃特性改善の効果が得られる。図1に示す閉断面構造部材を例として説明すれば、曲げ曲げ戻し変形される部分はハット断面部品の縦壁部2である。ハット断面部品の底部11や、平板部品12には曲げ曲げ戻し変形はされておらず、従って表面硬化特性もないが、それでも構わない。
【0050】
本発明の高張力鋼板は、鋼板冷間圧延鋼板のほか、電気めっき、溶融めっき、などの処理を施した表面処理鋼板としても、所望の効果が得られる。
製造方法;
本発明の延性と耐衝撃特性に優れた高張力鋼板は、上記化学組成を有する鋼を以下の方法で熱間圧延し、冷間圧延し、再結晶焼鈍を施して製造するのが好適である。
【0051】
上記化学組成を有する鋼は常法により鋳造されて鋳片(スラブ)とされる。鋳塊を分解圧延して鋼片とし、この鋼片をスラブとしても構わない。スラブは常法により加熱して粗圧延されたのち、仕上圧延に供されるが、鋳造後のスラブ温度が高く、後述する仕上温度が確保できる場合には、スラブ加熱を省略して粗圧延しても構わない。また、ストリップキャストなど公知の方法により薄い鋳片が得られる場合には、粗圧延を省略しても構わない。
【0052】
仕上圧延:本発明の高張力鋼板の母材となる熱延板は、最終製品において優れた局部延性を有する鋼板とするために、フェライトと軟質なパーライトからなり、かつパーライトの分散状態が均一な結晶組織を備えたものとする。
【0053】
熱間圧延における仕上圧延開始温度が過度に高温であると、圧延中のオーステナイトの回復再結晶が急速に進行して歪み蓄積が不十分となり、圧延後の冷却過程でのフェライト変態が遅延し、軟質なフェライトの体積率が減少する。これを避けるために、仕上圧延開始温度は1050℃以下とする。仕上圧延開始温度の下限は特に限定するものではなく、以下に述べる仕上圧延出側温度を満足する限り、低いことが望ましい。
【0054】
仕上圧延終了温度は800℃以上とする。仕上圧延終了温度が800℃に満たない低温になると圧延中にフェライト変態が生じ、結晶粒が伸展した加工フェライト組織を有するものとなり、第2相が均一に分散した熱延鋼板組織が得られなくなる。
【0055】
補助加熱:前述の仕上圧延の入り側温度と出側温度は、熱延コイルの全長にわたって満足する必要がある。鋼片が長い場合には、圧延途中で鋼片温度が低下し、熱間圧延後期などにおいて上記仕上げ温度が確保できない場合が生じる。また、仕上圧延の入り側温度を低く制限しているので鋼片幅方向端部などでの温度低下が原因で上記仕上げ温度が確保できない場合も生じる。このような場合には仕上圧延入り側で補助加熱を施すのがよい。補助加熱方法は限定しないが、仕上圧延入り側でのスラブの温度分布に応じて加熱入熱量の制御が容易である電磁誘導加熱方式が好ましい。
【0056】
仕上圧延後の冷却:仕上圧延完了後は、フェライト変態を促進するため、750℃まで20℃/秒以上の冷却速度で急速冷却する。急速冷却終了温度が750℃よりも高かったり、冷却速度が20℃/秒に満たない場合には、上記冷却途中でオーステナイトの回復が生じて加工歪みが消失し、フェライト変態が進行しにくくなるのでよくない。
【0057】
フェライト変態を促進させるため、上記急速冷却に引き続き、巻取り開始までの温度領域で2秒以上滞留させるのが望ましい。この滞留処理は、上記温度範囲の冷却を空冷もしくは緩冷却とすることによりおこなうのがよい。上記滞留時間が2秒間に満たない場合にはフェライト変態が不十分となるのでよくない。より好ましい滞留時間は5秒以上である。滞留時間が10秒間を超えると、必要な冷却テーブルが長くなるので滞留時間は10秒以下とするのがよい。上記滞留処理後は巻取温度まで任意の冷却速度で急速冷却しても構わない。
【0058】
巻取温度:巻取温度が高温になるとスケールロスが増加するうえ、鋼が軟らかくなり巻き取ったコイルの巻姿が崩れる。これを避けるために巻取温度は700℃以下とする。好ましくは680℃以下、さらに好ましくは650℃以下である。
【0059】
MnはAr3点を低くし、Pは高くする作用がある。従って鋼が凝固する際にこれらの元素の偏析が生じると、Mnの場合は正偏析、Pの場合は負偏析の部分でフェライト変態が遅延してパーライトがバンド状に析出してバンド状組織が生じる。このような鋼は冷間圧延後にミクロボイドが生じやすく、製品鋼板の局部延性を損なうことがある。MnとPの含有量が高い鋼では、巻取温度を高くしてフェライト変態を促進させることにより、パーライトのバンド状組織を軽減することができる。このため、本発明においては、巻取温度の下限(Tc)をMnおよびP含有量と関連づけて規定する。
【0060】
すなわち巻取温度の下限Tc( ℃) は、430+70×Mn( %) +1000×P( %) で計算される値以上とする。巻取温度を低くしすぎると、第2相としてベイナイトおよびマルテンサイトが生成するので、この観点でも、前述のTc以上の温度で巻取る必要がある。
【0061】
冷間圧延:上記方法で熱間圧延して得られた熱延鋼板は常法により酸洗などでスケールを除去した後、冷間圧延される。冷間圧延は常法に従っておこなえばよいが、冷間圧下率は合計で40%以上、80%以下とする。冷間圧下率が40%に満たない場合には圧延効率が低下し、80%を超えるとフェライトと第2相間のミクロボイドが増加して再結晶焼鈍後の延性に悪影響を及ぼすのでよくない。好ましい冷間圧下率は合計で70%以下である。
【0062】
焼鈍:焼鈍温度は、フェライト+オーステナイトの2相にしてCをオーステナイトに濃縮するためAc1変態点以上、Ac3変態点以下の温度域とする。焼鈍温度が低すぎるとセメンタイトが再固溶するのに時間がかかりすぎ、高すぎるとオーステナイトの体積率が大きくなりすぎてオーステナイト中のC濃度が以下する。好ましくは800℃以上、850℃以下の範囲である。
【0063】
均熱時間は、セメンタイトの再溶解を十分におこなわせるために30秒以上とする。均熱時間が90秒を超えるとオーステナイト粒が粗大化して好ましくないので均熱時間は90秒以下とする。
【0064】
均熱終了後は、パーライト変態を抑制するために、700〜450℃の温度範囲を30℃/秒以上で急速冷却する。均熱温度から700℃までの間の冷却速度は限定しないが、フェライトの体積率を増やして、オーステナイト中にCを濃縮するために、700℃までを10℃/秒以下で冷却することが好ましい。
【0065】
上記急速冷却に引き続く450℃以下、370℃以上の温度範囲で200秒間以上、400秒間以下滞留させる。この滞留方法は、一定温度に保持する方法でもよいし、450℃以下、370℃までの間を、200秒間以上、400秒間以下の範囲で徐々に温度を低下させる方法でもよい。上記滞留温度が450℃を超えるとベイナイト変態が生じず、370℃に満たない場合には、下部ベイナイトになり、オーステナイトへのCの濃縮があまり起こらなくなり、所望の残留オーステナイト鋼板が得られない。
【0066】
上記滞留後の冷却については限定しないが、設備を簡素にするために、冷却速度を速めても構わない。また、溶融めっき鋼板を製造するために、連続溶融めっきラインを用いて上記焼鈍処理を行ってもよい。合金化溶融亜鉛めっきとするために、合金化熱処理を行っても良い。
【0067】
調質圧延:焼鈍後は、表面粗度調整、平坦強制、降伏点伸びの低減を目的にして、公知の方法により、調質圧延を施しても構わない。その場合には、延性を低下させないために、調質圧延伸び率は2.0%以下にすることが好ましい。
【0068】
上記以外は公知の方法によって製造すればよい。
【0069】
【実施例】
(実施例1)
表1に記載の化学組成を有する鋼を実験室において溶解し、厚さ:60mm、幅:150mm、質量:17kgの鋼塊とし、これを熱間鍛造して厚さ25mm、幅:150mmの鋼片を得た。
【0070】
【表1】

Figure 0004016573
これらの鋼片を加熱炉に装入し、1200℃で30分間保持した後、炉から取り出して1000℃まで自然冷却し、圧延開始温度を1000℃とする熱間仕上圧延を施した。仕上圧延のパス回数は合計3パスで、仕上圧延後の厚さは3.5mmであり、仕上圧延終了温度は850℃であった。熱間仕上圧延終了後、ただちに4秒間水スプレー冷却して720℃とし(平均冷却速度33℃/秒)、次いで8秒間自然放冷して680℃とし、さらに2秒間の水スプレー冷却を施して620℃とし(平均冷却速度30℃/秒)、これを620℃に加熱した炉に装入して30分間保持した後、20℃/時で室温まで冷却した。
【0071】
得られた熱延板は、塩酸溶液を用いて酸洗してスケールを除去した後、合計圧下率66%で1.2mmまで冷間圧延した。得られた冷延板を、820℃に加熱して40秒間均熱した後、5℃/秒で700℃まで徐冷した後、50℃/秒で400℃まで冷却し、400℃で300秒間保持した後、30℃/秒で室温まで冷却した。得られた焼鈍板に伸び率1.0%の調質圧延を施した。
【0072】
これらの鋼板の圧延方向について、JIS−Z2201に規定された5号試験片を用い、JIS−Z2241の規定に準拠して引張試験をおこなった。引張試験時の応力−歪み曲線における最大荷重時の歪みを一様伸びとし、全伸びと一様伸びの差を求めて局部伸び値とした。
【0073】
上記調質圧延済みの鋼板から得た圧延方向を長手方向とするブランクを、図2に示すプレス工具を用いてプレス成形し、幅40mm、高さ30mm、フランジ幅10mm、全長200mmのハット断面部品1を得た。ポンチとダイの肩半径は、共に3.0mmとした。しわ抑え力は、縦壁部2の板厚歪みが10%となるように調整した。得られたハット断面部品には170℃で20分間保持する焼付け処理を施した後、縦壁部から小片を切り出し、圧延方向に垂直な断面のビッカース硬さを測定した。
【0074】
図3は、ビッカース硬さの測定位置を示す配置図である。ビッカース硬さ試験はJIS−Z2244の規定に準拠しておこない、試験荷重は4.9Nとした。断面内での測定位置は、板厚中心と両表面(板厚の1/8だけ内側の位置)について、それぞれ、0.5mm間隔で5点測定し、板厚中心の平均をHVc、両表面の測定値の平均をHVsとした。なお、予成形前の鋼板についても、圧延方向に垂直な断面の板厚中心において、0.5mm間隔で5点のビッカース硬さを測定し、その平均をHV0 とした。これらの値から硬度比Xを計算した。
【0075】
上記プレス成形で得たハット断面部品と、同じ冷間圧延し、焼鈍と調質圧延を施した鋼板から得た幅60mm、長さ200mmの平板部品12を20mm間隔でスポット溶接し、閉断面構造部材を作製し、これに170℃で20分間加熱する焼付け処理を施して試験体を作製した。
【0076】
この試験体を、その長手方向を鉛直にして試験台に装着し、上方から質量が60kgの錘体を落下させ、10m/秒の速度で試験体上端に衝突させる落重式軸圧壊試験をおこなった。試験体下部にはロードセルを設置して試験体に作用する荷重を測定し、別途錘体の位置変化を測定して、これらの荷重−変位関係から、錘体が停止するまでに試験体に作用した荷重の平均値P(kN)を求め、この軸圧壊平均荷重により耐衝撃特性を判定した。
【0077】
表2に、加工前の鋼板の引張特性、予成形し焼付け処理したハット断面部品の縦壁部で測定した硬度比および試験体の軸圧壊平均荷重測定結果を示す。
【0078】
【表2】
Figure 0004016573
表2において試番3〜11は鋼の化学組成が本発明の規定する条件を満足するものであり、その硬度比Xは0.12以上で、いずれも本発明例である。試番1はC含有量が低い鋼Aを使用し、試番2、12および13はSi+Al含有量が低い鋼B、LおよびMを使用したもので、これらは硬度比が0.12に満たず、いずれも比較例として評価したものである。試験体の軸圧壊平均荷重は、素材とした鋼板の引張強さ(TS)レベルにより異なるので、耐衝撃特性は鋼板の引張強さに応じてその良否を判断するのが妥当である。表2に示されているように、本発明例である鋼板を用いた試番3〜11はいずれも優れた軸圧壊平均荷重を示していた。また、本発明鋼はTS×ELで代表される強度−延性バランスにも優れていた。
【0079】
図4に、表2の軸圧壊平均荷重と、それぞれの加工前の鋼板の引張強さととの関係を示す。図4からわかるように、硬度比Xが0.12以上のものは、比較例に比べ同じ引張強さでも約10%高い軸圧壊平均荷重を示した。硬度比Xが0.15以上のものはさらに優れていることが判る。
【0080】
(実施例2)
表1に示した化学組成を有する鋼D、EおよびHの鋼片に、巻取温度以外は実施例1と同一条件とする熱間仕上圧延を施して実施例1と同一寸法の熱延板とし、実施例1と同様の酸洗、冷間圧延、焼鈍および調質圧延を施して、種々の冷間圧延鋼板を作製した。これらの鋼板について実施例1に記載したのと同様の方法で試験して、引張特性と局部伸びを調査した。得られた結果を、巻取温度と共に表3に示す。
【0081】
【表3】
Figure 0004016573
表3に示されているように、熱間圧延後の巻取温度が本発明の製造方法で規定する条件を満たす試番16、17、21および26は特に優れた局部延性を有していた。また、通常の延性(El)や、TSとElの積(いわゆる延性バランス)も良好なものであった。
【0082】
【発明の効果】
本発明の高張力鋼板は、局部延性に優れるので自動車に代表される複雑な形状を備えた構造部材への加工が容易であるうえ、プレス加工時の曲げ曲げ戻しを伴うプレス成形と焼付け処理により、構造部材としての耐衝撃特性を大幅に向上させることができる。従って本発明の高張力鋼板は、自動車の構造部材の高強度が容易で鋼板の薄肉化による軽量化に有効であるうえ、衝突安全性向上にも有効であり、これらを同時に達成できるので利用価値が極めて大きい。
【図面の簡単な説明】
【図1】構造部材で多用される閉断面構造部材を模した試験体の斜視図である。
【図2】ハット断面部品のプレス成形状態を説明するための断面図である。
【図3】ハット断面部品の縦壁部でのビッカース硬さ測定点を示す模式図である。
【図4】鋼板の引張強さとこれを用いて作製した閉断面構造部材の軸圧壊平均荷重との関係を示すグラフである。
【符号の説明】
1:ハット断面部品、2:縦壁部、3:ポンチ、4:ポンチ肩、5:ダイ、6:ダイ肩、7:ダイ溝、8:しわ押さえ、11:底部、12:平板部品、
図2で符号である。[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a high-strength steel sheet excellent in ductility and impact resistance, suitable for use as a material for a high-strength structural member formed by pressing or bending, and a manufacturing method thereof, and a structural member having impact resistanceofIt relates to a manufacturing method.
[0002]
[Prior art]
Corresponding to the improvement of collision safety and weight reduction in automobiles, the tension of structural members has been increased. At that time, some problems have been pointed out in applying high-strength steel sheets to automobile structural members.
[0003]
Generally, the strength and formability of a steel plate are in a contradictory relationship, and as the strength of the steel plate increases, press forming becomes difficult, and there is a problem that the members to which the high strength steel plate can be applied are limited. In order to solve this problem, a steel sheet having an excellent balance between strength and ductility using the TRIP (Transformaion Induced Plasticity) effect of retained austenite has been developed.
[0004]
For example, in Japanese Patent Application Laid-Open No. 5-117761, the chemical composition is mass% (hereinafter, “%” of the chemical composition means mass%), C: 0.08 to 0.30%, Mn: 1.0 Retained austenite is obtained by annealing a hot-rolled steel plate or a cold-rolled steel plate containing ~ 2.0%, Si: 0.5-2.5%, Al: 0.5-1.5% under specific conditions. A method for producing a high-strength thin steel sheet having a crystal structure having a phase and having both strength and workability is disclosed.
[0005]
Moreover, there is a problem that the static-to-static ratio decreases as the strength of the steel plate is increased, and the impact resistance characteristics are not improved for the use of the high strength steel plate. Here, the static ratio is a static tensile test (with a strain rate of 10-FourThe strain rate acting on the structural member when the automobile collides against the strength at around 10 sec.Three  In the case of steel having a small static ratio, the strength at high speed deformation is small even if the static strength is high. For this problem, a method for increasing the strength or static ratio in a dynamic tensile test is disclosed.
[0006]
For example, in JP-A-11-80879, C: 0.04 to 0.30%, containing one or both of Si and Al in total 0.3 to 3.0%, ferrite and 3% by volume or more This is a second phase containing austenite, and changes in the volume fraction of the austenite phase before and after pre-deformation and the difference between the quasi-static deformation strength and the dynamic deformation strength of the pre-deformed steel An excellent work-induced transformation type high-strength steel sheet is disclosed.
[0007]
In JP-A-7-34186, C: 0.01% or less, Si: 0.01-1.5%, Mn: 0.01-3.0%, Al: 0.02-0. Containing 06%, P: 0.15% or less, the region from the steel sheet surface to 50 μm is a composite structure containing bainite or martensite in the ferrite structure, and the region excluding it is a ferrite single-phase structure. A structure in which the average hardness from the surface of the steel sheet after baking to 1/4 t (t: plate thickness) is 1.5 times or more the average hardness of the center thickness (1/4 t to 3/4 t). A thin steel sheet for forming having excellent impact resistance is disclosed.
[0008]
[Problems to be solved by the invention]
As described above, although various types of steel plates with excellent balance between strength and ductility and steel plates with a high static ratio have been developed, the conventional methods have not yet obtained satisfactory solutions. That is, in the technique disclosed in Japanese Patent Application Laid-Open No. 5-117761, the hot rolling conditions are not mentioned in the production method for obtaining a retained austenitic steel sheet, and a good property improving effect is not necessarily required when the structure before annealing is not preferable. There is a problem that cannot be obtained. In particular, the retained austenitic steel sheet has a problem of poor local ductility, and its performance is not sufficient for use in processing that affects local ductility, such as hole expansion and microbending.
[0009]
In JP-A-11-80879, the influence of molding is evaluated by considerable strain, and the dynamic strength is evaluated by a tensile test. However, since the actual press product undergoes bending and bending back deformation at the die shoulder at the time of forming, the mechanical properties are different in the plate thickness direction, and the deformation mode acting on the steel plate at the time of collision is as described above. For example, there is a problem that a sufficient effect may not be obtained by the above method because it is not a simple tensile deformation. For example, when the steel plate is bent and deformed at the time of collision, the surface strain becomes particularly large, so it is desirable that the strength of the steel plate surface is high, but the tensile test method can only evaluate the average strength in the plate thickness direction, so accurate evaluation It was difficult.
[0010]
In JP-A-7-34186, in order to improve strain rate sensitivity (static ratio), it is described that it is effective to distribute structures having different characteristics with respect to strain rate sensitivity in the structure of the same steel sheet, As a method for obtaining a hard composite structure only on the steel sheet surface, surface carburization during annealing and heating and quenching only the surface layer part to a two-phase region temperature are described. However, these methods are not always easy to realize in a general manufacturing process of steel sheets.
[0011]
  The object of the present invention is to solve these problems, and to provide a high-strength steel sheet that has better formability, excellent impact resistance characteristics, and can be manufactured at low cost, and a manufacturing method thereof, and a structural member having impact resistance characteristics.ofIt is to provide a manufacturing method.
[0012]
[Means for Solving the Problems]
In a structural member related to collision safety, it is important that a large amount of energy is absorbed when the formed member is subjected to high-speed crushing deformation. Many of the structural members have a closed cross-section structure made of a thin steel plate. However, when these members are crushed and deformed at high speed, they collapse into a bellows shape or bend and deform to absorb kinetic energy.
[0013]
Such a deformation mode generated in a member made of a thin steel plate at the time of high-speed crushing deformation is not a simple tensile deformation, but mainly a bending-bending return deformation (a deformation in which a bending return occurs following the bending deformation). Along with the bending back bending deformation, the outer side surface of the bending undergoes a compressive deformation after the tensile deformation, and the inner side surface of the bending undergoes a tensile deformation after the compressive deformation. Anyway, the distortion which a surface part produces is larger than the plate | board thickness center part of a steel plate.
[0014]
According to the research results of the present inventor, when the hardness of the steel plate surface portion and the hardness of the plate thickness center portion satisfy a specific relationship, the impact absorption energy absorption that can be absorbed by the member when impact deformation is applied. I learned that I can dramatically improve Noh.
[0015]
FIG. 1 is a perspective view of a test body simulating a member having a closed cross-sectional structure frequently used for structural members. Reference numeral 1 is a hat cross-sectional part, reference numeral 12 is a flat plate part, and both are joined by spot welding. Yes. Reference numeral 2 denotes a vertical wall portion of the hat cross-section component 1, and reference numeral 11 denotes a bottom portion thereof.
[0016]
FIG. 2 is a cross-sectional view for explaining the press-formed state of the hat cross-section component 1, reference numeral 3 is a punch, reference numeral 4 is a punch shoulder, reference numeral 5 is a die, reference numeral 6 is a die shoulder, reference numeral 7 is a die groove, reference numeral 8 is a wrinkle presser.
[0017]
The steel plate sandwiched between the die 5 and the wrinkle retainer 8 is bent and deformed along the curved surface of the punch shoulder 6 as the punch 3 is lowered, and is drawn into the die groove 7. The bent part passing through the punch shoulder 6 is bent back by the die side wall.
[0018]
The vertical wall 2 is subjected to bending and bending back deformation at the die shoulder 6, so that the amount of strain differs in the thickness direction and a difference in hardness occurs. That is, the hardness of the steel plate surface portion is higher than that of the plate thickness center portion. In addition to the bending and bending back deformation, the vertical wall portion 2 is subjected to a tensile force generated between the punch and the wrinkle retainer, so that a plate thickness distortion is generated and the thickness is reduced.
[0019]
The pressed parts are assembled as structural members by welding or the like, painted, and then subjected to a paint baking process (hereinafter also simply referred to as “baking process”) that is held at 170 ° C. for about 20 minutes. At this stage, solid solution atoms (C, N atoms, etc.) in the steel are precipitated, strain aging occurs, and the hardness of the steel increases.
[0020]
According to the results of the inventor's research, residual austenitic steel produced under specific conditions is harder than conventional steel when subjected to pre-formation and baking treatment with tensile bending deformation as described above. Compared to this, it was found that if this was used as a structural member, the energy absorption capability during high-speed axial crushing deformation was greatly improved, and extremely excellent impact resistance was exhibited.
[0021]
The mechanism is not necessarily clear, but is estimated as follows. In general, bending and bending back causes large strain on the surface part and causes work hardening (hardening due to an increase in dislocation density), but due to the Bauschinger effect, work hardening by bending and work hardening by bending back are additive. It is thought that it does not become.
[0022]
In steel containing residual austenite, hardening occurs due to transformation of residual austenite to hard martensite in addition to work hardening caused by the growth of dislocations as strain increases. This hardening by martensite is irrelevant to the Bauschinger effect, and it is considered that the hardness of the surface portion is remarkably increased as a result of the additional increase in hardness in both bending and unbending.
[0023]
In addition, in order to obtain the desired surface hardening characteristics, it has been found that steel having a residual austenite of 5% by volume or more and the balance having a crystal structure substantially composed of ferrite is preferable. The meaning of “substantially” means that bainite structure inevitably generated may be mixed when obtaining retained austenite in the annealing after cold rolling.
[0024]
The present inventor has further conducted various studies on the formability of retained austenitic steel sheet, in particular, a method for improving the local ductility deficiency, which is a problem in conventional retained austenitic steel sheet. It has been found that a steel having a chemical composition can be greatly improved by producing it under specific conditions.
[0025]
That is, in order to improve the local ductility of the cold-rolled steel sheet having retained austenite, the hot-rolling conditions are optimized in the production of the hot-rolled sheet as a base material of the cold-rolled steel sheet, and the hard second phase in the crystal structure of the hot-rolled sheet is obtained. It is important to reduce the volume fraction of and to make the hard second phase softer pearlite, not bainite or martensite. Furthermore, in the hot-rolled sheet, it is effective to improve the ductility of the cold-rolled steel sheet to reduce the second-phase band-like structure (point-like structure) caused by solidification segregation of Mn and P.
[0026]
The mechanism is not necessarily clear, but is estimated as follows.
If there is a large hardness difference between the ferrite phase and the second phase, plastic deformation does not occur uniformly during cold rolling, and microvoids are generated at the interface with the second phase. If the hardness of the second phase is remarkably high, or if the second phase has a band-like structure that exists in a sequence of dots, a large number of microvoids are generated in a sequence of dots and remain after annealing. These microvoids are connected to each other and easily break in a region that has undergone a large strain during the molding of the product. That is, when there are many such microvoids, the local ductility is remarkably impaired, and the local elongation in the tensile test is reduced. Therefore, it is considered effective to improve the local ductility by reducing the volume fraction and hardness of the second phase and eliminating the band-like structure.
[0027]
  The present invention has been completed based on these findings, and the gist thereof is as follows (1) to(8)is there.
[0028]
(1) By mass%, C: 0.05 to 0.25%, Si: 2.0% or less, Al: 0.005 to 2.0%, Mn: 0.8 to 2.5%, P: 0.05% or less, and (Si + Al): 1.0 to 2.5% is satisfied, and the balance has a chemical composition composed of Fe and inevitable impurities, and has tensile strength (TS) and total elongation. (El) product (TS × El) is 21900 MPa ·% or moreThe hardness of the steel plate surface and the center of the plate thickness after the pre-forming with 10% tensile bending deformation as the plate thickness strain and then the baking treatment held at 170 ° C. for 20 minutes satisfies the following formula YouHigh tensile strength steel sheet with excellent ductility and impact resistance;
(HVs-HVc) / HV 0 ≧ 0.12,
However, HV 0 : Vickers hardness at the center of the plate thickness before the above preforming,
HVc: Vickers hardness at the center of the plate thickness after the above preforming and baking process,
HVs: Vickers hardness of the surface portion after the above pre-molding and baking treatment.
(2) By mass%, C: 0.05 to 0.25%, Si: 2.0% or less, Al: 0.005 to 2.0%, Mn: 0.8 to 2.5%, P: 0.05% or less, and (Si + Al): 1.0 to 2.5% is satisfied, and Ti and / or Nb is further changed to Ti: 0.003 to 0.05%, Nb: 0.00. 003 to 0.05%, and (Ti + Nb) ≦ 0.05% in a range that satisfies the chemical composition comprising Fe and inevitable impurities, the tensile strength (TS) and the total elongation (El ) Product (TS × El) is 21900 MPa ·% or moreThe hardness of the steel plate surface and the center of the plate thickness after the pre-forming with 10% tensile bending deformation as the plate thickness strain and then the baking treatment held at 170 ° C. for 20 minutes satisfies the following formula YouHigh tensile strength steel sheet with excellent ductility and impact resistance;
(HVs-HVc) / HV 0 ≧ 0.12,
However, HV 0 : Vickers hardness at the center of the plate thickness before the above preforming,
HVc: Vickers hardness at the center of the plate thickness after the above preforming and baking process,
HVs: Vickers hardness of the surface portion after the above pre-molding and baking treatment.
(3) The chemical composition further includes, in mass%, one or more of Cu, Ni, and Co in the group consisting of Cu: 0.2-1.0%, Ni: 0.1 0.5%, Co: 0.0005 to 1.0%, and (Cu + Ni + Co) ≦ 1.5% in a range satisfying the ductility and impact resistance described in the above (1) or (2) Excellent high strength steel plate.
[0029]
(4) Above( 1 ) ~ ( 3 ) In any ofA steel slab having a chemical composition is subjected to hot finish rolling with a hot finish rolling start temperature of 1050 ° C. or lower and an end temperature of 800 ° C. or higher, and then cooled to 750 ° C. at a cooling rate of 20 ° C./second or higher. Then, hot rolling having a step of winding at 700 ° C. or lower and Tc (° C.) or higher calculated by the following formula is performed, the obtained steel sheet is pickled, and then the total rolling reduction is 40% or higher and 80%. Cold rolling is performed in the following range, and then kept for 30 seconds or more and 90 seconds or less in the two-phase temperature range of ferrite + austenite, and then the temperature range of 700 ° C or less and 450 ° C or more is 30 ° C / second or more. Cooling, holding for 200 seconds or more and 400 seconds or less in a temperature range of 450 ° C. or less and 370 ° C. or more, and then performing annealing to cool to room temperature,The product (TS × El) of tensile strength (TS) and total elongation (El) is 21900 MPa ·% or more.Production method of high-tensile steel plate with excellent ductility and impact resistance;
Tc (° C.) = 430 + 70 × Mn (%) + 1000 × P (%).
(5) The method for producing a high-tensile steel sheet having excellent ductility and impact resistance as described in (4) above, wherein the steel slab before hot finish rolling is subjected to auxiliary heating.
(6) By mass%, C: 0.05 to 0.25%, Si: 2.0% or less, Al: 0.005 to 2.0%, Mn: 0.8 to 2.5%, P: 0.05% or less, and (Si + Al): 1.0 to 2.5% is satisfied, and the balance includes a chemical composition composed of Fe and inevitable impurities,The product (TS × El) of tensile strength (TS) and total elongation (El) is 21900 MPa ·% or more,The hardness of the steel plate surface portion and the plate thickness center portion after pre-forming with 10% tensile bending deformation in the plate thickness strain and then subjected to baking treatment held at 170 ° C. for 20 minutes satisfies the following formula: A method for producing a structural member having impact resistance characteristics, characterized by subjecting a tensile steel sheet to forming with bending and bending back deformation, followed by coating baking treatment;
(HVs-HVc) / HV0≧ 0.12,
However, HV0: Vickers hardness at the center of the plate thickness before the above preforming,
HVc: Vickers hardness at the center of the plate thickness after the above preforming and baking process,
HVs: Vickers hardness of the surface portion after the above pre-molding and baking treatment.
[0030]
(7) By mass%, C: 0.05-0.25%, Si: 2.0% or less, Al: 0.005-2.0%, Mn: 0.8-2.5%, P: 0.05% or less, and (Si + Al): 1.0 to 2.5% is satisfied, and Ti and / or Nb is further changed to Ti: 0.003 to 0.05%, Nb: 0.00. 003 to 0.05%, and (Ti + Nb) ≦ 0.05% in a range that satisfies, the balance comprising a chemical composition consisting of Fe and inevitable impurities,The product (TS × El) of tensile strength (TS) and total elongation (El) is 21900 MPa ·% or more,The hardness of the steel plate surface portion and the plate thickness center portion after pre-forming with 10% tensile bending deformation in the plate thickness strain and then subjected to the baking treatment held at 170 ° C. for 20 minutes satisfies the following formula: A method for producing a structural member having impact resistance characteristics, characterized by subjecting a tensile steel sheet to forming with bending and bending back deformation, followed by coating baking treatment;
(HVs-HVc) / HV0≧ 0.12,
However, HV0: Vickers hardness at the center of the plate thickness before the above preforming,
HVc: Vickers hardness at the center of the plate thickness after the above preforming and baking treatment,
HVs: Vickers hardness of the surface portion after the above pre-molding and baking treatment.
(8) The chemical composition is further mass%, and one or more of the group consisting of Cu, Ni, and Co is added to Cu: 0.2 to 1.0%, Ni: 0.1 to 0.1%. The high-tensile steel plate according to (6) or (7) above, containing 0.5%, Co: 0.0005 to 1.0%, and (Cu + Ni + Co) ≦ 1.5%. A method for producing a structural member having impact resistance characteristics, characterized in that a coating baking process is performed after forming with bending deformation.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail.
Chemical composition of steel sheet;
C: The most powerful austenite stabilizing element and one of the essential components of the present invention. In order to obtain stable austenite at room temperature after annealing, the C concentration of austenite at the annealing temperature needs to be increased to about 1% or more. Therefore, the C content of steel is set to 0.05% or more.
[0034]
By increasing the C content, the strength of the steel can be increased. However, if the content exceeds 0.25%, the strength becomes too high to be suitable for plastic working applications, and the weldability is also deteriorated. Therefore, the upper limit of the C content is 0.25%. Preferably it is 0.20% or less.
[0035]
Si and Al: These elements are ferrite stabilizing elements. By containing a proper amount of these, the volume fraction of ferrite is increased at the ferrite + austenite two-phase region temperature during annealing, the C concentration of equilibrium austenite is increased, and the effect of stabilizing austenite is obtained.
[0036]
Although Si is not an essential element, Si has an action of suppressing precipitation of carbides, and an effect of concentrating C in austenite is also obtained during bainite transformation during cooling from two-phase annealing.
[0037]
In order to sufficiently obtain these effects, Si and / or Al, Al is sol. A total of 1.0% or more is contained as Al. In addition, all Al content in this invention is sol. Means Al. The ferrite stabilization effect by these elements is saturated when the total content exceeds 2.5%, and adding more than that only impairs the economy, so the total content of both elements is 2.5% or less.
[0038]
Si has the effect of strengthening ferrite, so it is useful to increase the strength of the steel. However, when the Si content exceeds 2.0%, the surface quality deterioration due to the high Si scale characteristic of Si-added steel sheets is significant. become. In order to avoid this, the Si content is set to 2.0% or less. Since Si has an effect of inhibiting the wettability of molten zinc, when performing hot dip galvanizing or alloying hot dip galvanizing, the Si content is preferably 0.8% or less. More preferably, it is 0.6% or less.
[0039]
Since Al does not hinder plating wettability at the time of hot dip galvanizing, it is preferable to contain Al when hot dip galvanizing is performed. Al is used as a deoxidizing material during steel making, but is contained in an amount of 0.005% or more in order to obtain a sufficient deoxidizing effect. If the Al content exceeds 2.0%, inclusions increase in the steel sheet and the ductility is impaired, so the Al content is set to 2.0% or less.
[0040]
Mn: has an austenite stabilizing effect and is one of the essential elements of the high-tensile steel sheet of the present invention. In the cooling process after the two-phase region annealing, the Mn content is set to 0.8% or more so that austenite remains at room temperature without being transformed into martensite. On the other hand, Mn is an element that easily segregates during solidification, and if excessively contained, it segregates to form a band-like structure, and ductility decreases. In order to avoid this, the Mn content is 2.5% or less. Preferably, it is 2.0% or less.
[0041]
P: Although not an essential element, it has an effect of strengthening steel by dissolving in ferrite. Further, when coexisting with Cu, there is also an effect of improving the corrosion resistance by forming a stable protective film on the surface layer of steel. Therefore, in order to obtain these effects, P may be contained in an amount of 0.01% or more. However, P is easily segregated at the time of solidification, and if it is excessively contained, a band-like structure resulting from segregation is generated, and ductility is impaired, and weldability of steel is also deteriorated. Therefore, even when contained, the content is made 0.05% or less. Preferably it is 0.02% or less.
[0042]
Ti, Nb: These elements are not essential, but they are carbide-generating elements, and have the effect of forming fine precipitates and refining the hot rolled sheet crystal structure to increase the strength of the steel sheet. In order to obtain such an effect, either or both of these elements may be contained in an amount of 0.003% to 0.05%. However, when the total content of the two types exceeds 0.05%, the decrease in ductility becomes more significant than the increase in strength. Therefore, when the two types are included simultaneously, the upper limit of the total amount is 0.05%. To do.
[0043]
Further, Ti is easily bonded to N, and TiN is precipitated in preference to the precipitation of AlN, and has an effect of preventing slab cracking due to AlN. In order to obtain this effect, it is preferable to contain Ti in a range that satisfies 0.003% or more and satisfies (Ti / 48) / (N / 14) ≧ 2.
[0044]
Cu, Ni, Co: These elements are not essential, but all of them are not easily dissolved in iron carbide, and since precipitation of carbide is suppressed at the time of bainite transformation, an effect that retained austenite is easily obtained is obtained. In order to obtain these effects, one or more of the group consisting of Cu, Ni, and Co, Cu is 0.2% or more, Ni is 0.1% or more, and Co is 0.0005% or more. You may make it contain. If any element is excessively contained, the bainite transformation becomes insufficient. Therefore, the upper limit in the case of inclusion is 1.0% for Cu, 0.5% for Ni, 1.0% for Co, 2% or more. When contained, the total amount is 1.5% or less. Further, since Cu improves the corrosion resistance when coexisting with P, it may be added for this purpose.
[0045]
In addition, since Cu causes slab cracking, when Cu is contained, it is preferable that Ni is combined and contained within a range that satisfies Ni ≧ Cu / 2.
The balance is Fe and inevitable impurities. Among unavoidable impurities, S precipitates as MnS and not only inhibits ductility, but also consumes Mn added as an austenite stabilizing element as a precipitate, so its content is 0.01% or less. It is good. Further, if the N content is large, it causes slab cracking in AlN and also reduces the ductility of AlN in the product, so the content is preferably 0.005% or less.
[0046]
Surface hardening properties;
As described above, in the member that has been pre-formed and subjected to the baking treatment, the hardness of the steel plate surface portion has a surface hardening property that is higher than the hardness of the central portion by a certain percentage or more. It is extremely important for tensile steel sheets. There are various shapes of structural members, and there are various forming methods, strain distributions, etc., so this surface hardening property is obtained by applying 10% tensile bending to bending back deformation (hereinafter simply referred to as “tensile”). The thickness of the steel sheet before the pre-forming, after the pre-forming with “bending deformation”) and the difference in hardness between the steel sheet surface and the center of the thickness after baking at 170 ° C. for 20 minutes. It is defined that the ratio to the hardness of the central portion (X represented by the following formula, hereinafter, also simply referred to as “hardness ratio”) satisfies the relationship of 0.12 or more.
X = (HVs−HVc) / HV0
Where HV0  Is the Vickers hardness at the center of the thickness of the steel sheet before the preforming, HVc is the Vickers hardness at the center of the thickness after the preforming and baking process, and HVs is the preforming and baking process. It is the Vickers hardness of the later surface portion. Here, the Vickers hardness of the surface portion means a value obtained by averaging the hardness measured at a portion 1/8 of the plate thickness away from the steel plate surface for both surfaces. The bending radius in the pre-forming is 2.5 times (2.5 t) the plate thickness (t).
[0047]
According to the steel sheet having a high hardness ratio of the present invention, a structural member having high impact absorption energy when deformed at high speed can be obtained. When the hardness ratio is less than 0.12, the resulting member has insufficient impact characteristics. To obtain a structural member with good impact characteristics, a steel sheet with a hardness ratio of 0.12 or more is used. It is effective to do. Therefore, the high-tensile steel plate of the present invention has a hardness ratio, that is, X of 0.12 or more. In order to select more excellent impact characteristics, a steel sheet having a hardness ratio of 0.15 or more is preferable.
[0048]
The high-tensile steel sheet of the present invention is formed by a press tool having a die, a punch and a wrinkle presser, and has a bending and bending back deformation at least in the vicinity of the die shoulder in the forming process, and is subjected to a normal paint baking process after forming. If it is used for a part, a structural member having excellent impact resistance can be obtained. When the press tool is provided with a wrinkle holding bead or the like, the bending and bending back that the steel plate receives when passing through the bead portion also contributes to the surface hardening.
[0049]
Even if the portion to be bent and bent back is used only for a part of a part constituting the structural member, an effect of improving the impact resistance characteristics can be obtained. If the closed cross-section structural member shown in FIG. 1 is described as an example, the portion to be bent and bent back is the vertical wall portion 2 of the hat cross-section component. The bottom section 11 of the hat cross-section component and the flat plate component 12 are not bent and bent back and thus have no surface hardening characteristics, but they may be used.
[0050]
The high-tensile steel sheet according to the present invention can obtain a desired effect even if it is a surface-treated steel sheet that has been subjected to a treatment such as electroplating or hot dipping, in addition to a cold-rolled steel sheet.
Production method;
The high-tensile steel sheet having excellent ductility and impact resistance according to the present invention is preferably manufactured by hot rolling, cold rolling, and recrystallization annealing a steel having the above chemical composition by the following method. .
[0051]
Steel having the above chemical composition is cast into a slab by a conventional method. The ingot may be rolled to form a steel slab, which may be a slab. The slab is heated by a conventional method and roughly rolled, and then subjected to finish rolling. However, if the slab temperature after casting is high and the finishing temperature described below can be secured, rough slab heating is omitted. It doesn't matter. Moreover, when a thin slab is obtained by a known method such as strip casting, rough rolling may be omitted.
[0052]
Finish rolling: The hot-rolled sheet used as the base material of the high-strength steel sheet of the present invention is composed of ferrite and soft pearlite, and the pearlite is uniformly dispersed in order to obtain a steel sheet having excellent local ductility in the final product. It shall have a crystal structure.
[0053]
If the finish rolling start temperature in hot rolling is excessively high, recovery and recrystallization of austenite during rolling proceeds rapidly, strain accumulation becomes insufficient, and ferrite transformation in the cooling process after rolling is delayed, The volume fraction of soft ferrite is reduced. In order to avoid this, the finish rolling start temperature is set to 1050 ° C. or lower. The lower limit of the finish rolling start temperature is not particularly limited, and is desirably low as long as the finish rolling exit temperature described below is satisfied.
[0054]
The finish rolling finish temperature is 800 ° C. or higher. When the finish rolling finish temperature is a low temperature of less than 800 ° C., ferrite transformation occurs during rolling, and a processed ferrite structure in which crystal grains are extended is obtained, and a hot-rolled steel sheet structure in which the second phase is uniformly dispersed cannot be obtained. .
[0055]
Auxiliary heating: It is necessary to satisfy the entrance side temperature and the exit side temperature of the finish rolling described above over the entire length of the hot-rolled coil. When the steel slab is long, the steel slab temperature is lowered during rolling, and the finishing temperature may not be ensured in the latter half of hot rolling. Moreover, since the entrance temperature of finish rolling is limited low, the finishing temperature may not be ensured due to a temperature drop at the end of the steel slab width direction. In such a case, it is preferable to perform auxiliary heating on the finishing rolling entry side. The auxiliary heating method is not limited, but an electromagnetic induction heating method in which the control of the amount of heat input according to the temperature distribution of the slab on the finishing rolling entry side is easy is preferable.
[0056]
Cooling after finish rolling: After finishing rolling, in order to promote ferrite transformation, rapid cooling to 750 ° C. is performed at a cooling rate of 20 ° C./second or more. When the rapid cooling end temperature is higher than 750 ° C. or the cooling rate is less than 20 ° C./sec, the austenite recovers during the cooling, the processing strain disappears, and the ferrite transformation is difficult to proceed. not good.
[0057]
In order to promote the ferrite transformation, it is desirable to continue for 2 seconds or more in the temperature range until the start of winding after the rapid cooling. This staying treatment is preferably performed by cooling in the above temperature range by air cooling or slow cooling. If the residence time is less than 2 seconds, the ferrite transformation becomes insufficient, which is not good. A more preferable residence time is 5 seconds or more. If the residence time exceeds 10 seconds, the necessary cooling table becomes longer, so the residence time is preferably 10 seconds or less. After the retention treatment, rapid cooling may be performed at an arbitrary cooling rate up to the coiling temperature.
[0058]
Winding temperature: When the winding temperature becomes high, the scale loss increases, and the winding shape of the wound coil collapses because the steel becomes soft. In order to avoid this, the coiling temperature is 700 ° C. or less. Preferably it is 680 degrees C or less, More preferably, it is 650 degrees C or less.
[0059]
Mn has the effect of lowering the Ar3 point and increasing P. Therefore, when segregation of these elements occurs when the steel solidifies, ferrite transformation is delayed at the part of positive segregation in the case of Mn and negative segregation in the case of P, and pearlite precipitates in a band shape, resulting in a band-like structure. Arise. Such steels are prone to microvoids after cold rolling, which may impair the local ductility of the product steel sheet. In a steel having a high content of Mn and P, the band-like structure of pearlite can be reduced by increasing the coiling temperature and promoting ferrite transformation. For this reason, in this invention, the lower limit (Tc) of coiling temperature is prescribed | regulated in relation to Mn and P content.
[0060]
That is, the lower limit Tc (° C.) of the coiling temperature is not less than the value calculated by 430 + 70 × Mn (%) + 1000 × P (%). If the coiling temperature is too low, bainite and martensite are generated as the second phase, and it is necessary to wind at a temperature equal to or higher than the above-described Tc also from this viewpoint.
[0061]
Cold rolling: A hot-rolled steel sheet obtained by hot rolling by the above method is cold-rolled after removing scales by pickling or the like by a conventional method. Cold rolling may be performed according to a conventional method, but the cold rolling reduction is 40% or more and 80% or less in total. When the cold rolling reduction is less than 40%, the rolling efficiency is lowered, and when it exceeds 80%, microvoids between the ferrite and the second phase are increased, which adversely affects the ductility after recrystallization annealing. A preferable cold rolling reduction is 70% or less in total.
[0062]
Annealing: The annealing temperature is set to a temperature range from the Ac1 transformation point to the Ac3 transformation point in order to concentrate C into austenite in the two phases of ferrite and austenite. If the annealing temperature is too low, it takes too much time for the cementite to re-dissolve, and if it is too high, the volume fraction of austenite becomes too large and the C concentration in the austenite is reduced. Preferably it is the range of 800 degreeC or more and 850 degrees C or less.
[0063]
The soaking time is 30 seconds or more in order to sufficiently dissolve cementite. If the soaking time exceeds 90 seconds, the austenite grains are coarsened, which is not preferable, so the soaking time is 90 seconds or less.
[0064]
After completion of soaking, rapid cooling is performed at a temperature range of 700 to 450 ° C. at 30 ° C./second or more in order to suppress pearlite transformation. The cooling rate between the soaking temperature and 700 ° C. is not limited, but in order to increase the volume fraction of ferrite and concentrate C in austenite, it is preferable to cool to 700 ° C. at 10 ° C./second or less. .
[0065]
Following the rapid cooling, the sample is retained for 200 seconds or more and 400 seconds or less in a temperature range of 450 ° C. or lower and 370 ° C. or higher. This residence method may be a method of maintaining a constant temperature, or a method of gradually lowering the temperature between 450 ° C. or less and 370 ° C. in the range of 200 seconds or more and 400 seconds or less. When the residence temperature exceeds 450 ° C., bainite transformation does not occur, and when it is less than 370 ° C., it becomes lower bainite, C concentration to austenite hardly occurs, and a desired retained austenitic steel sheet cannot be obtained.
[0066]
The cooling after the residence is not limited, but the cooling rate may be increased in order to simplify the equipment. Moreover, in order to manufacture a hot dip galvanized steel sheet, you may perform the said annealing process using a continuous hot dip plating line. An alloying heat treatment may be performed in order to obtain alloyed hot dip galvanizing.
[0067]
Temper rolling: After annealing, temper rolling may be performed by a known method for the purpose of adjusting surface roughness, forcing flatness, and reducing elongation at yield point. In that case, in order not to lower the ductility, the temper rolling elongation is preferably 2.0% or less.
[0068]
What is necessary is just to manufacture by a well-known method except the above.
[0069]
【Example】
Example 1
Steel having the chemical composition shown in Table 1 was melted in a laboratory to form a steel ingot having a thickness of 60 mm, a width of 150 mm, and a mass of 17 kg, which was hot forged to have a thickness of 25 mm and a width of 150 mm. I got a piece.
[0070]
[Table 1]
Figure 0004016573
These steel slabs were charged into a heating furnace and held at 1200 ° C. for 30 minutes, then removed from the furnace, naturally cooled to 1000 ° C., and subjected to hot finish rolling at a rolling start temperature of 1000 ° C. The number of passes of finish rolling was 3 passes in total, the thickness after finish rolling was 3.5 mm, and the finish rolling finish temperature was 850 ° C. Immediately after the hot finish rolling, water spray cooling is performed for 4 seconds to 720 ° C. (average cooling rate 33 ° C./second), followed by natural cooling for 8 seconds to 680 ° C., and further water spray cooling for 2 seconds. The temperature was set to 620 ° C. (average cooling rate of 30 ° C./second), and this was placed in a furnace heated to 620 ° C. and held for 30 minutes, and then cooled to room temperature at 20 ° C./hour.
[0071]
The obtained hot-rolled sheet was pickled using a hydrochloric acid solution to remove the scale, and then cold-rolled to 1.2 mm at a total rolling reduction of 66%. The obtained cold-rolled sheet was heated to 820 ° C. and soaked for 40 seconds, then slowly cooled to 700 ° C. at 5 ° C./second, then cooled to 400 ° C. at 50 ° C./second, and 300 seconds at 400 ° C. After being held, it was cooled to room temperature at 30 ° C./second. The obtained annealed sheet was subjected to temper rolling with an elongation of 1.0%.
[0072]
About the rolling direction of these steel plates, the tension test was done based on the prescription | regulation of JIS-Z2241 using the No. 5 test piece prescribed | regulated to JIS-Z2201. The strain at the maximum load in the stress-strain curve at the time of the tensile test was defined as uniform elongation, and the difference between the total elongation and the uniform elongation was determined to obtain the local elongation value.
[0073]
A blank having a rolling direction obtained from the temper-rolled steel plate as a longitudinal direction is press-molded using a press tool shown in FIG. 1 was obtained. Both the punch and die shoulder radii were 3.0 mm. The wrinkle restraining force was adjusted so that the thickness distortion of the vertical wall portion 2 was 10%. The obtained hat cross-section part was subjected to a baking treatment of holding at 170 ° C. for 20 minutes, and then a small piece was cut out from the vertical wall portion, and the Vickers hardness of the cross section perpendicular to the rolling direction was measured.
[0074]
FIG. 3 is a layout diagram showing measurement positions of Vickers hardness. The Vickers hardness test was conducted in accordance with JIS-Z2244, and the test load was 4.9N. The measurement position in the cross section is the thickness center and both surfaces (positions that are 1/8 of the plate thickness inside), each measuring 5 points at intervals of 0.5 mm, the average of the thickness center is HVc, both surfaces The average of the measured values was HVs. In addition, also about the steel plate before preforming, 5 points | pieces of Vickers hardness were measured at 0.5 mm intervals in the sheet thickness center of a cross section perpendicular | vertical to a rolling direction, and the average was set to HV0  It was. The hardness ratio X was calculated from these values.
[0075]
Spot-welded plate parts 12 having a width of 60 mm and a length of 200 mm obtained from the same cold-rolled steel plate subjected to the above press forming and the same cold-rolled, annealed and temper-rolled steel plate at intervals of 20 mm to provide a closed cross-sectional structure A member was prepared and subjected to a baking treatment of heating at 170 ° C. for 20 minutes to prepare a test body.
[0076]
The test specimen was mounted on a test stand with its longitudinal direction vertical, and a weight drop type shaft crushing test was performed in which a weight weighing 60 kg was dropped from above and collided with the upper end of the test specimen at a speed of 10 m / sec. It was. A load cell is installed at the bottom of the test body to measure the load acting on the test body, separately measuring the position change of the weight body, and acting on the test body before the weight body stops from these load-displacement relationships The average value P (kN) of the applied load was determined, and the impact resistance characteristics were determined based on the average axial crushing load.
[0077]
Table 2 shows the tensile properties of the steel sheet before processing, the hardness ratio measured at the vertical wall portion of the pre-formed and baked hat cross-section, and the axial crush average load measurement result of the specimen.
[0078]
[Table 2]
Figure 0004016573
In Table 2, trial Nos. 3 to 11 are those in which the chemical composition of the steel satisfies the conditions defined by the present invention, and the hardness ratio X is 0.12 or more, and all are examples of the present invention. Trial No. 1 uses steel A with low C content, Trial Nos. 2, 12 and 13 use steels B, L and M with low Si + Al content, which have a hardness ratio of 0.12. All were evaluated as comparative examples. Since the average axial crush load of the test specimen varies depending on the tensile strength (TS) level of the steel sheet used as the material, it is appropriate to judge whether the impact resistance characteristics are good or bad according to the tensile strength of the steel sheet. As shown in Table 2, all of the test numbers 3 to 11 using the steel plates as examples of the present invention showed excellent axial crush average loads. The steel of the present invention was also excellent in the strength-ductility balance represented by TS × EL.
[0079]
In FIG. 4, the relationship between the axial crush average load of Table 2 and the tensile strength of the steel plate before each process is shown. As can be seen from FIG. 4, those having a hardness ratio X of 0.12 or more showed an axial crush average load that was about 10% higher than that of the comparative example even at the same tensile strength. It can be seen that those having a hardness ratio X of 0.15 or more are more excellent.
[0080]
(Example 2)
The steel D, E, and H steel pieces having the chemical compositions shown in Table 1 were hot-finished and rolled with the same conditions as in Example 1 except for the coiling temperature, and the hot-rolled sheet having the same dimensions as in Example 1 Then, the same pickling, cold rolling, annealing and temper rolling as in Example 1 were performed to prepare various cold rolled steel sheets. These steel plates were tested in the same manner as described in Example 1 to investigate tensile properties and local elongation. The obtained results are shown in Table 3 together with the coiling temperature.
[0081]
[Table 3]
Figure 0004016573
As shown in Table 3, the test numbers 16, 17, 21, and 26 that satisfy the conditions specified by the manufacturing method of the present invention for the coiling temperature after hot rolling had particularly excellent local ductility. . Moreover, normal ductility (El) and the product (so-called ductility balance) of TS and El were also favorable.
[0082]
【The invention's effect】
The high-strength steel sheet of the present invention is excellent in local ductility, so that it can be easily processed into a structural member having a complicated shape typified by automobiles, and by press forming and baking processing involving bending and bending back during press processing. The impact resistance characteristics as a structural member can be greatly improved. Therefore, the high-strength steel sheet of the present invention is easy to increase the strength of automobile structural members and is effective for reducing the weight by reducing the thickness of the steel sheet, and is also effective for improving the collision safety. Is extremely large.
[Brief description of the drawings]
FIG. 1 is a perspective view of a test body simulating a closed cross-section structural member frequently used in a structural member.
FIG. 2 is a cross-sectional view for explaining a press-formed state of a hat cross-sectional component.
FIG. 3 is a schematic diagram showing Vickers hardness measurement points at a vertical wall portion of a hat cross-sectional component.
FIG. 4 is a graph showing the relationship between the tensile strength of a steel sheet and the axial crush average load of a closed cross-section structural member produced using the steel sheet.
[Explanation of symbols]
1: Hat cross-section part, 2: Vertical wall part, 3: Punch, 4: Punch shoulder, 5: Die, 6: Die shoulder, 7: Die groove, 8: Wrinkle retainer, 11: Bottom part, 12: Flat part part
It is a code | symbol in FIG.

Claims (8)

質量%で、C:0.05〜0.25%、Si:2.0%以下、Al:0.005〜2.0%、Mn:0.8〜2.5%、P:0.05%以下を含有し、かつ、(Si+Al):1.0〜2.5%を満足し、残部がFeおよび不可避的不純物からなる化学組成を備え、引張強さ(TS)と全伸び(El)との積(TS×El)が21900MPa・%以上であり、板厚ひずみにして10%の引張り曲げ変形を伴う予成形を施し、次いで170℃で20分間保持する焼付け処理を施した後の鋼板表面部と板厚中心部の硬度が下記式を満足することを特徴とする延性と耐衝撃特性に優れた高張力鋼板
(HVs−HVc)/HV0≧0.12、
ただし、HV0:上記予成形前の板厚中心部のビッカース硬度、
HVc:上記予成形と焼付け処理後の板厚中心部のビッカース硬度、
HVs:上記予成形と焼付け処理後の表面部のビッカース硬度。
In mass%, C: 0.05 to 0.25%, Si: 2.0% or less, Al: 0.005 to 2.0%, Mn: 0.8 to 2.5%, P: 0.05 %, And (Si + Al): 1.0 to 2.5% is satisfied, and the balance has a chemical composition composed of Fe and inevitable impurities, and has tensile strength (TS) and total elongation (El). the product of the (TS × El) is Ri der 21900MPa ·% or more, subjected to preforming with 10% of the tensile bending deformation in the strain thick plate, then after having been subjected to baking treatment for holding at 170 ° C. 20 min high tensile steel hardness of the steel sheet surface portion and the thickness center portion is excellent in ductility and impact properties, characterized that you satisfy the following equation;
(HVs−HVc) /HV0≧0.12.
However, HV0: Vickers hardness at the center of the plate thickness before the above preforming,
HVc: Vickers hardness at the center of the plate thickness after the above preforming and baking process,
HVs: Vickers hardness of the surface portion after the above pre-molding and baking treatment.
質量%で、C:0.05〜0.25%、Si:2.0%以下、Al:0.005〜2.0%、Mn:0.8〜2.5%、P:0.05%以下を含み、かつ、(Si+Al):1.0〜2.5%を満足し、さらに、Tiおよび/またはNbを、Ti:0.003〜0.05%、Nb:0.003〜0.05%、かつ、(Ti+Nb)≦0.05%を満足する範囲で含有し、残部がFeおよび不可避的不純物からなる化学組成を備え、引張強さ(TS)と全伸び(El)との積(TS×El)が21900MPa・%以上であり、板厚ひずみにして10%の引張り曲げ変形を伴う予成形を施し、次いで170℃で20分間保持する焼付け処理を施した後の鋼板表面部と板厚中心部の硬度が下記式を満足することを特徴とする延性と耐衝撃特性に優れた高張力鋼板
(HVs−HVc)/HV ≧0.12、
ただし、HV :上記予成形前の板厚中心部のビッカース硬度、
HVc:上記予成形と焼付け処理後の板厚中心部のビッカース硬度、
HVs:上記予成形と焼付け処理後の表面部のビッカース硬度。
In mass%, C: 0.05 to 0.25%, Si: 2.0% or less, Al: 0.005 to 2.0%, Mn: 0.8 to 2.5%, P: 0.05 % And (Si + Al): 1.0 to 2.5% is satisfied, and Ti and / or Nb is Ti: 0.003 to 0.05%, Nb: 0.003 to 0 .05% and (Ti + Nb) ≦ 0.05% in a range that satisfies the chemical composition consisting of Fe and inevitable impurities, the tensile strength (TS) and the total elongation (El) product (TS × El) is Ri der 21900MPa ·% or more, the thickness strain was subjected to preforming with 10% of the tensile bending deformation, and then the surface of the steel sheet was subjected to a baking treatment for holding at 170 ° C. 20 min parts and ductility hardness of the plate thickness center is characterized that you satisfy the following formula and excellent impact resistance High-tensile steel sheet;
(HVs−HVc) / HV 0 ≧ 0.12.
Where HV 0 : Vickers hardness at the center of the plate thickness before the preforming,
HVc: Vickers hardness at the center of the plate thickness after the above preforming and baking process,
HVs: Vickers hardness of the surface portion after the above pre-molding and baking treatment.
化学組成がさらに、質量%で、Cu、Ni、Coからなる群の内の1種、または、2種以上を、Cu:0.2〜1.0%、Ni:0.1〜0.5%、Co:0.0005〜1.0%、かつ(Cu+Ni+Co)≦1.5%を満足する範囲で含有する、請求項1または2に記載の延性と耐衝撃特性に優れた高張力鋼板。Further, the chemical composition is, by mass%, one or two or more of Cu, Ni, Co in the group consisting of Cu: 0.2 to 1.0%, Ni: 0.1 to 0.5. %, Co: 0.0005 to 1.0%, and (Cu + Ni + Co) ≦ 1.5%. The high-tensile steel sheet having excellent ductility and impact resistance according to claim 1. 請求項1〜3のいずれかに記載の化学組成を備えた鋼片に、熱間仕上圧延開始温度が1050℃以下、終了温度が800℃以上である熱間仕上圧延を施した後、20℃/秒以上の冷却速度で750℃まで冷却し、700℃以下、下記式で計算されるTc(℃)以上で巻取る工程を有する熱間圧延を施し、得られた鋼板を酸洗し、その後、合計圧下率が40%以上、80%以下となる範囲で冷間圧延を施し、次いで、フェライト+オーステナイトの2相温度域で30秒以上、90秒以下保持し、その後700℃以下、450℃以上の温度範囲を30℃/秒以上で冷却し、450℃以下、370℃以上の温度範囲で200秒以上、400秒以下保持した後、室温まで冷却する焼鈍を施すことを特徴とする、引張強さ(TS)と全伸び(El)との積(TS×El)が21900MPa・%以上である延性と耐衝撃特性に優れた高張力鋼板の製造方法;
Tc(℃)=430+70×Mn(%)+1000×P(%)。
A steel piece having the chemical composition according to any one of claims 1 to 3 is subjected to hot finish rolling with a hot finish rolling start temperature of 1050 ° C or lower and an end temperature of 800 ° C or higher, and then 20 ° C. Cooling to 750 ° C. at a cooling rate of at least / sec, applying hot rolling having a step of winding up to 700 ° C. or higher and Tc (° C.) or higher calculated by the following formula, pickling the obtained steel sheet, and then Then, cold rolling is performed in a range where the total rolling reduction is 40% or more and 80% or less, and then maintained in the two-phase temperature range of ferrite and austenite for 30 seconds or more and 90 seconds or less, and thereafter 700 ° C. or less, 450 ° C. cooling the above temperature range 30 ° C. / sec or higher, 450 ° C. or less, 370 ° C. or higher temperature range at 200 seconds or more, after holding than 400 seconds, and characterized by applying annealing to cool to room temperature, tensile Between strength (TS) and total elongation (El) (TS × El) is the method of producing a high tensile steel sheet having excellent ductility and impact resistance is 21900MPa ·% or more;
Tc (° C.) = 430 + 70 × Mn (%) + 1000 × P (%).
熱間仕上圧延を施す前の鋼片に補助加熱を施すことを特徴とする請求項4に記載の延性と耐衝撃特性に優れた高張力鋼板の製造方法。The method for producing a high-strength steel sheet excellent in ductility and impact resistance according to claim 4, wherein the steel slab before hot finish rolling is subjected to auxiliary heating. 質量%で、C:0.05〜0.25%、Si:2.0%以下、Al:0.005〜2.0%、Mn:0.8〜2.5%、P:0.05%以下を含有し、かつ、(Si+Al):1.0〜2.5%を満足し、残部がFeおよび不可避的不純物からなる化学組成を備え、引張強さ(TS)と全伸び(El)との積(TS×El)が21900MPa・%以上であるとともに、板厚ひずみにして10%の引張り曲げ変形を伴う予成形を施し、次いで170℃で20分間保持する焼付け処理を施した後の鋼板表面部と板厚中心部の硬度が下記式を満足する高張力鋼板に、曲げ曲げ戻し変形を伴う成形を施したのちに塗装焼付け処理を施すことを特徴とする耐衝撃特性を有する構造部材の製造方法;
(HVs−HVc)/HV≧0.12、
ただし、HV:上記予成形前の板厚中心部のビッカース硬度、
HVc:上記予成形と焼付け処理後の板厚中心部のビッカース硬度、
HVs:上記予成形と焼付け処理後の表面部のビッカース硬度。
In mass%, C: 0.05 to 0.25%, Si: 2.0% or less, Al: 0.005 to 2.0%, Mn: 0.8 to 2.5%, P: 0.05 %, And (Si + Al): 1.0 to 2.5% is satisfied, and the balance has a chemical composition composed of Fe and inevitable impurities, and has tensile strength (TS) and total elongation (El). (TS × El) is 21900 MPa ·% or more, pre-molding with a tensile strain of 10% is applied to the plate thickness strain, and then subjected to a baking treatment that is held at 170 ° C. for 20 minutes. A structural member with impact resistance, characterized by subjecting a high-tensile steel sheet with hardness at the surface and thickness center of the steel sheet to satisfy the following formula, followed by forming and baking treatment after bending and bending deformation. Manufacturing method of
(HVs−HVc) / HV 0 ≧ 0.12.
Where HV 0 : Vickers hardness at the center of the plate thickness before the preforming,
HVc: Vickers hardness at the center of the plate thickness after the above preforming and baking process,
HVs: Vickers hardness of the surface portion after the above pre-molding and baking treatment.
質量%で、C:0.05〜0.25%、Si:2.0%以下、Al:0.005〜2.0%、Mn:0.8〜2.5%、P:0.05%以下を含み、かつ、(Si+Al):1.0〜2.5%を満足し、さらに、Tiおよび/またはNbを、Ti:0.003〜0.05%、Nb:0.003〜0.05%、かつ、(Ti+Nb)≦0.05%を満足する範囲で含有し、残部がFeおよび不可避的不純物からなる化学組成を備え、引張強さ(TS)と全伸び(El)との積(TS×El)が21900MPa・%以上であるとともに、板厚ひずみにして10%の引張り曲げ変形を伴う予成形を施し、次いで170℃で20分間保持する焼付け処理を施した後の鋼板表面部と板厚中心部の硬度が下記式を満足する高張力鋼板に、曲げ曲げ戻し変形を伴う成形を施したのちに塗装焼付け処理を施すことを特徴とする耐衝撃特性を有する構造部材の製造方法;
(HVs−HVc)/HV≧0.12、
ただし、HV:上記予成形前の板厚中心部のビッカース硬度、
HVc:上記予成形と焼付け処理後の板厚中心部のビッカース硬度、
HVs:上記予成形と焼付け処理後の表面部のビッカース硬度。
In mass%, C: 0.05 to 0.25%, Si: 2.0% or less, Al: 0.005 to 2.0%, Mn: 0.8 to 2.5%, P: 0.05 % And (Si + Al): 1.0 to 2.5% is satisfied, and Ti and / or Nb is Ti: 0.003 to 0.05%, Nb: 0.003 to 0 .05% and (Ti + Nb) ≦ 0.05% in a range that satisfies the chemical composition consisting of Fe and inevitable impurities, the tensile strength (TS) and the total elongation (El) Steel sheet surface after the product (TS × El) is 21900 MPa ·% or more, the sheet thickness is subjected to preforming with a tensile bending deformation of 10% and then held at 170 ° C. for 20 minutes The bending strength of the steel plate and the center of the plate thickness is changed to a high strength steel plate satisfying the following formula. Method of manufacturing a structural member having impact resistance, characterized in that applying the paint baking the after subjected to molding with;
(HVs−HVc) / HV 0 ≧ 0.12.
Where HV 0 : Vickers hardness at the center of the plate thickness before the preforming,
HVc: Vickers hardness at the center of the plate thickness after the above preforming and baking process,
HVs: Vickers hardness of the surface portion after the above pre-molding and baking treatment.
化学組成がさらに、質量%で、Cu、Ni、Coからなる群の内の1種、または、2種以上を、Cu:0.2〜1.0%、Ni:0.1〜0.5%、Co:0.0005〜1.0%、かつ(Cu+Ni+Co)≦1.5%を満足する範囲で含有する、請求項6または7に記載の高張力鋼板に、曲げ曲げ戻し変形を伴う成形を施したのちに塗装焼付け処理を施すことを特徴とする耐衝撃特性を有する構造部材の製造方法。Further, the chemical composition is, by mass%, one or two or more of Cu, Ni, Co in the group consisting of Cu: 0.2 to 1.0%, Ni: 0.1 to 0.5. %, Co: 0.0005 to 1.0%, and (Cu + Ni + Co) ≦ 1.5% in a range that satisfies the requirements, forming a high-strength steel sheet according to claim 6 or 7 with bending and bending back deformation. A method for producing a structural member having impact resistance characteristics, characterized in that a coating baking process is performed after the coating.
JP2000160296A 2000-05-30 2000-05-30 High-tensile steel plate excellent in ductility and impact resistance and method for producing the same, and method for producing structural member having impact resistance Expired - Fee Related JP4016573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000160296A JP4016573B2 (en) 2000-05-30 2000-05-30 High-tensile steel plate excellent in ductility and impact resistance and method for producing the same, and method for producing structural member having impact resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000160296A JP4016573B2 (en) 2000-05-30 2000-05-30 High-tensile steel plate excellent in ductility and impact resistance and method for producing the same, and method for producing structural member having impact resistance

Publications (2)

Publication Number Publication Date
JP2001335891A JP2001335891A (en) 2001-12-04
JP4016573B2 true JP4016573B2 (en) 2007-12-05

Family

ID=18664508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000160296A Expired - Fee Related JP4016573B2 (en) 2000-05-30 2000-05-30 High-tensile steel plate excellent in ductility and impact resistance and method for producing the same, and method for producing structural member having impact resistance

Country Status (1)

Country Link
JP (1) JP4016573B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5605310B2 (en) * 2011-06-07 2014-10-15 新日鐵住金株式会社 Steel and shock absorbing members
WO2017163098A1 (en) * 2016-03-25 2017-09-28 Arcelormittal Process for manufacturing cold-rolled and welded steel sheets, and sheets thus produced

Also Published As

Publication number Publication date
JP2001335891A (en) 2001-12-04

Similar Documents

Publication Publication Date Title
US9580785B2 (en) High-strength galvannealed steel sheet having excellent formability and fatigue resistance and method for manufacturing the same
US8177924B2 (en) High-strength steel sheet and process for producing the same
EP2757169B1 (en) High-strength steel sheet having excellent workability and method for producing same
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
WO2013005618A1 (en) Cold-rolled steel sheet
US11332804B2 (en) High-strength cold-rolled steel sheet, high-strength coated steel sheet, and method for producing the same
EP3901293B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method therefor
JP5070865B2 (en) Hot rolled steel sheet with excellent local rolling performance and method for producing the same
KR20220124789A (en) hot stamped parts
EP3693485A1 (en) Hot-stamp molded article, hot-stamp steel sheet, and methods for producing these
CN115768915A (en) Galvanized steel sheet, member, and method for producing same
JP5070864B2 (en) Hot rolled steel sheet and manufacturing method thereof
JP3525812B2 (en) High strength steel plate excellent in impact energy absorption and manufacturing method thereof
JP7151878B2 (en) HOT STAMP MOLDED PRODUCT, HOT STAMP STEEL STEEL, AND METHOD OF MANUFACTURING THEM
KR20230012027A (en) Steel plate, members and their manufacturing method
JP4016573B2 (en) High-tensile steel plate excellent in ductility and impact resistance and method for producing the same, and method for producing structural member having impact resistance
JP5708320B2 (en) Cold rolled steel sheet
JP4867336B2 (en) High-tensile cold-rolled steel, high-tensile electroplated steel, and high-tensile hot-dip galvanized steel
JP7323094B1 (en) High-strength steel plate and its manufacturing method
JP7193044B1 (en) High-strength steel plate, manufacturing method thereof, and member
WO2023162190A1 (en) Steel sheet, member, methods for manufacturing same, method for manufacturing hot-rolled steel sheet for cold-rolled steel sheet, and method for manufacturing cold-rolled steel sheet
WO2023162381A1 (en) Steel sheet, member, methods for producing these, method for producing hot-rolled steel sheet for cold-rolled steel sheet, and method for producing cold-rolled steel sheet
JP5644703B2 (en) Cold rolled steel sheet manufacturing method
JP7151737B2 (en) High-strength steel plate and manufacturing method thereof, member and manufacturing method thereof
EP4137593A1 (en) Steel sheet, member, method for producing said steel sheet, and method for producing said member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4016573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees