JP4015714B2 - Water-containing drilling soil solidifying agent - Google Patents
Water-containing drilling soil solidifying agent Download PDFInfo
- Publication number
- JP4015714B2 JP4015714B2 JP13942196A JP13942196A JP4015714B2 JP 4015714 B2 JP4015714 B2 JP 4015714B2 JP 13942196 A JP13942196 A JP 13942196A JP 13942196 A JP13942196 A JP 13942196A JP 4015714 B2 JP4015714 B2 JP 4015714B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- water
- soil
- solidifying agent
- hydrous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Excavating Of Shafts Or Tunnels (AREA)
- Processing Of Solid Wastes (AREA)
- Treatment Of Sludge (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は含水掘削土の固化剤及び処理方法に関するものである。
【0002】
【従来の技術】
地下のトンネル工事現場、石油井、ガス井、地熱井、その他の土木工事で発生する掘削土砂は含水掘削土の場合が多い。含水掘削土とは、土木、トンネル工事等において排出される高含水比の排土であり、含水比20〜200重量%、特に含水比30〜120重量%にのぼる。これらの含水掘削土の場合、そのまま搬出するには水がたれたり、流動化してこぼれたりする問題がある。特に、ベルトコンベアやダンプトラック等による搬出作業を困難なものにしている。
【0003】
このため従来から固化処理させる材料や方法が検討されている。例えばこれらの含水掘削土に、(1)(メタ)アクリルアミド(共)重合体および石コウからなる固化剤を添加する方法(特公平3ー2478)、(2)分子量100万以上で粒径100μm以下の微粒子分散液であるアクリル系水溶性高分子を添加する方法(特公平6ー91998)、などの短時間で搬送可能な程度にまでに含水掘削土を団粒状に処理する方法が提案されている。また、(3)アルカリ金属の炭酸塩などと水溶性ポリアクリル酸塩、必要に応じて粘土等を添加して処理物のべたつき生じないようにする方法(特開平6ー277698)が提案されている。
【0004】
しかしながら、(1)の技術においてはアクリル系高分子凝集剤のような高分子量の重合体を粉末の状態で含水掘削土に添加するのでママコ状となって均一に分散することができない。(2)の技術においては水溶性高分子を微粒子の分散液として添加するので含水掘削土中に容易に混合できるものの、含水掘削土が次第に流動性を失って団粒状態にまで処理が進むと粘りが生じ、混練り装置内の攪拌羽根に付着して取り出し作業が困難となる。また、混練した処理土は滑りやすく、搬出途中のベルトコンベア上やダンプトラック内に付着すると作業時に滑って危険である。(3)の技術においては、塩類によって高分子の親水性が低下し、さらに粘土類を併用した場合には付着性が低下するが、含水掘削土の処理効果が低下してコスト高となる上に、粘土類を添加すると排出土量を増加させることになる、などの問題があった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、上記のような問題がないこと、就中処理土の粘り、付着牲および滑り易さが改良され、機器への付着が少なく作業性に優れた含水掘削土の固化剤および処理工法を提供することである。
【0006】
【課題を解決するための手段】
本発明者らはこれらの点を考慮して鋭意研究した結果、処理土の粘り、付着牲および滑り易さは高分子重合体の曳糸性に大きく依存することを見出し本発明を完成した。
即ち、本発明は以下に定義する曳糸性指数が1.0〜3.0秒の高分子重合体よりなる含水掘削土の固化剤および該固化剤を含水掘削土に添加して流動性を失わせることを特徴とする含水掘削土の処理方法である。
【0007】
【発明の実施の形態】
以下、本発明を詳しく説明する。
本発明の固化剤は特定の曳糸性指数を持つ高分子重合体よりなる。曳糸性とは高分子重合体を水分散液としたときの糸曵きの程度を表す指数である。具体的には高分子重合体を純分で0.20重量%の水分散液とし、その中に直径18.85mm、長さ65.15mmのステンレス製円柱を深さ55mmに浸し、速度5.28cm/secで垂直上方に引き上げたときの高分子重合体分散液が円柱から垂れている時間で表す。本発明者はこの曳糸性指数が含水掘削土を高分子重合体で処理したときの処理土の粘り、付着牲および滑り易さと相関することを初めて見出したのである。
【0008】
曳糸性指数は1.0〜3.0秒、好ましくは1.5〜2.5秒である。1.0秒未満では凝集固化が不十分である。3.0秒を越えると処理土の付着性を十分に改善することができない。
上記のような曳糸性指数を有する重合体としては一部水不溶性の重合体を挙げることができる。
このような重合体は、例えば水溶性ビニルモノマーと少量の架橋牲モノマーを共重合することによって得られる。
【0009】
水溶性ビニルモノマーとしては、(a)アニオン性、(b)ノニオン性でいずれも水溶性のものが用いられる。その具体例は次のとうりである。
(a)アニオン性モノマー
(メタ)アクリル酸、2−アクリルアミド−2−メチルプロパンスルホン酸、ビニルスルホン酸、スチレンスルホン酸、イタコン酸、マレイン酸、フマール酸、アリールスルホン酸およびこれらの塩。
(b)ノニオン性モノマー
(メタ)アクリルアミド、ビニルメチルエーテル、ビニルエチルエーテル、N−ビニルピロリドン、ヒドロキシエチルメタクリレート等。
【0010】
架橋性モノマーの具体例としては、N,N’−メチレンビスアクリルアミド、N,N’−メチレンビスメタアクリルアミド、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ジアリルフタレート、ジアリルマレート、トリアリルイソシアヌレート、トリアリルフォスフェート、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、脂肪族アルコールのジまたはポリグリシジルエーテル、N−メチロールアクリルアミド、グリシジルメタアクリレート等の化合物が例示できる。
【0011】
本発明の重合体は、例えば上記例示の水溶性ビニルモノマーの1種または2種以上と架橋性モノマーとを重合原料とし、公知のラジカル重合法、例えば熱重合、触媒重合、紫外線重合、放射線重合等により得ることができる。
これらの重合体の重合形態は、水溶液重合、懸濁重合、油中水型逆相エマルション重合などがあるが、好ましくは油中水型逆相エマルション重合法により調製するものである。これらの製法は例えば特公昭52ー39417号公報において紹介されていて既知のものである。
【0012】
架橋性モノマーの使用量は、水溶性ビニルモノマー全量に対して好ましくは1〜100ppm(重量比)、更に好ましくは、5〜30ppm(重量比)の割合である。架橋性モノマーが1ppm未満では完全な水溶性高分子と同等程度の強い曳糸性となり、処理土の付着牲が大きくなる。また、100ppmを超えると曳糸性が小さくなり、水膨潤性の重合体となって固化処理の効果が低下して添加量が多くなり、また、含水掘削土中に含まれるアルカリ性塩類の影響で処理効果が著しく低下する場合がある。
【0013】
架橋あるいは鎖分岐の程度は、例えば特開平2−219887号公報で開示されているように、架橋性モノマーと連鎖移動剤を組み合わせて重合させることによってコントロールすることもできる。連鎖移動剤は架橋剤と組み合わせると架橋よりも分岐を促進する傾向にある。従って、これらのことを勘案して、最終的に重合体の曳糸性指数が目的の範囲に入るように、連鎖移動剤を適当量使用する必要がある。連鎖移動剤としては、例えばt−ドデシルメルカプタン、イソプロピルアルコール、α−メチルスチレンダイマー等が挙げられる。
【0014】
重合体中に含まれる水溶性モノマーはアニオン性モノマーの割合が、5モル%以上であることが好ましい。5モル%未満であると、含水掘削土に対する凝集力が低下し、固化処理効果を発揮するのに必要な添加量が多くなる。アニオン牲モノマーは、原料モノマーとして重合してよいことはもちろんであるが、例えば(メタ)アクリルアミドの単独と、架橋性モノマーとを共重合で重合させた後、加水分解により、アニオン牲モノマー単位を一部重合体に導入することもできる。
【0015】
これらの重合体の重合度は一部架橋構造、あるいは一部分岐構造であるため定かではないが、一般の水溶性重合体をわずかに架橋あるいは分岐させた重合体と考えればよい。
また、本発明の重合体は予め重合した水溶性高分子を後架橋によりわずかに架橋することによっても得られる。
【0016】
本発明の対象となる含水掘削土とは、地下のトンネル工事現場、石油井、ガス井、地熱井、その他の土木工事で発生する高含水率の掘削土砂であり、含水比は通常20〜200重量%、特に含水比30〜120重量%にのぼる。
【0017】
本発明の固化剤を用いて掘削土を処理する方法としては、例えば掘削土に固化剤を添加し連続ミキサー、強制攪拌ミキサー、パワーシャベル、スクリューコンベアー等の土木機械を用いて混練すればよい。このような方法により、掘削土は容易に流動性を失い団粒状に固化する。固化剤の添加量に特に制限はないが、通常含水掘削土の重量に対して固化剤の純分として0.02〜2重量%である。また、掘削土を埋め戻し等に再利用を図るときにその目的に応じた強度にするため等の目的で、さらに生石灰、石膏またはセメントを添加してもよい。
【0018】
本発明により処理した処理土は粘りが少なく、機械等に対して付着することが少ない。また、従来のものに比べて滑り易くない。従って、作業性が格段に優れる。
さらに、本発明の処理土は粉砕し、所望の粒度に分級して再利用することが可能である。
【0019】
本発明の固化剤が効果を発揮するメカニズムについては明確ではないが、次のように考えられる。
重合体は含水掘削土中の土粒子の表面に吸着被覆し、含水掘削土全体を含水状態のままで凝集状態にし、全体が流動性を失い、さらに混練を続けると次第に団粒化して、搬出作業に適した処理土にすることができる。このとき、固化処理効果を短時間で発現させるために、水溶性重合体の添加量は土粒子量に対して過剰に添加して使用するため、余剰の重合体が団粒状になった土粒子塊の表面に付着し、その結果処理土の付着性等が生じる。本発明の固化剤は、水溶性のみの重合体よりも曳糸性が低く、含水掘削土に過剰に添加しても余剰の重合体が付着性等に影響を及ぼすことが少ない。また、一部不溶性の重合体部分は水の吸着力が働いて含水掘削土の凝集固化処理時の離水を防止する。
【0020】
【実施例】
以下に本発明を製造例、実施例で説明するが、本発明はこれらに限定されるものではない。
【0021】
製造例1
アクリル酸ナトリウム35%水溶液121g、アクリル酸80%水溶液4g、アクリルアミド50%水溶液363gに、架橋剤としてN,N’−メチレンビスアクリルアミド0.0045g、連鎖移動剤としてイソプロピルアルコール0.3g及び、t−BHP(t−ブチルハイドロパーオキサイド)0.02gと蒸留水114gをあらかじめ混合して水性相を作った。これにパラフィン油194gにソルビタンモノオレート15gを加えた油性相を混合し、ホモジナイザーで乳化した。乳化後4つ口フラスコに移し、攪拌しながらN2パージし脱気した。N2パージしながらメタ重亜硫酸ナトリウム水溶液を滴下して、温度50℃で重合させた。重合後、ポリオキシエチレンラウリルエーテルを16g添加して、重合体Aのエマルションを得た。得られたエマルションは重合体濃度26.4%で、平均粒子径2.3μmであった。
同様にして、上記のうち、アクリル酸ナトリウムとアクリルアミドの割合及びN,N’−メチレンビスアクリルアミドの量を変えて表1の重合体B〜Iを調製した。
【0022】
製造例2
アクリル酸ナトリウム35%水溶液2045g、アクリルアミド50%水溶液2520g、N,N’−メチレンビスアクリルアミド0.040gと蒸留水816gを混合し、N2ガスにて脱気したあと、クメンハイドロパーオキサイドを添加し、重合開始温度0℃にて断熱重合を行った。得られた重合体ゲルをミートチョパーにて粉砕し乾燥後、粉砕機にて粉砕し、粉末状の重合体Jを得た。
上記各重合体の組成の概略と曳糸性指数を表1に示した。
【0023】
曳糸性指数は以下の方法により測定した。
重合体を蒸留水に分散した。分散濃度は重合体の純分として0.20重量%とした。水分散液300ccを500mlビーカーに採り、直径18.85mm、長さ65.15mmのステンレス製円柱を深さ55mmに浸し、速度5.28cm/secで垂直上方に引き上げ、曳糸時間を測定した。測定は各試料について3回づつ行いその平均をとった。
【0024】
【表1】
表1
【0025】
実施例1
笠岡粘土、豊浦標準砂及び水を重量比で1対1対1に練り混ぜ、含水比50%、比重1.45のモデル含水掘削土を試料とした。粘土は、予めワーリングブレンダーで水に分散してから用いた。
このモデル含水掘削土に製造例1〜2で得られた重合体を添加して混練した。混練方法は、強制練りリボン型2軸ミキサー(容量1.5リットル、回転数40rpm)を使用した。団粒化するまで混練した後に、処理土を型枠に締め固め直してから、引張付着試験を行った。処理土を容器内に平坦に満たし、直径59.5mmのステンレス製円盤を試料に接触させ、一定速度で引き上げたときの付着抵抗荷重と変位との曲線を測定し、最大付着応力および曲線で囲まれた面積である付着タフネスを測定した。また、処理土の強さを調べるため、ベーンせん断試験及びコーン指数試験を行った。結果を表2に示す
【0026】
(1)ベーンせん断試験方法
室内ベーン試験方法に準じ、ベーンブレードを処理土に押し込んで、回転ねじりモーメントMを測定した。計測したトルクT(kgf・cm)=モーメントM(kgf・cm)として、次式よりせん断強さτv(kgf/cm2)を算出した。
【0027】
【数1】
τv=6M/7πD3
M:モーメント(kgf・cm)、D:ベーン幅(cm)。
【0028】
(2)コーン指数試験
土質工学会基準JSFT716「締固めた土のコーン指数試験方法」に準じて行った。コーンを土中に貫入させ貫入量5cmの時の最大貫入抵抗力L(kgf)をコーンの底面積3.24cm2で除して、コーン指数qc(kgf/cm2)を算出した。
【0029】
【数2】
qc = L/3.24
また、含水掘削土に重合体添加して混練を開始してから流動性を失って団粒状に改良されるまでの時間を計測して固化時間とした。
【0030】
実施例2
笠岡粘土、豊浦標準砂及び水を重量比で2対1対2.4に練り混ぜ、含水比80%、比重1.28のモデル含水掘削土を試料とした。
実施例1と同様にしたて引張付着試験及びコーン指数試験を行った。結果を表3に示す。
【0031】
実施例3
上記実施例1と同様にしてモデル含水掘削土に重合体を添加して、団粒化した後に、生石灰をモデル含水掘削土量に対して3.0重量%添加して混練したあと、室内で7日間乾燥養生させ改良土とし、型枠に締め固め直してからコーン指数試験を行った。また、含水比を測定した。結果を表4に示す。
【0032】
【表2】
【0033】
【表3】
【0034】
【表4】
【0035】
【表5】
【0036】
【発明の効果】
実施例で示したように本発明によれば、含水掘削土の固化処理において曳糸性が小さく、処理するときの作業性がよい固化剤である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solidifying agent and a processing method for hydrous excavated soil.
[0002]
[Prior art]
Excavated sediment generated at underground tunnel construction sites, oil wells, gas wells, geothermal wells, and other civil engineering works is often hydrous soil. The water-containing excavated soil is soil having a high water content discharged in civil engineering, tunnel construction, and the like, and the water content is 20 to 200% by weight, particularly, the water content is 30 to 120% by weight. In the case of these hydrous excavated soils, there is a problem that water is dripped or fluidized and spilled when it is carried out as it is. In particular, the carrying-out work by a belt conveyor or a dump truck is made difficult.
[0003]
For this reason, materials and methods for solidification treatment have been studied conventionally. For example, (1) a method of adding a solidifying agent consisting of (meth) acrylamide (co) polymer and stone koji to these hydrous excavated soils (Japanese Patent Publication No. 3-2478), (2) a molecular weight of 1 million or more and a particle size of 100 μm A method of treating hydrous excavated soil in a granular form to such an extent that it can be transported in a short time, such as a method of adding an acrylic water-soluble polymer, which is a fine particle dispersion described below (JP-B-6-91998), has been proposed. ing. In addition, (3) a method for preventing stickiness of a treated product by adding an alkali metal carbonate or the like, a water-soluble polyacrylate, and clay as necessary is proposed (Japanese Patent Laid-Open No. 6-277698). Yes.
[0004]
However, in the technique (1), a polymer having a high molecular weight such as an acrylic polymer flocculant is added to the hydrous excavated soil in the form of a powder, so that it cannot be uniformly dispersed in the form of a mako. In the technique (2), the water-soluble polymer is added as a dispersion of fine particles so that it can be easily mixed in the hydrous excavated soil. However, when the hydrous excavated soil gradually loses its fluidity and proceeds to the aggregate state, It becomes sticky and adheres to the stirring blade in the kneading apparatus, making it difficult to take out. Also, the kneaded treated soil is slippery, and if it adheres to the belt conveyor or dump truck in the middle of unloading, it is slippery at the time of work. In the technique of (3), the hydrophilicity of the polymer is lowered by the salt, and when the clay is used in combination, the adhesion is lowered, but the treatment effect of the hydrous excavated soil is lowered and the cost is increased. Moreover, there was a problem that adding clays would increase the amount of discharged soil.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to eliminate the above-mentioned problems, improve the stickiness, adherence and slipperiness of the treated soil, improve the workability of the hydrous excavated soil with less adhesion to equipment, and It is to provide a processing method.
[0006]
[Means for Solving the Problems]
As a result of intensive studies taking these points into consideration, the present inventors have found that the stickiness, adhesion and slipperiness of the treated soil greatly depend on the spinnability of the polymer, and thus completed the present invention.
That is, the present invention provides a hydrous excavation soil solidifying agent comprising a high molecular weight polymer having a spinnability index defined below of 1.0 to 3.0 seconds and the solidifying agent added to the hydrous excavation soil to improve fluidity. It is the processing method of the water-containing excavation soil characterized by making it lose.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The solidifying agent of the present invention comprises a high molecular polymer having a specific spinnability index. Spinnability is an index representing the degree of stringing when a high molecular weight polymer is used as an aqueous dispersion. Specifically, a high molecular weight polymer is made into a 0.20% by weight aqueous dispersion in a pure content, and a stainless steel cylinder having a diameter of 18.85 mm and a length of 65.15 mm is immersed in a depth of 55 mm, and the speed is set at 5. This is expressed as the time during which the polymer dispersion liquid hangs down from the cylinder when pulled up vertically at 28 cm / sec. The present inventor has found for the first time that this spinnability index correlates with the stickiness, adhesion and slipperiness of treated soil when hydrous excavated soil is treated with a polymer.
[0008]
The spinnability index is 1.0 to 3.0 seconds, preferably 1.5 to 2.5 seconds. If it is less than 1.0 second, the aggregation and solidification is insufficient. If it exceeds 3.0 seconds, the adhesion of the treated soil cannot be improved sufficiently.
Examples of the polymer having a spinnability index as described above include partially water-insoluble polymers.
Such a polymer can be obtained, for example, by copolymerizing a water-soluble vinyl monomer and a small amount of a crosslinkable monomer.
[0009]
As the water-soluble vinyl monomer, (a) anionic and (b) nonionic, both of which are water-soluble are used. Specific examples are as follows.
(A) Anionic monomer (meth) acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, vinylsulfonic acid, styrenesulfonic acid, itaconic acid, maleic acid, fumaric acid, arylsulfonic acid and salts thereof.
(B) Nonionic monomer (meth) acrylamide, vinyl methyl ether, vinyl ethyl ether, N-vinyl pyrrolidone, hydroxyethyl methacrylate and the like.
[0010]
Specific examples of the crosslinkable monomer include N, N′-methylenebisacrylamide, N, N′-methylenebismethacrylamide, divinylbenzene, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di ( (Meth) acrylate, propylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, diallyl phthalate, diallyl malate, triallyl isocyanurate, triallyl phosphate, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, aliphatic Examples include di- or polyglycidyl ether of alcohol, N-methylol acrylamide, glycidyl methacrylate and the like.
[0011]
The polymer of the present invention uses, for example, one or more of the water-soluble vinyl monomers exemplified above and a crosslinkable monomer as a polymerization raw material, and is a known radical polymerization method such as thermal polymerization, catalytic polymerization, ultraviolet polymerization, or radiation polymerization. Etc. can be obtained.
Polymerization forms of these polymers include aqueous solution polymerization, suspension polymerization, water-in-oil reverse phase emulsion polymerization, and the like, but preferably prepared by a water-in-oil reverse phase emulsion polymerization method. These production methods are, for example, introduced in Japanese Patent Publication No. 52-39417 and are known.
[0012]
The amount of the crosslinkable monomer used is preferably 1 to 100 ppm (weight ratio), more preferably 5 to 30 ppm (weight ratio) with respect to the total amount of the water-soluble vinyl monomer. If the crosslinkable monomer is less than 1 ppm, the spinnability becomes as strong as that of a completely water-soluble polymer, and the adhesion of treated soil increases. On the other hand, if it exceeds 100 ppm, the spinnability is reduced, the polymer becomes a water-swellable polymer, the effect of the solidification treatment is reduced, and the addition amount is increased. Also, due to the influence of alkaline salts contained in the hydrous excavated soil. The processing effect may be significantly reduced.
[0013]
The degree of cross-linking or chain branching can be controlled by polymerizing a cross-linking monomer and a chain transfer agent in combination as disclosed in, for example, Japanese Patent Application Laid-Open No. 2-219887. Chain transfer agents tend to promote branching more than crosslinking when combined with a crosslinking agent. Therefore, taking these into consideration, it is necessary to use an appropriate amount of chain transfer agent so that the final spinnability index of the polymer falls within the target range. Examples of the chain transfer agent include t-dodecyl mercaptan, isopropyl alcohol, α-methylstyrene dimer, and the like.
[0014]
The water-soluble monomer contained in the polymer preferably has an anionic monomer ratio of 5 mol% or more. When the amount is less than 5 mol%, the cohesive force with respect to the hydrous excavated soil decreases, and the amount of addition necessary to exert the solidification effect increases. Of course, an anionic monomer may be polymerized as a raw material monomer. For example, after anionic (meth) acrylamide and a crosslinkable monomer are polymerized by copolymerization, anionic monomer units are converted by hydrolysis. It can also be partially introduced into the polymer.
[0015]
The degree of polymerization of these polymers is not certain because they have a partially crosslinked structure or a partially branched structure, but may be considered as a slightly crosslinked or branched polymer of a general water-soluble polymer.
The polymer of the present invention can also be obtained by slightly crosslinking a previously polymerized water-soluble polymer by post-crosslinking.
[0016]
The water-containing excavated soil that is the subject of the present invention is a high water content excavated earth and sand generated in underground tunnel construction sites, oil wells, gas wells, geothermal wells, and other civil engineering works, and the water content is usually 20 to 200. % By weight, in particular a water content of 30 to 120% by weight.
[0017]
As a method for treating the excavated soil using the solidifying agent of the present invention, for example, the solidifying agent may be added to the excavated soil and kneaded using a civil engineering machine such as a continuous mixer, a forced stirring mixer, a power shovel, or a screw conveyor. By such a method, the excavated soil easily loses fluidity and solidifies into a granular shape. Although there is no restriction | limiting in particular in the addition amount of a solidification agent, Usually, it is 0.02-2 weight% as a pure part of a solidification agent with respect to the weight of a hydrous excavation soil. Further, quick lime, gypsum, or cement may be added for the purpose of making the strength suitable for the purpose when the excavated soil is reused for backfilling or the like.
[0018]
The treated soil treated according to the present invention has less stickiness and is less likely to adhere to machinery or the like. Moreover, it is not slippery compared with the conventional one. Therefore, workability is remarkably excellent.
Furthermore, the treated soil of the present invention can be pulverized, classified to a desired particle size, and reused.
[0019]
The mechanism of the effect of the solidifying agent of the present invention is not clear, but is considered as follows.
The polymer is adsorbed and coated on the surface of the soil particles in the hydrous excavated soil, and the entire hydrous excavated soil is agglomerated while remaining wet, and the whole loses its fluidity. It can be treated soil suitable for work. At this time, in order to express the solidification effect in a short time, the addition amount of the water-soluble polymer is excessively added to the amount of the soil particles, so that the excess particles are aggregated into the soil particles. It adheres to the surface of the lump, resulting in adhesion of the treated soil. The solidifying agent of the present invention has lower spinnability than a water-soluble polymer, and even if it is added excessively to hydrous excavated soil, the excess polymer hardly affects the adhesion and the like. In addition, the partially insoluble polymer part works by water adsorption force to prevent water separation during the coagulation and solidification treatment of the hydrous excavated soil.
[0020]
【Example】
The present invention will be described below with reference to production examples and examples, but the present invention is not limited thereto.
[0021]
Production Example 1
Sodium acrylate 35% aqueous solution 121 g, acrylic acid 80% aqueous solution 4 g, acrylamide 50% aqueous solution 363 g, N, N′-methylenebisacrylamide 0.000045 g as a crosslinking agent, isopropyl alcohol 0.3 g as a chain transfer agent, and t- An aqueous phase was prepared by previously mixing 0.02 g of BHP (t-butyl hydroperoxide) and 114 g of distilled water. To this, an oily phase obtained by adding 194 g of paraffin oil to 15 g of sorbitan monooleate was mixed and emulsified with a homogenizer. After emulsification, the mixture was transferred to a four-necked flask and purged with N 2 while stirring. While purging with N 2, an aqueous solution of sodium metabisulfite was added dropwise to polymerize at a temperature of 50 ° C. After the polymerization, 16 g of polyoxyethylene lauryl ether was added to obtain an emulsion of polymer A. The obtained emulsion had a polymer concentration of 26.4% and an average particle size of 2.3 μm.
Similarly, polymers B to I in Table 1 were prepared by changing the ratio of sodium acrylate and acrylamide and the amount of N, N′-methylenebisacrylamide.
[0022]
Production Example 2
Aqueous 35% sodium acrylate 2045G, acrylamide 50% aqueous solution of 2520 g, N, mixed distilled water 816g and N'- methylene bisacrylamide 0.040 g, after degassed at N 2 gas, was added cumene hydroperoxide Then, adiabatic polymerization was carried out at a polymerization initiation temperature of 0 ° C. The obtained polymer gel was pulverized with a meat chopper, dried, and then pulverized with a pulverizer to obtain a powdery polymer J.
The outline of the composition of each of the above polymers and the spinnability index are shown in Table 1.
[0023]
The spinnability index was measured by the following method.
The polymer was dispersed in distilled water. The dispersion concentration was 0.20% by weight as a pure content of the polymer. 300 cc of the aqueous dispersion was placed in a 500 ml beaker, a stainless steel cylinder having a diameter of 18.85 mm and a length of 65.15 mm was immersed in a depth of 55 mm, pulled up vertically at a speed of 5.28 cm / sec, and the spinning time was measured. The measurement was performed three times for each sample and the average was taken.
[0024]
[Table 1]
Table 1
[0025]
Example 1
Kasaoka clay, Toyoura standard sand and water were mixed in a 1: 1 ratio by weight, and a model hydrous soil with a water content of 50% and a specific gravity of 1.45 was used as a sample. The clay was used after being dispersed in water with a Waring blender in advance.
The polymer obtained in Production Examples 1 and 2 was added to this model hydrous excavated soil and kneaded. As a kneading method, a forced kneading ribbon type biaxial mixer (capacity 1.5 liter, rotation speed 40 rpm) was used. After kneading until aggregated, the treated soil was re-consolidated into a mold, and a tensile adhesion test was performed. Fill the container with the treated soil flatly, contact a 59.5 mm diameter stainless steel disk to the sample, measure the adhesion resistance load and displacement curve when pulled up at a constant speed, and surround it with the maximum adhesion stress and curve The adhesion toughness, which is the measured area, was measured. In order to examine the strength of the treated soil, a vane shear test and a cone index test were conducted. The results are shown in Table 2. [0026]
(1) Vane Shear Test Method According to the indoor vane test method, the vane blade was pushed into the treated soil, and the rotational torsion moment M was measured. As measured torque T (kgf · cm) = moment M (kgf · cm), shear strength τ v (kgf / cm 2 ) was calculated from the following equation.
[0027]
[Expression 1]
τ v = 6M / 7πD 3
M: moment (kgf · cm), D: vane width (cm).
[0028]
(2) Cone index test The cone index test was conducted in accordance with JSFT 716 “Consolidated soil cone index test method”. The maximum penetration resistance when the penetration quantity 5cm to penetrate the cone in the soil L (kgf) is divided by the bottom area 3.24Cm 2 corn was calculated cone index qc (kgf / cm 2).
[0029]
[Expression 2]
qc = L / 3.24
Further, the time from the start of kneading after adding the polymer to the hydrous excavated soil until the loss of fluidity and the improvement to the aggregated shape was measured to obtain the solidification time.
[0030]
Example 2
Kasaoka clay, Toyoura standard sand and water were mixed in a weight ratio of 2: 1 to 2.4, and a model hydrous soil with a water content of 80% and a specific gravity of 1.28 was used as a sample.
A tensile adhesion test and a cone index test were conducted in the same manner as in Example 1. The results are shown in Table 3.
[0031]
Example 3
In the same manner as in Example 1 above, the polymer was added to the model water-containing drilling soil, and after agglomeration, the mixture was kneaded by adding 3.0% by weight of quick lime to the model water-containing drilling soil, and then indoors. The corn index test was conducted after drying and curing for 7 days to give improved soil, which was compacted into a mold. Moreover, the water content ratio was measured. The results are shown in Table 4.
[0032]
[Table 2]
[0033]
[Table 3]
[0034]
[Table 4]
[0035]
[Table 5]
[0036]
【The invention's effect】
As shown in the examples, according to the present invention, it is a solidifying agent that has low spinnability in the solidification treatment of hydrous excavated soil and has good workability during the treatment.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13942196A JP4015714B2 (en) | 1996-05-09 | 1996-05-09 | Water-containing drilling soil solidifying agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13942196A JP4015714B2 (en) | 1996-05-09 | 1996-05-09 | Water-containing drilling soil solidifying agent |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09302338A JPH09302338A (en) | 1997-11-25 |
JP4015714B2 true JP4015714B2 (en) | 2007-11-28 |
Family
ID=15244822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13942196A Expired - Lifetime JP4015714B2 (en) | 1996-05-09 | 1996-05-09 | Water-containing drilling soil solidifying agent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4015714B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4070874B2 (en) * | 1998-05-14 | 2008-04-02 | 株式会社日本触媒 | Improvement agent and improvement method of hydrous soil |
JP5920918B2 (en) * | 2012-02-17 | 2016-05-18 | 太平洋セメント株式会社 | Standard soil and method for evaluating performance of solidified material using the standard soil |
EP3006121B1 (en) * | 2013-05-31 | 2019-11-20 | Yoshino Gypsum Co., Ltd. | Composition and method for treating debris |
-
1996
- 1996-05-09 JP JP13942196A patent/JP4015714B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH09302338A (en) | 1997-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2744410C1 (en) | Composition for oil and gas production | |
AU2016357979B2 (en) | Multivalent cation-containing copolymer, process for production thereof and use thereof to treating aqueous dispersions | |
Diaconu et al. | Towards the synthesis of high solids content waterborne poly (methyl methacrylate-co-butyl acrylate)/montmorillonite nanocomposites | |
JP2022535436A (en) | Method for preparing structured polymer in powder form by gel process | |
CN114599763A (en) | Composition for oil and gas recovery | |
KR100348758B1 (en) | Asphalt modifier of styrene-butadiene-styrene block copolymer and styrene-butadiene latex | |
JP4015714B2 (en) | Water-containing drilling soil solidifying agent | |
CN114032081A (en) | Novel composition for oil and gas recovery | |
JP5492268B2 (en) | Method for producing modified clay | |
JPH0691999B2 (en) | Treatment method for wet excavated soil | |
JP3402373B2 (en) | How to improve hydrated soil | |
JP2529785B2 (en) | Hydrous soil improver | |
JP3243811B2 (en) | Aqueous soil conditioner | |
AU687354B2 (en) | Earth support fluid composition and method for its use | |
JPH02194890A (en) | Treatment of water-containing surplus excavation soil | |
JPH08199160A (en) | Excavation additive | |
JP2006070211A (en) | Muddy earth pressure shield tunneling method, earth pressure semi shield tunneling method and mud-adding material | |
JP3402374B2 (en) | How to improve soft soil | |
RU2828580C1 (en) | Composition for oil and gas production | |
JPH0770563A (en) | Conditioner for water-containing soil | |
JPH0797574A (en) | Method for preventing flowing of surface soil | |
JP2000053719A (en) | Production of acrylic polymer | |
US11746027B2 (en) | Method for treating aqueous effluent | |
JPH0617054A (en) | Conditioner for water-containing soil | |
JPH0819402B2 (en) | Water absorbent resin slurry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050922 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060914 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070618 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070618 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070911 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070914 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100921 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130921 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |