JP4015413B2 - Methane fermentation method and methane fermentation tank - Google Patents

Methane fermentation method and methane fermentation tank Download PDF

Info

Publication number
JP4015413B2
JP4015413B2 JP2001381844A JP2001381844A JP4015413B2 JP 4015413 B2 JP4015413 B2 JP 4015413B2 JP 2001381844 A JP2001381844 A JP 2001381844A JP 2001381844 A JP2001381844 A JP 2001381844A JP 4015413 B2 JP4015413 B2 JP 4015413B2
Authority
JP
Japan
Prior art keywords
organic waste
methane
methane fermentation
chamber
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001381844A
Other languages
Japanese (ja)
Other versions
JP2003181420A (en
Inventor
増美 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daio Engineering Co Ltd
Original Assignee
Daio Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daio Engineering Co Ltd filed Critical Daio Engineering Co Ltd
Priority to JP2001381844A priority Critical patent/JP4015413B2/en
Publication of JP2003181420A publication Critical patent/JP2003181420A/en
Application granted granted Critical
Publication of JP4015413B2 publication Critical patent/JP4015413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/10Separation or concentration of fermentation products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、糞尿、おから、焼酎製造残渣、生ゴミ等の有機性廃棄物を嫌気性微生物により発酵処理するためのメタン発酵方法並びにメタン発酵槽に関する。
【0002】
【従来の技術】
糞尿、おから、焼酎製造残渣、生ゴミ等の有機性廃棄物を嫌気性微生物により発酵処理するための設備として、各種のメタン発酵槽が提案されている。しかし、従来のメタン発酵槽では密閉性が十分でないため臭気、衛生害虫の発生や土壌・地下水汚染(例えば病原性大腸菌O−157の繁殖や、寄生性原虫のクリプトスポリジウムや、発ガン性物質の亜硝酸塩の原因物質である硝酸性窒素等による汚染)の原因となっている。また、自己加温以外に利用できるエネルギーが少なく、発酵効率が低いという課題があった。さらに、安定運転ができず、過小設計や過剰発酵等による発泡現象や、固形分の沈殿、特に粗大固形分の堆積、pHの異常や硫化物によるバクテリアの死滅等により、メタンの発生が一定しないという課題もあった。その上、発酵槽を機械的に撹拌する方法が提案されているが、発酵菌を高濃度維持することができない上に、エネルギ消費の増大とメンテナンスの必要性という課題もある。
【0003】
【発明が解決しようとする課題】
そこで、メタン発酵槽の環境を保護しつつ、発酵効率が高く安定運転が連続して可能であり、発酵菌を高濃度に維持するメタン発酵槽とが必要とされてきている。
また、メタンガスと有機性廃棄物とを完全に分離させることも従来からの課題であった。メタンガスが有機性廃棄物に混合した状態で排出され収率が低下している。
【0004】
本発明は前記した課題に鑑みてなされたもので、有機性廃棄物のメタン発酵処理と移送処理とを効率的に行い、安定運転ができるメタン発酵方法を提供するものである。
また、メタンガスと有機性廃棄物とを完全に分離させるメタン発酵槽の提供をするものである。
【0005】
【課題を解決するための手段】
前記目的を達成するため、本発明に係るメタン発酵方法は、円形若しくは正多角形に形成された底板と、この底板上の中央部に立設された第1の筒状体と、この第1の筒状体を取り囲むように前記底板上の周縁部に立設された第2の筒状体と、これら第1及び第2の筒状体の上端開口部を閉塞する天板と、この天板の中央部に形成された投入口から有機性廃棄物を前記第1の筒状体の内側に形成された加水分解及び酸発酵室に投入する有機性廃棄物投入手段と、前記加水分解及び酸発酵室に投入された有機性廃棄物を前記第1の筒状体と第2の筒状体との間に形成されたメタン発酵室に案内導入する有機性廃棄物導入手段とを具備してなるメタン発酵槽で有機性廃棄物を発酵させるメタン発酵方法であって、有機性廃棄物はバッチ方式で投入され、投入された有機性廃棄物はさらに押出し流れとなり、バッチ方式は、一度に投入する有機性廃棄物の量が有機性廃棄物案内管の上側開口部下端を上回る量であるメタン発酵方法において、有機性廃棄物の加水分解及び酸発酵工程は有機性廃棄物が加水分解及び酸発酵室に投入口から導入されて、反応が進行した有機性廃棄物が底部に位置するプラグフロー法である。メタン発酵室での押出し流れは、有機性廃棄物の発酵反応がメタン発酵室の底部から開始され、メタン発酵室の上層に上昇するにつれて発酵が進行するが好ましく、押出し流れは、予め有機性廃棄物中の固形分を十分に破砕してから行なうことが好ましく、押出し流れは、予め有機性廃棄物を加温してから加水分解および酸発酵室に投入することが好ましい。
【0006】
本願発明に係るメタン発酵槽は、円形若しくは正多角形に形成された底板と、この底板上の中央部に立設された第1の筒状体と、この第1の筒状体を取り囲むように前記底板上の周縁部に立設された第2の筒状体と、これら第1及び第2の筒状体の上端開口部を閉塞する天板と、この天板の中央部に形成された投入口から有機性廃棄物を前記第1の筒状体の内側に形成された加水分解及び酸発酵室に投入する有機性廃棄物投入手段と、前記加水分解及び酸発酵室に投入された有機性廃棄物を前記第1の筒状体と第2の筒状体との間に形成されたメタン発酵室に案内導入する有機性廃棄物導入手段とを具備し、前記天板は、前記有機性廃棄物を前記メタン発酵室から取り出すと共に前記メタン発酵室からメタンを取り出す廃棄物及びメタン取出し手段を有し、前記廃棄物及びメタン取出し手段は、前記天板に穿設された貫通孔を通じて前記メタン発酵室と連通する連通室を前記天板上に形成し、この連通室の上部に接続されたメタン捕集管と、前記連通室に設けられた廃液管とを含んで構成されることを特徴とするメタン発酵槽であって、前記メタン取出し手段は、その内部に前記廃液管と接続されて天板以下に突設される連通室形成管部を備えるメタン発酵槽において、連通室形成管部は、その管下部がJ字形状からなる。連通室形成管部は、その柱頭が上方向に開口されることが好ましい。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0008】
図1は本発明の一実施形態のメタン発酵方法に係るメタン発酵槽の平面図で、図2は図1の線II−IIに沿う断面図である。図1及び図2において、符号10は本発明の一実施形態のメタン発酵方法に係るメタン発酵槽を示し、このメタン発酵槽10は、円形状の鋼製底板12と、この底板12上の中央部に立設された第1の筒状体14と、この第1の筒状体14を取り囲むように底板12上の周縁部に立設された第2の筒状体16と、これら筒状体14,16の上端開口部を気密に閉塞する鋼製の天板18とを備えて構成されている。
【0009】
第1の筒状体14及び第2の筒状体16は、底板12及び天板18と同様に鉄鋼材料で形成されている。また、これらの筒状体14,16は円筒形状をなしており、その下端部は底板12の上面に、また上端部は天板18の下面にそれぞれ全周にわたってシール溶接されている。
【0010】
天板18は底板12と同様に円形状に形成されており、この天板18の上面には、天板18の中央部に形成された投入口20から有機性廃棄物を第1の筒状体14の内側に形成された加水分解及び酸発酵室22に投入する有機性廃棄物投入構造体24と、加水分解及び酸発酵室22に投入された有機性廃棄物を第1の筒状体14と第2の筒状体16との間に形成されたメタン発酵室26に案内導入する有機性廃棄物導入構造体28と、有機性廃棄物をメタン発酵室26から取り出すと共にメタン発酵室26からメタンを取り出す廃棄物及びメタン取出し構造体30とが設けられている。
【0011】
図3は、有機性廃棄物投入構造体24および有機性廃棄物導入構造体28の構造を示す断面図である。同図に示されるように、有機性廃棄物投入手段としての有機性廃棄物投入構造体24は、投入口20の周縁部を取り囲むように天板18上に立設された天板付き筒体24aを備えており、この天板付き筒体24aの上面には、天板付き筒体24a内に有機性廃棄物を供給する有機性廃棄物供給管24bが接続されていると共に排ガス管24c(図1参照)が接続されている。
【0012】
一方、有機性廃棄物導入手段としての有機性廃棄物導入構造体28は、天板18上に密閉チャンバ28aを形成するチャンバ部材28bを備えており、密閉チャンバ28aは天板付き筒体24aの周囲に形成されている。また、有機性廃棄物導入構造体28は加水分解及び酸発酵室22内の有機性廃棄物を密閉チャンバ28a内に案内する第1の有機性廃棄物案内管28cを備えており、この案内管28cの入口端は加水分解及び酸発酵室22内の下部付近に設けられている(図2参照)。さらに、有機性廃棄物導入構造体28は密閉チャンバ28a内の有機性廃棄物をメタン発酵室26内に案内する第2の有機性廃棄物案内管28dを備えており、この案内管28dの出口端はメタン発酵室26内の下部付近に設けられている(図2参照)。
【0013】
図4は、廃棄物及びメタン取出し構造体30の構造を示す断面図である。同図に示されるように、廃棄物及びメタン取出し構造体30が、天板18に穿設された貫通孔18aを通じてメタン発酵室26と連通する連通室30aを天板上18に形成され、連通室30aに接続されるメタン捕集管30cと、廃液管30bとを含んで構成されている。メタン捕集管30cは、廃棄物及びメタン取出し構造体30から外部へ突設される。さらに、廃液管30bは、天板以下に突設される連通室形成管部34と接続され、連通室30aに組込まれてシールされる。この連通室形成管部34は、その管下部がJ字形状40からなり、その柱頭部36が上方向に開口される。さらに連通室形成管部34は、柱頭部36と天板18との中間となる特定の高さ30eで廃液管30bと溶接により接続される。廃液管30bは、廃棄物及びメタン取出し構造体30を貫通してシール部42へ突設される。シール部42は、廃液管30bと接続される特定の深さを有して廃液を滞留させる容器から構成され、その天上部から容器内を二分する遮蔽板44が下向きに設けられる。この遮蔽板44は、シール部42の底面までは遮蔽しないが、その底部が高さ30eよりも十分低い高さまで遮蔽するとともに、一定の開口部を有するように構成される。さらに、シール部42において遮蔽板44によって二分された空間の内、連通室30a側のシール部42上面と、連通室30a側壁とはメタン連通管46によって連通される。ここで連通室形成管部34下部は、その管下部開口部38が、管下部の最下点39より高い位置で開口する。このように構成することで、廃液の液面が廃液管30b上部より高い場合は、廃棄物より軽い気体、例えばメタンガス等は一切、開口部38から入ったとしても柱頭部36側へは到達せず、当然、廃液管30bへも到達しない。また、図4において、最下点39より左側の連通室形成管内部でメタンガス等が発生しても、そのガスは柱頭部36へ到達して、廃液管30bには到達しない。廃液の液面が廃液管30b上部より低い場合は、廃液面が高さ30eより低下しても、シール部42に廃液が滞留しているので、メタンガスは遮蔽板44によって遮蔽されてシール部42より図面右側に侵入できない。このとき、廃液面が上昇した場合に、シール部42内のメタンガスはメタン連通管46より連通室30aに逃すことができる。このように構成することで、メタンガスはシール部42より右側へは侵入せずに必ずメタン捕集管30cに捕集される。または、廃液管30bの径が十分太く廃液面上にシール部42まで気相を常に保つことができる場合も、メタンガスはシール部42より右側へは侵入せずに必ずメタン捕集管30cに捕集される。さらに、廃液管30bの径が十分太く廃液面上にシール部42まで気相を常に保つことができる場合には、メタン連通管46を連通しなくとも良い。一方、廃液管の底部の高さ30eは、有機性廃棄物案内管28dの上側開口部の底面を28eとすると28eより低い位置とされる。このように構成することで、バッチ処理時に、有機性廃棄物投入時に投入量が28eを超える量であれば、当然に開口部38より入った廃液は廃液管30bを通過して排出される。
【0014】
メタン発酵室26内には、網状のメタン菌保持体32が第1の筒状体14を中心軸として放射状に複数設けられている(図1及び図2参照)。これらのメタン菌保持体32は有機性廃棄物中のメタン菌を保持してメタン発酵室26内のメタン菌濃度を高濃度に保つためのものであり、底板12に対し斜めに設けられている。
【0015】
上記の構成において、本発明によるメタン発酵方法の第一の工程は、有機性廃棄物を有機性廃棄物導入構造体28から導入する工程である。導入工程は、一定量の有機性廃棄物を一度に流しこむ工程であり、その量は、加水分解及び酸発酵室22内部の有機性廃棄物が第一の有機性廃棄物案内管28cより更に噴出して密閉チャンバ28a内の第2の有機性廃棄物案内管28dの開口部を上回る量を加える必要がある。この導入に先立ち有機性廃棄物の固形分は十分に破砕する必要がある。すなわち、プラグフロー法で反応を順調に実施するためには有機性廃棄物の固形分を細粒化させて反応を促進する必要があるからである。また、導入時に有機性廃棄物は加温する必要がある。好適には37度が望ましい。加水分解及び酸発酵室22内部での反応温度は37度程度であり、導入する有機性廃棄物が低温であると温度が上昇するまで反応が進行せず、タイムロスとなるからである。
【0016】
通常は、第2の有機性廃棄物案内管28dの開口部下端と同水位の有機性廃棄物が満たされ、そこに第2の有機性廃棄物案内管28dの上側の開口部下端を投入時に上回る量を導入することで第一の有機性廃棄物案内管28cの底部の有機性廃棄物から、メタン発酵室へ導入可能となる。この導入回数は、1日に複数回の割合とすることで一時的に案内管の流れを速めて管内の閉塞を防止できる。この導入方式がバッチ方式である。
【0017】
次の工程は、有機性廃棄物の加水分解及び酸発酵工程である。ここで、加水分解及び酸発酵室22には投入口から有機性廃棄物が導入されるため時間的に先に導入したものが底部に存在し、時間的に後から導入した有機性廃棄物が上部に積層される。このため、反応が進行した有機性廃棄物ほど底部に位置する。この方式の導入方法が押出し式導入法すなわちプラグフロー法である。プラグフロー法することで発酵率を向上させることができる。
【0018】
さらに、次の工程は、密閉チャンバ28aへの移送工程である。第一の有機性廃棄物案内管28cが加水分解及び酸発酵室22の底部から、密閉チャンバ28aへ設けられているため、底部にある有機性廃棄物のみが密閉チャンバ28aに移送される。すなわち、反応が最も進行した有機性廃棄物が移送されることとなり効率が良い。本願発明は、撹拌器がある槽と異なり後から導入される未反応の有機性廃棄物と反応済みの有機性廃棄物とが撹拌されて混合物が取出されることがなく、反応済みの有機性廃棄物が密閉チャンバーへ移動する。このため、反応性が高くなったもののみを移送する。また、第一の有機性廃棄物案内管28c開口部が加水分解及び酸発酵室22の底部にあるため、硫化水素等のガスが第一の有機性廃棄物案内管を通過することは困難であり、従って、硫化水素等が加水分解及び酸発酵室22から密閉チャンバ28aまたはメタン発酵室26へ移送されることは難しい。これによりメタンガス中の硫化水素濃度が低く抑えられるために比較的容易にメタンガスから硫化水素除去が行なえる。
【0019】
その次の工程は、メタン発酵室26への移送工程である。有機性廃棄物は、バッチ処理により第一の有機性廃棄物案内管28cを通過して密閉チャンバ28aへ移送される。有機性廃棄物は、その水面が上昇し、やがて第2の有機性廃棄物案内管28dの開口部底部を上回った場合に有機性廃棄物がメタン発酵室26へ導入される。ここで、バッチ処理であるため、大量に有機性廃棄物が導入されその結果、有機性廃棄物案内管の内部が固形物により詰まった場合でもその有機性廃棄物の水流により押出されて除去される。
【0020】
続く工程は、メタン発酵工程である。第2の有機性廃棄物案内管28dが底部にその開口部を有するため、底部に最新の有機性廃棄物が蓄積される。ここでは、網状のメタン菌保持体32があるため、メタン菌が有機性廃棄物と共に排出されることが無く高濃度にメタン菌を保持できる。また、その導入および反応についてもプラグフロー方法となる。
【0021】
最後の工程が、メタン及び廃棄物取出し工程である。メタン及び廃棄物は、廃棄物及びメタン取出し構造体30から取出される。これらの工程は総て密閉された構造であるため、外部に廃棄ガスを放出しない。
【0022】
以上のように、酸発酵とメタン発酵とを分けて行ない、メタン発酵菌を網状の担体に充填し、押出し流れで有機性廃棄物スラリーを移送することにより、単位原料当たりのメタンの発生量すなわち有機成分の分解率は80%以上と大きい。
【0023】
また、二重円筒状の槽で発酵する為、円筒を別個に設ける従来のメタン発酵方法と比較して省スペースとすることが可能である。さらに、撹拌器を使用せず、連通管でスラリーを酸発酵室からメタン発酵室へ移送するため省エネルギーである。しかも、地下埋め込みの槽を採用したため、保温性が保たれ寒冷地での建設にも適している。
【0024】
密閉した槽内で発酵させるため、臭気、害虫発生、土壌、水質汚染が無く、温暖化ガスの発生も低い。さらに、発生メタンガスのエネルギーを電気や温水としてコジェネレーションを図ることが可能であり、また、蒸気としても回収が可能であり、外部からのエネルギーを殆ど調達することなく運用可能である。さらに、メタン発酵後の有機性廃棄物は、臭気が無く、窒素、燐、カリウム成分に富む中性の扱いやすい肥料が作成される。
【0025】
また、無撹拌で動力を使用しないため、運転管理が容易であり、事故発生時も押出し流れ方式であるため入れ替えが容易である。有機性廃棄物としては、蒸留酒残渣、牛豚糞尿、畜殺場廃棄物等に適用可能であり、廃棄容量は大型から小型まで対応可能である。
【0026】
【発明の効果】
以上説明したように、本発明に係るメタン発酵方法によれば、有機性廃棄物のメタン発酵処理と移送処理とを効率的に行い、安定運転ができる。また、有機性廃棄物をメタン発酵処理する場合に酸発酵用とメタン発酵用の2基のタンクを設置しなくても良いので、省スペース化を図ることができ、設置スペースに余裕のない場所であっても有機性廃棄物のメタン発酵処理を効率的に行うことができる。また、従来の方法に比べて外気との接触面積が少なくなり、これに伴って放熱量が低減されるので、省エネルギー化を図ることができる。さらに、加水分解及び酸発酵室で発生した硫化水素等のガスが有機性廃棄物と一緒にメタン発酵室へ流入することを防止できる。また、ポンプ等の動力機器を用いることなく有機性廃棄物を加水分解及び酸発酵室からメタン発酵室へ移送することができる。また、メタン菌発酵室に網状のメタン菌保持体を放射状に複数傾斜状に設けてメタン菌を固定保持することにより、メタン発酵室内のメタン菌濃度を高濃度に保つことができ、メタン菌を再成長させるためのエネルギーロスもない。
さらに、連通室形成管部の管下部がJ字形状となることでメタンガスと有機性廃棄物を完全に分離して回収することが可能となった。
【図面の簡単な説明】
【図1】本発明の一実施形態のメタン発酵方法に係るメタン発酵槽の平面図である。
【図2】図1の線II−IIに沿う断面図である。
【図3】有機性廃棄物投入構造体と有機性廃棄物導入構造体の構造を示す断面図である。
【図4】廃棄物及びメタン取出し構造体の構造を示す断面図である。
【符号の説明】
12 底板
14 第1の筒状体
16 第2の筒状体
18 天板
20 投入口
22 加水分解及び酸発酵室
24 有機性廃棄物投入構造体
24a 天板付き筒体
24b 有機性廃棄物供給管
24c 排ガス管
26 メタン発酵室
28 有機性廃棄物導入構造体
28a 密閉チャンバ
28b チャンバ部材
28c 第1の有機性廃棄物案内管
28d 第2の有機性廃棄物案内管
30 廃棄物及びメタン取出し構造体
30a 連通室
30b 廃液管
30c メタン捕集管
32 メタン菌保持体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a methane fermentation method and a methane fermentation tank for fermenting organic waste such as manure, okara, shochu manufacturing residue, and raw garbage with anaerobic microorganisms.
[0002]
[Prior art]
Various methane fermenters have been proposed as equipment for fermenting organic waste such as manure, okara, shochu manufacturing residue, and raw garbage with anaerobic microorganisms. However, the conventional methane fermenters are not sufficiently sealed so that odors, sanitary pests and soil / groundwater contamination (eg, propagation of pathogenic E. coli O-157, parasitic protozoa Cryptosporidium, and carcinogenic substances) Contamination due to nitrate nitrogen, which is a causative substance of nitrite). Moreover, there was a subject that there was little energy other than self-heating and fermentation efficiency was low. Furthermore, stable operation is not possible, and the generation of methane is not constant due to foaming due to under-design and over-fermentation, solids precipitation, especially deposits of coarse solids, abnormal pH, and bacterial death due to sulfides. There was also a problem. In addition, a method of mechanically stirring the fermenter has been proposed. However, the fermenting bacteria cannot be maintained at a high concentration, and there are also problems of increased energy consumption and necessity of maintenance.
[0003]
[Problems to be solved by the invention]
Therefore, there is a need for a methane fermenter that protects the environment of the methane fermenter, has a high fermentation efficiency, can be stably operated continuously, and maintains a high concentration of fermenting bacteria.
Further, it has been a conventional problem to completely separate methane gas and organic waste. Methane gas is discharged in a state mixed with organic waste, and the yield is reduced.
[0004]
This invention is made | formed in view of an above described subject, and provides the methane fermentation method which can perform the methane fermentation process and transfer process of organic waste efficiently, and can perform a stable operation.
In addition, the present invention provides a methane fermentation tank that completely separates methane gas and organic waste.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a methane fermentation method according to the present invention includes a bottom plate formed in a circular shape or a regular polygon, a first tubular body erected in the center of the bottom plate, and the first plate. A second cylindrical body erected on the peripheral edge of the bottom plate so as to surround the cylindrical body, a top plate for closing the upper end openings of the first and second cylindrical bodies, Organic waste charging means for charging organic waste into the hydrolysis and acid fermentation chamber formed inside the first cylindrical body from the charging port formed in the center of the plate, the hydrolysis and An organic waste introduction means for guiding and introducing the organic waste charged into the acid fermentation chamber into the methane fermentation chamber formed between the first cylindrical body and the second cylindrical body. a methane fermentation process of fermenting organic waste in methane fermentation tank made of Te, organic waste is introduced batchwise In the methane fermentation method, the amount of organic waste charged at one time exceeds the lower end of the upper opening of the organic waste guide tube. The organic waste hydrolysis and acid fermentation process is a plug flow method in which organic waste is introduced from the inlet into the hydrolysis and acid fermentation chamber, and the organic waste that has undergone the reaction is located at the bottom. . The extrusion flow in the methane fermentation chamber is preferably such that the fermentation reaction of organic waste starts from the bottom of the methane fermentation chamber and the fermentation proceeds as it rises to the upper layer of the methane fermentation chamber. It is preferable that the solid content in the product is sufficiently crushed, and the extrusion flow is preferably performed by heating the organic waste in advance and then introducing it into the hydrolysis and acid fermentation chamber.
[0006]
The methane fermenter according to the present invention includes a bottom plate formed in a circular shape or a regular polygon, a first cylindrical body erected at the center of the bottom plate, and surrounding the first cylindrical body. A second cylindrical body erected on the peripheral edge of the bottom plate, a top plate for closing the upper end openings of the first and second cylindrical bodies, and a central portion of the top plate. Organic waste charging means for charging organic waste into the hydrolysis and acid fermentation chamber formed inside the first cylindrical body from the charging port, and charged into the hydrolysis and acid fermentation chamber Organic waste introduction means for guiding and introducing organic waste into a methane fermentation chamber formed between the first cylindrical body and the second cylindrical body, Waste from which organic waste is taken out from the methane fermentation chamber and methane is taken out from the methane fermentation chamber and methane removal The waste and methane extraction means has a communication chamber on the top plate that communicates with the methane fermentation chamber through a through-hole formed in the top plate, and is connected to the upper portion of the communication chamber. a methane fermentation tank, wherein the methane collection pipe which is, to be configured and a waste pipe provided in the communication chamber, the methane extraction means, connected to the waste liquid tube therein In the methane fermentation tank provided with the communication chamber forming pipe portion that is projected below the top plate , the communication chamber forming pipe portion has a J-shaped lower portion. It is preferable that the communication chamber forming pipe portion has its stigma opened upward.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0008]
FIG. 1 is a plan view of a methane fermentation tank according to the methane fermentation method of one embodiment of the present invention, and FIG. 2 is a sectional view taken along line II-II in FIG. In FIG.1 and FIG.2, the code | symbol 10 shows the methane fermenter which concerns on the methane fermentation method of one Embodiment of this invention, this methane fermenter 10 has the circular steel bottom plate 12 and the center on this bottom plate 12. FIG. A first cylindrical body 14 erected on the portion, a second cylindrical body 16 erected on the peripheral edge of the bottom plate 12 so as to surround the first cylindrical body 14, and these cylindrical shapes A steel top plate 18 that hermetically closes the upper end openings of the bodies 14 and 16 is provided.
[0009]
The first cylindrical body 14 and the second cylindrical body 16 are formed of a steel material in the same manner as the bottom plate 12 and the top plate 18. The cylindrical bodies 14 and 16 have a cylindrical shape, and the lower end thereof is sealed and welded to the upper surface of the bottom plate 12 and the upper end portion thereof is sealed to the lower surface of the top plate 18 over the entire circumference.
[0010]
The top plate 18 is formed in a circular shape like the bottom plate 12, and the organic waste is placed on the top surface of the top plate 18 from the input port 20 formed in the center of the top plate 18 in the first cylindrical shape. An organic waste input structure 24 that is input into the hydrolysis and acid fermentation chamber 22 formed inside the body 14 and an organic waste that is input into the hydrolysis and acid fermentation chamber 22 is a first cylindrical body. 14 and an organic waste introduction structure 28 that guides and introduces the methane fermentation chamber 26 formed between the second cylindrical body 16 and the organic waste from the methane fermentation chamber 26. A waste for extracting methane from the methane and a methane extraction structure 30 are provided.
[0011]
FIG. 3 is a cross-sectional view showing the structure of the organic waste input structure 24 and the organic waste introduction structure 28. As shown in the figure, an organic waste input structure 24 as an organic waste input means is a cylindrical body with a top plate standing on the top plate 18 so as to surround the peripheral edge of the input port 20. 24a, and an organic waste supply pipe 24b for supplying organic waste into the cylinder 24a with a top plate is connected to the upper surface of the cylinder 24a with a top plate, and an exhaust gas pipe 24c ( 1) is connected.
[0012]
On the other hand, the organic waste introduction structure 28 as the organic waste introduction means includes a chamber member 28b that forms a sealed chamber 28a on the top plate 18, and the sealed chamber 28a is formed of the top plate cylinder 24a. It is formed around. The organic waste introduction structure 28 includes a first organic waste guide pipe 28c for guiding the organic waste in the hydrolysis and acid fermentation chamber 22 into the sealed chamber 28a. The inlet end of 28c is provided near the lower part in the hydrolysis and acid fermentation chamber 22 (see FIG. 2). Further, the organic waste introduction structure 28 includes a second organic waste guide pipe 28d for guiding the organic waste in the sealed chamber 28a into the methane fermentation chamber 26, and an outlet of the guide pipe 28d. The end is provided near the lower part in the methane fermentation chamber 26 (see FIG. 2).
[0013]
FIG. 4 is a cross-sectional view showing the structure of the waste and methane extraction structure 30. As shown in the figure, a waste and methane extraction structure 30 is formed on the top plate 18 with a communication chamber 30a communicating with the methane fermentation chamber 26 through a through hole 18a drilled in the top plate 18. A methane collecting pipe 30c connected to the chamber 30a and a waste liquid pipe 30b are included. The methane collection pipe 30c is projected from the waste and methane extraction structure 30 to the outside. Further, the waste liquid pipe 30b is connected to a communication chamber forming pipe portion 34 provided below the top plate, and is incorporated into the communication chamber 30a and sealed. The communication chamber forming pipe portion 34 has a J-shaped portion 40 at the lower portion thereof, and the column head portion 36 is opened upward. Further, the communication chamber forming pipe portion 34 is connected to the waste liquid pipe 30b by welding at a specific height 30e that is intermediate between the column head 36 and the top plate 18. The waste liquid pipe 30 b penetrates the waste and methane extraction structure 30 and protrudes from the seal portion 42. The seal portion 42 is constituted by a container having a specific depth connected to the waste liquid pipe 30b and retaining the waste liquid, and a shielding plate 44 that bisects the inside of the container from the top is provided downward. The shielding plate 44 does not shield the bottom surface of the seal portion 42, but the bottom portion is shielded to a height sufficiently lower than the height 30e, and has a certain opening. Further, in the space divided by the shielding plate 44 in the seal portion 42, the upper surface of the seal portion 42 on the communication chamber 30 a side and the side wall of the communication chamber 30 a are communicated with each other by a methane communication pipe 46. Here, the lower part of the communication chamber forming pipe part 34 is opened at a position where the pipe lower part opening part 38 is higher than the lowest point 39 of the lower part of the pipe. By configuring in this way, when the liquid level of the waste liquid is higher than the upper part of the waste liquid pipe 30b, even if any gas lighter than the waste, such as methane gas, enters from the opening 38, it cannot reach the column head 36 side. Naturally, it does not reach the waste liquid pipe 30b. Further, in FIG. 4, even if methane gas or the like is generated inside the communication chamber forming pipe on the left side from the lowest point 39, the gas reaches the column head 36 and does not reach the waste liquid pipe 30b. When the liquid level of the waste liquid is lower than the upper part of the waste liquid pipe 30b, even if the liquid level falls below the height 30e, the waste liquid stays in the seal portion 42. Therefore, the methane gas is shielded by the shielding plate 44 and sealed. It can not enter the right side of the drawing. At this time, when the level of the waste liquid rises, the methane gas in the seal portion 42 can escape from the methane communication pipe 46 to the communication chamber 30a. With such a configuration, methane gas does not enter the right side of the seal portion 42 and is always collected in the methane collection tube 30c. Alternatively, even when the diameter of the waste liquid pipe 30b is sufficiently large so that the gas phase can always be maintained up to the seal part 42 on the waste liquid surface, the methane gas does not enter the right side of the seal part 42 and is always trapped in the methane collection pipe 30c. Be collected. Further, when the diameter of the waste liquid pipe 30b is sufficiently large and the gas phase can be always maintained up to the seal portion 42 on the waste liquid surface, the methane communication pipe 46 need not be communicated. On the other hand, the height 30e of the bottom of the waste liquid pipe is set to a position lower than 28e when the bottom face of the upper opening of the organic waste guide pipe 28d is 28e. With such a configuration, when the amount of organic waste input exceeds 28e during batch processing, the waste liquid that has entered through the opening 38 is naturally discharged through the waste liquid pipe 30b.
[0014]
In the methane fermentation chamber 26, a plurality of mesh-like methane bacteria holders 32 are provided radially with the first cylindrical body 14 as the central axis (see FIGS. 1 and 2). These methane bacteria holders 32 are for holding methane bacteria in organic waste and maintaining the methane bacteria concentration in the methane fermentation chamber 26 at a high level, and are provided obliquely with respect to the bottom plate 12. .
[0015]
In the above configuration, the first step of the methane fermentation method according to the present invention is a step of introducing organic waste from the organic waste introduction structure 28. The introduction step is a step of pouring a certain amount of organic waste at a time, and the amount of the organic waste in the hydrolysis and acid fermentation chamber 22 is more than that of the first organic waste guide tube 28c. It is necessary to add an amount exceeding the opening of the second organic waste guide pipe 28d in the sealed chamber 28a. Prior to this introduction, the solid content of the organic waste must be sufficiently crushed. That is, in order to carry out the reaction smoothly by the plug flow method, it is necessary to promote the reaction by reducing the solid content of the organic waste. Moreover, it is necessary to heat organic waste at the time of introduction. 37 degrees is preferable. This is because the reaction temperature in the hydrolysis and acid fermentation chamber 22 is about 37 degrees, and if the organic waste to be introduced is at a low temperature, the reaction does not proceed until the temperature rises, resulting in a time loss.
[0016]
Normally, the organic waste at the same water level as the lower end of the opening of the second organic waste guide tube 28d is filled, and the upper end of the upper opening of the second organic waste guide tube 28d is filled there. By introducing a larger amount, the organic waste at the bottom of the first organic waste guide tube 28c can be introduced into the methane fermentation chamber. By setting the number of introductions at a rate of multiple times per day, the flow of the guide tube can be temporarily accelerated to prevent the tube from being blocked. This introduction method is a batch method.
[0017]
The next step is an organic waste hydrolysis and acid fermentation step. Here, since organic waste is introduced into the hydrolysis and acid fermentation chamber 22 from the inlet, the one introduced earlier in time exists at the bottom, and the organic waste introduced later in time is present. Laminated on top. For this reason, the organic waste in which the reaction has progressed is located at the bottom. This method of introduction is an extrusion-type introduction method, that is, a plug flow method. The fermentation rate can be improved by the plug flow method.
[0018]
Furthermore, the next step is a transfer step to the sealed chamber 28a. Since the first organic waste guide tube 28c is provided from the bottom of the hydrolysis and acid fermentation chamber 22 to the sealed chamber 28a, only the organic waste at the bottom is transferred to the sealed chamber 28a. That is, the organic waste in which the reaction has proceeded most is transferred, which is efficient. In the present invention, unlike a tank having a stirrer, an unreacted organic waste introduced later and a reacted organic waste are not stirred and a mixture is not taken out. Waste moves into a sealed chamber. For this reason, only those having increased reactivity are transferred. In addition, since the opening of the first organic waste guide tube 28c is at the bottom of the hydrolysis and acid fermentation chamber 22, it is difficult for gas such as hydrogen sulfide to pass through the first organic waste guide tube. Therefore, it is difficult for hydrogen sulfide or the like to be transferred from the hydrolysis and acid fermentation chamber 22 to the sealed chamber 28a or the methane fermentation chamber 26. As a result, the hydrogen sulfide concentration in the methane gas can be kept low, so that the hydrogen sulfide can be removed from the methane gas relatively easily.
[0019]
The next step is a transfer step to the methane fermentation chamber 26. The organic waste is transferred to the sealed chamber 28a through the first organic waste guide pipe 28c by batch processing. The organic waste is introduced into the methane fermentation chamber 26 when the water level rises and eventually exceeds the bottom of the opening of the second organic waste guide tube 28d. Here, because of the batch processing, a large amount of organic waste is introduced, and as a result, even if the inside of the organic waste guide tube is clogged with solids, it is extruded and removed by the water flow of the organic waste. The
[0020]
The subsequent process is a methane fermentation process. Since the second organic waste guide tube 28d has the opening at the bottom, the latest organic waste is accumulated at the bottom. Here, since there is a net-like methane bacterium holder 32, the methane bacterium can be held at a high concentration without being discharged together with the organic waste. The introduction and reaction is also a plug flow method.
[0021]
The last step is a methane and waste removal step. Methane and waste are removed from the waste and methane extraction structure 30. Since these processes are all sealed structures, waste gas is not released to the outside.
[0022]
As described above, acid fermentation and methane fermentation are performed separately, methane-fermenting bacteria are packed in a net-like carrier, and organic waste slurry is transferred by extrusion flow, so that the amount of methane generated per unit raw material, The decomposition rate of organic components is as high as 80% or more.
[0023]
Moreover, since it ferments in a double cylindrical tank, it is possible to save space as compared with a conventional methane fermentation method in which a cylinder is separately provided. Furthermore, energy is saved because the slurry is transferred from the acid fermentation chamber to the methane fermentation chamber through a communication pipe without using a stirrer. In addition, the use of a buried underground tank ensures heat retention and is suitable for construction in cold regions.
[0024]
Because it is fermented in a closed tank, there is no odor, no pest generation, no soil or water pollution, and low generation of greenhouse gases. Furthermore, cogeneration can be achieved by using the energy of the generated methane gas as electricity or hot water, and it can be recovered as steam and can be operated with almost no external energy. Furthermore, the organic waste after methane fermentation has no odor, and a neutral and easy-to-handle fertilizer rich in nitrogen, phosphorus and potassium components is produced.
[0025]
Moreover, since no power is used without agitation, operation management is easy, and replacement is easy because of the extrusion flow method even when an accident occurs. As organic waste, it can be applied to distilled liquor residue, cow swine manure, slaughterhouse waste, etc., and the waste capacity can correspond from large to small.
[0026]
【The invention's effect】
As described above, according to the methane fermentation method according to the present invention, the methane fermentation process and the transfer process of the organic waste can be efficiently performed and a stable operation can be performed. In addition, when organic waste is subjected to methane fermentation, it is not necessary to install two tanks for acid fermentation and methane fermentation, so space can be saved and there is no room for installation space. Even so, methane fermentation treatment of organic waste can be performed efficiently. Further, the contact area with the outside air is reduced as compared with the conventional method, and the heat radiation amount is reduced accordingly, so that energy saving can be achieved. Furthermore, it is possible to prevent gas such as hydrogen sulfide generated in the hydrolysis and acid fermentation chamber from flowing into the methane fermentation chamber together with the organic waste. Further, organic waste can be transferred from the hydrolysis and acid fermentation chamber to the methane fermentation chamber without using power equipment such as a pump. In addition, by providing a plurality of mesh-like methane bacteria holders in the methane fermentation chamber in a slanted manner and fixing and holding methane bacteria, the concentration of methane bacteria in the methane fermentation chamber can be kept high. There is no energy loss for regrowth.
Furthermore, since the lower part of the communication chamber forming pipe part has a J shape, methane gas and organic waste can be completely separated and recovered.
[Brief description of the drawings]
FIG. 1 is a plan view of a methane fermentation tank according to a methane fermentation method of an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line II-II in FIG.
FIG. 3 is a cross-sectional view showing structures of an organic waste input structure and an organic waste introduction structure.
FIG. 4 is a cross-sectional view showing the structure of a waste and methane extraction structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 12 Bottom plate 14 1st cylindrical body 16 2nd cylindrical body 18 Top plate 20 Input port 22 Hydrolysis and acid fermentation chamber 24 Organic waste input structure 24a Top plate-cylinder 24b Organic waste supply pipe 24c Exhaust gas pipe 26 Methane fermentation chamber 28 Organic waste introduction structure 28a Sealed chamber 28b Chamber member 28c First organic waste guide pipe 28d Second organic waste guide pipe 30 Waste and methane extraction structure 30a Communication chamber 30b Waste liquid pipe 30c Methane collection pipe 32 Methane bacteria holder

Claims (7)

円形若しくは正多角形に形成された底板と、この底板上の中央部に立設された第1の筒状体と、この第1の筒状体を取り囲むように前記底板上の周縁部に立設された第2の筒状体と、これら第1及び第2の筒状体の上端開口部を閉塞する天板と、この天板の中央部に形成された投入口から有機性廃棄物を前記第1の筒状体の内側に形成された加水分解及び酸発酵室に投入する有機性廃棄物投入手段と、前記加水分解及び酸発酵室に投入された有機性廃棄物を前記第1の筒状体と第2の筒状体との間に形成されたメタン発酵室に案内導入する有機性廃棄物導入手段とを具備してなるメタン発酵槽で有機性廃棄物を発酵させるメタン発酵方法であって、有機性廃棄物はバッチ方式で投入され、投入された有機性廃棄物はさらに押出し流れとなり、バッチ方式は、一度に投入する有機性廃棄物の量が有機性廃棄物案内管の上側開口部下端を上回る量であるメタン発酵方法において、
有機性廃棄物の加水分解及び酸発酵工程は有機性廃棄物が加水分解及び酸発酵室に投入口から導入されて、反応が進行した有機性廃棄物が底部に位置するプラグフロー法であることを特徴とするメタン発酵方法。
A bottom plate formed in a circular shape or a regular polygon, a first cylindrical body standing on the center of the bottom plate, and a peripheral edge on the bottom plate so as to surround the first cylindrical body. Organic waste from a second cylindrical body provided, a top plate that closes the upper end openings of the first and second cylindrical bodies, and an inlet formed in the center of the top plate Organic waste charging means for charging the hydrolysis and acid fermentation chamber formed inside the first cylindrical body, and organic waste charged in the hydrolysis and acid fermentation chamber for the first A methane fermentation method for fermenting organic waste in a methane fermentation tank comprising organic waste introduction means for guiding and introducing into a methane fermentation chamber formed between a cylindrical body and a second cylindrical body The organic waste is input in a batch system, and the input organic waste is further extruded. Pitch system, in the methane fermentation process is an amount that amount of input to the organic waste is above the upper opening lower end of the organic waste guide tube at a time,
The organic waste hydrolysis and acid fermentation process is a plug flow method in which organic waste is introduced into the hydrolysis and acid fermentation chamber from the inlet, and the organic waste that has undergone the reaction is located at the bottom. A methane fermentation method characterized by the above .
メタン発酵室での押出し流れは、有機性廃棄物の発酵反応がメタン発酵室の底部から開始され、メタン発酵室の上層に上昇するにつれて発酵が進行することを特徴とする請求項記載のメタン発酵方法。Extruding the flow of methane fermentation chamber, the fermentation reaction of the organic waste is started from the bottom of the methane fermentation chamber, methane claim 1, wherein the fermentation progresses as it rises to the upper layer of the methane fermentation chamber Fermentation method. 押出し流れは、予め有機性廃棄物中の固形分を十分に破砕してから行なうことを特徴とする請求項1または2記載のメタン発酵方法。 3. The methane fermentation method according to claim 1 or 2 , wherein the extrusion flow is performed after sufficiently crushing the solid content in the organic waste. 押出し流れは、予め有機性廃棄物を加温してから加水分解および酸発酵室に投入することを特徴とする請求項1乃至3いずれか記載のメタン発酵方法。The methane fermentation method according to any one of claims 1 to 3 , wherein the extruding flow heats the organic waste in advance and then inputs the waste into the hydrolysis and acid fermentation chamber. 円形若しくは正多角形に形成された底板と、この底板上の中央部に立設された第1の筒状体と、この第1の筒状体を取り囲むように前記底板上の周縁部に立設された第2の筒状体と、これら第1及び第2の筒状体の上端開口部を閉塞する天板と、この天板の中央部に形成された投入口から有機性廃棄物を前記第1の筒状体の内側に形成された加水分解及び酸発酵室に投入する有機性廃棄物投入手段と、前記加水分解及び酸発酵室に投入された有機性廃棄物を前記第1の筒状体と第2の筒状体との間に形成されたメタン発酵室に案内導入する有機性廃棄物導入手段とを具備し、前記天板は、前記有機性廃棄物を前記メタン発酵室から取り出すと共に前記メタン発酵室からメタンを取り出す廃棄物及びメタン取出し手段を有し、前記廃棄物及びメタン取出し手段は、前記天板に穿設された貫通孔を通じて前記メタン発酵室と連通する連通室を前記天板上に形成し、この連通室の上部に接続されたメタン捕集管と、前記連通室に設けられた廃液管とを含んで構成されることを特徴とするメタン発酵槽であって、前記メタン取出し手段は、その内部に前記廃液管と接続されて天板以下に突設される連通室形成管部を備えるメタン発酵槽において、連通室形成管部は、その管下部がJ字形状からなることを特徴とするメタン発酵槽A bottom plate formed in a circular shape or a regular polygon, a first cylindrical body standing on the center of the bottom plate, and a peripheral edge on the bottom plate so as to surround the first cylindrical body. Organic waste from a second cylindrical body provided, a top plate that closes the upper end openings of the first and second cylindrical bodies, and an inlet formed in the center of the top plate Organic waste charging means for charging the hydrolysis and acid fermentation chamber formed inside the first cylindrical body, and organic waste charged in the hydrolysis and acid fermentation chamber for the first An organic waste introduction means for guiding and introducing into a methane fermentation chamber formed between the cylindrical body and the second cylindrical body, and the top plate transfers the organic waste to the methane fermentation chamber. And a means for taking out methane from the methane fermentation chamber and a methane take-out means. And a methane collecting pipe connected to an upper portion of the communication chamber, the communication chamber communicating with the methane fermentation chamber through a through hole formed in the top plate, A methane fermentation tank comprising a waste liquid pipe provided in a communication chamber, wherein the methane extraction means is connected to the waste liquid pipe and protrudes below the top plate. In the methane fermentation tank provided with the communication chamber forming tube portion , the communication chamber forming tube portion has a J-shaped lower portion of the tube . 連通室形成管部は、その柱頭が上方向に開口されることを特徴とする請求項に記載のメタン発酵槽。The methane fermentation tank according to claim 5 , wherein the communication chamber forming pipe part has its stigma opened upward. 連通室形成管部は、その開口部の高さがメタン捕集管底部より低いことを特徴とする請求項5または6記載のメタン発酵槽。The methane fermentation tank according to claim 5 or 6, wherein the communication chamber forming pipe part has a lower opening than the bottom part of the methane collection pipe.
JP2001381844A 2001-12-14 2001-12-14 Methane fermentation method and methane fermentation tank Expired - Fee Related JP4015413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001381844A JP4015413B2 (en) 2001-12-14 2001-12-14 Methane fermentation method and methane fermentation tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001381844A JP4015413B2 (en) 2001-12-14 2001-12-14 Methane fermentation method and methane fermentation tank

Publications (2)

Publication Number Publication Date
JP2003181420A JP2003181420A (en) 2003-07-02
JP4015413B2 true JP4015413B2 (en) 2007-11-28

Family

ID=27592394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001381844A Expired - Fee Related JP4015413B2 (en) 2001-12-14 2001-12-14 Methane fermentation method and methane fermentation tank

Country Status (1)

Country Link
JP (1) JP4015413B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299839A (en) * 2008-06-16 2009-12-24 Tsukishima Techno Mente Service Kk Gas seal device
CN106957793B (en) * 2017-03-20 2020-02-18 东南大学 Horizontal anaerobic digestion reaction device
CN112048432B (en) * 2020-09-22 2023-05-23 四川光和兴科技有限公司 Novel container capable of shortening biogas fermentation time

Also Published As

Publication number Publication date
JP2003181420A (en) 2003-07-02

Similar Documents

Publication Publication Date Title
KR100646076B1 (en) Two-phase type methane fermentation reactor
KR101410722B1 (en) Anaerobic fermentation system and method for heating energy use aerobic fermentation heat
US4334997A (en) Anaerobic digester technology
RU2315721C1 (en) Method of the anaerobic reprocessing of the organic wastes and the installation for the method realization
CN103086583B (en) Device and method of enhancing sludge stability and sludge digestion liquid treatment
EP1456343B1 (en) A process for the anaerobic treatment of flowable and nonflowable organic waste
CN101823793A (en) Double-path circulation full-mixing type anaerobic reactor
KR20130113561A (en) Waste for energy production system
CN203333655U (en) Overflow type double-circulation anaerobic reactor
JP4015413B2 (en) Methane fermentation method and methane fermentation tank
CN106865935A (en) Using anthraquinone 2,6 disulfonic acid salt(AQDS)The method for promoting excess sludge methane phase
KR100780384B1 (en) Organic Waste Treatment System
CN219907230U (en) IC anaerobic reactor for high concentration waste water treatment
US11268057B2 (en) Apparatus and method for treatment of wet organic matter to produce biogas
KR20150080197A (en) Energy saving type anaerobic digestion vessel for waste processing
KR20200101793A (en) Biogas reactors
EP1931602B1 (en) System for treating residual water
CN106906127A (en) It is a kind of can independent power generation aerogenesis purification integral anaerobic installation for fermenting
JP2006247558A (en) Methane fermentor
JP3774090B2 (en) Methane fermentation tank
JP3852109B2 (en) Methane fermentation treatment equipment
CN201694892U (en) Double-circulation fully-mixing-type anaerobic reactor
HU196344B (en) Process and apparatus for treating liquide materials containing organic materials first of all waste materials, liquide manure and sewage-sludge
CN201362633Y (en) Integrated multistage biomass pool
KR100196916B1 (en) Method for organic waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees