JP4014683B2 - Process for producing N-substituted maleimides - Google Patents

Process for producing N-substituted maleimides Download PDF

Info

Publication number
JP4014683B2
JP4014683B2 JP00886197A JP886197A JP4014683B2 JP 4014683 B2 JP4014683 B2 JP 4014683B2 JP 00886197 A JP00886197 A JP 00886197A JP 886197 A JP886197 A JP 886197A JP 4014683 B2 JP4014683 B2 JP 4014683B2
Authority
JP
Japan
Prior art keywords
reaction
acid
copper
solvent
substituted maleimides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00886197A
Other languages
Japanese (ja)
Other versions
JPH1059935A (en
Inventor
将吾 小田
利光 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihachi Chemical Industry Co Ltd
Original Assignee
Daihachi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihachi Chemical Industry Co Ltd filed Critical Daihachi Chemical Industry Co Ltd
Priority to JP00886197A priority Critical patent/JP4014683B2/en
Publication of JPH1059935A publication Critical patent/JPH1059935A/en
Application granted granted Critical
Publication of JP4014683B2 publication Critical patent/JP4014683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、N−置換マレイミド類の製造方法に関する。更に詳しくは、本発明は、医薬、農薬、染料、高分子の原料、或いはそれらの中間体として利用範囲の極めて広い化合物であるN−置換マレイミド類の製造方法に関する。
【0002】
【従来の技術】
N−置換マレイミド類の製造方法には、種々の方法が知られている。例えば、非極性溶媒の存在下で無水マレイン酸と第一アミンからマレイン酸モノアミドを合成し、次いで酸触媒の存在下、非極性溶媒或いはN,N−ジメチルホルムアミド(DMF)のような非プロトン性極性溶媒を用いて脱水閉環反応させる二段階反応が知られている(特開昭60−109562号公報参照)。また、無水マレイン酸を、酸触媒の存在下、不活性溶媒中で、溶媒の加熱還流下に第一アミンを連続的に供給しながら生成する反応水を系外に取り出す一段階反応が知られている(特開昭60−11465号公報参照)。
【0003】
【発明が解決しようとする課題】
前記反応による製造方法は、工業的に有用であると認めることができる。しかしながら、本発明者らは前記製造方法では、原料及び副生成物の反応装置内での付着並びにそれによってもたらされる反応管系の閉塞が生産効率を低下させることを見出した。これらの副生成物は、コンデンサーを閉塞させたり、水分離器の機能を低下、更には該機能を停止させる。このような問題は、生産性を高める手段として有機溶媒の使用量を減らすほど増長されるため、生産効率を上げることにも限界があるばかりではなく安全性にも問題がある。
本発明者らが見出した前記問題点、特に反応管系の閉塞については、上記の従来技術にも記載はなく、示唆もされていなかった。
【0004】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべく鋭意研究の結果、下記方法により収率を高め、コンデンサー等の閉塞を防ぎ、極めて安全に生産性を向上できることを意外にも見出し、本発明を完成するに至った。
【0005】
かくして本発明によれば、無水マレイン酸と第一アミンを、酸触媒の存在下、非極性溶媒と、蟻酸、酢酸及びプロピオン酸から選択されたプロトン性極性溶媒との混合溶媒中で反応させることによりN−置換マレイミド類を得ることを特徴とするN−置換マレイミド類の製造方法が提供される。
【0006】
【発明の実施の形態】
以下に、本発明の実施の形態について詳しく説明する。
本発明の出発原料である無水マレイン酸は、工業的に市販されている無水マレイン酸であれば特に限定されない。また、マレイン酸を用いても反応は可能であるが、加熱脱水等の操作を必要とし、経済性の面から得策とはいえない。
【0007】
第一アミンとしては、無水マレイン酸と反応してN−置換マレイミド類を生成するものであれば特に限定されない。この第一アミンとしては、芳香族又は脂肪族第一アミン等が挙げられ、具体的には、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、デシルアミン、ドデシルアミン、シクロヘキシルアミン、アリルアミン、エチレンジアミン等の脂肪族第一アミン;ベンジルアミン、アニリン、トルイジン、ジメチルアニリン、エチルアニリン、ジエチルアニリン、カルボキシアニリン、ヒドロキシアニリン、クロロアニリン、ジクロロアニリン、ブロモアニリン、ジブロモアニリン、トリブロモアニリン、ニトロアニリン等の芳香族第一アミンが挙げられる。
【0008】
酸触媒としては硫酸、パラトルエンスルホン酸、オルソリン酸、メタリン酸、ピロリン酸、ベンゼンスルホン酸、メタンスルホン酸及び酸性イオン交換樹脂等が用いることができる。これら酸触媒は、混合物であってもよい。これら酸触媒の内、パラトルエンスルホン酸、ベンゼンスルホン酸が特に好ましい。
【0009】
反応に使用する非極性溶媒は、水に不溶性でかつ反応に関与しないものであればよく、例えばベンゼン、トルエン、キシレン、エチルベンゼン、プロピルベンゼン等の芳香族炭化水素、又はヘキサン、ヘプタン、オクタン、デカン等の飽和炭化水素、更にはシクロヘキサン等の脂環式炭化水素類が挙げられる。この溶媒の選択及び使用量については、反応を円滑に行いかつ目的とする経済的諸条件を満足させるような基準で決定すればよい。これらの非極性溶媒の内、一般にキシレン、トルエンが特に好ましい。
プロトン性極性溶媒としては、蟻酸、酢酸及びプロピオン酸が好ましく、酢酸が特に好ましい。
【0010】
本発明の製造方法においては、前記非極性溶媒とプロトン性極性溶媒との混合溶媒を使用する。この溶媒の混合割合は、プロトン性極性溶媒が非極性溶媒に対して1〜20重量%、好ましくは5〜15重量%、特に好ましくは6〜9重量%である。なお、プロトン性極性溶媒の使用方法としては、反応前に一括して仕込んでおくことに加えて、反応中に連続的または間欠的に添加することができる。
【0011】
本発明のN−置換マレイミド類の製造方法としては、例えば、無水マレイン酸を、酸触媒の存在下、非極性溶媒を還流させながら第一アミンと反応させ、同時に生成する水を留去させながらN−置換マレイミド類を製造する一段階反応が挙げられる。この一段階反応は、N−置換マレイミド類の製造効率の観点からより好ましい。
【0012】
N−置換マレイミド類の製造は、下記の条件で行うことが好ましい。
無水マレイン酸は、第一アミン1モルに対し0.8〜1.5モルの範囲、好ましくは0.9〜1.3モルの範囲で用いるのがよい。0.8モル未満の場合、アミンの付加物が多く副生し、純度ならびに収率が低下するので好ましくなく、1.5モルより多い場合、過剰分の無水マレイン酸による配管系の閉塞への影響が大きくなること、ならびに不経済になるので好ましくない。
【0013】
酸触媒の使用量は、第一アミン1モルに対して0.01〜0.3モルの範囲、好ましくは0.05〜0.2モルの範囲で用いるのがよい。0.01モル未満の場合、ほとんど触媒効果が認められないので好ましくなく、0.3モルより多い場合、副反応が大きくなって製品収率が低下するので好ましくない。
【0014】
また、反応温度は用いる主溶媒、即ち非極性溶媒の種類により異なるが、80〜200℃の範囲、好ましくは120〜160℃である。このような温度範囲であれば反応中に生成する水を共沸により留去し易く、反応速度が向上するので好ましい。また、用いる主溶媒により前記温度範囲にならない場合があるが、その場合には系内の圧力を調整することで適正温度に設定する。例えば、ヘキサン、シクロヘキサンのような沸点の低いものでは加圧下で反応させ、ジエチルベンゼンのように沸点の高いものでは減圧下で反応させる。
【0015】
以上、N−置換マレイミド類の製造方法を一段階反応で説明したが、予め無水マレイン酸と第一アミンからマレイン酸モノアミドを合成する二段階反応であっても製造することができる。
【0016】
ここで、非極性溶媒とプロトン性極性溶媒との混合溶媒を用いることにより下記効果を奏すると考えられる。
▲1▼揮発したプロトン性極性溶媒が気相中の無水マレイン酸の分圧を下げることにより、気相中での無水マレイン酸濃度も下がり、そのため配管内での析出付着量が低下すること、及び第一アミンとの副生成物の反応が防止されること、
▲2▼揮発したプロトン性極性溶媒がコンデンサーや水分離器の付着物を溶解除去し、反応に寄与させるので、副生成物の反応が防止され、それに伴い収率が向上することが考えられる。
従って、本発明では、従来のN,N−ジメチルホルムアミド(DMF)のような非プロトン性極性溶媒を非極性溶媒に加えて使用した場合に比べて、非極性溶媒の使用量を1/2〜1/3に低減することができる。そのため、同一容量あたりの効率を約2倍に向上さすことができる。
【0017】
また、本発明では、反応中に生成する水が効率的に共沸により留去され、出発原料の無水マレイン酸と系内の水との反応によるマレイン酸の生成が抑制される。このことから無水マレイン酸の損失が抑制され、前記容量効率の向上と併せて純度及び反応収率も向上する。
生産性を高めるため非極性溶媒の使用量を更に少なくすることも可能であるが、重合物が副生することを無視できなくなる場合がある。その場合は、重合禁止剤を添加するのが好ましい。
【0018】
重合禁止剤としては、たとえば、ヒンダードフェノール類並びに有機及び無機の銅化合物等が適当である。
【0019】
ヒンダードフェノール類としては2,6−ジ−t−ブチル−p−クレゾール、2,5−ジ−t−ブチルヒドロキノン、2,5−ジ−t−アミルヒドロキノン、4,4’−ブチリデンビス(6−t−ブチル−3−メチル−フェノール)、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)等が挙げられる。
【0020】
銅化合物としては、金属銅、酸化銅、水酸化銅、硫化銅、塩化銅、硫酸銅、硝酸銅、燐酸銅、酢酸銅、オキシ酢酸銅、プロピオン酸銅、吉草酸銅、クエン酸銅、ヘキサン酸銅、グルコン酸銅、サリチル酸銅、カプリル酸銅、ペラルゴン酸銅、セバシン酸銅、パルミチン酸銅、オレイン酸銅、ステアリン酸銅、ビスグリシナート銅、ビスアセチルアセトナート銅、ビスアミノベンゼンスルホナート銅、ビスロイシナート銅、ビス(アセチルアセトアセトナート)銅、ジブチルジチオカルバミン酸銅等が挙げられる。これら重合禁止剤は、混合物として添加してもよい。
【0021】
上記のようにして得られるN−置換マレイミド類を含む反応混合物を、更に、希アルカリ水で中和し、水洗後に溶媒を回収した後、蒸留すれば、より高純度なN−置換マレイミド類を得ることができる。
【0022】
なお、本発明の方法は、上記無水マレイン酸と第一アミンのいずれの組み合わせのN−置換マレイミド類の製造にも使用することが可能であるが、特に、N−ベンジルマレイミド、N−シクロヘキシルマレイミド、N−フェニルマレイミド、N−ラウリルマレイミドの製造に使用することが好ましい。
また、本発明により製造されたN−置換マレイミド類は、医薬、農薬、染料、高分子の原料、或いはそれらの中間体として使用することができる。
【0023】
【実施例】
次に、本発明を実施例によって更に詳しく説明するが、本発明はこれらによって限定されるものではない。また、換算収量、換算収率、容量効率は以下のようにして計算で求めた。
(換算収量)
蒸留精製における初留、主留、終留の各留分のガスクロマトグラフィーによる純度に各留分の重量を掛けたものを合計した。
(換算収率)
換算収量をアミン基準の理論収量で割って求めた。
(容量効率)
換算収量を、表1中の無水マレイン酸からギ酸までの使用量をそれぞれの比重で割った値(体積)の合計で割って求めた。
更に、表1及び2中に示したコンデンサー及び水分離器での閉塞状態は、付着物が認められないか極めて少量である場合を○、少量の付着物がある場合を△、付着物の量がかなり多く、配管内が閉塞状態である場合を×で示した。
【0024】
実施例1
撹拌機、温度計、滴下ロート及び脱水反応を行うためのベーパー管、コンデンサー、水分離器を有した1リットルのガラス製反応装置を準備した。この反応装置にキシレン420g、パラトルエンスルホン酸57gを仕込み、別途、水分離器にはキシレンを充満させた。
初めに、触媒であるパラトルエンスルホン酸の結晶水をキシレン還流下で除去し、その後、キシレンが還流しなくなる温度まで冷却した。
次に、無水マレイン酸176.6g(1.8モル)と重合禁止剤として2,2’−メチレン−ビス(4−メチル−6−t−ブチルフェノール)(重合禁止剤A)0.28g及び酢酸4.5gを仕込んだ。
【0025】
この内容物を加熱し、キシレンを還流させた。この時の温度は137℃であった。キシレンの還流量が安定したところで、ベンジルアミン160.8g(1.5モル)を3時間かけて追加し、生成する反応水は水分離器より逐次系外に取り出した。その後、反応を完結させるために1時間加熱を続けることにより、N−ベンジルマレイミドを主成分とする反応物を得た。この時の温度は146℃であった。また、この間コンデンサーが閉塞したり、水分離器の中が汚れたりすることはなかった。
【0026】
このようにして得た反応物を内部標準法でガスクロマトグラフィーにて分析すると、ベンジルアミン基準での反応率は85.3%であった。
次に75℃の水280gを追加して湯洗いを行ない、水層を分離除去した。この時の内容物の酸価は2.5であった。次いで、酸価対応量の1.5倍量のNa2 CO3 280gを75℃の水280gに溶解し、これを製品層に添加して中和を行い、更に75℃の水280gで湯洗いを行って後処理を終了した。
【0027】
次に、真空度10mmHg、温度140℃まで昇温し、キシレンを蒸留除去した。粗収量は253.1g(粗収率90.1%)であった。この粗製品251.2gを真空度2mmHgで単蒸留し、次の留分に分けた。初留分7.5g、主留分210.9g、終留分16.5g、残留分16.3g。
各留分について、ガスクロマトグラフィーで分析を行い換算収量を求めると230.0g、換算収率は81.9%であった。主留分のガスクロマトグラフィー分析における純度は99.8%であった。結果を表1に示した。
【0028】
実施例2〜4
実施例1の反応装置を用い、キシレンの使用量と酢酸の使用量を表1に示すように変えた以外は実施例1と同様に行った。また、非極性溶媒の使用量を少なくした実施例3と4では、重合禁止剤としてジブチルジチオカルバミン酸銅(重合禁止剤B)0.28gを使用した。結果を表1に示した。
【0029】
実施例5〜7
実施例1の反応装置を用い、第一アミンをシクロヘキシルアミンに変えて、N−シクロヘキシルマレイミドを製造すること以外は実施例1と同様に行った。結果を表1に示した。
【0030】
実施例8〜9
酢酸を蟻酸に変えた以外は、実施例4並びに実施例7の条件で行った。結果を表1に示した。
【0031】
実施例10
実施例4でベンジルアミンをアニリンに、キシレンをトルエンに、重合禁止剤Bを重合禁止剤A)に代え、N−フェニルマレイミドを製造すること以外は実施例4と同様に行った。結果を表1に示した。
【0032】
【表1】

Figure 0004014683
【0033】
比較例1
酢酸の代わりにN,N−ジメチルホルムアミド(DMF)21.9gを使用した以外は実施例1と同様に行った。
実施例1〜10ではコンデンサーへの付着物及び水分離器での結晶物はまったく認められなかったが、本比較例ではベンジルアミンを追加して30分も経過するとコンデンサー及び水分離器内への付着物があった。
更に、最終まで3時間を要して反応を終了したが、これらの付着物は徐々に蓄積した。この付着物質の組成を液体クロマトグラフィーで分析するとマレイン酸モノベンジルアミドが45%、マレイン酸が53.5%、N−ベンジルマレイミドが1.5%であった。
【0034】
反応内容物は、内部標準法でガスクロマトグラフィーで分析すると反応率は82.5%であった。この反応内容物を実施例1と同様に後処理、蒸留をすると粗収量は240.2g(粗収率85.5%)であった。この粗製品237.7gを蒸留して次の留分を得た。初留分7.3g、主留分192.3g、終留分15.0g、残留分23.1g。
各留分について、ガスクロマトグラフィーで分析を行い換算収率を求めると210.2g、換算収率は74.8%であった。また、主留分のガスクロマトグラフィー分析における純度は99.8%で実施例1と変わらなかった。結果を表2に示した。
【0035】
比較例2〜3
酢酸を使用しないで実施例4並びに実施例7の条件で行った。結果を表2に示した。
本実験では、第一アミンを追加した直後よりコンデンサーの閉塞、水分離器内での汚れが生じたので、反応途中で清掃を行ってから実験を完遂させた。結果を表2に示した。
【0036】
【表2】
Figure 0004014683
【0037】
上記表1及び表2から明らかなように、本発明の方法によれば、反応率を高くすることができると共に、コンデンサーや水分離器等へ付着したマレイン酸、マレイン酸モノアミド等の副生成物が機器を閉塞させることを防ぐことができる。
【0038】
【発明の効果】
本発明の方法によれば、工業的生産性を高める手段としての有機溶媒の使用量の低減からくる弊害、即ち、気相中の無水マレイン酸濃度の上昇による第一アミンとの副生成物の増加と、これが付着することによるコンデンサー等の閉塞といった工業的生産における諸問題を、プロトン性極性溶媒が付着する副生成物を溶解することにより解決することができる。更に、プロトン性極性溶媒が無水マレイン酸及びマレイン酸を溶解して反応系内に戻すので、無水マレイン酸のロスが少なくなり、高純度のN−置換マレイミド類を高収率で得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing N-substituted maleimides. More specifically, the present invention relates to a method for producing N-substituted maleimides, which are compounds having a very wide range of use as pharmaceuticals, agricultural chemicals, dyes, polymer raw materials, or intermediates thereof.
[0002]
[Prior art]
Various methods are known for producing N-substituted maleimides. For example, maleic monoamide is synthesized from maleic anhydride and primary amine in the presence of a non-polar solvent, and then in the presence of an acid catalyst, a non-polar solvent or aprotic such as N, N-dimethylformamide (DMF) A two-stage reaction in which a dehydration ring-closing reaction is performed using a polar solvent is known (see JP-A-60-109562). Also known is a one-step reaction in which maleic anhydride is removed from the reaction water generated in the presence of an acid catalyst in an inert solvent while continuously supplying a primary amine under heating and refluxing of the solvent. (Refer to Japanese Patent Laid-Open No. 60-11465).
[0003]
[Problems to be solved by the invention]
It can be recognized that the production method by the reaction is industrially useful. However, the present inventors have found that in the production method, the deposition of raw materials and by-products in the reactor and the resulting blockage of the reaction tube system reduce the production efficiency. These by-products block the condenser, reduce the function of the water separator, and stop the function. Such a problem is increased as the amount of the organic solvent used is reduced as a means for increasing the productivity. Therefore, there is not only a limit in increasing production efficiency but also a problem in safety.
The problems found by the present inventors, particularly the blocking of the reaction tube system, are neither described nor suggested in the above prior art.
[0004]
[Means for Solving the Problems]
As a result of diligent research to solve the above problems, the present inventors have surprisingly found that the yield can be increased by the following method to prevent clogging of capacitors and the like, and productivity can be improved extremely safely, and the present invention has been completed. It came to do.
[0005]
Thus, according to the present invention, maleic anhydride and primary amine are reacted in a mixed solvent of a nonpolar solvent and a protic polar solvent selected from formic acid, acetic acid and propionic acid in the presence of an acid catalyst. Provides a method for producing N-substituted maleimides, characterized by obtaining N-substituted maleimides.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
The maleic anhydride that is the starting material of the present invention is not particularly limited as long as it is a commercially available maleic anhydride. Although the reaction is possible even when maleic acid is used, an operation such as heat dehydration is required, and it cannot be said that it is advantageous from the economical viewpoint.
[0007]
The primary amine is not particularly limited as long as it reacts with maleic anhydride to produce N-substituted maleimides. As the primary amine, aromatic or aliphatic primary amine, and the like, specifically, methylamine, ethylamine, propylamine, butylamine, hexylamine, decylamine, dodecylamine, cyclo hexylamine, allylamine, Aliphatic primary amines such as ethylenediamine; benzylamine, aniline, toluidine, dimethylaniline, ethylaniline, diethylaniline, carboxyaniline, hydroxyaniline, chloroaniline, dichloroaniline, bromoaniline, dibromoaniline, tribromoaniline, nitroaniline, etc. And aromatic primary amines.
[0008]
As the acid catalyst, sulfuric acid, paratoluenesulfonic acid, orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, benzenesulfonic acid, methanesulfonic acid, acidic ion exchange resin, and the like can be used. These acid catalysts may be a mixture. Of these acid catalysts, paratoluenesulfonic acid and benzenesulfonic acid are particularly preferred.
[0009]
The nonpolar solvent used in the reaction may be any solvent that is insoluble in water and does not participate in the reaction. For example, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, propylbenzene, or hexane, heptane, octane, decane. And saturated hydrocarbons such as cyclohexane, and cycloaliphatic hydrocarbons such as cyclohexane. The selection and use amount of the solvent may be determined on the basis of smoothly performing the reaction and satisfying the desired economic conditions. Of these nonpolar solvents, xylene and toluene are particularly preferred.
As the protic polar solvent, formic acid, acetic acid and propionic acid are preferable, and acetic acid is particularly preferable.
[0010]
In the production method of the present invention, a mixed solvent of the nonpolar solvent and the protic polar solvent is used. The mixing ratio of the solvent is such that the protic polar solvent is 1 to 20% by weight, preferably 5 to 15% by weight, particularly preferably 6 to 9% by weight, based on the nonpolar solvent. In addition, as a usage method of a protic polar solvent, it can add continuously or intermittently during reaction in addition to preparing all at once before reaction.
[0011]
As a method for producing the N-substituted maleimides of the present invention, for example, maleic anhydride is reacted with a primary amine while refluxing a nonpolar solvent in the presence of an acid catalyst, and simultaneously produced water is distilled off. One-step reaction for producing N-substituted maleimides. This one-step reaction is more preferable from the viewpoint of production efficiency of N-substituted maleimides.
[0012]
The production of N-substituted maleimides is preferably carried out under the following conditions.
Maleic anhydride is used in an amount of 0.8 to 1.5 mol, preferably 0.9 to 1.3 mol, per mol of primary amine. If it is less than 0.8 mol, a large amount of adduct of amine is produced as a by-product, and the purity and yield are reduced. This is not preferable, and if it is more than 1.5 mol, the excess of maleic anhydride may block the piping system. It is not preferable because the influence becomes large and it becomes uneconomical.
[0013]
The acid catalyst is used in an amount of 0.01 to 0.3 mol, preferably 0.05 to 0.2 mol, per mol of the primary amine. When the amount is less than 0.01 mol, the catalytic effect is hardly observed, which is not preferable. When the amount is more than 0.3 mol, the side reaction increases and the product yield decreases, which is not preferable.
[0014]
Moreover, although reaction temperature changes with kinds of the main solvent to be used, ie, a nonpolar solvent, it is the range of 80-200 degreeC, Preferably it is 120-160 degreeC. Such a temperature range is preferable because water generated during the reaction can be easily distilled off by azeotropy and the reaction rate is improved. Moreover, although it may not become the said temperature range with the main solvent to be used, in that case, it sets to appropriate temperature by adjusting the pressure in a system. For example, those having a low boiling point such as hexane and cyclohexane are reacted under pressure, and those having a high boiling point such as diethylbenzene are reacted under reduced pressure.
[0015]
As mentioned above, although the manufacturing method of N-substituted maleimide was demonstrated by one step reaction, even if it is a two step reaction which synthesize | combines maleic acid monoamide from maleic anhydride and a primary amine previously, it can manufacture.
[0016]
Here, it is considered that the following effects can be obtained by using a mixed solvent of a nonpolar solvent and a protic polar solvent.
(1) The volatilized protic polar solvent lowers the partial pressure of maleic anhydride in the gas phase, thereby lowering the maleic anhydride concentration in the gas phase, thereby reducing the amount of deposited deposits in the pipe. And by-product reaction with primary amines is prevented,
(2) Since the volatilized protic polar solvent dissolves and removes the deposits on the condenser and the water separator and contributes to the reaction, the reaction of by-products can be prevented and the yield can be improved accordingly.
Therefore, in the present invention, the amount of the nonpolar solvent used is ½ to less than when a conventional aprotic polar solvent such as N, N-dimethylformamide (DMF) is added to the nonpolar solvent. It can be reduced to 1/3. Therefore, the efficiency per the same capacity can be improved about twice.
[0017]
Further, in the present invention, water produced during the reaction is efficiently distilled off by azeotropic distillation, and the production of maleic acid due to the reaction between the starting maleic anhydride and water in the system is suppressed. As a result, the loss of maleic anhydride is suppressed, and the purity and reaction yield are improved together with the improvement of the capacity efficiency.
Although it is possible to further reduce the amount of nonpolar solvent used in order to increase productivity, it may be impossible to ignore the by-product of the polymer. In that case, it is preferable to add a polymerization inhibitor.
[0018]
As the polymerization inhibitor, for example, hindered phenols and organic and inorganic copper compounds are suitable.
[0019]
Examples of hindered phenols include 2,6-di-t-butyl-p-cresol, 2,5-di-t-butylhydroquinone, 2,5-di-t-amylhydroquinone, 4,4′-butylidenebis (6 -T-butyl-3-methyl-phenol), 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol) and the like. It is done.
[0020]
Copper compounds include metal copper, copper oxide, copper hydroxide, copper sulfide, copper chloride, copper sulfate, copper nitrate, copper phosphate, copper acetate, copper oxyacetate, copper propionate, copper valerate, copper citrate, hexane Copper oxide, copper gluconate, copper salicylate, copper caprylate, copper pelargonate, copper sebacate, copper palmitate, copper oleate, copper stearate, copper bisglycinate, bisacetylacetonate copper, bisaminobenzenesulfonate copper, Examples thereof include bis leucinate copper, bis (acetylacetoacetonate) copper, and copper dibutyldithiocarbamate. These polymerization inhibitors may be added as a mixture.
[0021]
The reaction mixture containing N-substituted maleimides obtained as described above is further neutralized with dilute alkaline water, and after washing with water, the solvent is recovered and distilled to obtain higher purity N-substituted maleimides. Obtainable.
[0022]
The method of the present invention can also be used for the production of N-substituted maleimides of any combination of maleic anhydride and primary amine. In particular, N-benzylmaleimide, N-cyclohexylmaleimide , N-phenylmaleimide and N-laurylmaleimide are preferable.
Further, the N-substituted maleimides produced according to the present invention can be used as pharmaceuticals, agricultural chemicals, dyes, polymer raw materials, or intermediates thereof.
[0023]
【Example】
EXAMPLES Next, although an Example demonstrates this invention in more detail, this invention is not limited by these. Moreover, the conversion yield, conversion yield, and capacity efficiency were calculated | required as follows.
(Equivalent yield)
The product obtained by multiplying the purity of each fraction of the first fraction, main fraction, and final fraction in distillation purification by the weight of each fraction was totaled.
(Conversion yield)
The conversion yield was obtained by dividing by the theoretical yield based on amine.
(Capacity efficiency)
The conversion yield was determined by dividing the amount of use from maleic anhydride to formic acid in Table 1 divided by the respective specific gravity (volume).
Furthermore, the clogged state of the condenser and water separator shown in Tables 1 and 2 indicates that the adhering matter is not recognized or very small, ○, if there is a small amount of adhering, Δ, the amount of adhering matter. The case where there is quite a lot and the inside of the piping is blocked is indicated by x.
[0024]
Example 1
A 1-liter glass reaction apparatus having a stirrer, a thermometer, a dropping funnel, a vapor pipe for performing a dehydration reaction, a condenser, and a water separator was prepared. The reactor was charged with 420 g of xylene and 57 g of paratoluenesulfonic acid, and the water separator was separately filled with xylene.
First, the crystal water of paratoluenesulfonic acid as a catalyst was removed under reflux of xylene, and then cooled to a temperature at which xylene did not reflux.
Next, 176.6 g (1.8 mol) of maleic anhydride, 0.22 g of 2,2′-methylene-bis (4-methyl-6-tert-butylphenol) (polymerization inhibitor A) as a polymerization inhibitor and acetic acid 4.5 g was charged.
[0025]
The contents were heated to reflux xylene. The temperature at this time was 137 ° C. When the reflux amount of xylene was stabilized, 160.8 g (1.5 mol) of benzylamine was added over 3 hours, and the generated reaction water was sequentially taken out of the system from the water separator. Then, in order to complete reaction, the reaction material which has N-benzyl maleimide as a main component was obtained by continuing a heating for 1 hour. The temperature at this time was 146 ° C. During this time, the condenser was not blocked and the water separator was not soiled.
[0026]
When the reaction product thus obtained was analyzed by gas chromatography using an internal standard method, the reaction rate based on benzylamine was 85.3%.
Next, 280 g of water at 75 ° C. was added and washed with hot water, and the aqueous layer was separated and removed. The acid value of the contents at this time was 2.5. Next, 280 g of Na 2 CO 3 , 1.5 times the amount corresponding to the acid value, was dissolved in 280 g of water at 75 ° C., added to the product layer for neutralization, and further washed with 280 g of water at 75 ° C. To complete the post-processing.
[0027]
Next, the temperature was raised to a vacuum degree of 10 mmHg and a temperature of 140 ° C., and xylene was distilled off. The crude yield was 253.1 g (crude yield 90.1%). 251.2 g of this crude product was simply distilled at a vacuum degree of 2 mmHg and divided into the following fractions. 7.5 g of initial fraction, 210.9 g of main fraction, 16.5 g of final fraction, and 16.3 g of residual fraction.
Each fraction was analyzed by gas chromatography to obtain an equivalent yield of 230.0 g, and the equivalent yield was 81.9%. The purity of the main fraction in gas chromatography analysis was 99.8%. The results are shown in Table 1.
[0028]
Examples 2-4
The same procedure as in Example 1 was carried out except that the amount of xylene and the amount of acetic acid were changed as shown in Table 1 using the reactor of Example 1. In Examples 3 and 4 in which the amount of nonpolar solvent used was reduced, 0.28 g of copper dibutyldithiocarbamate (polymerization inhibitor B) was used as the polymerization inhibitor. The results are shown in Table 1.
[0029]
Examples 5-7
Using the reaction apparatus of Example 1, the same procedure as in Example 1 was conducted except that N-cyclohexylmaleimide was produced by changing the primary amine to cyclohexylamine. The results are shown in Table 1.
[0030]
Examples 8-9
The test was carried out under the same conditions as in Examples 4 and 7, except that acetic acid was changed to formic acid. The results are shown in Table 1.
[0031]
Example 10
Example 4 was carried out in the same manner as in Example 4 except that benzylamine was replaced with aniline, xylene was replaced with toluene, and polymerization inhibitor B was replaced with polymerization inhibitor A) to produce N-phenylmaleimide. The results are shown in Table 1.
[0032]
[Table 1]
Figure 0004014683
[0033]
Comparative Example 1
The same procedure as in Example 1 was conducted except that 21.9 g of N, N-dimethylformamide (DMF) was used instead of acetic acid.
In Examples 1 to 10, no deposits on the condenser and crystals in the water separator were observed. However, in this comparative example, after 30 minutes had passed since benzylamine was added, the substances entered the condenser and the water separator. There was a deposit.
Further, the reaction was completed after 3 hours until the end, but these deposits gradually accumulated. The composition of the adhered substance was analyzed by liquid chromatography. As a result, maleic acid monobenzylamide was 45%, maleic acid was 53.5%, and N-benzylmaleimide was 1.5%.
[0034]
When the reaction contents were analyzed by gas chromatography using the internal standard method, the reaction rate was 82.5%. When the reaction contents were post-treated and distilled in the same manner as in Example 1, the crude yield was 240.2 g (crude yield 85.5%). 237.7 g of this crude product was distilled to obtain the next fraction. Initial fraction 7.3 g, main fraction 192.3 g, final fraction 15.0 g, residual fraction 23.1 g.
Each fraction was analyzed by gas chromatography to obtain a converted yield, which was 210.2 g, and the converted yield was 74.8%. The purity of the main fraction in gas chromatography analysis was 99.8%, which was the same as in Example 1. The results are shown in Table 2.
[0035]
Comparative Examples 2-3
It carried out on the conditions of Example 4 and Example 7 without using acetic acid. The results are shown in Table 2.
In this experiment, the condenser was clogged immediately after the primary amine was added, and the water separator was contaminated. Therefore, the experiment was completed after cleaning during the reaction. The results are shown in Table 2.
[0036]
[Table 2]
Figure 0004014683
[0037]
As is apparent from Tables 1 and 2 above, according to the method of the present invention, the reaction rate can be increased, and by-products such as maleic acid and maleic acid monoamide attached to a condenser, a water separator, and the like. Can block the device.
[0038]
【The invention's effect】
According to the method of the present invention, adverse effects resulting from a reduction in the amount of organic solvent used as a means for enhancing industrial productivity, that is, by-product formation with primary amines due to an increase in maleic anhydride concentration in the gas phase. Various problems in industrial production such as increase and blockage of condensers due to the adhesion can be solved by dissolving by-products to which the protic polar solvent adheres. Furthermore, since the protic polar solvent dissolves maleic anhydride and maleic acid and returns them to the reaction system, the loss of maleic anhydride is reduced, and high-purity N-substituted maleimides can be obtained in high yield. .

Claims (3)

無水マレイン酸と第一アミンを、酸触媒の存在下、非極性溶媒と、蟻酸、酢酸及びプロピオン酸から選択されたプロトン性極性溶媒との混合溶媒中で反応させることによりN−置換マレイミド類を得ることを特徴とするN−置換マレイミド類の製造方法。N-substituted maleimides are reacted by reacting maleic anhydride and primary amine in the presence of an acid catalyst in a mixed solvent of a nonpolar solvent and a protic polar solvent selected from formic acid, acetic acid and propionic acid. A process for producing N-substituted maleimides, characterized in that it is obtained. 非極性溶媒が、キシレン又はトルエンである請求項1に記載の製造方法。The production method according to claim 1, wherein the nonpolar solvent is xylene or toluene. プロトン性極性溶媒が、非極性溶媒に対して1〜20重量%含まれる請求項1又は2に記載の製造方法。The production method according to claim 1 or 2 , wherein the protic polar solvent is contained in an amount of 1 to 20% by weight based on the nonpolar solvent.
JP00886197A 1996-06-10 1997-01-21 Process for producing N-substituted maleimides Expired - Fee Related JP4014683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00886197A JP4014683B2 (en) 1996-06-10 1997-01-21 Process for producing N-substituted maleimides

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14726696 1996-06-10
JP8-147266 1996-06-10
JP00886197A JP4014683B2 (en) 1996-06-10 1997-01-21 Process for producing N-substituted maleimides

Publications (2)

Publication Number Publication Date
JPH1059935A JPH1059935A (en) 1998-03-03
JP4014683B2 true JP4014683B2 (en) 2007-11-28

Family

ID=26343467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00886197A Expired - Fee Related JP4014683B2 (en) 1996-06-10 1997-01-21 Process for producing N-substituted maleimides

Country Status (1)

Country Link
JP (1) JP4014683B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038415A1 (en) * 2016-08-24 2018-03-01 주식회사 엘지화학 Dehydration reaction catalyst for preparing n-substituted maleimide, method for preparing same, and method for preparing n-substituted maleimide
US10464050B2 (en) 2016-08-24 2019-11-05 Lg Chem, Ltd. Dehydration catalyst for preparing N-substituted maleimide, preparation method thereof, and method of preparing N-substituted maleimide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6753603B2 (en) * 2015-09-04 2020-09-09 ユニチカ株式会社 End-modified oligoimide and its manufacturing method
JP6273389B1 (en) * 2017-02-03 2018-01-31 ケイ・アイ化成株式会社 Method for producing N-aliphatic substituted maleimide compound
JP6336192B1 (en) * 2017-11-22 2018-06-06 ケイ・アイ化成株式会社 Process for producing aliphatic maleimide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038415A1 (en) * 2016-08-24 2018-03-01 주식회사 엘지화학 Dehydration reaction catalyst for preparing n-substituted maleimide, method for preparing same, and method for preparing n-substituted maleimide
US10464050B2 (en) 2016-08-24 2019-11-05 Lg Chem, Ltd. Dehydration catalyst for preparing N-substituted maleimide, preparation method thereof, and method of preparing N-substituted maleimide

Also Published As

Publication number Publication date
JPH1059935A (en) 1998-03-03

Similar Documents

Publication Publication Date Title
JP6800334B2 (en) Process of preparing BTK inhibitors
CN101027276B (en) Method for the continuous production of alkyl amino acryl amides
EP0165574B1 (en) Method for production of maleimides
AU2018102141A4 (en) Method for preparing Baricitinib
JPH02196753A (en) Production of unsaturated carboxylic acid ester
CA1256899A (en) Derivatives of w-amino acids, the preparation and utilisation thereof; and the compositions containing these derivatives
JP4014683B2 (en) Process for producing N-substituted maleimides
WO2005121083A1 (en) Process for the preparation of n-akyl-pyrrolidones
JPH0140028B2 (en)
JP2939433B2 (en) Method for producing cyclic N-vinylcarboxylic acid amide
US5741913A (en) Process for preparing N-substituted maleimides
US20160156022A1 (en) Process for purifying n-alkylpyrrolidones
JPH01190667A (en) Production of n-methyl-2-pyrrolidone
JP4198863B2 (en) Method for purifying N-alkylmaleimide
JPS62138468A (en) Production of n-substituted maleimide
JP3998892B2 (en) Method for producing high-purity alkyladamantyl ester
JPH04235959A (en) Process for preparing n-substituted pyrrolidone
JP2929003B2 (en) Method for producing lactam in high-temperature hot water
US5872260A (en) High purity 1,3-dialkyl-2-imidazolidinone and preparation process of same
JP2505550B2 (en) Process for producing 3-amino-1-benzylpyrrolidine
JP3717277B2 (en) High purity 1,3-dialkyl-2-imidazolidinone and process for producing the same
JPH0525129A (en) Production of n-substituted maleimides
JPH0774198B2 (en) Method for purifying N-substituted maleimides
JPH0791245B2 (en) Process for producing high-purity 2,5-di-phenylamino-terephthalic acid and its dialkyl ester
JPH0665260A (en) Production of sodium bistrimethylsilylamide

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees