JP4013633B2 - Load cell - Google Patents

Load cell Download PDF

Info

Publication number
JP4013633B2
JP4013633B2 JP2002131452A JP2002131452A JP4013633B2 JP 4013633 B2 JP4013633 B2 JP 4013633B2 JP 2002131452 A JP2002131452 A JP 2002131452A JP 2002131452 A JP2002131452 A JP 2002131452A JP 4013633 B2 JP4013633 B2 JP 4013633B2
Authority
JP
Japan
Prior art keywords
strain
load
load cell
flexible portion
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002131452A
Other languages
Japanese (ja)
Other versions
JP2003322572A (en
Inventor
伸幸 吉桑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2002131452A priority Critical patent/JP4013633B2/en
Publication of JP2003322572A publication Critical patent/JP2003322572A/en
Application granted granted Critical
Publication of JP4013633B2 publication Critical patent/JP4013633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Force In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は歪みゲージを用いたロードセルに関し、特に、電子はかりの荷重センサ等に用いて、その偏置誤差の調整を極めて容易に行うことのできるロードセルに関する。
【0002】
【従来の技術】
歪みゲージ式のロードセルにおいては、一般に、荷重の作用により弾性変形する起歪体に複数の歪みゲージを貼着し、その各歪みゲージによりホイトストーンブリッジを形成して、そのホイトストーンブリッジの出力を起歪体に作用する荷重の検出出力として用いる。
【0003】
図3に従来のこの種のロードセルの例を斜視図で示す。この例における起歪体40は、一対の柱部41a,41bを備えるとともに、その各柱部41a,41bを、それぞれの両端部に可撓部eを有する上下2本の梁42a,42bで連結した構造を有し、4箇所の可撓部eにそれぞれ1枚ずつ、合計4枚の歪みゲージS1〜S4が貼着されている。そして、これらの各歪みゲージS1〜S4により、図4に示すようなホイトストーンブリッジが組まれる。
【0004】
以上の構成において、各柱部41a,41bのうちのいずれか一方、例えば柱部41aを固定し、他方の柱部41bに荷重を作用させたとき、各可撓部eの弾性変形により各歪みゲージS1〜S4の抵抗値が変化し、これによってホイトストーンブリッジの出力Voutが荷重に応じた大きさとなる。
【0005】
このようなロードセルを電子はかりの荷重センサとして用いる場合、図5に例示するように、一方の柱部41aの底部をベース51に固定し、他方の柱部41bの上面に皿受け52を装着し、その皿受け52に測定皿53を載せた構成が多用される。
【0006】
このような電子はかりにおいては、被測定物の測定皿53上への搭載位置による重量測定結果の相違、つまり偏置誤差が極力小さくなるように調整する必要がある。
【0007】
従来のこの種の電子はかりにおける偏置誤差の調整は、図6に測定皿53の平面図を示すように、被測定物を測定皿53の中心部P0並びに四隅P1〜P4に載せたときの重量測定結果が互いに一致もしくは設定範囲内に収まるように、ロードセルの起歪体10の4箇所の可撓部eを削っていくことによって行われている。
【0008】
【発明が解決しようとする課題】
ところで、上記した従来の偏置誤差の調整作業は、相当の熟練を要し、その習熟度によっては相当の時間を要するばかりでなく、可撓部eを削る際にロードセルを損傷させてしまう危険性がある。
【0009】
また、高分解能のロードセルでは、電子はかり等への組み込みなど、機器への取り付け時にその都度再調整する必要があるという問題もある。
【0010】
本発明はこのような実情に鑑みてなされたもので、起歪体を削ることなく、かつ、熟練を要することなく随時かつ容易に偏置誤差の調整を行うことのできるロードセルの提供を目的としている。
【0011】
【課題を解決するための手段】
上記の目的を達成するため、本発明のロードセルは、両端部に可撓部を有する上下2本の梁を有する起歪体と、上記各可撓部にそれぞれ歪みゲージを貼着してなるロードセルにおいて、上記各可撓部のそれぞれに前記梁の短手方向にオフセットして貼着され複数の歪みゲージ梁の一方の可撓部に貼着された歪みゲージと、他方の可撓部に貼着された歪みゲージと、を含むホイトストーンブリッジの複数と、その各ホイトストーンブリッジの出力の線形和を算出して当該ロードセルに作用する荷重の検出値として出力する演算手段を備えるとともに、その線形和の算出時に各ホイトストーンブリッジの出力に乗じる係数が、当該各ホイトストーンブリッジの出力に現れる偏置誤差を相殺する値に設定されていることによって特徴づけられる。
【0012】
本発明は、荷重の作用位置がロードセルの荷重受けの中心部を挟んで対角線の位置にあるとき(図6におけるP1とP4、あるいはP2とP3)、偏置誤差がほぼ正負に反転した値になることを利用し、起歪体の各可撓部にそれぞれ複数の歪みゲージを貼着し、これらにより複数のホイトストーンブリッジを組み、その線形和により荷重検出出力を得るように構成して、その線形和の算出時に各ホイトストーンブリッジの出力に含まれる偏置誤差成分を相殺するような係数を用いることによって、所期の目的を達成しようとするものである。
【0013】
すなわち、一つの起歪体の各可撓部にそれぞれ複数の歪みゲージを貼着して、これらで複数のホイトストーンブリッジを形成し、その各出力の線形和で荷重検出出力を表すように構成したとき、各ホイトストーンブリッジの出力に現れる偏置誤差を測定することにより、その各偏置誤差を相殺して線形和から偏置誤差を解消するための係数を簡単な連立方程式から求めることが可能である(後述する式(7),(8)参照)。
【0014】
従って、本発明によると、起歪体の可撓部を削ることなく、各ホイトストーンブリッジの出力に現れる偏置誤差を測定し、その測定結果を用いて線形和における各ホイトストーンブリッジの出力に乗じるべき係数を算出して演算部に設定することによって、ロードセルの偏置誤差を解消することができ、熟練を要することなく偏置誤差の調整が可能であり、電子はかり等に組み込んだ後に随時に調整が可能となる。
【0015】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の実施の形態の斜視図であり、図2はその各歪みゲージS1〜S8の結線状態を示す図である。
【0016】
起歪体10は前記した図3に示した従来のものと同等の構造を有しており、一対の柱部11a,11bを備えるとともに、その各柱部11a,11bを、それぞれの両端部に可撓部eを有する上下2本の梁12a,12bで連結した構造を有している。
【0017】
起歪体10の各可撓部eには、それぞれ2枚ずつの歪みゲージS1とS3、S2とS4、S5とS7、およびS6とS8が貼着されており、これらの各歪みゲージS1〜S8は、図2に示すように、2つの固定抵抗R0とともに4つのホイトストーンブリッジ21、22、23および24を形成するように相互に結線されている。そして、こられの各ホイトストーンブリッジ21,22,23,および24の一端は接地され、他端には一定の直流電圧VB が印加される。
【0018】
以上の回路構成において、各ホイトストーンブリッジ21,22,23および24の出力Vout1〜Vout4は、図2に示すように、歪みゲージS1とS2の間の電圧をV1 ,歪みゲージS3とS4の間の電圧をV2 ,歪みゲージS5とS6の間の電圧をV3 、歪みゲージS7とS8の間の電圧をV4 、更に2つの固定抵抗R0,R0間の電圧をV0 とすると、
Vout1=V1 −V0
Vout2=V2 −V0
Vout3=V3 −V0
Vout4=V4 −V0
となる。
【0019】
そして、以上の各ホイトストーンブリッジ21〜24の出力Vout1〜Vout4は、演算部3に導入され、以下の(1)式に示す演算によってこれらの線形和が算出され、その線形和が当該ロードセルによる荷重検出出力Woutとして外部に取り出される。
Wout=Vout1+α・Vout2+Vout3+β・Vout4 ・・・・(1)
【0020】
この(1)式において、係数αおよびβは、以下に示すように算出されて設定されることにより、各ホイトストーンブリッジ21〜24の出力に含まれる偏置誤差成分が相殺され、荷重検出出力Woutは偏置誤差成分を含まない信号となる。
【0021】
前記した図5に示すように、電子はかりに本発明の実施の形態を組み込んだ状態で、図6に示すように測定皿53上のP0〜P4に順次所定の分銅等を載せ、各ホイトストーンブリッジ21〜24の出力Vout1〜Vout4を測定する。
【0022】
測定皿53の中心部P0に荷重を負荷したときの各ホイトストーンブリッジ21〜24の出力Vout1〜Vout4を
Vout1=W1
Vout2=W2
Vout3=W3
Vout4=W4
とし、P1に荷重を負荷したときの出力を、それぞれ
Vout1=W1 +A1
Vout2=W2 +A2
Vout3=W3 +A3
Vout4=W4 +A4
とする。また、P2に荷重を負荷したときの出力をそれぞれ
Vout1=W1 +B1
Vout2=W2 +B2
Vout3=W3 +B3
Vout4=W4 +B4
とする。
【0023】
この場合、測定皿53の中心を挟んで対角線上で等距離の位置に荷重を負荷したとき、偏置誤差は極性が逆転した値となるため、P3に荷重を負荷したときの出力は、
Vout1=W1 −B1
Vout2=W2 −B2
Vout3=W3 −B3
Vout4=W4 −B4
となる。また、同様にしてP4に荷重を負荷したとの出力は、
Vout1=W1 −A1
Vout2=W2 −A2
Vout3=W3 −A3
Vout4=W4 −A4
となる。
【0024】
今、前記した(1)式を考えたとき、荷重を測定皿5の中央部P0に負荷したとき、

Figure 0004013633
とすれば、荷重をP1に負荷したときの出力Woutは、
Wout=W+A1 +α・A2 +A3 +β・A4 ・・・・(3)
となる。
【0025】
また、荷重をP2に負荷したときの出力Woutは、
Wout=W+B1 +α・B2 +B3 +β・B4 ・・・・(4)
となり、同じくP3に負荷したときの出力Woutは、
Wout=W−B1 −α・B2 −B3 −β・B4 ・・・・(5)
で、P4に負荷したときには、
Wout=W−A1 −α・A2 −A3 −β・A4 ・・・・(6)
となる。
【0026】
ここで、
1 +α・A2 +A3 +β・A4 =0 ・・・・(7)
1 +α・B2 +B3 +β・B4 =0 ・・・・(8)
となるようなαおよびβを算出すると、(1)式で表されるWoutは、測定皿53上のP1〜P4のいずれに荷重を負荷しても、P0に荷重を負荷したときの値と同じWとなり、偏置誤差を解消した荷重検出出力を得ることができる。
【0027】
なお、(7),(8)式を用いた連立方程式から求めたαおよびβは、
α={(B1 +B3 )/B4 −A1 −A3 }/(A2 −B2 /B4
β={(A1 +A3 )/A2 −B1 −B3 }/(B4 −A 4/A 2
となる。
【0028】
以上の本発明の実施の形態において特に注目すべき点は、ロードセルの偏置誤差の調整に際して、起歪体を削る必要がなく、複数のホイトストーンブリッジ21〜24の偏置誤差を測定して、線形和の演算式における係数を算出して設定するだけでよい点であり、これにより、熟練をようすることなく、随時に正確な偏置誤差調整が可能となる。
【0029】
なお、本発明においては、起歪体の構造・形状については、上記した実施の形態において用いたもののほか、他の公知の構造・形状のものを用い得ることは勿論である。
【0030】
【発明の効果】
以上のように、本発明によれば、両端部に可撓部を有する上下2本の梁を有する起歪体と、上記各可撓部にそれぞれ歪みゲージを貼着してなるロードセルにおいて、上記各可撓部のそれぞれに前記梁の短手方向にオフセットして貼着され複数の歪みゲージ梁の一方の可撓部に貼着された歪みゲージと、他方の可撓部に貼着された歪みゲージと、を含むホイトストーンブリッジの複数と、その各ホイトストーンブリッジの出力の線形和を算出して当該ロードセルに作用する荷重の検出値として出力する演算手段を備えるとともに、その線形和の算出時に各ホイトストーンブリッジの出力に乗じる係数が、当該各ホイトストーンブリッジの出力に現れる偏置誤差を相殺する値に設定されているので、偏置誤差の調整に当たって、従来のように起歪体を削る必要がなく、熟練を要することなく、常に正確な調整を行うことが可能となった。また、起歪体を削ることなく偏置誤差の調整が可能であることから、電子はかりなどの装置に組み込んだ状態で偏置誤差を簡単に調整することができ、偏置誤差の調整作業を大幅に簡素化することが可能となった。
【図面の簡単な説明】
【図1】本発明の実施の形態の斜視図である。
【図2】図1における各歪みゲージS1〜S8の結線図である。
【図3】従来のロードセルの例を示す斜視図である。
【図4】図3の従来のロードセルの各歪みゲージの結線図である。
【図5】ロードセルを荷重センサとした電子はかりの構成例の説明図である。
【図6】電子はかりの測定皿の平面図で示す、偏置誤差の調整時における荷重の負荷位置の説明図である。
【符号の説明】
10 起歪体
11a,11b 柱部
12a,12b 梁
e 可撓部
S1〜S8 歪みゲージ
21〜24 ホイトストーンブリッジ
3 演算部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a load cell using a strain gauge, and more particularly to a load cell that can be used for a load sensor or the like of an electronic balance and that can adjust the displacement error very easily.
[0002]
[Prior art]
In a strain gauge type load cell, generally, a plurality of strain gauges are attached to a strain generating body that is elastically deformed by the action of a load, and a Wheatstone bridge is formed by each strain gauge, and the output of the Wheatstone bridge is output. This is used as a detection output of the load acting on the strain generating body.
[0003]
FIG. 3 is a perspective view showing an example of a conventional load cell of this type. The strain body 40 in this example includes a pair of column portions 41a and 41b, and connects the column portions 41a and 41b with upper and lower two beams 42a and 42b having flexible portions e at both ends. In total, four strain gauges S1 to S4 are attached to each of the four flexible portions e. Then, a Wheatstone bridge as shown in FIG. 4 is assembled by these strain gauges S1 to S4.
[0004]
In the above configuration, when one of the column portions 41a and 41b, for example, the column portion 41a is fixed and a load is applied to the other column portion 41b, each strain is caused by elastic deformation of each flexible portion e. The resistance values of the gauges S1 to S4 change, whereby the output Vout of the Wheatstone bridge becomes a magnitude corresponding to the load.
[0005]
When such a load cell is used as a load sensor for an electronic scale, as shown in FIG. 5, the bottom of one column 41a is fixed to the base 51, and a tray receiver 52 is mounted on the upper surface of the other column 41b. A configuration in which the measurement tray 53 is placed on the tray receiver 52 is often used.
[0006]
In such an electronic balance, it is necessary to adjust so that the difference in the weight measurement result depending on the mounting position of the object to be measured on the measurement pan 53, that is, the deviation error becomes as small as possible.
[0007]
Adjustment of the deviation error in this type of conventional electronic scale is performed when the object to be measured is placed on the central portion P0 and the four corners P1 to P4 of the measuring plate 53 as shown in the plan view of the measuring plate 53 in FIG. This is done by cutting the four flexible portions e of the strain-generating body 10 of the load cell so that the weight measurement results match each other or fall within a set range.
[0008]
[Problems to be solved by the invention]
By the way, the above-described conventional adjustment operation of the deviation error requires considerable skill, and depending on the level of proficiency thereof, not only a considerable time is required but also the risk of damaging the load cell when the flexible portion e is cut. There is sex.
[0009]
In addition, there is a problem that a high-resolution load cell needs to be readjusted each time it is attached to a device, such as being incorporated into an electronic scale.
[0010]
The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a load cell that can easily adjust an offset error at any time without cutting a strain generating body and without requiring skill. Yes.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a load cell according to the present invention includes a strain generating body having two upper and lower beams each having a flexible portion at both ends , and a load cell in which a strain gauge is attached to each flexible portion. in a plurality of strain gauges which are attached to offset in the lateral direction of the beam, each of said respective flexible portions, and the strain gauge is adhered to one of the flexible portion of the beam, the other flexible A plurality of Wheatstone bridges including a strain gauge affixed to the section, and a calculation means for calculating a linear sum of outputs of the respective Wheatstone bridges and outputting as a detection value of a load acting on the load cell. In addition, the coefficient by which the output of each Wheatstone bridge is multiplied when calculating the linear sum is set to a value that cancels out the offset error that appears in the output of each Wheatstone bridge. That.
[0012]
In the present invention, when the load application position is at a diagonal position across the center of the load receiver of the load cell (P1 and P4 in FIG. 6 or P2 and P3), the displacement error is approximately inverted to positive and negative values. By using this, a plurality of strain gauges are attached to each flexible part of the strain generating body, a plurality of Wheatstone bridges are assembled by these, and a load detection output is obtained by a linear sum thereof. By using a coefficient that cancels out the offset error component included in the output of each Wheatstone bridge when calculating the linear sum, the intended purpose is achieved.
[0013]
That is, a plurality of strain gauges are attached to each flexible part of one strain generating body to form a plurality of Wheatstone bridges, and the load detection output is represented by a linear sum of the outputs. Then, by measuring the offset error appearing at the output of each Wheatstone bridge, the coefficient for canceling the offset error and canceling the offset error from the linear sum can be obtained from a simple simultaneous equation. It is possible (see equations (7) and (8) described later).
[0014]
Therefore, according to the present invention, the offset error that appears in the output of each Wheatstone bridge is measured without cutting the flexible portion of the strain generating body, and the measurement result is used to calculate the output of each Wheatstone bridge in the linear sum. By calculating the coefficient to be multiplied and setting it in the calculation unit, it is possible to eliminate the load cell's offset error, and it is possible to adjust the offset error without requiring skill. Adjustment is possible.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view of an embodiment of the present invention, and FIG. 2 is a diagram showing a connection state of the strain gauges S1 to S8.
[0016]
The strain body 10 has a structure equivalent to that of the conventional one shown in FIG. 3 and includes a pair of column portions 11a and 11b, and the column portions 11a and 11b are provided at both ends. It has a structure in which two upper and lower beams 12a and 12b having a flexible portion e are connected.
[0017]
Two each of the strain gauges S1 and S3, S2 and S4, S5 and S7, and S6 and S8 are attached to each flexible part e of the strain generating body 10, and each of these strain gauges S1 to S4 is attached. As shown in FIG. 2, S8 is connected to each other so as to form four Wheatstone bridges 21, 22, 23 and 24 together with two fixed resistors R0. One end of each of the Wheatstone bridges 21, 22, 23, and 24 is grounded, and a constant DC voltage V B is applied to the other end.
[0018]
In the above circuit configuration, the output Vout1~Vout4 each Hoyt Stonebridge 21, 22, 23 and 24, as shown in FIG. 2, the voltage between the strain gauges S1 and S2 V 1, the strain gauge S3 and S4 the voltage between V 2, V 3 and the voltage between the strain gauges S5 and S6, voltage V 4 between the strain gauge S7 and S8, the further the voltage between the two fixed resistors R0, R0 and V 0,
Vout1 = V 1 -V 0
Vout2 = V 2 -V 0
Vout3 = V 3 -V 0
Vout4 = V 4 -V 0
It becomes.
[0019]
Then, the outputs Vout1 to Vout4 of each of the above Wheatstone bridges 21 to 24 are introduced into the calculation unit 3, and these linear sums are calculated by the calculation shown in the following equation (1), and the linear sum is determined by the load cell. It is taken out as a load detection output Wout.
Wout = Vout1 + α · Vout2 + Vout3 + β · Vout4 (1)
[0020]
In the equation (1), the coefficients α and β are calculated and set as shown below, so that the offset error components included in the outputs of the Wheatstone bridges 21 to 24 are canceled out, and the load detection output Wout is a signal that does not include an offset error component.
[0021]
As shown in FIG. 5 described above, with the embodiment of the present invention incorporated in an electronic balance, predetermined weights and the like are sequentially placed on P0 to P4 on the measurement pan 53 as shown in FIG. The outputs Vout1 to Vout4 of the bridges 21 to 24 are measured.
[0022]
The outputs Vout1 to Vout4 of the Wheatstone bridges 21 to 24 when a load is applied to the central portion P0 of the measurement dish 53 are Vout1 = W 1.
Vout2 = W 2
Vout3 = W 3
Vout4 = W 4
And the output when a load is applied to P1, respectively, Vout1 = W 1 + A 1
Vout2 = W 2 + A 2
Vout3 = W 3 + A 3
Vout4 = W 4 + A 4
And Further, the outputs when a load is applied to P2 are Vout1 = W 1 + B 1 , respectively.
Vout2 = W 2 + B 2
Vout3 = W 3 + B 3
Vout4 = W 4 + B 4
And
[0023]
In this case, when a load is applied to the equidistant position on the diagonal line across the center of the measurement pan 53, the displacement error is a value with the polarity reversed, so the output when the load is applied to P3 is
Vout1 = W 1 −B 1
Vout2 = W 2 -B 2
Vout3 = W 3 -B 3
Vout4 = W 4 -B 4
It becomes. Similarly, the output that P4 is loaded is
Vout1 = W 1 -A 1
Vout2 = W 2 -A 2
Vout3 = W 3 -A 3
Vout4 = W 4 -A 4
It becomes.
[0024]
Now, when considering the above-described equation (1), when a load is applied to the central portion P0 of the measurement dish 5,
Figure 0004013633
Then, the output Wout when the load is applied to P1 is
Wout = W + A 1 + α · A 2 + A 3 + β · A 4 ... (3)
It becomes.
[0025]
The output Wout when the load is applied to P2 is
Wout = W + B 1 + α · B 2 + B 3 + β · B 4 ... (4)
Similarly, the output Wout when P3 is loaded is
Wout = W−B 1 −α · B 2 −B 3 −β · B 4 ... (5)
And when P4 is loaded,
Wout = W−A 1 −α · A 2 −A 3 −β · A 4 ... (6)
It becomes.
[0026]
here,
A 1 + α · A 2 + A 3 + β · A 4 = 0 (7)
B 1 + α · B 2 + B 3 + β · B 4 = 0 (8)
Wout represented by the equation (1) is a value obtained when a load is applied to P0, regardless of which of P1 to P4 on the measurement pan 53 is applied. It becomes the same W and the load detection output which eliminated the deviation error can be obtained.
[0027]
Note that α and β obtained from the simultaneous equations using the equations (7) and (8) are:
α = {(B 1 + B 3 ) / B 4 −A 1 −A 3 } / (A 2 −B 2 / B 4 )
β = {(A 1 + A 3 ) / A 2 −B 1 −B 3 } / (B 4 −A 4 / A 2 )
It becomes.
[0028]
Of particular note in the embodiments of the present invention described above is that when adjusting the displacement error of the load cell, it is not necessary to cut the strain-generating body, and the displacement errors of the plurality of Wheatstone bridges 21 to 24 are measured. Therefore, it is only necessary to calculate and set the coefficient in the arithmetic expression of the linear sum. This makes it possible to accurately adjust the offset error at any time without skill.
[0029]
In the present invention, as to the structure and shape of the strain generating body, it is needless to say that other known structures and shapes can be used in addition to those used in the above embodiment.
[0030]
【The invention's effect】
As described above, according to the present invention, in the strain cell having two upper and lower beams having flexible portions at both ends , and in the load cell in which a strain gauge is attached to each of the flexible portions, a plurality of strain gauges which are attached to offset in the lateral direction of the beam to each of the flexible portions, and the strain gauge is adhered to one of the flexible portion of the beam, bonded to the other of the flexible portion A plurality of Wheatstone bridges including a strain gauge, and a calculation means for calculating a linear sum of outputs of the respective Wheatstone bridges and outputting them as a detection value of a load acting on the load cell. The coefficient that is multiplied by the output of each Wheatstone bridge when calculating the linear sum is set to a value that cancels out the deviation error that appears in the output of each Wheatstone bridge. It is not necessary to cut the strain body to, without requiring skill, always it is possible to perform accurate adjustment. In addition, since it is possible to adjust the displacement error without cutting the strain body, it is possible to easily adjust the displacement error when it is incorporated in a device such as an electronic scale. It became possible to greatly simplify.
[Brief description of the drawings]
FIG. 1 is a perspective view of an embodiment of the present invention.
FIG. 2 is a connection diagram of strain gauges S1 to S8 in FIG.
FIG. 3 is a perspective view showing an example of a conventional load cell.
4 is a connection diagram of each strain gauge of the conventional load cell of FIG. 3. FIG.
FIG. 5 is an explanatory diagram of a configuration example of an electronic balance using a load cell as a load sensor.
FIG. 6 is an explanatory diagram of a load position of a load when adjusting an offset error, which is shown in a plan view of a measuring pan of an electronic balance.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Strain body 11a, 11b Column part 12a, 12b Beam e Flexible part S1-S8 Strain gauge 21-24 Whitestone bridge 3 Calculation part

Claims (1)

両端部に可撓部を有する上下2本の梁を有する起歪体と、上記各可撓部にそれぞれ歪みゲージを貼着してなるロードセルにおいて、上記各可撓部のそれぞれに前記梁の短手方向にオフセットして貼着され複数の歪みゲージ梁の一方の可撓部に貼着された歪みゲージと、他方の可撓部に貼着された歪みゲージと、を含むホイトストーンブリッジの複数と、その各ホイトストーンブリッジの出力の線形和を算出して当該ロードセルに作用する荷重の検出値として出力する演算手段を備えるとともに、その線形和の算出時に各ホイトストーンブリッジの出力に乗じる係数が、当該各ホイトストーンブリッジの出力に現れる偏置誤差を相殺する値に設定されていることを特徴とするロードセル。 In a strain cell having two upper and lower beams each having a flexible portion at both ends, and a load cell in which a strain gauge is attached to each flexible portion, a short of the beam is attached to each flexible portion. Hoyt stone comprising a plurality of strain gauges which are attached to offset the longitudinal direction, and strain gauges affixed to one of the flexible portion of the beam, the strain gauge is adhered to the other of the flexible portion, the A plurality of bridges , and calculating means for calculating a linear sum of outputs of the respective Wheatstone bridges and outputting them as detection values of a load acting on the load cell, and at the time of calculating the linear sum, outputs of the respective Wheatstone bridges A load cell characterized in that a coefficient to be multiplied by is set to a value that cancels out an offset error appearing in the output of each Wheatstone bridge.
JP2002131452A 2002-05-07 2002-05-07 Load cell Expired - Fee Related JP4013633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002131452A JP4013633B2 (en) 2002-05-07 2002-05-07 Load cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002131452A JP4013633B2 (en) 2002-05-07 2002-05-07 Load cell

Publications (2)

Publication Number Publication Date
JP2003322572A JP2003322572A (en) 2003-11-14
JP4013633B2 true JP4013633B2 (en) 2007-11-28

Family

ID=29544079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002131452A Expired - Fee Related JP4013633B2 (en) 2002-05-07 2002-05-07 Load cell

Country Status (1)

Country Link
JP (1) JP4013633B2 (en)

Also Published As

Publication number Publication date
JP2003322572A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
US11054325B2 (en) Force measurement system
US10765936B2 (en) Force measurement system
US11262258B2 (en) Force measurement system
US10126186B2 (en) Load transducer system configured to correct for measurement errors in the output forces and/or moments of the system
US11604106B2 (en) Force measurement assembly
US8915149B1 (en) Force measurement system
JP4990360B2 (en) Top balance with corner load sensor
JP5154300B2 (en) Combination scale
JP4013633B2 (en) Load cell
JP4708897B2 (en) Load detection device
JPH06103212B2 (en) Weight detector
JPS62829A (en) Method of adjusting resistance gage force transducer and force transducer obtained by said method
JP3972188B2 (en) Load cell
JP5400350B2 (en) Load cell
JPH02238327A (en) Load cell balance
JP3621188B2 (en) Mass measuring device
JPH0226036Y2 (en)
JP2000275116A (en) Method for deciding and correcting creep of load cell
JPS5967424A (en) Load converter
JP6364637B2 (en) Load transducer
RU2382369C1 (en) Strain accelerometre
JP3600355B2 (en) Scale
JP2000039355A (en) Weighing device
JPS62174619A (en) Electronic roberval's balance
JPH07301573A (en) Load cell for detecting vibration and metric unit using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4013633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees