JP4013593B2 - Heat-resistant and impact-resistant cyanate-based curable resin composition and resin varnish for laminates using the same - Google Patents

Heat-resistant and impact-resistant cyanate-based curable resin composition and resin varnish for laminates using the same Download PDF

Info

Publication number
JP4013593B2
JP4013593B2 JP2002057432A JP2002057432A JP4013593B2 JP 4013593 B2 JP4013593 B2 JP 4013593B2 JP 2002057432 A JP2002057432 A JP 2002057432A JP 2002057432 A JP2002057432 A JP 2002057432A JP 4013593 B2 JP4013593 B2 JP 4013593B2
Authority
JP
Japan
Prior art keywords
cyanate
resin composition
resistant
resin
laminates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002057432A
Other languages
Japanese (ja)
Other versions
JP2003252989A (en
Inventor
茂雄 佐瀬
康之 水野
大輔 藤本
信司 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002057432A priority Critical patent/JP4013593B2/en
Publication of JP2003252989A publication Critical patent/JP2003252989A/en
Application granted granted Critical
Publication of JP4013593B2 publication Critical patent/JP4013593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,誘電特性や耐熱性に優れた積層板として有用な樹脂組成物に関するものである。即ち本発明は、高周波特性に優れるシアナート系硬化性樹脂組成物及びこれを用いた積層板用樹脂ワニスに関するものであり,耐熱性が良好で、従来のエポキシ樹脂などの熱硬化性樹脂積層板と同様な成形性及び加工性を具備し、かつ高周波特性に優れた高密度多層配線板製造が可能な硬化性樹脂脂組成物に関するものである
【0002】
近年,通信分野の高周波機器やコンピュータや情報機器端末などで用いられるプリント配線板材料には,高周波化に対応した低損失性を実現するため誘電率及び誘電正接(tanδ)の低い積層板用樹脂が望まれている。
【0003】
これに対し誘電率や誘電正接の低いふっ素樹脂あるいはポリフェニレンエーテル等の熱可塑性樹脂材料,またエポキシ樹脂やBT(ビスマレイミドトリアジン)樹脂等の熱硬化性樹脂にポリフェニレンエーテルなどの熱可塑性樹脂材料を併用した樹脂材料が提案されているが,これらは成形性,即ち成形に高温,高圧が必要という問題や金属箔や金属めっきとの接着性に劣るというに問題があった。
【0004】
一方,上記熱可塑性樹脂を併用しなくとも誘電率や誘電正接が低い樹脂材料としてシアネートエステル樹脂が知られているが,シアネートエステル樹脂単独では,硬化物の脆さに伴う加工性や耐衝撃性などに問題があった。
【0005】
そこで上記問題を改善する樹脂組成物として,特公昭52-31279号公報,特開昭63−54419号公報,特開平2−286723号公報などに示されているシアネートエステル樹脂又はビスマレイミドトリアジン(BT)樹脂にエポキシ樹脂を併用する樹脂組成物などが提案されている。
【0006】
あるいは,シアネートエステル樹脂に特開平2−214741号公報で示されている特殊なフェノール類付加ジシクロペンタジエン重合体系エポキシ樹脂を併用する樹脂組成物,特公平7−47637号公報で示されているビスフェノールA等の多価フェノール類化合物を併用する樹脂組成物を用いる方法が提案されている。
【0007】
さらには,シアネートエステル樹脂に特開平5−339342号公報で示される特殊なフェノール性樹脂,ポリフェニレンエーテル及びエポキシ樹脂を併用した樹脂組成物を用いる方法が提案されている。
【0008】
【発明が解決しようとする課題】
しかし,特公昭52-31279号公報,特開昭63−54419公報,特開平2−286723号公報に示される方法では、加工性,耐衝撃性などの欠点は改善されるものの,イミド樹脂やエポキシ樹脂などのシアネートエステル樹脂以外の他の熱硬化性樹脂を含有しているためGHz帯域での高周波特性が不十分という問題点があった。
【0009】
また同様に,特開平2−214741号公報の特殊エポキシ樹脂や特公平7−47637号公報の多価フェノール類化合物を併用させる方法でも,GHz帯域での誘電特性が悪化するため高周波用途には対応できないという問題があった。
【0010】
さらに,特開平5−339342号公報で示される方法では,誘電特性の悪化は少なくなるもののポリフェニレンエーテルを併用するため成形性が劣るというに問題があった。
【0011】
本発明は、耐熱性,耐衝撃性が良好で、従来のエポキシ樹脂などの熱硬化性樹脂積層板と同様な成形性及び加工性を具備し、かつ高周波特性に優れた高密度多層配線板製造が可能な硬化性樹脂脂組成物を提供するものである。
【0012】
【課題を解決するための手段】
本発明は次のものに関する。
(1) 分子中にシアナト基を2つ以上含有するシアナート類化合物を必須成分としてなる樹脂組成物において,分子中にシアナト基を2つ以上含有するシアナート類化合物が,式(I)
【0013】
【化2】

Figure 0004013593
【0014】
(2) 式(I)で表されるシアナト基を2つ以上含有するシアネナート類化合物が,ビス(4−シアナトフェニル−4’−フェノキシ)スルフォンである(1)記載の積層板用樹脂組成物。
(3) 式(I)で表されるシアナト基を2つ以上含有するシアナート類化合物が,ビス(4−シアナトフェニル)−α−エチレン−ω−ブチレンポリジメチルシロキサンである(1)記載の積層板用樹脂組成物。
(4)(1)、(2)及び(3)記載の積層板用樹脂組成物を有機溶剤に溶解させた積層板用樹脂ワニス。
【0015】
【発明の実施の形態】
本発明は,分子中にシアナト基を2つ以上含有するシアネート類化合物を必須成分としてなる樹脂組成物において,分子中にシアナト基を2つ以上含有するシアネート類化合物が,式(I)で表される化合物の1種以上の混合物であることを特徴とする積層板用樹脂組成物である。
【0016】
本発明の積層板用樹脂組成物において用いられる分子中にシアナト基を2つ以上含有するシアネート類化合物は,式(I)で表される化合物であれば特に限定されるものではないが,具体例としては,ビス(4−シアナトフェニル−4’−フェノキシ)スルフォン,ビス(3,5−ジメチル−4−シアナトフェニル−4’−フェノキシ)スルフォン,ビス(4−シアナトフェニル)−α−エチレン−ω−ブチレンポリジメチルシロキサン,ビス(3,5−ジメチル−4−シアナトフェニル)−α−エチレン−ω−ブチレンポリジメチルシロキサン及びそれらのプレポリマが挙げられる。
【0017】
上記の分子中にシアナト基を2つ以上含有するシアネート類化合物のモノマの結晶性が高い場合,モノマ単独でワニス化する際に固形分濃度によってはワニス中で再結晶する場合がある。そのため上記シアネート化合物モノマをあらかじめプレポリマ化して用いるのが好ましい。プレポリマ中のシアナト基の転化率は特に限定されるものではないが,通常は10〜60%の範囲内の転化率のプレポリマを用いることが望ましい。また分子中にシアナト基を2つ以上含有するシアネート類化合物は一種類を単独で用いてもよく,又は二種類以上を併用して用いてもよい。さらにその他のシアネート類化合物とプレポリマ化して用いてもよい。
【0018】
本発明の積層板用樹脂組成物では,硬化反応を促進するための硬化促進剤が用いられる。硬化促進剤の例としては,コバルト,マンガン,亜鉛,銅等の有機金属塩化合物や金属錯体化合物が挙げられ,具体例としては,2−エチルヘキサン酸コバルト,2−エチルヘキサン酸マンガン,2−エチルヘキサン酸亜鉛,2−エチルヘキサン酸銅,ナフテン酸コバルト,ナフテン酸マンガン,ナフテン酸亜鉛,ナフテン酸銅,コバルト−アセチルアセトン錯体,マンガン−アセチルアセトン錯体,亜鉛−アセチルアセトン錯体,銅−アセチルアセトン錯体等が挙げられる。硬化促進剤は一種類単独で用いてもよく,又は二種類以上を混合して用いてもよい。
【0019】
本発明の積層板用樹脂組成物には,必要に応じて難燃剤その他の添加剤および充填剤及びを配合することができる。難燃剤には臭素系難燃剤,リン系難燃剤,窒素系難燃剤,金属水和物などを用いることができる。必要に応じて配合される充填剤としては,通常,無機充填剤が好適に用いられ,具体例としてはシリカ,ガラス,アルミナ,珪酸カルシウム,珪酸マグネシウム,珪酸アルミニウム等が用いることができる。
本発明の積層板用樹脂組成物は加熱硬化させることにより誘電特性や耐熱性に優れた積層板の製造に供せられる。即ち本発明の積層板用樹脂組成物を溶剤に溶解していったんワニス化し,ガラス布等の基材に含浸し乾燥することによってまずプリプレグを作製する。次いでこのプリプレグを任意枚数と上下に金属箔を重ねて加熱成形することによって積層板とすることができる。
【0020】
本発明の積層板用樹脂組成物をワニス化する場合,溶剤は特に限定するものではないが,具体例としては,アセトン,メチルエチルケトン,メチルイソブチルケトン,シクロヘキサノン等のケトン類,トルエン,キシレン等の芳香族炭化水素類,メトキシエチルアセテート,エトキシエチルアセテート,ブトキシエチルアセテート等のエステル系,N−メチルピロリドン,N,N−ジメチルホルムアミド,N,N−ジメチルアセトアミド等のアミド類,メタノール,エタノール,エチレングリコール,ジエチレングリコール等のアルコール類,エチレングリコールモノメチルエーテル,エチレングリコールモノエチルエーテル,ジエチレングリコールモノメチルエーテル,ジエチレングリコールモノエチルエーテル,トリエチレングリコールモノメチルエーテル,トリエチレングリコールモノエチルエーテル,プロピレングリコールモノメチルエーテル,プロピレングリコールモノエチルエーテル等が用いられる。また,これら溶剤は一種類単独で用いてもよく,又は二種類以上を混合して用いてもよい。
【0021】
【作用】
シアネートエステルの硬化物は低極性,剛直かつ対称性構造のトリアジン骨格を有するため良好な誘電特性(低誘電率及び低誘電正接)を示す。しかし,骨格が剛直でかつ架橋密度が高いため,硬化物の靭性が不足しており,配線板の加工時にクラックが発生したり,熱衝撃試験や冷熱サイクル試験での信頼性が不十分となることが問題があった。
【0022】
しかるにその改善ためにイミド樹脂,エポキシ樹脂,多価フェノール類化合物やその他の樹脂を併用する従来の方法では,硬化物の剛直性は緩和できるものの併用する樹脂によって誘電率や誘電正接が高くなり,高周波用途には不適な樹脂組成物しか得られなかった。
【0023】
これに対して本発明のシアナート系積層板用樹脂組成物では,モノマの分子量が大きく架橋点であるシナト基同士が離れているため,架橋反応が進行して硬化物は剛直にならず靭性を具備することができる。したがって,シアナト基の環化3量化反応によって剛直かつ対称性構造のトリアジン骨格を形成することにより良好な誘電特性を示すのと同時に,加工性や耐衝撃性の改善に効果的な架橋構造をとすることができる。よって,本発明で得られた硬化物は高耐熱性で強靭性を示しかつ誘電特性が良好(低誘電率及び低誘電正接)になると推察できる。
【0024】
【実施例】
以下,具体例を挙げて本発明を具体的に説明するが,本発明はこれらに限られるものではない。
【0025】
(実施例1)
ビス(4−シアナトフェニル−4’−フェノキシ)スルフォン100重量部をトルエン150重量部に溶解し,触媒としてナフテン酸亜鉛を金属換算で5ppm投入し還流温度で3時間プレポリマ化を行った。ついで硬化促進剤としてナフテン酸コバルトをシアネート化合物に対してを金属換算で100ppm配合し,不揮発分65%のワニスを作製した。
【0026】
(実施例2)
ビス(4−シアナトフェニル)−α−エチレン−ω−ブチレンポリジメチルシロキサン100重量部をトルエン150重量部に溶解し,触媒としてナフテン酸亜鉛を金属換算で5ppm投入し還流温度で3時間プレポリマ化を行った。ついで硬化促進剤としてナフテン酸コバルトをシアネート化合物に対して金属換算で100ppm配合し,不揮発分65%のワニスを作製した。
【0027】
(実施例3)
ビス(4−シアナトフェニル−4’−フェノキシ)スルフォン60重量部,2,2−ビス(4−シアナトフェニル)プロパン40重量部をトルエン150重量部に溶解し,触媒としてナフテン酸亜鉛を金属換算で5ppm投入し還流温度で3時間プレポリマ化を行った。ついで硬化促進剤としてナフテン酸コバルトをシアネート化合物に対して金属換算で100ppm配合し,不揮発分65%のワニスを作製した。
【0028】
(比較例1)
プレポリマとして市販の2,2−ビス(4−シアネートフェニル)プロパンプレポリマ(Arocy B−30,チバガイギ製)を用い,その他は実施例1と同様にしてワニスを作製した。
【0029】
(比較例2)
プレポリマとして市販の2,2−ビス(4−シアネートフェニル)プロパンプレポリマ(Arocy B−30,チバガイギ製)60重量部を用い,さらにクレゾールノボラック型エポキシ樹脂(EPICLON N−673,大日本インキ製)40重量部を用い,ついで硬化促進剤としてナフテン酸コバルトをシアネート化合物に対して金属換算で100ppm,2−メチル−4−メチルイミダゾールを0.2重量部配合し,不揮発分65%のワニスを作製した。
【0030】
各実施例及び比較例で得られたワニスを,厚み0.2mmのガラス布(Eガラス)に含浸し,140℃で5〜10分加熱してプリプレグを得た。次いで,得られたプリプレグ4枚を重ね,その両側に厚み18μmの銅箔を重ね,200℃,60分,2.5MPaの条件でプレス成形した後,230℃で120分加熱処理し銅張積層板を作製した。
【0031】
得られた銅張積層板について,Tg(ガラス転移温度)及び銅箔引きはがし強さ,誘電特性,はんだ耐熱性,耐熱サイクル性,加工性を評価した。結果を表1に示す。試験方法は以下の通りである。
・Tg:銅箔をエッチングし,TMAにより測定。
・銅箔引きはがし強さ:JIS−C−6481に準拠して測定。
・1MHz比誘電率(εr)及び誘電正接(tanδ):JIS−C−6481に準拠して測定。
・はんだ耐熱性:銅箔をエッチングし,PCT(121℃,0.22MPa)中に保持した後,260℃の溶融はんだに20秒浸漬して,外観を調べた。表中の異常無しとは,ミーズリング及びふくれの発生が無いことを意味する。
・熱サイクル試験;デイジーチェーンパターン(スルーホール数=160穴,ドリル/ランド径=0.4/0.6mm,穴ピッチ=0.8mm)を作製し,MIL−STD−202D(107C,Cond.B)に準拠して測定。
・加工性:銅箔をエッチングし,金型による外形打ち抜き後,切断部の外観を調べた。表中の良好とは剥離の発生が無いことを意味する。
【0032】
【表1】
Figure 0004013593
【0033】
表1から明らかなように,実施例1〜3の樹脂組成物を用いた銅張積層板は,何れも銅箔引きはがし強さが良好で,比誘電率及び誘電正接が低く,かつ架橋点間の分子量が大きくあるいはエラストマ構造を有するため,硬化物が剛直でなく強靭性を具備しており,Tgの劣化もなく,はんだ耐熱性,耐熱サイクル性及び加工性が良好である。
【0034】
これに対して,各比較例の銅張積層板は,はんだ耐熱性,耐熱サイクル性及び加工性が劣り,あるいは比誘電率,誘電正接が高い。
【0035】
【発明の効果】
以上のように本発明の積層板用樹脂組成物は,耐熱性,耐衝撃性が良好で、従来のエポキシ樹脂などの熱硬化性樹脂積層板と同様な成形性及び加工性を具備し、かつ高周波帯域での誘電率,誘電正接が低く,高周波信号を扱う機器に対応した印刷配線板に用いる積層板用樹脂組成物として好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin composition useful as a laminate having excellent dielectric properties and heat resistance. That is, the present invention relates to a cyanate-based curable resin composition excellent in high-frequency characteristics and a resin varnish for a laminate using the same, and has good heat resistance and a thermosetting resin laminate such as a conventional epoxy resin and the like. The present invention relates to a curable resin fat composition having the same moldability and workability and capable of producing a high-density multilayer wiring board excellent in high frequency characteristics.
In recent years, printed circuit board materials used in high-frequency equipment, computers, information equipment terminals, etc. in the communication field have a low dielectric constant and low dielectric loss tangent (tan δ) resin for realizing low loss corresponding to higher frequencies. Is desired.
[0003]
In contrast, thermoplastic resins such as fluororesins or polyphenylene ethers with low dielectric constants and dielectric loss tangents, and thermosetting resins such as epoxy resins and BT (bismaleimide triazine) resins together with thermoplastic resin materials such as polyphenylene ether Resin materials have been proposed, but these have problems in moldability, that is, high temperature and high pressure are required for molding, and poor adhesion to metal foil and metal plating.
[0004]
On the other hand, cyanate ester resin is known as a resin material having a low dielectric constant and dielectric loss tangent without using the above-mentioned thermoplastic resin. However, with cyanate ester resin alone, workability and impact resistance due to brittleness of the cured product are known. There was a problem.
[0005]
Therefore, as a resin composition for improving the above problems, cyanate ester resins or bismaleimide triazines (BT) described in JP-B-52-31279, JP-A-63-54419, JP-A-2-286723, etc. ) Resin compositions that use an epoxy resin in combination with a resin have been proposed.
[0006]
Alternatively, a resin composition in which a special phenol-added dicyclopentadiene polymer-based epoxy resin disclosed in JP-A-2-2144741 is used in combination with a cyanate ester resin, bisphenol disclosed in JP-B-7-47637 A method using a resin composition in which a polyhydric phenol compound such as A is used in combination has been proposed.
[0007]
Furthermore, a method has been proposed in which a cyanate ester resin is used in combination with a special phenolic resin, polyphenylene ether and epoxy resin disclosed in JP-A-5-339342.
[0008]
[Problems to be solved by the invention]
However, the methods disclosed in JP-B-52-31279, JP-A-63-54419, and JP-A-2-286723 improve defects such as workability and impact resistance, but imide resin or epoxy resin. Since other thermosetting resins other than cyanate ester resins such as resins are contained, there is a problem that high frequency characteristics in the GHz band are insufficient.
[0009]
Similarly, a method using a special epoxy resin disclosed in JP-A-2-2144741 and a polyhydric phenol compound disclosed in JP-B-7-47637 is suitable for high frequency applications because the dielectric characteristics in the GHz band deteriorate. There was a problem that I could not.
[0010]
Furthermore, the method disclosed in Japanese Patent Application Laid-Open No. 5-339342 has a problem in that the moldability is inferior because polyphenylene ether is used in combination, although the deterioration of dielectric characteristics is reduced.
[0011]
The present invention produces a high-density multilayer wiring board that has good heat resistance and impact resistance, has the same moldability and workability as conventional thermosetting resin laminates such as epoxy resins, and has excellent high-frequency characteristics. The present invention provides a curable resin fat composition that can be used.
[0012]
[Means for Solving the Problems]
The present invention relates to the following.
(1) In a resin composition comprising, as an essential component, a cyanate compound containing two or more cyanate groups in the molecule, a cyanate compound containing two or more cyanate groups in the molecule is represented by the formula (I)
[0013]
[Chemical 2]
Figure 0004013593
[0014]
(2) The resin composition for laminates according to (1), wherein the cyanate compound containing two or more cyanate groups represented by the formula (I) is bis (4-cyanatophenyl-4′-phenoxy) sulfone. object.
(3) The cyanate compound containing two or more cyanate groups represented by formula (I) is bis (4-cyanatophenyl) -α-ethylene-ω-butylene polydimethylsiloxane as described in (1) Resin composition for laminates.
(4) A resin varnish for a laminated board obtained by dissolving the resin composition for a laminated board described in (1), (2) and (3) in an organic solvent.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a resin composition comprising, as an essential component, a cyanate compound containing two or more cyanate groups in the molecule, wherein the cyanate compound containing two or more cyanate groups in the molecule is represented by the formula (I). It is the resin composition for laminated boards characterized by being a mixture of 1 or more types of the compound made.
[0016]
The cyanate compound containing two or more cyanate groups in the molecule used in the resin composition for laminates of the present invention is not particularly limited as long as it is a compound represented by the formula (I). Examples include bis (4-cyanatophenyl-4′-phenoxy) sulfone, bis (3,5-dimethyl-4-cyanatophenyl-4′-phenoxy) sulfone, bis (4-cyanatophenyl) -α. -Ethylene-ω-butylene polydimethylsiloxane, bis (3,5-dimethyl-4-cyanatophenyl) -α-ethylene-ω-butylene polydimethylsiloxane and their prepolymers.
[0017]
When the crystallinity of the monomer of the cyanate compound containing two or more cyanate groups in the molecule is high, the monomer may be recrystallized in the varnish depending on the solid content concentration when varnishing the monomer alone. Therefore, it is preferable to use the cyanate compound monomer after prepolymerization. The conversion rate of cyanate groups in the prepolymer is not particularly limited, but it is usually desirable to use a prepolymer having a conversion rate in the range of 10 to 60%. Moreover, the cyanate compound which contains two or more cyanato groups in a molecule | numerator may be used individually by 1 type, or may be used in combination of 2 or more types. Further, it may be prepolymerized with other cyanate compounds.
[0018]
In the resin composition for laminates of the present invention, a curing accelerator for accelerating the curing reaction is used. Examples of curing accelerators include organometallic salt compounds and metal complex compounds such as cobalt, manganese, zinc and copper. Specific examples include cobalt 2-ethylhexanoate, manganese 2-ethylhexanoate, 2- Examples include zinc ethylhexanoate, copper 2-ethylhexanoate, cobalt naphthenate, manganese naphthenate, zinc naphthenate, copper naphthenate, cobalt-acetylacetone complex, manganese-acetylacetone complex, zinc-acetylacetone complex, and copper-acetylacetone complex. It is done. A hardening accelerator may be used individually by 1 type, or may mix and use 2 or more types.
[0019]
A flame retardant and other additives and fillers can be blended in the resin composition for laminates of the present invention as necessary. Brominated flame retardants, phosphorus flame retardants, nitrogen flame retardants, metal hydrates, and the like can be used as the flame retardant. In general, inorganic fillers are preferably used as fillers to be blended as necessary, and specific examples include silica, glass, alumina, calcium silicate, magnesium silicate, aluminum silicate and the like.
The resin composition for laminates of the present invention is used for the production of laminates excellent in dielectric properties and heat resistance by heat curing. That is, first, a prepreg is prepared by dissolving the resin composition for a laminated board of the present invention in a solvent to once form a varnish, impregnating a substrate such as a glass cloth and drying. Subsequently, this prepreg can be made into a laminate by heating and forming an arbitrary number of metal foils on top and bottom.
[0020]
When the resin composition for laminates of the present invention is varnished, the solvent is not particularly limited. Specific examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, and aromatics such as toluene and xylene. Hydrocarbons, esters such as methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate, amides such as N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, methanol, ethanol, ethylene glycol , Alcohols such as diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol Bruno methyl ether, triethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether and the like are used. These solvents may be used alone or in combination of two or more.
[0021]
[Action]
Since the cured product of cyanate ester has a triazine skeleton having a low polarity, a rigid and symmetrical structure, it exhibits good dielectric properties (low dielectric constant and low dielectric loss tangent). However, because the skeleton is rigid and the crosslink density is high, the toughness of the cured product is insufficient, cracking occurs during the processing of wiring boards, and the reliability in thermal shock tests and thermal cycle tests is insufficient. There was a problem.
[0022]
However, in order to improve the conventional method using imide resin, epoxy resin, polyhydric phenol compound and other resin together, the rigidity of the cured product can be reduced, but the resin used together increases the dielectric constant and dielectric loss tangent. Only a resin composition unsuitable for high frequency applications was obtained.
[0023]
On the other hand, in the cyanate laminate resin composition of the present invention, since the monomer molecular weight is large and the synato groups that are crosslinking points are separated from each other, the crosslinking reaction proceeds and the cured product does not become rigid and has toughness. Can be provided. Therefore, by forming a triazine skeleton with a rigid and symmetric structure by the cyclization trimerization reaction of cyanate group, it exhibits good dielectric properties, and at the same time, it has a crosslinked structure effective for improving workability and impact resistance. can do. Therefore, it can be inferred that the cured product obtained in the present invention exhibits high heat resistance and toughness and has good dielectric properties (low dielectric constant and low dielectric loss tangent).
[0024]
【Example】
Hereinafter, the present invention will be specifically described with specific examples, but the present invention is not limited thereto.
[0025]
Example 1
100 parts by weight of bis (4-cyanatophenyl-4′-phenoxy) sulfone was dissolved in 150 parts by weight of toluene, and 5 ppm of zinc naphthenate was added as a catalyst in terms of metal, and prepolymerization was performed at reflux temperature for 3 hours. Subsequently, 100 ppm of cobalt naphthenate as a curing accelerator with respect to the cyanate compound was compounded in terms of metal to prepare a varnish having a nonvolatile content of 65%.
[0026]
(Example 2)
100 parts by weight of bis (4-cyanatophenyl) -α-ethylene-ω-butylene polydimethylsiloxane is dissolved in 150 parts by weight of toluene, and 5 ppm of zinc naphthenate is added as a catalyst to prepolymerize at reflux temperature for 3 hours. Went. Then, 100 ppm of cobalt naphthenate as a curing accelerator in terms of metal with respect to the cyanate compound was blended to prepare a varnish having a nonvolatile content of 65%.
[0027]
(Example 3)
60 parts by weight of bis (4-cyanatophenyl-4′-phenoxy) sulfone and 40 parts by weight of 2,2-bis (4-cyanatophenyl) propane are dissolved in 150 parts by weight of toluene, and zinc naphthenate is used as a catalyst. 5 ppm in terms of conversion was applied, and prepolymerization was performed at the reflux temperature for 3 hours. Then, 100 ppm of cobalt naphthenate as a curing accelerator in terms of metal with respect to the cyanate compound was blended to prepare a varnish having a nonvolatile content of 65%.
[0028]
(Comparative Example 1)
A varnish was prepared in the same manner as in Example 1 except that a commercially available 2,2-bis (4-cyanatephenyl) propane prepolymer (Arocy B-30, manufactured by Ciba-Gigi) was used as the prepolymer.
[0029]
(Comparative Example 2)
As a prepolymer, 60 parts by weight of a commercially available 2,2-bis (4-cyanatephenyl) propane prepolymer (Arocy B-30, manufactured by Ciba-Gaigi) was used, and a cresol novolac type epoxy resin (EPICLON N-673, manufactured by Dainippon Ink) 40 parts by weight, then, cobalt naphthenate as a curing accelerator, 100 ppm in terms of metal with respect to the cyanate compound, and 0.2 parts by weight of 2-methyl-4-methylimidazole are blended to produce a varnish having a nonvolatile content of 65%. did.
[0030]
The varnish obtained in each Example and Comparative Example was impregnated into a glass cloth (E glass) having a thickness of 0.2 mm and heated at 140 ° C. for 5 to 10 minutes to obtain a prepreg. Next, 4 sheets of the obtained prepreg are stacked, and a copper foil with a thickness of 18 μm is stacked on both sides, press-molded under the conditions of 200 ° C., 60 minutes, and 2.5 MPa, and then heat-treated at 230 ° C. for 120 minutes for copper-clad lamination A plate was made.
[0031]
About the obtained copper clad laminated board, Tg (glass transition temperature) and copper foil peeling strength, dielectric properties, solder heat resistance, heat cycle resistance, and workability were evaluated. The results are shown in Table 1. The test method is as follows.
・ Tg: Etched copper foil and measured by TMA.
-Copper foil peeling strength: measured in accordance with JIS-C-6481.
1 MHz relative dielectric constant (εr) and dielectric loss tangent (tan δ): Measured in accordance with JIS-C-6481.
Solder heat resistance: The copper foil was etched and held in PCT (121 ° C., 0.22 MPa), and then immersed in 260 ° C. molten solder for 20 seconds to examine the appearance. No abnormality in the table means that there is no occurrence of measling and blistering.
Thermal cycle test: Daisy chain pattern (number of through holes = 160 holes, drill / land diameter = 0.4 / 0.6 mm, hole pitch = 0.8 mm) was prepared, and MIL-STD-202D (107C, Cond. Measured according to B).
-Workability: After etching the copper foil and punching the outer shape with a mold, the appearance of the cut part was examined. “Good” in the table means that no peeling occurs.
[0032]
[Table 1]
Figure 0004013593
[0033]
As is clear from Table 1, the copper-clad laminates using the resin compositions of Examples 1 to 3 all have good copper foil peeling strength, low relative dielectric constant and dielectric loss tangent, and crosslinking points. Since the molecular weight between them is large or has an elastomer structure, the cured product is not rigid and has toughness, and there is no deterioration of Tg, and solder heat resistance, heat cycle resistance and workability are good.
[0034]
On the other hand, the copper clad laminates of the comparative examples are inferior in solder heat resistance, heat cycle resistance and workability, or have high relative dielectric constant and dielectric loss tangent.
[0035]
【The invention's effect】
As described above, the resin composition for laminates of the present invention has good heat resistance and impact resistance, has the same moldability and workability as conventional thermosetting resin laminates such as epoxy resins, and It has a low dielectric constant and dielectric loss tangent in a high frequency band, and is suitable as a resin composition for a laminated board used for a printed wiring board corresponding to a device that handles a high frequency signal.

Claims (3)

分子中にシアナト基を2つ以上含有するシアナート類化合物を必須成分としてなる熱硬化性樹脂組成物において、分子中にシアナト基を2つ以上含有するシアナート類化合物が、式(I)
Figure 0004013593
で表される化合物を少なくとも1種類以上配合することを特徴とする熱硬化性樹脂組成物。
In the thermosetting resin composition comprising, as an essential component, a cyanate compound containing two or more cyanate groups in the molecule, the cyanate compound containing two or more cyanate groups in the molecule is represented by the formula (I):
Figure 0004013593
A thermosetting resin composition comprising at least one compound represented by the formula:
式(I)で表されるシアナト基を2つ以上含有するシアナート類化合物が、ビス(4−シアナトフェニル)−α−エチレン−ω−ブチレンポリジメチルシロキサンである請求項1記載の熱硬化性樹脂組成物。The thermosetting according to claim 1 , wherein the cyanate compound containing two or more cyanato groups represented by the formula (I) is bis (4-cyanatophenyl) -α-ethylene-ω-butylene polydimethylsiloxane. rESIN composition. 請求項1又は2記載の熱硬化性樹脂組成物を有機溶剤に溶解させた熱硬化性樹脂ワニス。A thermosetting resin varnish obtained by dissolving the thermosetting resin composition according to claim 1 or 2 in an organic solvent.
JP2002057432A 2002-03-04 2002-03-04 Heat-resistant and impact-resistant cyanate-based curable resin composition and resin varnish for laminates using the same Expired - Lifetime JP4013593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002057432A JP4013593B2 (en) 2002-03-04 2002-03-04 Heat-resistant and impact-resistant cyanate-based curable resin composition and resin varnish for laminates using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002057432A JP4013593B2 (en) 2002-03-04 2002-03-04 Heat-resistant and impact-resistant cyanate-based curable resin composition and resin varnish for laminates using the same

Publications (2)

Publication Number Publication Date
JP2003252989A JP2003252989A (en) 2003-09-10
JP4013593B2 true JP4013593B2 (en) 2007-11-28

Family

ID=28667694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002057432A Expired - Lifetime JP4013593B2 (en) 2002-03-04 2002-03-04 Heat-resistant and impact-resistant cyanate-based curable resin composition and resin varnish for laminates using the same

Country Status (1)

Country Link
JP (1) JP4013593B2 (en)

Also Published As

Publication number Publication date
JP2003252989A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
TWI537341B (en) Thermosetting resin compositions and articles
KR101920106B1 (en) Resin composition for printed wiring board material, and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using same
JP2018139334A (en) Multilayered printed wiring board, and method for manufacturing multilayered printed wiring board
JP4968044B2 (en) Method for producing polyimide compound, thermosetting resin composition, and prepreg and laminate using the same
JP2013095920A (en) Insulating resin composition for printed circuit board and printed circuit board including the same
JP2018012772A (en) Resin composition, resin layer-attached support, prepreg, laminate, multilayer printed board and printed wiring board for millimeter wave radar
JP2003138133A (en) Modified cyanate ester resin composition, resin film, multilayered printed wiring board and method for producing the same
JP2018012248A (en) Laminate, metal-clad laminate and printed wiring board
US20020197479A1 (en) Cyanate ester-containing insulating composition, insulating film made therefrom and multilayer printed circuit board having the film
JP5028971B2 (en) (Modified) Guanamine compound solution, thermosetting resin composition, and prepreg and laminate using the same
JP3261076B2 (en) Modified cyanate ester-based curable resin composition for laminate, prepreg and laminate using the same
CN111302905B (en) Difunctional alkenyl phenoxy compound, preparation method thereof and soluble bismaleimide resin modified by difunctional alkenyl phenoxy compound
JP5200488B2 (en) Copper foil with resin for multilayer printed wiring board and multilayer printed wiring board produced using the same
JP4013593B2 (en) Heat-resistant and impact-resistant cyanate-based curable resin composition and resin varnish for laminates using the same
JP3261061B2 (en) Resin composition for laminate, prepreg and laminate using the composition
JPH08176273A (en) Thermosetting resin composition
JP5447268B2 (en) Thermosetting resin composition, prepreg and laminate
JP3261062B2 (en) Resin varnish for printed wiring board and method for producing prepreg and metal-clad laminate using the same
KR100833528B1 (en) The epoxy resin composition for rigid-flex and a use thereof
JP2007131834A (en) Thermosetting guanamine resin, method for producing the same, thermosetting resin composition, and prepreg and laminated board using the composition
JP7310944B2 (en) Resin composition, support with resin layer, prepreg, laminate, multilayer printed wiring board, and printed wiring board for millimeter wave radar
JP3261073B2 (en) Resin composition for printed wiring board, varnish, prepreg and laminated board for printed wiring board using the same
KR101420542B1 (en) Epoxy resin composition for insulating film, insulating film for printed circuit board and manufacturing method thereof and printed circuit board having the same
JP3261078B2 (en) Modified cyanate ester-based curable resin composition for laminate, prepreg and laminate using the same
JP2000319509A (en) Production of fire retardant resin composition and laminated sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070612

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070612

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5