JP4013334B2 - Method for producing epoxycyclododecadiene - Google Patents

Method for producing epoxycyclododecadiene Download PDF

Info

Publication number
JP4013334B2
JP4013334B2 JP15883198A JP15883198A JP4013334B2 JP 4013334 B2 JP4013334 B2 JP 4013334B2 JP 15883198 A JP15883198 A JP 15883198A JP 15883198 A JP15883198 A JP 15883198A JP 4013334 B2 JP4013334 B2 JP 4013334B2
Authority
JP
Japan
Prior art keywords
tri
hydrogen peroxide
reaction
octylamine
cyclododecatriene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15883198A
Other languages
Japanese (ja)
Other versions
JPH11349579A (en
Inventor
信行 黒田
光男 山中
修 山崎
博文 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP15883198A priority Critical patent/JP4013334B2/en
Publication of JPH11349579A publication Critical patent/JPH11349579A/en
Application granted granted Critical
Publication of JP4013334B2 publication Critical patent/JP4013334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Epoxy Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、1,5,9-シクロドデカトリエンを過酸化水素によりモノエポキシ化して1,2-エポキシ-5,9-シクロドデカジエンを製造する方法に関する。1,2-エポキシ-5,9-シクロドデカジエンは、活性なエポキシ基と炭素-炭素不飽和結合を有するため、塗料、接着剤等の樹脂成分となり得るばかりでなく、シクロドデカノンへの変換により、さらにラクタム類、ラクトン類又は二塩基酸類に容易に公知の方法によって誘導されるため、ポリアミド、ポリエステル類の合成繊維、合成樹脂の中間原料となる重要な化合物である。
【0002】
【従来の技術】
従来、1,5,9-シクロドデカトリエンと過酸化水素とを接触させて、1,5,9-シクロドデカトリエンをモノエポキシ化して1,2-エポキシ-5,9-シクロドデカジエンを製造する方法としては、蟻酸及び過酸化水素からその場で形成される過蟻酸で1,5,9-シクロドデカトリエンをモノエポキシ化する方法(特公昭56-104877号公報)があるが、この方法では仕込み過酸化物基準の収率が低く、しかも装置に対する腐食性が高い蟻酸を用いらなければならない。また、二酸化セレン、亜セレン酸又は亜セレン酸アルキルエステルを触媒として1,5,9-シクロドデカトリエンをモノエポキシ化する方法(特公昭45-13331号公報)では、反応時間が非常に長く、しかも触媒として毒性の高いセレン化合物を用いる必要がある。更に、タングステン酸を触媒として90%過酸化水素を使用して1,5,9-シクロドデカトリエンをモノエポキシ化する方法(Bull.Chem.Soc.Jpn.,42.1604(1969))が知られているが、この方法では危険性の高い高濃度の過酸化水素を使用して長時間反応を行う必要があり、しかも仕込み過酸化物基準の収率が低い。即ち、これらいずれの方法も工業的な製造方法としては問題があった。
【0003】
【発明が解決しようとする課題】
本発明の課題は、上記の従来技術の問題点を解決し、1,5,9-シクロドデカトリエンから高い反応速度且つ高収率で1,2-エポキシ-5,9-シクロドデカジエンを製造する方法を提供するものである。
【0004】
【課題を解決するための手段】
本発明の課題は、タングステン化合物及び一般式(1)
【0005】
【化3】

Figure 0004013334
(式中、R1、R2及びR3は、同一或いは異なっていても良く、無置換又は置換基を有していても良い、炭素数1〜18のアルキル基、炭素数7〜12のアラルキル基若しくは炭素数6〜8のアリール基を示す。)
【0006】
で示される三級アミン又は一般式(2)
【0007】
【化4】
Figure 0004013334
(式中、R4、R5及びR6は、同一或いは異なっていても良く、無置換又は置換基を有していても良い、炭素数1〜18のアルキル基、炭素数7〜12のアラルキル基若しくは炭素数6〜8のアリール基を示し、Xは、アンモニウムイオンと対イオンを形成し得る原子又は原子団を示す。)
【0008】
で示される三級アミンの塩の存在下、1,5,9-シクロドデカトリエンと過酸化水素とを接触させて、1,5,9-シクロドデカトリエンのモノエポキシ化を行うことを特徴とするエポキシシクロドデカジエンの製造方法によって解決される。
【0009】
【発明の実施の形態】
本発明において使用するタングステン化合物としては、例えば、タングステン酸、タングステン酸ナトリウム、タングステン酸カリウム、タングステン酸リチウム、タングステン酸アンモニウム等のタングステン酸又はその塩;十二タングステン酸ナトリウム、十二タングステン酸カリウム、十二タングステン酸アンモニウム等の十二タングステン酸塩;リンタングステン酸、リンタングステン酸ナトリウム、ケイタングステン酸、ケイタングステン酸ナトリウム、リンバナドタングステン酸、リンモリブドタングステン酸等のタングステン原子を含むヘテロポリ酸又はその塩等が挙げられるが、好ましくはタングステン酸ナトリウム、リンタングステン酸、ケイタングステン酸、更に好ましくはタングステン酸ナトリウム、リンタングステン酸が使用される。これらタングステン化合物は単独でも、二種以上を混合して使用しても差し支えない。
【0010】
本発明の反応において使用する前記タングステン化合物の量は、1,5,9-シクロドデカトリエンに対して好ましくは0.002〜10重量%、更に好ましくは0.005〜1重量%である。
【0011】
本発明の反応では、タングステン化合物に加えて、前記の一般式(1)で示される三級アミン又は一般式(2)で示される三級アミンの塩を反応系に存在させて、1,5,9-シクロドデカトリエンのモノエポキシ化反応が行われる。
一般式(1)において、R1、R2及びR3は、同一或いは異なっていても良く、無置換又は置換基を有していても良い、炭素数1〜18のアルキル基、炭素数7〜12のアラルキル基若しくは炭素数6〜8のアリール基を示す。
一般式(2)において、R4、R5及びR6は、同一或いは異なっていても良く、無置換又は置換基を有していても良い、炭素数1〜18のアルキル基、炭素数7〜12のアラルキル基若しくは炭素数6〜8のアリール基を示し、Xは、アンモニウムイオンと対イオンを形成し得る原子又は原子団を示すが、例えば、ハロゲン原子、HSO4、ClO4、H2PO4、NO3、BF4、HSiF6、OCOH又はOCOCH3を示す。
【0012】
本発明の反応において使用する三級アミンとしては、例えば、トリn-ヘキシルアミン、トリn-ヘプチルアミン、トリス(2-エチルヘキシル)アミン、トリn-オクチルアミン、トリn-デシルアミン、トリn-ドデシルアミン、トリフェニルアミン、トリベンジルアミン、ジメチルn-オクタデシルアミン等が挙げられるが、好ましくはトリn-ヘキシルアミン、トリn-ヘプチルアミン、トリス(2-エチルヘキシル)アミン、トリn-オクチルアミン、トリn-デシルアミン、トリn-ドデシルアミン、更に好ましくはトリn-ヘキシルアミン、トリn-ヘプチルアミン、トリス(2-エチルヘキシル)アミン、トリn-オクチルアミン、トリn-ドデシルアミンが使用される。これら三級アミンは単独でも、二種以上を混合して使用しても差し支えない。
【0013】
本発明の反応において使用する三級アミンの塩としては、例えば、トリn-へキシルアミンリン酸二水素塩、トリn-ヘキシルアミン塩酸塩、トリn-ヘキシルアミン硫酸水素塩、トリn-オクチルアミンリン酸二水素塩、トリn-オクチルアミン塩酸塩、トリn-オクチルアミン硫酸水素塩、トリn-ドデシルアミンリン酸二水素塩、トリn-ドデシルアミン塩酸塩、トリn-ドデシルアミン硫酸水素塩等が挙げられるが、好ましくはトリn-オクチルアミンリン酸二水素塩、トリn-オクチルアミン塩酸塩、トリn-オクチルアミン硫酸水素塩、トリn-ドデシルアミンリン酸二水素塩、トリn-ドデシルアミン塩酸塩、トリn-ドデシルアミン硫酸水素塩、更に好ましくはトリn-オクチルアミンリン酸二水素塩、トリn-オクチルアミン塩酸塩、トリn-オクチルアミン硫酸水素塩が使用される。これら三級アミンの塩は単独でも、二種以上を混合して使用しても差し支えない。
【0014】
本発明の反応において使用する前記の三級アミン或いはその塩の量は、1,5,9-シクロドデカトリエンに対して好ましくは0.002〜10重量%、更に好ましくは0.005〜1重量%である。これら三級アミンとその塩は、二種以上を混合して使用しても差し支えない。
【0015】
本発明の反応において使用する過酸化水素は、取り扱い上の安全性や経済性を考慮すると、1〜70重量%水溶液のものを用いるのが好ましい。その使用量は、1,5,9-シクロドデカトリエンに対して好ましくは0.05〜1.0倍モル、更に好ましくは0.1〜0.8倍モルである。使用量が1.0倍モルより多いとジエポキシドの生成量が増加し、モノエポキシドの選択率が低下するため望ましくない。また、過酸化水素は反応開始時に全量を加えても良いし、反応中に少量ずつ分割して加えても良い。
【0016】
本発明の反応は有機相と水相の二相で行われるが、この時水相は酸性であることが望ましく、必要に応じて反応系内に酸を予め添加する。添加する酸としては、リン酸、硫酸、塩酸、過塩素酸、ヘキサフルオロケイ酸、硝酸、テトラフルオロホウ酸等が挙げられるが、好ましくはリン酸、硫酸、更に好ましくはリン酸が使用される。その添加量は、三級アミン又はその塩に対して、0〜50倍モルが好ましい。
【0017】
本発明の反応では有機溶媒を使用することも出来る。使用する有機溶媒は水と均一に混ざり合わず且つ反応を阻害しないものであれば特に制限はなく、例えば、クロロホルム、ジクロロエタン、ジクロロメタン等の脂肪族ハロゲン化炭化水素類;シクロヘキサン、n-ヘプタン等の脂肪族非ハロゲン化炭化水素類;ベンゼン、トルエン、キシレン等の芳香族非ハロゲン化炭化水素類;クロロベンゼン等の芳香族ハロゲン化炭化水素類が挙げられる。これら溶媒は単独でも、二種以上を混合して使用しても差し支えない。その使用量は、1,5,9-シクロドデカトリエンに対して好ましくは0〜30重量倍、更に好ましくは0〜20重量倍である。
【0018】
本発明の反応は、1,5,9-シクロドデカトリエンと過酸化水素とが分離した二液相で行うことが好ましく、例えば、不活性ガス雰囲気にて、1,5,9-シクロドデカトリエン、過酸化水素、タングステン化合物及び三級アミン又はその塩を混合し、加熱攪拌する等の方法によって、常圧下又は加圧下で行われる。その際の反応温度は、好ましくは20〜120℃、更に好ましくは30〜90℃である。また、得られた生成物は、例えば、分液後に蒸留等によって、単離、精製することが出来る。
【0019】
【実施例】
以下に実施例及び比較例を用いて、本発明を具体的に説明する。
【0020】
実施例1
還流冷却器、窒素吹き込み管、温度計を備えた内容積50mlのガラス製三口フラスコに、60重量%過酸化水素水1.71g(30.2mol)及び1,5,9-シクロドデカトリエン19.7g(121mol)を仕込み、更に、リンタングステン酸を50mg/ml含む水溶液0.08ml(リンタングステン酸として4mg)、トリn-オクチルアミンを50mg/ml含むトルエン溶液0.08ml(トリn-オクチルアミンとして4mg)及びリン酸を50mg/ml含む水溶液0.08mlをそれぞれマイクロピペットを用いて加え、窒素雰囲気にて、90℃で1時間加熱攪拌した。反応後、室温まで冷却し、得られた反応液の分析を行った。
反応液の分析は、残存する過酸化水素はヨードメトリーにより、残存する1,5,9-シクロドデカトリエン(以下CDTと称する)及び生成した1,2-エポキシ-5,9-シクロドデカジエン(以下モノエポキシドと称する)をガスクロマトグラフィーにより行った。その結果、過酸化水素転化率は99.4%、CDT転化率は21.3%、消費CDT基準のモノエポキシド選択率は94.1mol%、消費過酸化水素基準のモノエポキシド選択率は83.2mol%であった。
【0021】
実施例2
実施例1において、リン酸水溶液を加えなかったこと以外は、実施例1と同様に反応を行った。その結果、過酸化水素転化率は91.7%、CDT転化率は19.2%、消費CDT基準のモノエポキシド選択率は94.4mol%、消費過酸化水素基準のモノエポキシド選択率は82.8mol%であった。
【0022】
比較例1
実施例2において、トリn-オクチルアミンを50mg/ml含むトルエン溶液を添加しなかったこと以外は、実施例2と同様に反応を行った。その結果、過酸化水素転化率は3.7%、CDT転化率は3.0%であった。
【0023】
実施例3
実施例2において、トリn-オクチルアミンを50mg/ml含むトルエン溶液の量を0.24ml(トリn-オクチルアミンとして12mg)に変えたこと以外は、実施例1と同様に反応を行った。その結果、過酸化水素転化率は99.1%、CDT転化率は23.8%、消費CDT基準のモノエポキシド選択率は93.4mol%、消費過酸化水素基準のモノエポキシド選択率は83.4mol%であった。
【0024】
実施例4
実施例1において、トリn-オクチルアミンを50mg/ml含むトルエン溶液をトリn-ドデシルアミンを50mg/ml含むトルエン溶液0.08ml(トリn-ドデシルアミンとして4mg)に変えたこと以外は、実施例1と同様に反応を行った。その結果、過酸化水素転化率は99.1%、CDT転化率は21.6%、消費CDT基準のモノエポキシド選択率は94.7mol%、消費過酸化水素基準のモノエポキシド選択率は83.0mol%であった。
【0025】
実施例5
実施例1において、トリn-オクチルアミンを50mg/ml含むトルエン溶液をトリn-ヘキシルアミンを50mg/ml含むトルエン溶液0.08ml(トリn-ヘキシルアミンとして4mg)に変えたこと以外は、実施例1と同様に反応を行った。その結果、過酸化水素転化率は99.4%、CDT転化率は21.3%、消費CDT基準のモノエポキシド選択率は94.1mol%、消費過酸化水素基準のモノエポキシド選択率は83.2mol%であった。
【0026】
実施例6
実施例2において、トリn-オクチルアミンを50mg/ml含むトルエン溶液をトリn-オクチルアミンリン酸二水素塩12mgに変えたこと以外は、実施例2と同様に反応を行った。その結果、過酸化水素転化率は99.8%、CDT転化率は24.2%、消費CDT基準のモノエポキシド選択率は94.2mol%、消費過酸化水素基準のモノエポキシド選択率は85.5mol%であった。
【0027】
実施例7
実施例2において、トリn-オクチルアミンを50mg/ml含むトルエン溶液をトリn-オクチルアミン塩酸塩12mgに変えたこと以外は、実施例2と同様に反応を行った。その結果、過酸化水素転化率は99.8%、CDT転化率は23.8%、消費CDT基準のモノエポキシド選択率は94.0mol%、消費過酸化水素基準のモノエポキシド選択率は84.0mol%であった。
【0028】
実施例8
実施例2において、トリn-オクチルアミンを50mg/ml含むトルエン溶液をトリn-オクチルアミン硫酸水素塩12mgに変えたこと以外は、実施例2と同様に反応を行った。その結果、過酸化水素転化率は99.8%、CDT転化率は22.6%、消費CDT基準のモノエポキシド選択率は95.2mol%、消費過酸化水素基準のモノエポキシド選択率は85.0mol%であった。
【0029】
実施例9
実施例1において、リンタングステン酸を50mg/ml含む水溶液をタングステン酸ナトリウムを50mg/ml含む水溶液0.04ml(タングステン酸ナトリウムとして2mg)、トリn-オクチルアミンを50mg/ml含むトルエン溶液の量を0.12ml(トリn-オクチルアミンとして6mg)、リン酸を50mg/ml含む水溶液の量を0.12mlに変えたこと以外は、実施例1と同様に反応を行った。その結果、過酸化水素転化率は99.6%、CDT転化率は24.4%、消費CDT基準のモノエポキシド選択率は94.8mol%、消費過酸化水素基準のモノエポキシド選択率は86.0mol%であった。
【0030】
【発明の効果】
本発明により、1,5,9-シクロドデカトリエンから高い反応速度且つ高収率で1,2-エポキシ-5,9-シクロドデカジエンを製造する方法を提供することが出来る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing 1,2-epoxy-5,9-cyclododecadiene by monoepoxidation of 1,5,9-cyclododecatriene with hydrogen peroxide. 1,2-Epoxy-5,9-cyclododecadiene has an active epoxy group and a carbon-carbon unsaturated bond, so it can be used as a resin component for paints, adhesives, etc., but it can also be converted to cyclododecanone. Therefore, it can be easily derived into lactams, lactones or dibasic acids by a known method, so that it is an important compound that becomes an intermediate raw material for synthetic fibers and synthetic resins of polyamides and polyesters.
[0002]
[Prior art]
Conventionally, 1,5-epoxy-5,9-cyclododecadiene is produced by monoepoxidizing 1,5,9-cyclododecatriene by contacting 1,5,9-cyclododecatriene with hydrogen peroxide. There is a method of monoepoxidizing 1,5,9-cyclododecatriene with formic acid formed in situ from formic acid and hydrogen peroxide (Japanese Patent Publication No. 56-104877). Then, it is necessary to use formic acid which has a low yield based on the charged peroxide and which is highly corrosive to the apparatus. In the method of monoepoxidizing 1,5,9-cyclododecatriene using selenium dioxide, selenious acid or alkyl selenite as a catalyst (Japanese Patent Publication No. 45-13331), the reaction time is very long. Moreover, it is necessary to use a highly toxic selenium compound as a catalyst. Furthermore, a method of monoepoxy the 1,5,9 cyclododecatriene using 90% hydrogen peroxide tungstate as catalyst (Bull.Chem.Soc.Jpn., 42 .1604 (1969 )) is known However, in this method, it is necessary to carry out the reaction for a long time using a highly dangerous hydrogen peroxide with a high concentration, and the yield based on the charged peroxide is low. That is, any of these methods has a problem as an industrial production method.
[0003]
[Problems to be solved by the invention]
The object of the present invention is to solve the above-mentioned problems of the prior art and produce 1,2-epoxy-5,9-cyclododecadiene from 1,5,9-cyclododecatriene with high reaction rate and high yield It provides a way to
[0004]
[Means for Solving the Problems]
The subject of this invention is a tungsten compound and general formula (1).
[0005]
[Chemical 3]
Figure 0004013334
(In formula, R < 1 >, R < 2 > and R < 3 > may be the same or different, may be unsubstituted or may have a substituent, a C1-C18 alkyl group, C7-C12, An aralkyl group or an aryl group having 6 to 8 carbon atoms is shown.)
[0006]
A tertiary amine represented by the general formula (2)
[0007]
[Formula 4]
Figure 0004013334
(In the formula, R 4 , R 5 and R 6 may be the same or different, and may be unsubstituted or substituted, having 1 to 18 carbon atoms, 7 to 12 carbon atoms. An aralkyl group or an aryl group having 6 to 8 carbon atoms, and X represents an atom or an atomic group capable of forming a counter ion with an ammonium ion.
[0008]
The monoepoxidation of 1,5,9-cyclododecatriene is performed by contacting 1,5,9-cyclododecatriene with hydrogen peroxide in the presence of a tertiary amine salt represented by This is solved by the process for producing epoxycyclododecadiene.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the tungsten compound used in the present invention include tungstic acid, sodium tungstate, potassium tungstate, lithium tungstate, tungstic acid such as ammonium tungstate or a salt thereof; sodium tungstate tungstate, potassium tungstate tungstate, Twelve tungstates such as ammonium tungstate tungstate; heteropolyacids containing tungsten atoms such as phosphotungstic acid, sodium phosphotungstate, silicotungstic acid, sodium silicotungstate, phosphovanadotungstic acid, phosphomolybdotungstic acid or Examples thereof include sodium tungstate, phosphotungstic acid and silicotungstic acid, more preferably sodium tungstate and phosphorus tungstate. Acid is used. These tungsten compounds may be used alone or in combination of two or more.
[0010]
The amount of the tungsten compound used in the reaction of the present invention is preferably 0.002 to 10% by weight, more preferably 0.005 to 1% by weight, based on 1,5,9-cyclododecatriene.
[0011]
In the reaction of the present invention, in addition to the tungsten compound, a tertiary amine represented by the general formula (1) or a tertiary amine salt represented by the general formula (2) is present in the reaction system, and 1,5 1,9-cyclododecatriene monoepoxidation reaction is carried out.
In the general formula (1), R 1 , R 2 and R 3 may be the same or different and may be unsubstituted or have a substituent, an alkyl group having 1 to 18 carbon atoms, or 7 carbon atoms. -12 aralkyl group or a C6-C8 aryl group is shown.
In the general formula (2), R 4 , R 5 and R 6 may be the same or different and may be unsubstituted or have a substituent, an alkyl group having 1 to 18 carbon atoms, or 7 carbon atoms. Represents an aralkyl group having 12 to 12 carbon atoms or an aryl group having 6 to 8 carbon atoms, and X represents an atom or an atomic group capable of forming a counter ion with an ammonium ion. For example, a halogen atom, HSO 4 , ClO 4 , H 2 PO 4 , NO 3 , BF 4 , HSiF 6 , OCOH or OCOCH 3 are shown.
[0012]
Examples of the tertiary amine used in the reaction of the present invention include tri-n-hexylamine, tri-n-heptylamine, tris (2-ethylhexyl) amine, tri-n-octylamine, tri-n-decylamine, and tri-n-dodecyl. Examples include amine, triphenylamine, tribenzylamine, dimethyl n-octadecylamine, and preferably tri-n-hexylamine, tri-n-heptylamine, tris (2-ethylhexyl) amine, tri-n-octylamine, tri n-decylamine, tri-n-dodecylamine, more preferably tri-n-hexylamine, tri-n-heptylamine, tris (2-ethylhexyl) amine, tri-n-octylamine and tri-n-dodecylamine are used. These tertiary amines may be used alone or in combination of two or more.
[0013]
Examples of the tertiary amine salt used in the reaction of the present invention include tri-n-hexylamine dihydrogen phosphate, tri-n-hexylamine hydrochloride, tri-n-hexylamine hydrogen sulfate, tri-n-octyl. Amine phosphate dihydrogen salt, tri-n-octylamine hydrochloride, tri-n-octylamine hydrogen sulfate, tri-n-dodecylamine dihydrogen phosphate, tri-n-dodecylamine hydrochloride, tri-n-dodecylamine hydrogen sulfate Salt, etc., preferably tri-n-octylamine dihydrogen phosphate, tri-n-octylamine hydrochloride, tri-n-octylamine hydrogensulfate, tri-n-dodecylamine dihydrogen phosphate, tri-n -Dodecylamine hydrochloride, tri-n-dodecylamine hydrogensulfate, more preferably tri-n-octylamine dihydrogen phosphate, tri-n-octylamine hydrochloride, tri-n-octylamine hydrogensulfate are used. It is. These tertiary amine salts may be used alone or in admixture of two or more.
[0014]
The amount of the tertiary amine or salt thereof used in the reaction of the present invention is preferably 0.002 to 10% by weight, more preferably 0.005 to 1% by weight, based on 1,5,9-cyclododecatriene. These tertiary amines and their salts may be used in combination of two or more.
[0015]
The hydrogen peroxide used in the reaction of the present invention is preferably a 1 to 70% by weight aqueous solution in view of safety in handling and economy. The amount used is preferably 0.05 to 1.0-fold mol, more preferably 0.1 to 0.8-fold mol based on 1,5,9-cyclododecatriene. When the amount used is more than 1.0-fold mol, the amount of diepoxide generated increases, and the selectivity for monoepoxide decreases, which is not desirable. The total amount of hydrogen peroxide may be added at the start of the reaction, or may be added in small portions during the reaction.
[0016]
The reaction of the present invention is carried out in two phases, an organic phase and an aqueous phase. At this time, the aqueous phase is preferably acidic, and an acid is added in advance to the reaction system as necessary. Examples of the acid to be added include phosphoric acid, sulfuric acid, hydrochloric acid, perchloric acid, hexafluorosilicic acid, nitric acid, tetrafluoroboric acid, etc., preferably phosphoric acid, sulfuric acid, and more preferably phosphoric acid. . The addition amount is preferably 0 to 50 times mol with respect to the tertiary amine or a salt thereof.
[0017]
An organic solvent can also be used in the reaction of the present invention. The organic solvent used is not particularly limited as long as it does not mix uniformly with water and does not inhibit the reaction. For example, aliphatic halogenated hydrocarbons such as chloroform, dichloroethane, and dichloromethane; cyclohexane, n-heptane, and the like Aliphatic non-halogenated hydrocarbons; aromatic non-halogenated hydrocarbons such as benzene, toluene and xylene; and aromatic halogenated hydrocarbons such as chlorobenzene. These solvents may be used alone or in combination of two or more. The amount used is preferably 0 to 30 times by weight, more preferably 0 to 20 times by weight, relative to 1,5,9-cyclododecatriene.
[0018]
The reaction of the present invention is preferably carried out in a two-liquid phase in which 1,5,9-cyclododecatriene and hydrogen peroxide are separated, for example, 1,5,9-cyclododecatriene in an inert gas atmosphere. , Hydrogen peroxide, a tungsten compound and a tertiary amine or a salt thereof are mixed, heated and stirred, or the like, under normal pressure or under pressure. The reaction temperature in that case becomes like this. Preferably it is 20-120 degreeC, More preferably, it is 30-90 degreeC. Moreover, the obtained product can be isolated and purified by, for example, distillation after liquid separation.
[0019]
【Example】
The present invention will be specifically described below with reference to examples and comparative examples.
[0020]
Example 1
In a glass three-necked flask with an internal volume of 50 ml equipped with a reflux condenser, a nitrogen blowing tube and a thermometer, 1.71 g (30.2 mol) of 60 wt% hydrogen peroxide and 19.7 g (121 mol) of 1,5,9-cyclododecatriene In addition, 0.08 ml of an aqueous solution containing 50 mg / ml phosphotungstic acid (4 mg as phosphotungstic acid), 0.08 ml of a toluene solution containing 50 mg / ml tri-n-octylamine (4 mg as tri-n-octylamine) and phosphorus 0.08 ml of an aqueous solution containing 50 mg / ml of acid was added using a micropipette, and the mixture was heated and stirred at 90 ° C. for 1 hour in a nitrogen atmosphere. After the reaction, the reaction solution was cooled to room temperature, and the resulting reaction solution was analyzed.
The reaction solution was analyzed by analyzing the remaining hydrogen peroxide by iodometry with the remaining 1,5,9-cyclododecatriene (hereinafter referred to as CDT) and the produced 1,2-epoxy-5,9-cyclododecadiene ( (Hereinafter referred to as monoepoxide) was performed by gas chromatography. As a result, the hydrogen peroxide conversion was 99.4%, the CDT conversion was 21.3%, the monoepoxide selectivity based on the consumed CDT was 94.1 mol%, and the monoepoxide selectivity based on the consumed hydrogen peroxide was 83.2 mol%.
[0021]
Example 2
In Example 1, the reaction was performed in the same manner as in Example 1 except that the phosphoric acid aqueous solution was not added. As a result, the hydrogen peroxide conversion was 91.7%, the CDT conversion was 19.2%, the monoepoxide selectivity based on the consumed CDT was 94.4 mol%, and the monoepoxide selectivity based on the consumed hydrogen peroxide was 82.8 mol%.
[0022]
Comparative Example 1
In Example 2, the reaction was performed in the same manner as in Example 2 except that a toluene solution containing 50 mg / ml of tri-n-octylamine was not added. As a result, the hydrogen peroxide conversion was 3.7% and the CDT conversion was 3.0%.
[0023]
Example 3
In Example 2, the reaction was carried out in the same manner as in Example 1 except that the amount of the toluene solution containing 50 mg / ml of tri-n-octylamine was changed to 0.24 ml (12 mg as tri-n-octylamine). As a result, the hydrogen peroxide conversion was 99.1%, the CDT conversion was 23.8%, the monoepoxide selectivity based on the consumed CDT was 93.4 mol%, and the monoepoxide selectivity based on the consumed hydrogen peroxide was 83.4 mol%.
[0024]
Example 4
In Example 1, except that the toluene solution containing 50 mg / ml of tri-n-octylamine was changed to 0.08 ml of toluene solution containing 50 mg / ml of tri-n-dodecylamine (4 mg as tri-n-dodecylamine). The reaction was carried out in the same manner as in 1. As a result, the hydrogen peroxide conversion was 99.1%, the CDT conversion was 21.6%, the monoepoxide selectivity based on the consumed CDT was 94.7 mol%, and the monoepoxide selectivity based on the consumed hydrogen peroxide was 83.0 mol%.
[0025]
Example 5
In Example 1, except that the toluene solution containing 50 mg / ml of tri-n-octylamine was changed to 0.08 ml of toluene solution containing 50 mg / ml of tri-n-hexylamine (4 mg as tri-n-hexylamine). The reaction was carried out in the same manner as in 1. As a result, the hydrogen peroxide conversion was 99.4%, the CDT conversion was 21.3%, the monoepoxide selectivity based on the consumed CDT was 94.1 mol%, and the monoepoxide selectivity based on the consumed hydrogen peroxide was 83.2 mol%.
[0026]
Example 6
In Example 2, the reaction was performed in the same manner as in Example 2 except that the toluene solution containing 50 mg / ml of tri-n-octylamine was changed to 12 mg of tri-n-octylamine dihydrogen phosphate. As a result, the hydrogen peroxide conversion was 99.8%, the CDT conversion was 24.2%, the monoepoxide selectivity based on the consumed CDT was 94.2 mol%, and the monoepoxide selectivity based on the consumed hydrogen peroxide was 85.5 mol%.
[0027]
Example 7
In Example 2, the reaction was performed in the same manner as in Example 2 except that the toluene solution containing 50 mg / ml of tri-n-octylamine was changed to 12 mg of tri-n-octylamine hydrochloride. As a result, the hydrogen peroxide conversion was 99.8%, the CDT conversion was 23.8%, the monoepoxide selectivity based on the consumed CDT was 94.0 mol%, and the monoepoxide selectivity based on the consumed hydrogen peroxide was 84.0 mol%.
[0028]
Example 8
In Example 2, the reaction was performed in the same manner as in Example 2 except that the toluene solution containing 50 mg / ml of tri-n-octylamine was changed to 12 mg of tri-n-octylamine hydrogensulfate. As a result, the hydrogen peroxide conversion was 99.8%, the CDT conversion was 22.6%, the monoepoxide selectivity based on the consumed CDT was 95.2 mol%, and the monoepoxide selectivity based on the consumed hydrogen peroxide was 85.0 mol%.
[0029]
Example 9
In Example 1, an aqueous solution containing 50 mg / ml of phosphotungstic acid was 0.04 ml of an aqueous solution containing 50 mg / ml of sodium tungstate (2 mg as sodium tungstate), and an amount of toluene solution containing 50 mg / ml of tri-n-octylamine was 0.12 The reaction was conducted in the same manner as in Example 1 except that the amount of the aqueous solution containing ml (6 mg as tri-n-octylamine) and phosphoric acid at 50 mg / ml was changed to 0.12 ml. As a result, the hydrogen peroxide conversion was 99.6%, the CDT conversion was 24.4%, the monoepoxide selectivity based on the consumed CDT was 94.8 mol%, and the monoepoxide selectivity based on the consumed hydrogen peroxide was 86.0 mol%.
[0030]
【The invention's effect】
The present invention can provide a method for producing 1,2-epoxy-5,9-cyclododecadiene from 1,5,9-cyclododecatriene with high reaction rate and high yield.

Claims (1)

タングステン化合物及び一般式(1)
Figure 0004013334
(式中、R1、R2及びR3は、同一或いは異なっていても良く、無置換又は置換基を有していても良い、炭素数1〜18のアルキル基、炭素数7〜12のアラルキル基若しくは炭素数6〜8のアリール基を示す。)
で示される三級アミン又は一般式(2)
Figure 0004013334
(式中、R4、R5及びR6は、同一或いは異なっていても良く、無置換又は置換基を有していても良い、炭素数1〜18のアルキル基、炭素数7〜12のアラルキル基若しくは炭素数6〜8のアリール基を示し、Xは、アンモニウムイオンと対イオンを形成し得る原子又は原子団を示す。)
で示される三級アミンの塩の存在下、1,5,9-シクロドデカトリエンと過酸化水素とを接触させて、1,5,9-シクロドデカトリエンのモノエポキシ化を行うことを特徴とするエポキシシクロドデカジエンの製造方法。
Tungsten compounds and general formula (1)
Figure 0004013334
(In formula, R < 1 >, R < 2 > and R < 3 > may be the same or different, may be unsubstituted or may have a substituent, a C1-C18 alkyl group, C7-C12, An aralkyl group or an aryl group having 6 to 8 carbon atoms is shown.)
A tertiary amine represented by the general formula (2)
Figure 0004013334
(In the formula, R 4 , R 5 and R 6 may be the same or different, and may be unsubstituted or substituted, having 1 to 18 carbon atoms, 7 to 12 carbon atoms. An aralkyl group or an aryl group having 6 to 8 carbon atoms, and X represents an atom or an atomic group capable of forming a counter ion with an ammonium ion.
The monoepoxidation of 1,5,9-cyclododecatriene is performed by contacting 1,5,9-cyclododecatriene with hydrogen peroxide in the presence of a tertiary amine salt represented by A method for producing epoxycyclododecadiene.
JP15883198A 1998-06-08 1998-06-08 Method for producing epoxycyclododecadiene Expired - Fee Related JP4013334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15883198A JP4013334B2 (en) 1998-06-08 1998-06-08 Method for producing epoxycyclododecadiene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15883198A JP4013334B2 (en) 1998-06-08 1998-06-08 Method for producing epoxycyclododecadiene

Publications (2)

Publication Number Publication Date
JPH11349579A JPH11349579A (en) 1999-12-21
JP4013334B2 true JP4013334B2 (en) 2007-11-28

Family

ID=15680355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15883198A Expired - Fee Related JP4013334B2 (en) 1998-06-08 1998-06-08 Method for producing epoxycyclododecadiene

Country Status (1)

Country Link
JP (1) JP4013334B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7880038B2 (en) * 2003-04-18 2011-02-01 Sumitomo Chemical Company, Limited Metal catalyst and its use

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037484A (en) * 1998-09-22 2000-03-14 Arco Chemical Technology, L.P. Epoxidation process
CN1310895C (en) * 2002-02-08 2007-04-18 住友化学工业株式会社 Process for producing epoxide compound
JP5138147B2 (en) * 2003-04-18 2013-02-06 住友化学株式会社 Epoxide production method
CN101959872A (en) * 2008-02-28 2011-01-26 昭和电工株式会社 The manufacture method of epoxy compounds
JP5270932B2 (en) * 2008-03-03 2013-08-21 株式会社ダイセル Method for producing epoxy compound
JP5517237B2 (en) * 2008-09-17 2014-06-11 日本化薬株式会社 Method for producing epoxy compound, epoxy compound, curable resin composition and cured product thereof
JP5497388B2 (en) * 2008-09-30 2014-05-21 三洋化成工業株式会社 Method for producing epoxy compound
CN102264712B (en) * 2008-12-26 2014-08-13 昭和电工株式会社 Epoxy compound production method
JP2016108281A (en) * 2014-12-08 2016-06-20 株式会社Adeka Method for producing epoxy compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7880038B2 (en) * 2003-04-18 2011-02-01 Sumitomo Chemical Company, Limited Metal catalyst and its use

Also Published As

Publication number Publication date
JPH11349579A (en) 1999-12-21

Similar Documents

Publication Publication Date Title
JP4013334B2 (en) Method for producing epoxycyclododecadiene
KR101236376B1 (en) Process for production of epoxy compound
EP2383264A1 (en) Epoxy compound production method
US6538141B1 (en) Method for preparing nitroxides
JPH05213919A (en) Epoxidization of alicyclic olefin
US6288004B1 (en) Activation method of titanium silicalite
JPH0827136A (en) Production of epoxy compound
JP4118642B2 (en) Process for epoxidation of cyclic olefins
JP4178351B2 (en) Process for producing 1,2-epoxy-5,9-cyclododecadiene
JP4067823B2 (en) Process for epoxidation of cyclic monoolefins
JP4998977B2 (en) Method for producing bifunctional epoxy monomer by selective oxidation of diolefin compound
EP0577203B1 (en) Process for the conversion of oximes into the corresponding amides
JP2001302602A (en) Method for producing amide compound
JP4147363B2 (en) Process for producing 1,2-epoxy-5,9-cyclododecadiene
JP5103661B2 (en) Method for producing diepoxy compound
JPH04145073A (en) Production of styrene oxide
US6720456B2 (en) Process for the preparation of 2,3-pentanedione
US11485717B2 (en) Method for producing epoxy compound
US5210344A (en) Dehydrohalogenation of 1,1,2-trichloroethane using cyclic amines
JPH0245439A (en) Production of bisphenol
JP2640583B2 (en) Method for producing amide by oxime rearrangement and its reaction accelerator
JP2000327671A (en) Production of epoxycyclododecadiene
JPH11116561A (en) Production of epoxy compound
JPH01272577A (en) Production of glycidyl vinyl ether
JP2003104968A (en) Method for producing amide compound

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees