JP4011932B2 - Full color electrophotographic transfer voltage control method and apparatus - Google Patents

Full color electrophotographic transfer voltage control method and apparatus Download PDF

Info

Publication number
JP4011932B2
JP4011932B2 JP2002045721A JP2002045721A JP4011932B2 JP 4011932 B2 JP4011932 B2 JP 4011932B2 JP 2002045721 A JP2002045721 A JP 2002045721A JP 2002045721 A JP2002045721 A JP 2002045721A JP 4011932 B2 JP4011932 B2 JP 4011932B2
Authority
JP
Japan
Prior art keywords
color
transfer voltage
potential
transfer
development
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002045721A
Other languages
Japanese (ja)
Other versions
JP2003241483A (en
Inventor
雅信 本江
智 守口
靖彦 岸本
茂紀 上杉
基雲 杜
慶明 藤基
公相 吉田
靖一 竹田
義朗 川本
元治 市田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PFU Ltd
Original Assignee
PFU Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PFU Ltd filed Critical PFU Ltd
Priority to JP2002045721A priority Critical patent/JP4011932B2/en
Publication of JP2003241483A publication Critical patent/JP2003241483A/en
Application granted granted Critical
Publication of JP4011932B2 publication Critical patent/JP4011932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Color Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、感光体上で現像された複数色のトナー画像を転写電位に基づき転写するフルカラー電子写真の転写電圧制御方法及び装置に関する。
【0002】
【従来の技術】
従来のタンデム方式の液体現像方式の電子写真装置は、図4に示すような構成となっている。中間転写体の周りに、イエロー、マゼンタ、シアン、ブラックの色毎に対応付けて、現像ユニットを有する感光体が設けられる。各色感光体上には、それを約700Vに帯電させるための帯電器(図示せず)、帯電した感光体を画像データに基づき、例えば、780nmの波長を持つレーザ光を使って露光する露光器(図示せず)などが備えられて、感光体上に、露光部分の電位が約100Vとなる静電潜像が形成される。また、図示しない除電装置が設けられて、感光体上の残存電位を除電する。
【0003】
また、各色感光体上には、現像ローラを含む現像ユニットが備えられる。現像ローラは、約400V〜600Vのような所定の電圧にバイアスされて、感光体との間の電界に従って、正に帯電しているそのトナーを感光体に供給する。これによって、約100Vに帯電される感光体上の露光部分にトナーを付着させて、感光体上の静電潜像を現像し、画像を形成する。現像ローラ上には、トナー供給ローラ(図示せず)から、例えば、トナー粘度が100〜4000mPa・Sで、キャリア粘度が20〜500cSt、好適には100cStを持つ液体トナーを、トナー溜まりから薄く延ばしながら搬送していくことで現像ローラ上に所定の層厚(例えば、4〜10μm)で液体トナーを塗布する。
【0004】
中間転写体としての中間転写ローラは、約−800Vにバイアスされて、各感光体との間の電界に従って、感光体に付着されたトナーを転写する。この中間転写ローラは、先ず最初に、第一の感光体に付着される例えばイエローのトナーを転写し、続いて、第二の感光体に付着される例えばマゼンタのトナーを転写し、続いて、第三の感光体に付着される例えばシアンのトナーを転写し、最後に、第四の感光体に付着される例えばブラックのトナーを転写することになる。このように、第一〜第四の感光体上に現像された4色のトナー画像は、順次中間転写ローラ上に重ね合わされて、カラー画像が形成される。このようにして、通常、中間転写ローラを1回転させる間に、4色のトナー画像が中間転写ローラ上に転写されて重ね合わされる。
【0005】
その後、中間転写ローラ上に転写されたトナー画像は、バックアップローラの加圧を受けて印刷媒体との接触部において加熱溶融され、印刷媒体に溶融転写される。
【0006】
また、図5は、従来のマルチパス方式の液体現像方式の電子写真装置を示す図である。このマルチパス方式において、各色共通に用いられる唯一の感光体が、中間転写体上に当接している。それ故、感光体を帯電させるための帯電器(図示せず)、露光器(図示せず)、及び除電装置(図示せず)なども4色共通である。そして、各色毎に設けられる現像ローラを含む現像ユニットが、感光体上に当接している。
【0007】
中間転写体は、感光体との間の電界に従って、感光体に付着されたトナーを、イエロー、マゼンタ、シアン、ブラックの順に1色づつ転写して、中間転写体の上で4色のトナー画像が重ね合わされる。中間転写体上に重ね合わされた4色トナー画像が、印刷媒体に転写定着される。
【0008】
このような従来の高粘性液体トナーを用いた電子写真装置では、現像及び転写部のローラニツプ出口で液体トナーの破壊分離により濃度ムラが発生しやすく、画像品質が劣化する傾向があった。
【0009】
この問題は、液体が物に付着しようとする力が強い(ぬれ性)ことと、この液体が色材粒子(顔料)を強く保持しているため、色材粒子がこの力の影響をうけて、蛇行してしまうことによる。このような現象を防ぐため、一般に、液体トナーを用いて現像する湿式電子写真と呼ばれるものでは、トナー粘性を低くして、トナーの機械的粘性力を小さくしたり、リバース回転のローラを使用したりして、破壊分離のない状態を作って対応している。
【0010】
しかし、高濃度で、高粘度な液体現像剤を用いる湿式現像方式では、トナーの粘度は高く、従って、バイアスによる電界の力よりも粘性的な力の方が大きくなってしまうような状態になりやすい。
【0011】
【発明が解決しようとする課題】
そこで、本発明は、係る問題点を解決して、高粘度の液体トナーを用いても、転写部において画像劣化を生じること無く、画像の高品質化を図るバイアス制御をすることを目的としている。
【0012】
【課題を解決するための手段】
本発明のフルカラー電子写真の転写電圧制御方法及び装置は、感光体上で現像された複数色のトナー画像を転写電圧に基づき転写する。
【0013】
そして、予め現像電流と現像後の感光体上の表面電位との関係を求めておいて、この関係に基づいて、現像時に読み取った現像電流値から表面電位を設定し、さらに、該表面電位からの電位差を所定値に保つような最適転写電圧値を色毎に設定する。現像後の感光体上トナー層電位と被転写体電位との間の電位差を各色毎にこの最適転写電圧値に等しくなるように制御する。
【0014】
【発明の実施の形態】
液体現像電子写真装置において用いられる各色トナーの間で、それらの電荷量が異なっていると、現像後の感光体上トナー層電位も、色毎に異なったものとなる。つまり、各色で同量のトナーを感光体上に現像した場合でも、トナー単体の電荷量が大きい色が、感光体表面電位は高くなる。
【0015】
これに対し、感光体上から中間転写体(或いは印刷媒体)に転写するための転写電位差には最適値が存在する。カラープリンターでは4色トナーの間でそれぞれ電荷量が異なるため、現像後の感光体上トナー層電位が各色間で異なる。転写時に、感光体のトナー層電位に応じて中間転写体の電位を制御し、電位差を最適値に制御することで画像劣化を最も低減することができる。
【0016】
図3は、マゼンタ、シアン、ブラックの各色情報に基づき露光した後、現像した場合の最適転写電圧を説明するための図である。この図は、左から右の方向に、マゼンタ、シアン、ブラックの色情報に基づき、露光し、現像した際のそれぞれの感光体表面電位を示している。図示したように、各色情報に基づいて露光されたときの感光体上の露光電位の間に、色毎の差は無い。これを、図中、露光電位として1本の横線として示している。しかし、トナーを付着させて現像させた後、感光体表面電位は露光電位から上昇することとなるが、この電位上昇は、上記したように各色トナーの電荷量の差に依存する。即ち、感光体表面電位が、トナー色毎に異なったものとなっている。これは、図中、マゼンタ、シアン、ブラックの各色毎に異なるものとして図示している。なお、図示の例をベタ画像の場合とすると、ハーフトーンの場合は現像されたトナー量が少ないために感光体上の電位上昇は少なくなる。
【0017】
本発明は、このように、色毎に異なるものとなる現像後の感光体上の表面電位を読み取り、この読み取った表面電位に基づいて、最適転写電圧を色毎に制御することにより、濃度ムラを低減するものである。図示の各色最適転写電圧ΔVm、ΔVc、ΔVkは、感光体表面電位との電位差を表している。最適転写電圧ΔVm、ΔVc、ΔVkの値そのものは、予め実験的、経験的に求めることができる。中間転写体に印加する転写バイアス電圧(アース電位を基準とした電圧値)として、感光体表面電位にこの最適転写電圧を加えた電圧を印加する必要がある。なお、本発明は、感光体から中間転写体に転写した後に印刷媒体に転写するものだけでなく、感光体から直接印刷媒体に転写する電子写真装置にも適用可能である。それ故、本明細書では、感光体から転写されるべき中間転写体或いは印刷媒体を含む上位の概念として、広く「被転写体」ということがある。
【0018】
図1は、本発明に基づく転写電圧制御を説明するための図である。ここでは、中間転写体に印加される転写バイアス電圧が、現像電流の検出に基づき制御される。現像ユニットの現像ローラは所定の電圧にバイアスされて、感光体との間の電界に従って、正に帯電しているそのトナーを感光体に供給するが、その際、現像電流と現像後の感光体上の表面電位との間には、一定の相関関係がある。
【0019】
電流検出部では、現像電流を(色毎に)測定する。現像電流が測定されれば、それと所定の関係にある表面電位を求めることができる。この表面電位の値に、最適転写電圧として、一定値を加えた値が、中間転写体に印加すべきバイアス電圧となる。言い換えると、転写電圧が最適な値となるように、印加バイアス電圧値を決定する。
【0020】
或いは、現像電流と表面電位の間に所定の関係があるということは、また、現像電流と最適の転写バイアス電圧との間にも一定の関係があることを意味するから、予めこの一定の関係を色毎に求めておいて、電流検出部において現像時に読み取った現像電流値から、転写バイアス電圧の最適値を直接設定することも可能である。この転写バイアス電圧値を中間転写体に印加する。
【0021】
このようにして、転写バイアス電圧を適正値に設定することにより、最適転写電圧、即ち、転写バイアス電圧と現像後の感光体上トナー層電位との電位差△Vを各色ごとに最適な値に制御することが可能となる。
【0022】
このような本発明に基づくバイアス電圧制御技術を、図4を参照して説明したようなタンデム方式の装置に適用する場合、中間転写体を基準電位(例えばアース電位)にして、中間転写体の周りに各色に対応して配置された感光体のそれぞれの電位を操作して、各色それぞれの転写電位を最適値に設定することができる。即ち、図1における転写バイアス制御部は、中間転写体ではなく、感光体に印加するバイアス電圧を制御することになる。
【0023】
また、本発明に基づくバイアス電圧制御技術を、図5を参照して説明したようなマルチパス方式の装置、即ち、感光体から中間転写体へマルチパス方式で各色を順次重ね合せていく装置に適用する場合、感光体を基準電位(例えばアース電位)にして、中間転写体に印加するバイアス電圧を、各々の転写時に操作することにより、各色それぞれの最適値に設定することができる。
【0024】
或いは、静電転写方式で、中間転写体を備えずに、感光体から印刷媒体へ直接転写する時に、転写電位を各色それぞれの最適値に設定できる。
【0025】
図2は、本発明に基づく、図1とは別の転写電圧制御を説明するための図である。中間転写体に印加されるバイアス電圧が、表面電位の検出に基づき制御される。図示の例では、現像後の感光体上の表面電位を、表面電位計などを用いて直接検出する。前述の例と同様に、表面電位が求まれば、それに最適転写電圧として一定値(通常、色毎に異なる値)を加えた値を、バイアス電圧として中間転写体に印加することができる。或いは、感光体上表面電位と最適の転写バイアス電圧との間の所定の関係について、色毎に予め求めておき、転写バイアス制御部では、この予め求めておいた関係に基づき、読み取った感光体上の表面電位から転写バイアス電圧の最適値を換算して設定し、転写バイアス電圧値として中間転写体に印加する。図1に示した例と同様に、印加バイアス電圧と現像後の感光体上トナー層電位との電位差△V(最適転写電圧)を各色ごとに最適な値に制御することが可能となる。また、図1の例と同様に、タンデム方式、或いはマルチパス方式のいずれの装置にも適用できる。
【0026】
また、本装置に、通常の印刷モードは別の調整モードを備え、この調整モードの中で、ある決められた画像パターンを印刷し、この印刷画像に基づき、読み取った感光体表面電位や現像電流値からの転写電圧を最適化するよう構成することができる。
【0027】
また、これら関係は、印刷直前の画像領域外に決められたパターンを印刷し、この印刷画像に基づき求めることができる。これによって、環境変化や感光体などの消耗品劣化に対応可能となる。
【0028】
【実施例】
現像後の感光体表面電位が260V、300Vのとき、中間転写体の電位をそれぞれ-400V,-300Vに設定し、この電位差を650Vに制御することで、画像劣化は最も低減することができた。
【0029】
【発明の効果】
本発明は、現像電流値から表面電位を求め、そして、この表面電位に基づいて転写電圧を制御するものであるから、高粘度の液体トナーを用いても、転写部において画像劣化を生じること無く、画像の高品質化を図るバイアス制御をすることができる。
【図面の簡単な説明】
【図1】本発明に基づく転写電圧制御を説明するための図である。
【図2】本発明に基づく、図1とは別の転写電圧制御を説明するための図である。
【図3】マゼンタ、シアン、ブラックの各色情報に基づき露光した後、現像した場合の最適転写電位を説明するための図である。
【図4】従来のタンデム方式の液体現像方式の電子写真装置を示す図である。
【図5】従来のマルチパス方式の液体現像方式の電子写真装置を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transfer voltage control method and apparatus for full-color electrophotography in which toner images of a plurality of colors developed on a photoreceptor are transferred based on a transfer potential.
[0002]
[Prior art]
A conventional tandem liquid developing type electrophotographic apparatus has a structure as shown in FIG. A photosensitive member having a developing unit is provided around the intermediate transfer member in association with each color of yellow, magenta, cyan, and black. On each color photoconductor, a charger (not shown) for charging the photoconductor to about 700 V, and an exposure device for exposing the charged photoconductor using laser light having a wavelength of, for example, 780 nm based on image data. (Not shown) or the like is provided, and an electrostatic latent image is formed on the photosensitive member so that the potential of the exposed portion is about 100V. Further, a static elimination device (not shown) is provided to neutralize the remaining potential on the photoconductor.
[0003]
A developing unit including a developing roller is provided on each color photoconductor. The developing roller is biased to a predetermined voltage such as about 400 V to 600 V, and supplies the positively charged toner to the photosensitive member according to the electric field between the developing roller and the developing roller. As a result, toner is deposited on the exposed portion of the photosensitive member charged to about 100 V, the electrostatic latent image on the photosensitive member is developed, and an image is formed. On the developing roller, from a toner supply roller (not shown), for example, a liquid toner having a toner viscosity of 100 to 4000 mPa · S and a carrier viscosity of 20 to 500 cSt, preferably 100 cSt, is thinly extended from the toner reservoir. The liquid toner is applied with a predetermined layer thickness (for example, 4 to 10 μm) on the developing roller by being conveyed.
[0004]
An intermediate transfer roller as an intermediate transfer member is biased to about −800 V, and transfers toner adhered to the photosensitive member according to an electric field between the photosensitive members. The intermediate transfer roller first transfers, for example, yellow toner attached to the first photosensitive member, and subsequently transfers, for example, magenta toner attached to the second photosensitive member. For example, cyan toner attached to the third photosensitive member is transferred, and finally, black toner attached to the fourth photosensitive member is transferred. Thus, the four color toner images developed on the first to fourth photoconductors are sequentially superimposed on the intermediate transfer roller to form a color image. In this way, usually, the toner images of four colors are transferred onto the intermediate transfer roller and superimposed while the intermediate transfer roller is rotated once.
[0005]
Thereafter, the toner image transferred onto the intermediate transfer roller is heated and melted at a contact portion with the print medium under pressure from the backup roller, and is melted and transferred to the print medium.
[0006]
FIG. 5 is a diagram showing a conventional multi-pass liquid developing type electrophotographic apparatus. In this multi-pass method, the only photoconductor used in common for each color is in contact with the intermediate transfer member. Therefore, a charging device (not shown) for charging the photosensitive member, an exposure device (not shown), a charge eliminating device (not shown), and the like are also common to the four colors. A developing unit including a developing roller provided for each color is in contact with the photosensitive member.
[0007]
The intermediate transfer member transfers the toner attached to the photosensitive member one by one in the order of yellow, magenta, cyan, and black in accordance with the electric field between the photosensitive member and the four-color toner image on the intermediate transfer member. Are superimposed. The four-color toner image superimposed on the intermediate transfer member is transferred and fixed on the print medium.
[0008]
In such a conventional electrophotographic apparatus using a high-viscosity liquid toner, density unevenness is likely to occur due to destructive separation of the liquid toner at the roller nip exit of the development and transfer section, and the image quality tends to deteriorate.
[0009]
The problem is that the force that the liquid tries to adhere to the object is strong (wetting) and the liquid holds the coloring material particles (pigments) strongly, so the coloring material particles are affected by this force. By meandering. In order to prevent such a phenomenon, in general, what is called wet electrophotography in which development is performed using liquid toner, the toner viscosity is lowered to reduce the mechanical viscosity of the toner, or a reverse rotation roller is used. To create a state without destructive separation.
[0010]
However, in the wet development method using a high-concentration and high-viscosity liquid developer, the viscosity of the toner is high, so that the viscous force becomes larger than the electric field force due to the bias. Cheap.
[0011]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to solve such problems and to perform bias control for improving the quality of an image without causing image deterioration in a transfer portion even when a high viscosity liquid toner is used. .
[0012]
[Means for Solving the Problems]
Transfer voltage control method and apparatus for full-color electrophotography of the present invention, transfer based toner images of a plurality of colors developed on the photoreceptor to a transfer voltage.
[0013]
Then , a relationship between the development current and the surface potential on the photoconductor after development is obtained in advance, and based on this relationship, the surface potential is set from the development current value read at the time of development. An optimum transfer voltage value is set for each color so as to keep the potential difference between the two colors. The potential difference between the toner layer potential on the photoreceptor after development and the potential of the transfer target is controlled to be equal to the optimum transfer voltage value for each color.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
If the charge amounts of the respective color toners used in the liquid developing electrophotographic apparatus are different, the toner layer potential on the photoreceptor after development also differs for each color. That is, even when the same amount of toner for each color is developed on the photoconductor, the surface potential of the photoconductor becomes higher for a color having a large charge amount of the toner alone.
[0015]
On the other hand, there is an optimum value for the transfer potential difference for transferring from the photosensitive member to the intermediate transfer member (or print medium). In a color printer, since the charge amount differs among the four color toners, the toner layer potential on the photoreceptor after development differs between the colors. At the time of transfer, image degradation can be reduced most by controlling the potential of the intermediate transfer member according to the toner layer potential of the photosensitive member and controlling the potential difference to an optimum value.
[0016]
FIG. 3 is a diagram for explaining the optimum transfer voltage in the case where development is performed after exposure based on each color information of magenta, cyan, and black. This figure shows the photosensitive member surface potentials when exposed and developed based on color information of magenta, cyan, and black in the direction from left to right. As shown in the figure, there is no difference for each color between the exposure potentials on the photoconductor when exposed based on each color information. This is shown as one horizontal line as the exposure potential in the figure. However, after the toner is attached and developed, the surface potential of the photoreceptor rises from the exposure potential. This increase in potential depends on the difference in charge amount of each color toner as described above. That is, the photoreceptor surface potential is different for each toner color. This is illustrated as different for each color of magenta, cyan, and black in the drawing. If the illustrated example is a solid image, the amount of developed toner is small in the case of halftone, and therefore the potential increase on the photosensitive member is small.
[0017]
In this way, the present invention reads the surface potential on the photoconductor after development, which differs for each color, and controls the optimum transfer voltage for each color on the basis of the read surface potential. Is reduced. Each color optimum transfer voltage ΔVm, ΔVc, ΔVk shown in the figure represents a potential difference from the surface potential of the photoreceptor. The values of the optimum transfer voltages ΔVm, ΔVc, ΔVk themselves can be obtained in advance experimentally and empirically. As a transfer bias voltage (voltage value based on the ground potential) applied to the intermediate transfer member, it is necessary to apply a voltage obtained by adding this optimum transfer voltage to the surface potential of the photosensitive member. The present invention can be applied not only to a transfer from a photoreceptor to an intermediate transfer member and then to a print medium, but also to an electrophotographic apparatus that directly transfers from a photoreceptor to a print medium. Therefore, in the present specification, as an upper concept including an intermediate transfer body or a printing medium to be transferred from the photoconductor, it may be broadly referred to as a “transfer object”.
[0018]
FIG. 1 is a diagram for explaining transfer voltage control according to the present invention. Here, the transfer bias voltage applied to the intermediate transfer member is controlled based on the detection of the development current. The developing roller of the developing unit is biased to a predetermined voltage and supplies the positively charged toner to the photoconductor in accordance with the electric field between the photoconductor and the developing current and the photoconductor after development. There is a certain correlation with the upper surface potential.
[0019]
The current detector measures the development current (for each color). If the development current is measured, a surface potential having a predetermined relationship with the development current can be obtained. A value obtained by adding a constant value as the optimum transfer voltage to the surface potential value is the bias voltage to be applied to the intermediate transfer member. In other words, the applied bias voltage value is determined so that the transfer voltage becomes an optimum value.
[0020]
Alternatively, the fact that there is a predetermined relationship between the developing current and the surface potential also means that there is a certain relationship between the developing current and the optimum transfer bias voltage. Can be determined for each color, and the optimum value of the transfer bias voltage can be set directly from the development current value read during development by the current detection unit. This transfer bias voltage value is applied to the intermediate transfer member.
[0021]
In this way, by setting the transfer bias voltage to an appropriate value, the optimum transfer voltage, that is, the potential difference ΔV between the transfer bias voltage and the developed toner layer potential on the photosensitive member is controlled to an optimum value for each color. It becomes possible to do.
[0022]
When such a bias voltage control technique based on the present invention is applied to a tandem apparatus as described with reference to FIG. 4, the intermediate transfer member is set to a reference potential (for example, ground potential), and the intermediate transfer member is The respective transfer potentials of the respective colors can be set to the optimum values by manipulating the respective potentials of the photoconductors arranged corresponding to the respective colors. That is, the transfer bias controller in FIG. 1 controls the bias voltage applied to the photosensitive member, not the intermediate transfer member.
[0023]
In addition, the bias voltage control technique based on the present invention is applied to a multi-pass apparatus as described with reference to FIG. When applied, the photosensitive member is set to a reference potential (for example, ground potential), and the bias voltage applied to the intermediate transfer member can be set to the optimum value for each color by operating at the time of each transfer.
[0024]
Alternatively, the transfer potential can be set to an optimum value for each color when the image is directly transferred from the photosensitive member to the printing medium without an intermediate transfer member by the electrostatic transfer method.
[0025]
FIG. 2 is a diagram for explaining transfer voltage control different from FIG. 1 according to the present invention. The bias voltage applied to the intermediate transfer member is controlled based on the detection of the surface potential. In the illustrated example, the surface potential on the photoconductor after development is directly detected using a surface potential meter or the like. Similar to the above-described example, once the surface potential is obtained, a value obtained by adding a certain value (usually a different value for each color) to the optimum transfer voltage can be applied to the intermediate transfer member as a bias voltage. Alternatively, a predetermined relationship between the surface potential on the photoconductor and the optimum transfer bias voltage is obtained in advance for each color, and the transfer bias control unit reads the photoconductor based on the preliminarily obtained relationship. The optimum value of the transfer bias voltage is converted from the above surface potential and set, and applied to the intermediate transfer member as the transfer bias voltage value. As in the example shown in FIG. 1, the potential difference ΔV (optimum transfer voltage) between the applied bias voltage and the developed toner layer potential on the photoreceptor can be controlled to an optimum value for each color. In addition, as in the example of FIG. 1, the present invention can be applied to either a tandem system or a multipath system.
[0026]
In addition, the normal printing mode of this apparatus is provided with another adjustment mode. In this adjustment mode, a predetermined image pattern is printed, and based on this print image, the read photoreceptor surface potential and development current are read. It can be configured to optimize the transfer voltage from the value.
[0027]
In addition, these relationships can be obtained based on the printed image obtained by printing a pattern determined outside the image area immediately before printing. This makes it possible to cope with environmental changes and deterioration of consumables such as photoconductors.
[0028]
【Example】
When the photoreceptor surface potential after development was 260V and 300V, the potential of the intermediate transfer member was set to -400V and -300V, respectively, and this potential difference was controlled to 650V. .
[0029]
【The invention's effect】
The present invention obtains the surface potential from the current image current value, and, since it is used to control the transfer voltage on the basis of the surface potential, even with a liquid toner of a high viscosity, causing image deterioration in the transfer section In addition, it is possible to perform bias control for improving the quality of an image.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining transfer voltage control according to the present invention.
FIG. 2 is a diagram for explaining transfer voltage control different from FIG. 1 according to the present invention.
FIG. 3 is a diagram for explaining an optimum transfer potential in the case where development is performed after exposure based on color information of magenta, cyan, and black.
FIG. 4 is a diagram illustrating a conventional tandem liquid developing type electrophotographic apparatus.
FIG. 5 is a view showing a conventional multi-pass liquid developing type electrophotographic apparatus.

Claims (5)

感光体上で現像された複数色のトナー画像を転写電圧に基づき転写するフルカラー電子写真の転写電圧制御方法において、
予め求めておいた所定の関係に基づいて、現像時に読み取った現像電流値から表面電位を設定し、さらに、該表面電位からの電位差を所定値に保つような最適転写電圧値を色毎に設定し、
現像後の感光体上トナー層電位と被転写体電位との間の電位差を各色毎に前記最適転写電圧値に等しくなるように制御することから成るフルカラー電子写真の転写電圧制御方法。
In a full color electrophotographic transfer voltage control method for transferring a plurality of color toner images developed on a photoreceptor based on a transfer voltage,
Based on a predetermined relationship obtained in advance, the surface potential is set from the development current value read during development, and an optimum transfer voltage value is set for each color so as to keep the potential difference from the surface potential at a predetermined value. And
A transfer voltage control method for full-color electrophotography, comprising: controlling a potential difference between a toner layer potential on a photosensitive member after development and a transfer target potential to be equal to the optimum transfer voltage value for each color.
装置の調整モード動作時に、所定の画像パターンを印刷し、転写電圧を最適化する請求項1に記載のフルカラー電子写真の転写電圧制御方法。  2. The full color electrophotographic transfer voltage control method according to claim 1, wherein a predetermined image pattern is printed and the transfer voltage is optimized during the adjustment mode operation of the apparatus. 前記所定の画像パターンの印刷は、印刷直前の画像領域外に行い、読み取った表面電位或いは電流値から転写電圧を印刷毎に最適化する請求項2に記載のフルカラー電子写真の転写電圧制御方法。  3. The transfer voltage control method for full-color electrophotography according to claim 2, wherein the predetermined image pattern is printed outside the image area immediately before printing, and the transfer voltage is optimized for each printing from the read surface potential or current value. 前記被転写体が中間転写ドラムであり、各色共通の感光体から中間転写体へマルチパス方式で各色を順次重ね合せていく装置で、感光体を基準電位にして中間転写体の電位を各々の転写時に操作することにより各色それぞれの転写電圧を最適値に設定した請求項1〜3のいずれかに記載のフルカラー電子写真の転写電圧制御方法。  The transfer target is an intermediate transfer drum, and is a device that sequentially superimposes each color from a common photosensitive member to an intermediate transfer member by a multi-pass method. 4. The transfer voltage control method for full-color electrophotography according to claim 1, wherein the transfer voltage for each color is set to an optimum value by operating at the time of transfer. 感光体上で現像された複数色のトナー画像を転写電圧に基づき転写するフルカラー電子写真の転写電圧制御装置において、
予め求めておいた関係に基づいて、現像時に読み取った現像電流値から表面電位を色毎に設定し、さらに、該表面電位からの電位差を所定値に保つような最適転写電圧値を色毎に設定する手段と、
現像後の感光体上トナー層電位と被転写体電位との間の電位差を各色毎に前記最適転写電圧値に等しくなるように制御する手段と、
から成るフルカラー電子写真の転写電圧制御装置。
In a full-color electrophotographic transfer voltage control device for transferring a plurality of color toner images developed on a photoreceptor based on a transfer voltage,
Based on the relationship obtained in advance, the surface potential is set for each color from the development current value read at the time of development, and the optimum transfer voltage value for keeping the potential difference from the surface potential at a predetermined value is set for each color. Means for setting;
Means for controlling the potential difference between the toner layer potential on the photoreceptor after development and the potential of the transferred body to be equal to the optimum transfer voltage value for each color;
A full color electrophotographic transfer voltage control device comprising:
JP2002045721A 2002-02-22 2002-02-22 Full color electrophotographic transfer voltage control method and apparatus Expired - Fee Related JP4011932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002045721A JP4011932B2 (en) 2002-02-22 2002-02-22 Full color electrophotographic transfer voltage control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002045721A JP4011932B2 (en) 2002-02-22 2002-02-22 Full color electrophotographic transfer voltage control method and apparatus

Publications (2)

Publication Number Publication Date
JP2003241483A JP2003241483A (en) 2003-08-27
JP4011932B2 true JP4011932B2 (en) 2007-11-21

Family

ID=27784406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002045721A Expired - Fee Related JP4011932B2 (en) 2002-02-22 2002-02-22 Full color electrophotographic transfer voltage control method and apparatus

Country Status (1)

Country Link
JP (1) JP4011932B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7379679B2 (en) 2004-06-14 2008-05-27 Seiko Epson Corporation Image forming apparatus and method with plural developers each storing toner of the same color
JP5369424B2 (en) * 2007-10-31 2013-12-18 コニカミノルタ株式会社 Image forming apparatus and image forming method
JP5432572B2 (en) * 2009-04-16 2014-03-05 株式会社沖データ Image forming apparatus

Also Published As

Publication number Publication date
JP2003241483A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
JP4819426B2 (en) Image forming apparatus
US20110069979A1 (en) Image forming apparatus
EP0851312A3 (en) Color-image forming apparatus for printing a color image
US8396404B2 (en) Image transfer nip method and apparatus using constant current controls
US6928254B2 (en) Apparatus and method of forming multi-color images
JP4610432B2 (en) Image forming apparatus
US8306465B2 (en) Image forming apparatus having varying distances between photosensitive drums and transfer rollers
JP2002162801A (en) Image forming device
JP4011932B2 (en) Full color electrophotographic transfer voltage control method and apparatus
US7433617B2 (en) Image forming apparatus to control voltage of development unit
JP2006220800A (en) Image forming apparatus
JP4432377B2 (en) Image forming apparatus
US20030228165A1 (en) Image forming apparatus
CA2364969C (en) Method and apparatus for forming color image
JP2002244369A (en) Image forming device
JPH08286528A (en) Color image forming device
WO2015093628A1 (en) Image formation device
US20030021615A1 (en) Image forming apparatus
JP4819423B2 (en) Image forming apparatus
JP2002072615A (en) Liquid-development full color electrophotographic device
JP3884868B2 (en) Image forming apparatus
US6807385B2 (en) Difference potential preventing image forming apparatus
JP3615469B2 (en) Liquid development full-color electrophotographic apparatus
JP2005017627A (en) Image forming apparatus
JP2006098894A (en) Image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees