JP4009997B2 - Construction method of membrane structure building using membrane coated with surface treatment agent - Google Patents

Construction method of membrane structure building using membrane coated with surface treatment agent Download PDF

Info

Publication number
JP4009997B2
JP4009997B2 JP2003188392A JP2003188392A JP4009997B2 JP 4009997 B2 JP4009997 B2 JP 4009997B2 JP 2003188392 A JP2003188392 A JP 2003188392A JP 2003188392 A JP2003188392 A JP 2003188392A JP 4009997 B2 JP4009997 B2 JP 4009997B2
Authority
JP
Japan
Prior art keywords
membrane
film
treatment agent
surface treatment
structure building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003188392A
Other languages
Japanese (ja)
Other versions
JP2005023598A (en
Inventor
卓 能村
宏 豊田
和広 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Kogyo Co Ltd
Original Assignee
Taiyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kogyo Co Ltd filed Critical Taiyo Kogyo Co Ltd
Priority to JP2003188392A priority Critical patent/JP4009997B2/en
Publication of JP2005023598A publication Critical patent/JP2005023598A/en
Application granted granted Critical
Publication of JP4009997B2 publication Critical patent/JP4009997B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、ドームなどの膜構造物に使用される、表面処理剤で被覆した膜を用いた膜構造建築物の施工方法に関する。
【0002】
【従来の技術】
従来の表面処理剤で被覆した膜を使用した膜構造建築物としては、ドームやスタジアムなどの屋根部やカーテンなどがある(特許文献1参照)。これらの従来の表面処理剤で被覆した膜を用いた膜構造建築物の膜は、防汚や耐久性向上や接合など目的に応じた表面処理剤が製造工程において塗布されていた。
そして、この表面処理剤は、膜材料の彩色や見栄えなどを損なわないように、ほぼ透明または無色透明な表面処理剤を使用し、乾燥や焼結した後においても、ほぼ透明または無色透明としていた(特許文献2参照)。なお本明細書で膜とは、上記各種の膜構造物に用いられる材料を含む概念であり、材料(素材)の表面に表面処理剤で被覆した状態又は被覆する前の状態のものを含む概念として用いている。
このように表面処理剤としてほぼ透明または無色透明な材料を使用しているため、従来の表面処理剤で被覆した膜の表面は、膜構造建築物を施工する屋外において、太陽光に対して高い反射率をもつことから、膜の伸長及び取り付け作業を行う施工作業者は、雪原や夏の山や海岸と同様に、紫外線から身体を守ために肌を露出しないように厚着をしたり、太陽光の反射による眩しさを防ぐためにサングラスを掛けたりしながら膜構造建築物の施工作業を行わなければならない。
【0003】
【特許文献1】
特開2000−179074公報(第2頁及び図1)
【特許文献2】
特開平09−226064公報(第2頁)
【0004】
【発明が解決しようとする課題】
上記の膜構造建築物の施工作業を太陽光の照射される日中に行う場合には、膜の太陽による反射光により目が眩しくなるために視認性に欠け、作業員の安全性を損なうため、施工を行う作業員の身体防護のために万全の準備をしなければならず、作業性や施工作業に劣るという課題がある。
【0005】
本発明は、以上の点に鑑み、膜構造建築物の施工作業を容易に行うことができる、表面処理剤で被覆した膜を用いた膜構造建築物の施工方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記の目的を達成するため、本発明の表面処理剤で被覆した膜を用いた膜構造建築物の施工方法は、樹脂と光触媒と発色剤とを含み、発色した色が紫外線照射により退色し、ほぼ透明または無色透明に変化する表面処理剤と、表面処理剤を表面に塗布した膜とで成り、紫外線照射により発色した色を退色させる膜を用いた膜構造建築物の施工方法であって、表面処理剤で被覆した膜が発色している所定時間中に、膜構造建築物の膜施工を順次行うことを特徴とする。
上記構成において、好ましくは、膜構造建築物は、膜展張工程と、膜仮止め工程と、膜定着工程と、膜止水仕上げ工程と、を含む工程により施工される。上記膜止水仕上げ工程において、好ましくは、膜同士がフラップ膜を用いた溶着により接合される。好ましくは、樹脂はフッ素樹脂であり、光触媒は酸化チタン(TiO2 、TiO3 )からなる。また、膜の表面は平面、または、凹凸面のいずれでもよい。表面処理剤で被覆した基材の表面は、好ましくは、疎水性または親水性となる。
【0007】
上記構成によれば、膜表面に被覆した表面処理剤が、被覆後には膜と異なる色に発色しているので、この発色を太陽光の反射率の低い色に選定しておくことができる。また、膜は太陽光などの紫外線を照射することにより、所定時間経過後に退色させることができるので、退色後は膜の地色又は膜材を装飾している色彩など、基材の表面色を表すことができる。
したがって、膜本来の色になるまでの所定時間の間に、膜構造建築物の施工作業を行えば、膜表面の太陽光への反射率が低いので、作業性よく、かつ、安全に膜構造建築物の施工作業を行うことができる。また同時に、表面処理剤が膜の色と異なる色を呈するので、塗りムラや塗り残しなどが容易に視認できる。
また、施工後の膜に被覆された表面処理剤は、退色してほぼ透明または無色透明になるので、基材の彩色の美観を損なうことなく使用することができる。
さらに、膜構造建築物の膜の表面処理剤に光触媒が含まれている場合には、光触媒光触媒による防汚性に優れ、疎水性または親水性の表面を有する膜を有する膜構造建築部が容易に実現でき、膜構造建築物の美観や見栄えを長期間に亘り継続させることができる。
【0008】
【発明の実施の形態】
以下、この発明の実施の形態を図面により詳細に説明する。
図1は、本発明の表面処理剤で被覆した膜を用いた膜構造建築物概略斜視図を示す図である。図において、膜構造建築物1は、鉄骨などによる骨組み2の屋根部3に、表面処理剤で被覆した膜膜4を張って構成される。膜4は、例えば膜4a〜4dの4枚からなっている。そして、膜構造建築物1の側壁となる部分が、膜5,6である。
膜4aと膜4bなどの膜同士の接続部分は、漏水防止のために、膜止水仕上げ工程により互いに接続される。膜止水仕上げ工程は、この接続部分よりも幅の広い帯状のフラップ膜7の溶着方法や、板金やゴム等を用いた方法で施工される。
ここで、膜構造建築物1は、飛行場などの輸送用公共施設、ショッピングセンターや博覧会会場などの商業施設、倉庫や工場、ドームやサッカースタジアムなどのスポーツ用施設、日除け、休憩、通路などの公園施設、道路施設などの膜構造物を含む。
【0009】
次に、膜構造建築物の施工方法に使用する表面処理剤で被覆した膜について、図2〜図4により説明する。図2は、本発明に用いる表面処理剤で被覆した膜を巻回した膜部材の施工前の状態を示す斜視図である。
図示するように膜部材20においては、表面処理剤で表面を被覆した膜10が紙管や鋼管などの芯材21に円柱形状、即ちロール状に巻回されている。この膜部材20は、後述するが、膜10の表面に被覆した表面処理剤が、被覆後には膜の表面色と異なる色に発色しており、太陽光などの紫外線を照射することにより所定時間経過後に退色するので、製造後に直ちに巻回されて好ましくは暗所で保管されている。膜部材20は、膜施工までの所定の期間中保管する必要がある場合には、表面の発色が退色が進まないないように、巻回後に遮光用の樹脂膜などにより包装してもよい。
【0010】
図3は、本発明に用いる表面処理剤で被覆した膜の構造を示す断面図である。図3に示すように、膜10は、この布や繊維補強樹脂などからなる膜材料12の所定個所が、フッ素樹脂などの樹脂を用いた表面処理剤15で被覆されている。図3の場合には、一例として、膜材料12の両面に表面処理剤15を被覆した構造を示しているが、使用目的などに応じて、膜材料12の片面又は表面の所定の領域だけに表面処理剤15を被覆するようにしても勿論構わない。
膜材料12は、プラスティックなどの樹脂、各種材料からなる織物など種々の材料が適用され、その形状も任意でよい。膜材料12としては、ガラス繊維,ポリエステル繊維,ナイロン繊維,綿,麻,などの繊維からなる織物13に、フッ素樹脂やPVC(ポリ塩化ビニル),PU(ポリウレタン),クロロスルフォン化ポリエチレンゴム,クロロプレンゴムなどのゴムなどから選択された樹脂14を被覆した布状,ベルト状などの材料を使用できる。
樹脂14において、フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE),ポリビニリデンフルオライド(PVDF),テトラフルオロエチレン−へキサフルオロプロピレン共重合体(FEP)などのフッ素樹脂モノマーの重合体を用いることができる。
ここで、膜構造物に用いるシートの場合にも、膜材料2の表面形状は、平坦、平坦でない凹凸面、メッシュ状のいずれでも適用できる。
【0011】
図4は、本発明に用いる表面処理剤15で被覆した膜の製造した後の表面側の構造を示す拡大断面図である。
光触媒17,18は、直径が、例えば1nm〜100nmのアナターゼ型TiO2 (二酸化チタン)などの光触媒微粒子であり、それぞれ、フッ素樹脂16内にある光触媒微粒子と、フッ素樹脂の表面16aに露出した光触媒微粒子を示している。光触媒効果を高めるためには、表面処理剤15の表面16aに露出した光触媒18の面積を大きくするために、光触媒17,18の粒子径は、適度に小さいことが望ましい。
表面処理剤15は、一例として、PTFE,PVDFなどのフッ素樹脂16を主体として、光触媒17,18と発色剤19とを含む分散剤からなる溶液で構成されている。
表面処理剤15は膜材料12を構成する織物13に塗布された樹脂14の表面に塗布され、乾燥または焼結工程により被覆されたとき、樹脂14の地色とは異なる色に発色するように、発色剤19が選定されている。
【0012】
ここで、光触媒17,18は光半導体とも呼ばれる材料である。光触媒17,18は、アナターゼ型TiO2 (禁制帯幅3.2eV、波長388nm)のほかには、ルチル型TiO2 (禁制帯幅3.0eV、波長414nm)、三酸化チタン(TiO3 )などが使用できる。これらのチタン酸化物を総称して、酸化チタンと呼ぶ。
【0013】
また、表面処理剤を発色させる発色剤19は、塗布しようとする色に応じて決めることができ、アゾ色素、キノン−イミン色素、キサンテン色素、フェニルメタン色素、キサンテン色素、チアゾール色素、シアニン系色素、オキソノール系色素、メロシアニン系色素、スチリル系色素、中性色素、クロロフィルやベータカロチンなどの天然色素などの色素を用いることができる。
これとは別に、発色剤19として、表面処理剤15の主成分となる分散剤に含まれる有機系分散剤や界面活性剤などが、乾燥や焼結により発色することを利用してもよい。この場合には、表面処理剤15の樹脂と光触媒以外の分散剤成分が発色剤19を兼ねることになる。このように、本明細書で発色剤とは、色素と、表面処理剤に含まれる樹脂及び光触媒以外の分散剤などに使用される材料を含む概念として用いている。また、発色による色又は色彩とは、有彩色に限らず白又は黒の無彩色を含む。
【0014】
上記表面処理剤15中に含ませる光触媒の配合量は任意であるが、用途、性能、塗布方法により溶液の粘度を適宜調製すればよい。膜材料12への熱接合性能が要求される場合の光触媒17,18の配合量は、表面処理剤15中の固形濃度成分量として、30〜50重量%とすればよい。
上記表面処理剤15中に含まれる光触媒の配合量により、表面処理剤を被覆した膜材の表面を疎水性または親水性とすることができる。
また、上記フッ素樹脂を含む表面処理剤15に、導電性や光触媒効果の増強効果をさらに付与するためには、金属材料や光触媒機能補助物質を添加すればよい。金属材料としては、Ag,Al,Au,Cu,Fe,In,Ir,Ni,Os,Pd,Pt,Rh,Ru,Zu,Sb,Sn,Zu等が使用できる。
【0015】
次に、本発明の表面処理剤で被覆した膜を用いた膜構造建築物の施工方法について説明をする。図5は、本発明の表面処理剤で被覆した膜を用いて膜構造建築物を施工する方法を説明するフロー図である。
図1に示す膜構造建築物を例にすると、屋根部3の周囲に設けた足場において、施工作業者は、膜部材20の膜を広げ、所定の場所に展開する、即ち膜展張工程を行う(図5(A)参照)。
【0016】
次に、図5(B)に示すように、図1の屋根部4の骨組み2の所定の個所において、膜部材20の端部を所定の間隔で仮止めする。この膜仮止め工程は、次のように行われる。膜部材20の端部を所定の間隔で治具により挟持し、施工作業者がこの治具を張線器により引っ張ることにより、屋根部4の形状に沿うように膜部材20の端部が延伸される。
膜仮止め工程の別の方法としては、膜部材20の端部にロープによる仮かがりを施して、施工作業者がこのロープを引っ張る方法が適用できる。
【0017】
次に、図5(C)に示すように、膜部材20の膜定着工程を行う。これは、膜部材20の端部を屋根部4の骨組みの所定個所へボルトとナットで所定のトルクとなるようにトルクレンチで締め付け、本締めする施工工程である。この膜定着工程は、ロープを使用する場合には、ロープ端部を屋根部4の骨組みの所定個所に結び付けることで行われる。膜定着工程の終了後に、膜仮止めの治工具を撤去すると、膜構造建築物の屋根部4に膜4a〜4dが張りつけられ固定された状態に施工される。
【0018】
次に、図5(D)に示すように、各膜同士の接続部分において止水仕上げを行う膜止水仕上げ工程を施す(図1の7参照)。この膜止水仕上げ工程において、フラップ膜7を使用する場合には、最初に、屋根部4の骨組みの膜の上に足場を設ける。次に、接着テープにより膜部材20の隣合う端部同士を重ね合わせてその接続部分同士を仮止めしてから、膜3a〜3dの所要個所にフラップ膜を溶着する。ここで、フラップ膜7の溶着は、溶着機を使用して行う。この膜止水仕上げ工程の作業は、屋根部4の上方から下方に向かって行う。
この膜止水仕上げ工程の別の方法は、各膜同士の接続部分を板金を使用して行う方法である。この場合には、フラップ膜の工程と同様に屋根部4の骨組みの膜の上に設けた足場において、下地となる膜と仮合わせの後に電動ドリルを用いてビスを下地の膜に打つことで、膜が板金により固定される。
【0019】
本発明の特徴は、表面処理剤で被覆した膜の表面が所定の色に発色している時間又は期間内に、図5に示した膜構造建築物の膜施工工程を行うことにある。
表面に表面処理剤を塗布しこれを乾燥又は焼結して製造した膜4の表面は、太陽光に晒すこと無く或いは紫外線灯や蛍光灯などの光に長時間あてるようにしなければ、即ち、紫外線を照射しない状態では、発色剤19を添加した表面処理剤15は当該発色剤の色に発色した状態が保たれている。従って、膜を被覆した表面処理剤15の呈する色を、太陽光の反射率が低下する褐色などにしておけば、屋外の施工作業に好適である。
ここで、表面処理剤で被覆した膜4を、日光などの紫外線を含む光に晒すなどにより紫外線を照射すると、紫外線が直接、発色剤19を分解し発色している色彩を徐々に退色させる。さらに、紫外線が表面処理剤に含まれている光触媒17,18に照射されることにより、光触媒の有する酸化及び還元反応により発色剤19を分解し退色させる。この際、光触媒が酸化チタンの場合には、紫外線の波長は、おおよそ、400nm以下であればよい。
これにより、所定の時間の光照射の後には、表面処理剤の色を、透明またはほぼ透明とすることができる。紫外線は、太陽光のほか、蛍光灯から発せられる紫外線などでも有効である。
【0020】
これにより、膜構造建築物の膜施工をする作業者は、退色するまでの所定時間の間に膜施工作業を行えば、膜表面の太陽光からの反射率が低いので、安全に膜構造建築物への施工作業を行うことができる。
また、膜構造建築物の膜の表面は、施工作業の終了後に退色し、膜構造物に使用する膜の色は、膜本来の彩色に戻るので、美観や見栄えを損なうことがない。さらに、膜構造物の膜の表面は、膜に被覆されている表面処理剤15中に含まれる光触媒のセルフクリーニング効果作用により汚れにくいので、膜構造建築物の美観や見栄えを長期間に亘り継続させることができる。
【0021】
次に、本発明の表面処理剤で被覆した膜を用いた膜構造建築物の施工方法の実施例について説明する。
最初に、膜構造建築物に使用する膜部材について説明する。
膜4は、ガラス繊維の両面がフッ素樹脂(PTFE)で被膜された膜材料(FGT600:中興化成工業製)を使用した。表面処理剤15は、主成分がフッ素樹脂(FEP)で、光触媒を含む組成の、以下に示す分散剤を使用した。
粒径が1nm〜100nmのアナターゼ型TiO2 粉末(石原産業製ST01)の水系分散剤(固形分28重量%)を50g、精製水100g、FEPからなる水系分散剤(固形分58重量%)を36.2g、シリコン系界面活性剤を1.7g(全体の1重量%)などからなる材料を用意して、これらの材料を混合、攪拌し、表面処理剤15となる分散剤(FEPと酸化チタン粉末の重量比率は60:40である。)を調製した。この分散剤は、白濁溶液であった。
【0022】
上記膜材料(FGT600:中興化成工業製)の表面にあるフッ素樹脂膜をエチレンアルコールを適量染み込ませたキムタオル(クレシア社製)で拭き、常温で、自然乾燥させた後に、溶液Aをバーコート法により片面全面に塗布した。この塗布膜は、常温で自然乾燥させた後に、60℃で5分間乾燥し、自然冷却させた後で、さらに380℃で10分間加熱焼成してから自然冷却した。
溶液中のFEPの分散媒体を構成する材料の中に含まれている光触媒材料と、表面処理剤15の分散性を保ちつつ、塗工後の乾燥工程または焼結工程の熱により表面処理剤15を発色させた。この発色は褐色であり、膜材料(FGT600:中興化成工業製)の表面のフッ素樹脂の乳白色と容易に目視にて区別できた。なお、表面処理剤15は、塗布前においては白濁溶液である。したがって、この褐色の発色は、表面処理剤の乾燥工程または焼結工程中に、表面処理剤である分散剤中に含まれている光触媒の水系分散剤やFEP水系分散剤に含まれている有機物などの発色剤により発色しているものと推測される。
【0023】
次に、上記膜部材を用いた膜構造建築物の施工の実施例を説明する。
(実施例1)
巻幅7mで長さ40mの膜部材を用いて、約250m2 の面積の屋根部を有する膜構造建築物の図5に示した膜施工工程は1日で終了した。この作業期間中において、膜部材の表面は茶色の状態であった。膜表面の発色は、おおよそ一月後に退色した。
【0024】
(実施例2)
膜構造建築物の屋根部の面積が、約2500m2 の膜施工を行った。鋼管に巻いた膜部材は、1本当たり巻幅22mで長さ40mである。この膜部材3本をクレーンにより吊り上げて膜展張工程を行い、膜仮止め工程と膜定着工程に二日を要した。
次に、3日目から6日目(4日間)にフラップ膜溶着工程を施工し、全工程を六日で施工した。
膜の表面および下地の樹脂は、それぞれ、表面処理剤により形成されるFEPとガラス繊維上に被覆されたPTFEであるので、フラップ膜の溶着工程において、膜同士の熱接合を良好に行うことができた。この施工作業期間中において、膜部材の表面は、茶色から薄茶色に変化したが、膜構造建築物の施工を安全に行うことができた。
【0025】
図6は、実施例1と実施例2における施工開始からの膜部材表面の屋外における色変化を示す表面写真である。図6(A)は製造直後、(B)は2日後、(C)は6日後、(D)は2週間後の表面写真である。
膜部材の製造直後と屋外露出後2週間の発色は、それぞれ、茶色とクリーム色である。膜部材表面の色変化は、7週間後においてほぼ退色し(図示せず)、膜構造物に使用する膜の色は、膜本来の彩色に戻り、美観や見栄えを損なうことがなかった。
実施例2の膜構造建築物においては、施工完了後、6か月経過した状態で目視よる外観検査において汚れは見出されなかった。
このように、膜構造物の膜の表面は、膜の膜に被覆されている表面処理剤15中に含まれる光触媒セルフクリーニング効果作用により、膜構造建築物の美観や見栄えを長期間に亘り継続することができる。
【0026】
図7は実施例2における施工開始からの膜部材表面の反射率と色差(ΔE)の測定結果を示す図である。ここでは、実施例2の膜部材の一部を試料として切り出し、施工開始後から、施工場所において屋外露出させた試料について測定したものである。図の横軸は屋外露出時間であり、左縦軸が反射率(%)であり、右縦軸が色差(ΔE)である。上記の測定は、JIS規格のZ8701とZ8730に基づく方法により行い、自記分光光度計(日立U−3410型)を用いて可視光領域(380nm〜780nm)で測定した。
【0027】
図示するように、反射率は施工開始直後において約26%であり、2週間でほぼ70%となりその後は飽和することが分かる。色差(ΔE)も、反射率と同様に変化していることが分かる。これから、実施例で使用した膜部材においては、1週間程度は発色して反射率が低下していることが分かる。
【0028】
本発明による表面処理剤で被覆した膜を用いて膜構造建築物を施工する方法は以上のように構成されており、表面処理剤で被覆した膜の表面が、施工期間中は膜本来の色とは異なる色、例えば、太陽光に対して反射率の低い褐色とすることができる。
したがって、施工作業を安全に行うことができると共に、施工後に膜表面の発色が退色することにより膜本来の彩色に戻り美観や見栄えを損なうことがない。さらに、膜の表面処理剤中に含まれる光触媒のセルフクリーニング効果作用により汚れにくいので、完成した膜構造建築物の美観や見栄えを長期間に亘り継続させることができる。
【0029】
本発明は、上記実施例に限定されることなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。例えば、上記実施の形態で説明した膜の表面処理剤は膜構造建築物の目的に応じてその発色の色と、膜構造建築物の膜面積とその施工期間に応じて発色から退色までの期間の設定などは適宜に調整できることは勿論である。
【0030】
【発明の効果】
以上説明したように本発明によれば、表面処理剤で被覆した膜の表面が施工期間中は所定の色に発色しているので、膜構造建築物の膜構造の施工作業を安全に行うことができると共に、施工後に膜表面が退色することにより膜本来の彩色に戻り美観や見栄えを損なうことがない。
さらに、膜の表面処理剤中に含まれる光触媒のセルフクリーニング効果作用により汚れにくいので、膜構造建築物の美観や見栄えを長期間に亘り継続させることができる。
【図面の簡単な説明】
【図1】本発明の表面処理剤で被覆した膜を用いた膜構造建築物の概略斜視図を示す図である。
【図2】本発明に用いる表面処理剤で被覆した膜を巻回した膜部材の施工前の状態を示す斜視図である。
【図3】本発明に用いる表面処理剤で被覆した膜の構造を示す断面図である。
【図4】本発明に用いる表面処理剤で被覆した膜の表面側の構造を示す拡大断面図である。
【図5】本発明の表面処理剤で被覆した膜を用いた膜構造建築物の施工方法を説明するフロー図である。
【図6】実施例1と実施例2における施工開始からの膜部材表面の屋外における色変化を示す表面写真である。
【図7】実施例2における施工開始からの膜部材表面の反射率と色差(ΔE)の測定結果を示す図である。
【符号の説明】
1 膜構造建築物
2 骨組み
3 屋根部
4 表面処理剤で被覆した膜
5,6 側壁
7 フラップ膜
10 フッ素樹脂を含む表面処理剤で被覆した膜
12 膜
13 織物
14 樹脂
15 表面処理剤
15A 製造した直後の表面処理剤
16 フッ素樹脂
17 フッ素樹脂内の光触媒
18 フッ素樹脂の表面に露出した光触媒
19 色素
20 膜部材
21 芯材
[0001]
[Industrial application fields]
The present invention relates to a method for constructing a membrane structure building using a membrane coated with a surface treatment agent used in a membrane structure such as a dome.
[0002]
[Prior art]
Examples of a membrane structure building using a membrane coated with a conventional surface treatment agent include a roof portion and a curtain such as a dome or a stadium (see Patent Document 1). The film of the membrane structure building using the film coated with these conventional surface treatment agents has been coated with a surface treatment agent according to the purpose such as antifouling, durability improvement and bonding in the production process.
And this surface treatment agent used a substantially transparent or colorless and transparent surface treatment agent so as not to impair the coloring or appearance of the film material, and was almost transparent or colorless and transparent even after drying and sintering. (See Patent Document 2). In the present specification, the term “film” is a concept including materials used for the various film structures described above, and includes a concept in which the surface of the material (raw material) is coated with a surface treatment agent or is not coated. It is used as.
As described above, since a substantially transparent or colorless and transparent material is used as the surface treatment agent, the surface of the film coated with the conventional surface treatment agent is high against sunlight in the outdoors where the membrane structure building is constructed. Because of its reflectivity, construction workers who work to stretch and attach membranes, like snowfields and summer mountains and beaches, wear thick coats to protect their bodies from UV rays and avoid sun exposure. In order to prevent glare caused by reflection of light, construction work of the membrane structure building must be performed while wearing sunglasses.
[0003]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2000-179074 (second page and FIG. 1)
[Patent Document 2]
Japanese Patent Application Laid-Open No. 09-226064 (2nd page)
[0004]
[Problems to be solved by the invention]
When performing the construction work of the above membrane structure building during the day when sunlight is irradiated, the eyes are dazzled by the reflected light from the sun of the film, so the visibility is lost and the safety of workers is impaired. Therefore, it is necessary to make a thorough preparation for the body protection of the worker who performs the construction, and there is a problem that the workability and the construction work are inferior.
[0005]
This invention aims at providing the construction method of the membrane structure building using the film | membrane coat | covered with the surface treating agent which can perform the construction work of a membrane structure building easily in view of the above point. .
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a method for constructing a membrane structure building using a film coated with the surface treatment agent of the present invention includes a resin, a photocatalyst, and a color former, and the developed color is faded by ultraviolet irradiation. A method of constructing a membrane structure building using a surface treatment agent that changes almost transparent or colorless and transparent, and a film coated with the surface treatment agent on the surface, using a film that fades the color developed by ultraviolet irradiation, The film construction of the membrane structure building is sequentially performed during a predetermined time during which the film coated with the surface treatment agent is colored.
In the above configuration, the membrane structure building is preferably constructed by a process including a film spreading process, a film temporary fixing process, a film fixing process, and a film water-stopping process. In the above-mentioned film waterproofing finishing process, the films are preferably bonded to each other by welding using a flap film. Preferably, the resin is a fluororesin and the photocatalyst is made of titanium oxide (TiO 2 , TiO 3 ). Further, the surface of the film may be either a flat surface or an uneven surface. The surface of the substrate coated with the surface treatment agent is preferably hydrophobic or hydrophilic.
[0007]
According to the above configuration, since the surface treatment agent coated on the film surface is colored in a color different from that of the film after coating, this color development can be selected as a color having low sunlight reflectance. In addition, since the film can be faded after a predetermined time by irradiating ultraviolet rays such as sunlight, the surface color of the base material such as the color of the background of the film or the color decorating the film material can be changed after fading. Can be represented.
Therefore, if the construction work of the membrane structure building is performed during the predetermined time until the original color of the membrane, the reflectance of the membrane surface to sunlight is low, so the membrane structure is easy and safe to work with. Can perform construction work of buildings. At the same time, since the surface treatment agent exhibits a color different from the color of the film, uneven coating or unpainted color can be easily visually confirmed.
Moreover, since the surface treatment agent coated on the film after construction fades and becomes almost transparent or colorless and transparent, it can be used without impairing the aesthetic appearance of the coloring of the substrate.
In addition, when a photocatalyst is included in the surface treatment agent of a membrane of a membrane structure building, the membrane structure building portion having a hydrophobic or hydrophilic surface is excellent with excellent antifouling properties due to the photocatalytic photocatalyst. The aesthetics and appearance of the membrane structure building can be continued for a long period of time.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a schematic perspective view of a membrane structure building using a membrane coated with the surface treatment agent of the present invention. In the figure, a membrane structure building 1 is configured by stretching a membrane film 4 covered with a surface treatment agent on a roof portion 3 of a framework 2 made of steel or the like. The film | membrane 4 consists of four sheets, for example, film | membrane 4a-4d. And the part used as the side wall of the membrane structure building 1 is the films | membranes 5 and 6. FIG.
The connecting portions of the membranes such as the membrane 4a and the membrane 4b are connected to each other by a membrane water stop finishing process in order to prevent water leakage. The film waterproofing finishing process is performed by a method of welding the band-shaped flap film 7 wider than the connecting portion, or a method using sheet metal, rubber or the like.
Here, the membrane structure building 1 is a public facility for transportation such as an airfield, a commercial facility such as a shopping center or an exhibition hall, a sports facility such as a warehouse or factory, a dome or a soccer stadium, an awning, a rest, a passage, etc. Includes membrane structures such as park facilities and road facilities.
[0009]
Next, the film | membrane coat | covered with the surface treating agent used for the construction method of a membrane structure building is demonstrated with reference to FIGS. FIG. 2 is a perspective view showing a state before construction of a membrane member wound with a membrane coated with a surface treatment agent used in the present invention.
As shown in the figure, in the membrane member 20, a membrane 10 whose surface is coated with a surface treatment agent is wound around a core material 21 such as a paper tube or a steel tube in a cylindrical shape, that is, in a roll shape. As will be described later, the surface treatment agent coated on the surface of the film 10 is colored in a color different from the surface color of the film after coating, and the film member 20 is irradiated with ultraviolet rays such as sunlight for a predetermined time. Since it fades after elapse, it is wound immediately after production and is preferably stored in a dark place. If it is necessary to store the film member 20 for a predetermined period until the film construction, the film member 20 may be wrapped with a light-shielding resin film or the like after winding so that the color development on the surface does not progress.
[0010]
FIG. 3 is a cross-sectional view showing the structure of a film coated with the surface treatment agent used in the present invention. As shown in FIG. 3, the membrane 10 is coated with a surface treatment agent 15 using a resin such as a fluororesin at a predetermined portion of the membrane material 12 made of this cloth or fiber reinforced resin. In the case of FIG. 3, as an example, a structure in which the surface treatment agent 15 is coated on both surfaces of the film material 12 is shown. However, depending on the purpose of use and the like, only one surface of the film material 12 or a predetermined region on the surface is used. Of course, the surface treatment agent 15 may be covered.
As the film material 12, various materials such as resin such as plastic and woven fabric made of various materials are applied, and the shape thereof may be arbitrary. Examples of the membrane material 12 include a fabric 13 made of glass fiber, polyester fiber, nylon fiber, cotton, hemp, etc., fluorine resin, PVC (polyvinyl chloride), PU (polyurethane), chlorosulfonated polyethylene rubber, chloroprene. Materials such as cloth or belt coated with a resin 14 selected from rubber such as rubber can be used.
In the resin 14, as the fluororesin, a polymer of fluororesin monomer such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP) is used. Can do.
Here, also in the case of the sheet | seat used for a film | membrane structure, the surface shape of the film | membrane material 2 can apply any of flat, the uneven | corrugated surface which is not flat, and mesh shape.
[0011]
FIG. 4 is an enlarged cross-sectional view showing the structure of the surface side after the film coated with the surface treating agent 15 used in the present invention is manufactured.
The photocatalysts 17 and 18 are photocatalyst fine particles such as anatase TiO 2 (titanium dioxide) having a diameter of 1 nm to 100 nm, for example, and the photocatalyst fine particles in the fluororesin 16 and the photocatalyst exposed on the surface 16a of the fluororesin, respectively. Fine particles are shown. In order to increase the photocatalytic effect, it is desirable that the particle diameters of the photocatalysts 17 and 18 are appropriately small in order to increase the area of the photocatalyst 18 exposed on the surface 16a of the surface treatment agent 15.
For example, the surface treatment agent 15 is composed of a solution composed of a dispersant containing a photocatalyst 17, 18 and a color former 19 mainly composed of a fluororesin 16 such as PTFE or PVDF.
The surface treatment agent 15 is applied to the surface of the resin 14 applied to the fabric 13 constituting the film material 12 and, when coated by a drying or sintering process, develops a color different from the ground color of the resin 14. Coloring agent 19 is selected.
[0012]
Here, the photocatalysts 17 and 18 are materials also called optical semiconductors. Photocatalysts 17 and 18 include anatase TiO 2 (forbidden band width 3.2 eV, wavelength 388 nm), rutile TiO 2 (forbidden band width 3.0 eV, wavelength 414 nm), titanium trioxide (TiO 3 ), and the like. Can be used. These titanium oxides are collectively referred to as titanium oxide.
[0013]
Further, the color former 19 for coloring the surface treatment agent can be determined according to the color to be applied, and is an azo dye, quinone-imine dye, xanthene dye, phenylmethane dye, xanthene dye, thiazole dye, cyanine dye. Oxonol dyes, merocyanine dyes, styryl dyes, neutral dyes, and natural dyes such as chlorophyll and beta-carotene can be used.
Apart from this, as the color former 19, it is possible to utilize the fact that an organic dispersant, a surfactant or the like contained in the dispersant as the main component of the surface treatment agent 15 develops color by drying or sintering. In this case, the dispersant component other than the resin of the surface treatment agent 15 and the photocatalyst also serves as the color former 19. Thus, in this specification, the color former is used as a concept including a dye and a material used for a dispersant other than the resin and the photocatalyst included in the surface treatment agent. Further, the color or color by color development is not limited to a chromatic color, but includes a white or black achromatic color.
[0014]
The amount of the photocatalyst to be included in the surface treatment agent 15 is arbitrary, but the viscosity of the solution may be appropriately adjusted depending on the application, performance, and coating method. The blending amount of the photocatalysts 17 and 18 when the thermal bonding performance to the film material 12 is required may be 30 to 50% by weight as the solid concentration component amount in the surface treatment agent 15.
Depending on the amount of photocatalyst contained in the surface treatment agent 15, the surface of the film material coated with the surface treatment agent can be made hydrophobic or hydrophilic.
Further, in order to further impart the conductivity and photocatalytic effect enhancement effect to the surface treatment agent 15 containing the fluororesin, a metal material or a photocatalytic function auxiliary substance may be added. As the metal material, Ag, Al, Au, Cu, Fe, In, Ir, Ni, Os, Pd, Pt, Rh, Ru, Zu, Sb, Sn, Zu, or the like can be used.
[0015]
Next, the construction method of the membrane structure building using the film | membrane coat | covered with the surface treating agent of this invention is demonstrated. FIG. 5 is a flowchart for explaining a method of constructing a membrane structure building using a membrane coated with the surface treatment agent of the present invention.
Taking the membrane structure building shown in FIG. 1 as an example, in a scaffold provided around the roof portion 3, the construction worker spreads the membrane of the membrane member 20 and deploys it to a predetermined place, that is, performs a membrane stretching process. (See FIG. 5A).
[0016]
Next, as shown in FIG. 5 (B), the end of the membrane member 20 is temporarily fixed at a predetermined interval at a predetermined portion of the framework 2 of the roof portion 4 of FIG. This film temporary fixing process is performed as follows. The end of the membrane member 20 is stretched so as to follow the shape of the roof portion 4 by holding the end of the membrane member 20 with a jig at a predetermined interval, and the construction worker pulling the jig with a wire tensioner. Is done.
As another method of the film temporary fixing process, a method in which the end of the film member 20 is temporarily overwound with a rope and a construction worker pulls the rope can be applied.
[0017]
Next, as shown in FIG. 5C, a film fixing process of the film member 20 is performed. This is a construction process in which the end of the membrane member 20 is tightened with a torque wrench to a predetermined portion of the frame of the roof portion 4 with a bolt and a nut so as to have a predetermined torque, and is finally tightened. When the rope is used, this film fixing step is performed by connecting the end portion of the rope to a predetermined portion of the frame of the roof portion 4. After the film fixing step is completed, when the jig for temporarily fixing the film is removed, the films 4a to 4d are attached and fixed to the roof portion 4 of the film structure building.
[0018]
Next, as shown in FIG. 5 (D), a film waterproofing finishing process is performed in which a waterproofing finish is performed at the connection portion between the films (see 7 in FIG. 1). In the film waterproofing finishing process, when the flap film 7 is used, a scaffold is first provided on the frame film of the roof portion 4. Next, the adjacent end portions of the film member 20 are overlapped with an adhesive tape to temporarily fix the connection portions, and then a flap film is welded to the required portions of the films 3a to 3d. Here, welding of the flap film 7 is performed using a welding machine. The membrane water stop finishing process is performed from the top of the roof portion 4 to the bottom.
Another method of the film water-stop finishing step is a method in which a connection part between the films is performed using a sheet metal. In this case, in the same manner as the flap film process, in the scaffolding provided on the frame film of the roof portion 4, by using a power drill to strike the screw on the base film after provisional alignment with the base film. The membrane is fixed by sheet metal.
[0019]
The feature of the present invention is that the film construction process of the film structure building shown in FIG. 5 is performed within the time or period in which the surface of the film coated with the surface treatment agent is colored in a predetermined color.
The surface of the film 4 produced by applying a surface treatment agent on the surface and drying or sintering it is not exposed to sunlight or exposed to light such as an ultraviolet lamp or a fluorescent lamp for a long time, that is, In the state where the ultraviolet ray is not irradiated, the surface treatment agent 15 to which the color former 19 is added maintains the color developed in the color of the color former. Therefore, if the color of the surface treatment agent 15 coated with the film is brown or the like where the reflectance of sunlight is lowered, it is suitable for outdoor construction work.
Here, when the film 4 coated with the surface treatment agent is irradiated with ultraviolet rays by exposing it to light containing ultraviolet rays such as sunlight, the ultraviolet rays directly decompose the color former 19 to gradually fade the color. Further, by irradiating the photocatalysts 17 and 18 contained in the surface treatment agent with ultraviolet rays, the color former 19 is decomposed and faded by the oxidation and reduction reactions of the photocatalyst. In this case, when the photocatalyst is titanium oxide, the wavelength of the ultraviolet light may be approximately 400 nm or less.
Thereby, after the light irradiation for a predetermined time, the color of the surface treatment agent can be made transparent or almost transparent. In addition to sunlight, ultraviolet rays are also effective as ultraviolet rays emitted from fluorescent lamps.
[0020]
Thus, if the worker who performs the membrane construction of the membrane structure building performs the membrane construction work for a predetermined time until the color fading, the reflectance from the sunlight on the membrane surface is low, so the membrane construction is safe. Can perform construction work on objects.
Further, the surface of the membrane of the membrane structure building fades after the completion of the construction work, and the color of the membrane used for the membrane structure returns to the original color of the membrane, so that the aesthetic appearance and appearance are not impaired. Furthermore, the surface of the membrane of the membrane structure is not easily soiled due to the self-cleaning effect of the photocatalyst contained in the surface treatment agent 15 coated on the membrane, so that the aesthetics and appearance of the membrane structure building are continued for a long period of time. Can be made.
[0021]
Next, the Example of the construction method of the membrane structure building using the film | membrane coat | covered with the surface treating agent of this invention is described.
First, a membrane member used for a membrane structure building will be described.
As the membrane 4, a membrane material (FGT600: manufactured by Chuko Kasei Kogyo Co., Ltd.) in which both surfaces of glass fiber are coated with fluororesin (PTFE) was used. As the surface treatment agent 15, a dispersant shown below having a composition containing a fluororesin (FEP) as a main component and including a photocatalyst was used.
50 g of an aqueous dispersant (solid content 28 wt%) of anatase type TiO 2 powder (ST01 made by Ishihara Sangyo) having a particle size of 1 nm to 100 nm, 100 g of purified water, and an aqueous dispersant consisting of FEP (solid content 58 wt%). Prepare a material consisting of 36.2 g, 1.7 g of silicon-based surfactant (1% by weight of the total), mix and stir these materials, and disperse the surface treatment agent 15 (FEP and oxidation) The weight ratio of titanium powder is 60:40). This dispersant was a cloudy solution.
[0022]
The fluororesin film on the surface of the film material (FGT600: manufactured by Chuko Kasei Kogyo Co., Ltd.) is wiped with Kim towel (manufactured by Crecia Co., Ltd.) impregnated with an appropriate amount of ethylene alcohol, and naturally dried at room temperature. Was applied to the entire surface of one side. The coating film was naturally dried at room temperature, dried at 60 ° C. for 5 minutes, naturally cooled, then further heated and fired at 380 ° C. for 10 minutes, and then naturally cooled.
While maintaining the dispersibility of the photocatalyst material and the surface treatment agent 15 included in the material constituting the FEP dispersion medium in the solution, the surface treatment agent 15 is heated by the heat of the drying step or the sintering step after coating. The color was developed. This color was brown and could easily be visually distinguished from the milky white fluororesin on the surface of the membrane material (FGT600: manufactured by Chuko Kasei Kogyo). The surface treatment agent 15 is a cloudy solution before application. Therefore, this brown color development is caused by the organic matter contained in the photocatalyst aqueous dispersant or FEP aqueous dispersant contained in the surface treatment dispersant during the drying or sintering step of the surface treatment agent. It is presumed that color is developed by a color former such as.
[0023]
Next, an example of construction of a membrane structure building using the membrane member will be described.
Example 1
The membrane construction process shown in FIG. 5 for a membrane structure building having a roof portion with an area of about 250 m 2 using a membrane member having a winding width of 7 m and a length of 40 m was completed in one day. During this work period, the surface of the membrane member was brown. The color development on the film surface faded after about one month.
[0024]
(Example 2)
Membrane construction was performed in which the area of the roof portion of the membrane structure building was about 2500 m 2 . The membrane member wound around the steel pipe has a winding width of 22 m and a length of 40 m. The three membrane members were lifted by a crane to perform a film spreading process, and two days were required for the film temporary fixing process and the film fixing process.
Next, a flap film welding process was performed from the third day to the sixth day (four days), and the entire process was performed in six days.
Since the resin on the surface of the film and the underlying resin are respectively FEP formed by the surface treatment agent and PTFE coated on the glass fiber, it is possible to perform good thermal bonding between the films in the flap film welding process. did it. During the construction work period, the surface of the membrane member changed from brown to light brown, but the construction of the membrane structure building could be performed safely.
[0025]
FIG. 6 is a surface photograph showing the color change in the outdoor of the membrane member surface from the start of construction in Example 1 and Example 2. FIG. 6 (A) is a surface photograph immediately after production, (B) is 2 days later, (C) is 6 days later, and (D) is a surface photograph after 2 weeks.
The color development immediately after production of the membrane member and 2 weeks after outdoor exposure is brown and cream, respectively. The color change on the surface of the membrane member almost faded after 7 weeks (not shown), and the color of the membrane used for the membrane structure returned to the original color of the membrane, and the aesthetics and appearance were not impaired.
In the membrane structure building of Example 2, no stain was found in the visual inspection after 6 months had passed since the completion of construction.
Thus, the surface of the membrane of the membrane structure is maintained for a long period of time by the photocatalytic self-cleaning effect included in the surface treatment agent 15 covered with the membrane of the membrane structure. can do.
[0026]
FIG. 7 is a diagram showing measurement results of the reflectance and color difference (ΔE) of the film member surface from the start of construction in Example 2. Here, a part of the membrane member of Example 2 was cut out as a sample, and after the start of construction, the sample exposed outdoors at the construction site was measured. The horizontal axis in the figure is the outdoor exposure time, the left vertical axis is the reflectance (%), and the right vertical axis is the color difference (ΔE). Said measurement was performed by the method based on JIS standard Z8701 and Z8730, and measured in the visible light region (380 nm-780 nm) using the self-recording spectrophotometer (Hitachi U-3410 type).
[0027]
As shown in the figure, it can be seen that the reflectance is about 26% immediately after the start of the construction, becomes almost 70% in two weeks, and then becomes saturated. It can be seen that the color difference (ΔE) also changes in the same manner as the reflectance. From this, it can be seen that in the film member used in the example, the color developed for about one week and the reflectance decreased.
[0028]
The method of constructing a membrane structure building using the film coated with the surface treatment agent according to the present invention is configured as described above, and the surface of the film coated with the surface treatment agent is the original color of the film during the construction period. It can be a color different from that of, for example, brown having a low reflectance with respect to sunlight.
Therefore, the construction work can be performed safely, and the color of the film surface is faded after the construction, so that the original color of the film is restored and the beauty and appearance are not impaired. Further, since the photocatalyst contained in the film surface treatment agent is not easily contaminated by the self-cleaning effect, the appearance and appearance of the completed film structure building can be continued for a long period of time.
[0029]
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the invention described in the claims, and it goes without saying that these are also included in the scope of the present invention. . For example, the surface treatment agent for membranes described in the above embodiment is the color of the color depending on the purpose of the membrane structure building, the period from color development to color fading according to the membrane area of the membrane structure building and the construction period. It goes without saying that the setting of can be adjusted as appropriate.
[0030]
【The invention's effect】
As described above, according to the present invention, since the surface of the film coated with the surface treatment agent is colored in a predetermined color during the construction period, it is possible to safely perform the construction work of the membrane structure of the membrane structure building. In addition, the surface of the film is faded after construction, so that the original color of the film is restored and the beauty and appearance are not impaired.
Furthermore, since the photocatalyst contained in the surface treatment agent of the film is less likely to become dirty due to the self-cleaning effect, the appearance and appearance of the membrane structure building can be continued for a long period of time.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a membrane structure building using a membrane coated with a surface treatment agent of the present invention.
FIG. 2 is a perspective view showing a state before construction of a membrane member wound with a membrane coated with a surface treatment agent used in the present invention.
FIG. 3 is a cross-sectional view showing the structure of a film coated with a surface treatment agent used in the present invention.
FIG. 4 is an enlarged cross-sectional view showing the structure of the surface side of the film coated with the surface treating agent used in the present invention.
FIG. 5 is a flowchart for explaining a construction method of a membrane structure building using a membrane coated with the surface treatment agent of the present invention.
FIG. 6 is a surface photograph showing the color change of the membrane member surface outdoors from the start of construction in Example 1 and Example 2.
7 is a diagram showing measurement results of reflectance and color difference (ΔE) on the surface of a film member from the start of construction in Example 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Membrane structure building 2 Frame 3 Roof part 4 Membrane 5 and 6 coated with surface treatment agent Side wall 7 Flap membrane 10 Membrane coated with surface treatment agent containing fluororesin 12 Membrane 13 Fabric 14 Resin 15 Surface treatment agent 15A Immediately after the surface treatment agent 16 Fluororesin 17 Photocatalyst 18 in the fluororesin Photocatalyst 19 exposed on the surface of the fluororesin 19 Dye 20 Film member 21 Core material

Claims (8)

樹脂と光触媒と発色剤とを含み、発色した色が紫外線照射により退色し、ほぼ透明または無色透明に変化する表面処理剤と、
上記表面処理剤を表面に塗布した膜とで成り、
紫外線照射により上記膜表面に塗布した上記表面処理剤の発色による色を退色させることで膜構造建築物を施工するに際し、
上記表面処理剤で被覆した膜が発色している所定時間中に、上記膜構造建築物の膜施工を行うことを特徴とする、表面処理剤で被覆した膜を用いた膜構造建築物の施工方法。
A surface treatment agent comprising a resin, a photocatalyst, and a color former, and the developed color fades upon irradiation with ultraviolet rays and changes to almost transparent or colorless and transparent,
It consists of a film coated with the surface treatment agent on the surface,
When constructing a membrane structure building by fading the color due to color development of the surface treatment agent applied to the membrane surface by ultraviolet irradiation,
Construction of a membrane structure building using a membrane coated with a surface treatment agent, characterized in that the membrane construction of the membrane structure building is performed during a predetermined time when the membrane coated with the surface treatment agent is colored. Method.
前記膜構造建築物は、膜展張工程と、膜仮止め工程と、膜定着工程と、膜止水仕上げ工程と、を含む工程により施工されることを特徴とする、請求項1に記載の表面処理剤で被覆した膜を用いた膜構造建築物の施工方法。2. The surface according to claim 1, wherein the membrane structure building is constructed by a process including a film spreading process, a film temporary fixing process, a film fixing process, and a film water-stop finishing process. A construction method of a membrane structure building using a membrane coated with a treatment agent. 前記膜止水仕上げ工程において、前記膜同士をフラップ膜を用いた溶着により接合することを特徴とする、請求項2に記載の表面処理剤で被覆した膜を用いた膜構造建築物の施工方法。The method for constructing a membrane structure building using a film coated with a surface treatment agent according to claim 2, wherein the films are joined together by welding using a flap film in the film waterproofing finishing step. . 前記樹脂はフッ素樹脂であり、前記光触媒は酸化チタン(TiO2 、TiO3 )からなることを特徴とする、請求項1に記載の表面処理剤で被覆した膜を用いた膜構造建築物の施工方法。The construction of a membrane structure building using a film coated with a surface treatment agent according to claim 1, wherein the resin is a fluororesin and the photocatalyst is made of titanium oxide (TiO 2 , TiO 3 ). Method. 前記膜の表面は平面であることを特徴とする、請求項1〜4の何れかに記載の表面処理剤で被覆した膜を用いた膜構造建築物の施工方法。The surface of the said film | membrane is a plane, The construction method of the membrane structure building using the film | membrane coat | covered with the surface treating agent in any one of Claims 1-4 characterized by the above-mentioned. 前記膜の表面は凹凸面であることを特徴とする、請求項1〜4の何れかに記載の表面処理剤で被覆した膜を用いた膜構造建築物の施工方法。The method of constructing a membrane structure building using a film coated with a surface treatment agent according to any one of claims 1 to 4, wherein the surface of the film is an uneven surface. 前記膜の表面は、表面処理剤の被覆後に疎水性となることを特徴とする、請求項1〜6の何れかに記載の表面処理剤で被覆した膜を用いた膜構造建築物の施工方法。The method of constructing a membrane structure building using a membrane coated with a surface treatment agent according to any one of claims 1 to 6, wherein the surface of the membrane becomes hydrophobic after coating with the surface treatment agent . 前記膜の表面は、表面処理剤の被覆後に親水性となることを特徴とする、請求項1〜6の何れかに記載の表面処理剤で被覆した膜を用いた膜構造建築物の施工方法。The method for constructing a membrane structure building using a film coated with a surface treatment agent according to any one of claims 1 to 6, wherein the surface of the membrane becomes hydrophilic after coating with the surface treatment agent. .
JP2003188392A 2003-06-30 2003-06-30 Construction method of membrane structure building using membrane coated with surface treatment agent Expired - Lifetime JP4009997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003188392A JP4009997B2 (en) 2003-06-30 2003-06-30 Construction method of membrane structure building using membrane coated with surface treatment agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003188392A JP4009997B2 (en) 2003-06-30 2003-06-30 Construction method of membrane structure building using membrane coated with surface treatment agent

Publications (2)

Publication Number Publication Date
JP2005023598A JP2005023598A (en) 2005-01-27
JP4009997B2 true JP4009997B2 (en) 2007-11-21

Family

ID=34186956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003188392A Expired - Lifetime JP4009997B2 (en) 2003-06-30 2003-06-30 Construction method of membrane structure building using membrane coated with surface treatment agent

Country Status (1)

Country Link
JP (1) JP4009997B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626129B2 (en) * 2003-06-30 2011-02-02 太陽工業株式会社 Surface treatment agent, base material coated with the same, and production method and quality inspection method thereof
KR100758332B1 (en) * 2003-12-25 2007-09-13 다이요오 고오교오 가부시키가이샤 Photocatalyst sheet, method of bonding thereof and process for producing the same
KR102509944B1 (en) * 2021-04-09 2023-03-14 김성술 A tent installation structure for all seasons

Also Published As

Publication number Publication date
JP2005023598A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
CN102193129B (en) Optical element, window material, room partition component and sun screening device
KR101567996B1 (en) Article of the tent or shelter type
JP5938189B2 (en) Optical body, window material, joinery and solar shading device
JP5493225B2 (en) Near-infrared shielding sheet and manufacturing method thereof
JP4375537B2 (en) Colored sheet having light shielding effect
JP4009997B2 (en) Construction method of membrane structure building using membrane coated with surface treatment agent
ES2524368T3 (en) Anti-fouling sheet
JP2011052357A (en) Heat-insulating lighting film material and method for producing the same
JP3933639B2 (en) Antifouling film material
JP2005041117A (en) Photocatalyst sheet and its manufacturing method
JP3094897B2 (en) Method for hydrophilizing fluororesin member surface
JP6212822B2 (en) Thermal barrier film material with excellent daylighting
JP4470198B2 (en) Photocatalyst sheet, film structure, and method for producing photocatalyst sheet
JP6191027B2 (en) Architectural curing mesh sheet
AU2006263517A1 (en) Material and joint for a shelter
JP5760219B2 (en) Solar heat control membrane material
JP4151911B2 (en) Light-shielding fabric and method for producing the same
JP4626129B2 (en) Surface treatment agent, base material coated with the same, and production method and quality inspection method thereof
SA04250227B1 (en) Photocatalyst sheet and method of manufacturing the same
JP6212771B2 (en) Architectural curing mesh sheet
JP2003175559A (en) Thermal shielding sheet
JP4868321B2 (en) Photocatalyst sheet and method for producing the same
CN106088422B (en) A kind of automatically cleaning curtain wall decoration plate and its processing technology
JP4731065B2 (en) Heat reflective curtains
JP2003096392A (en) Uv-screening metal alcohol chelate coating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070824

R150 Certificate of patent or registration of utility model

Ref document number: 4009997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term