JP4009029B2 - Gas stirring method for molten metal - Google Patents

Gas stirring method for molten metal Download PDF

Info

Publication number
JP4009029B2
JP4009029B2 JP00361099A JP361099A JP4009029B2 JP 4009029 B2 JP4009029 B2 JP 4009029B2 JP 00361099 A JP00361099 A JP 00361099A JP 361099 A JP361099 A JP 361099A JP 4009029 B2 JP4009029 B2 JP 4009029B2
Authority
JP
Japan
Prior art keywords
dip tube
ladle
molten metal
stirring
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00361099A
Other languages
Japanese (ja)
Other versions
JP2000204421A (en
Inventor
和宏 松澤
尚近 今村
重範 矢倉
司 柏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP00361099A priority Critical patent/JP4009029B2/en
Publication of JP2000204421A publication Critical patent/JP2000204421A/en
Application granted granted Critical
Publication of JP4009029B2 publication Critical patent/JP4009029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、溶融金属の取鍋精錬における溶融金属のガス攪拌方法に関するものである。
【0002】
【従来の技術】
溶融金属の成分調整方法として、取鍋に収容された溶融金属に浸漬管を浸漬し、浸漬管の下方から攪拌用ガスを吹込みつつ、浸漬管内上方から成分調整用物質を溶融金属内に投入する取鍋精錬法が存在する。溶融金属が溶鋼の場合には、例えば特開平7−113114号公報に開示される方式が提案されている。
【0003】
この方法は、図2(a)に示すように浸漬管4下方から攪拌用ガス6を吹込むことで形成するプルーム(上昇する気泡領域)の広がりを考慮し、浸漬管4径方向中心と取鍋1径方向中心を一致させると共に攪拌用ガス6吹込み位置を取鍋1径方向中心に対して下記(3)式に示す範囲Yだけ偏芯させるものである。
h・tan(θ/2)≦Y≦d/2−h・tan(θ/2) ・(3)
但し、 d:浸漬管径
【0004】
この方法は、成分調整と共に浸漬管内を減圧状態にして溶融金属内脱ガス反応を促進させる減圧精錬反応には有効である。即ち図2(a)に示すように浸漬管4内を減圧した場合には浸漬管4内の溶融金属2上面が浸漬管4外に比べ上昇するため、この際に浸漬管4内の溶融金属2に上昇流が発生し、さらに浸漬管4下方からの吹込み攪拌ガス6との相乗効果により浸漬管4内では一層大きな溶融金属2上昇流の発生と共に、浸漬管4外への流出する溶融金属2攪拌流7が発生するためである。
また、減圧精錬装置では脱ガス反応を効率よく行うため、浸漬管4内の溶融金属2上面の反応面積を大きくしなければならず、取鍋径dに対する浸漬管径Dを大きくする必要がある。しかしながら、脱ガス反応効果の少ない常圧下での精錬装置への従来方法の適用は成分調整用物質の攪拌が十分にできない。
【0005】
即ち、浸漬管内を常圧状態下で、前記特開平7−113114号公報に示されているように、浸漬管径dの取鍋径Dに対する比率を高めた場合(前記特開平7−113114号公報の実施例では浸漬管4断面積に対する浸漬管4内の溶融金属2上面の攪拌プルーム面積の比率を0.03程度に小さくにした場合)は、図2(b)に示すように、攪拌用ガス6によって生成した上昇流は溶融金属2上面から浸漬管内壁に向かって流動するものの、浸漬管径が大きいため浸漬管内壁に衝突するまでに減速してしまい、その結果衝突後の下降流も更に減速するため、取鍋内溶融金属2全体を攪拌させる流動が得られなくなってしまう。
以上のように、本方法を常圧状態下で適用した場合には、取鍋内溶融金属2全体を均一に混合させるのに時間を要する問題があった。
【0006】
【発明が解決しようとする課題】
本発明の目的は、常圧下にて溶融金属の成分調整用物質を投入する為の浸漬管を浸漬し、攪拌用ガスによる溶融金属の攪拌を行うに当たり、取鍋内溶融金属全体を効果的に攪拌を生じさせ、均一混合時間を短縮する方法を提供することである。
【0007】
【課題を解決するための手段】
かかる目的達成の為の手段について、本発明者は、詳細なる検討及び緻密な実験等を繰り返し実施した結果、常圧下にて溶融金属の混合・攪拌が主目的である精錬設備においては、浸漬管径を最小限に抑えつつ、攪拌用ガス吹込み位置を適切に設定することにより、上記の課題が解決可能であることを知見し、本発明を完成させた。
【0008】
ここに、本発明の要旨とするところは、図1に示すように溶融金属を収容する取鍋中に浸漬管を浸漬させて、浸漬管内に溶融金属の成分調整用物質を投入しつつ取鍋下部の浸漬管下方に設置したノズルから攪拌用ガスを吹込み溶融金属を攪拌しながら取鍋精錬を行うに際して、浸漬管径dが下記(4)式の条件を満たし、且つ、攪拌用ガス吹込み位置は浸漬管径方向中心とし、更に、取鍋径方向中心に対する浸漬管径方向中心の偏芯量Xが下記(5)式の条件を満たすことを特徴とする溶融金属のガス攪拌方法である。
1.2・2h・tan(θ/2)≦d≦2.0・2h・tan(θ/2)(4)
d/2≦X≦D/2−h・tan(θ/2) .(5)
但し、h:浸漬管下端から攪拌用ガス吹込み深さ
θ:上昇気泡の広がり角
D:取鍋径
【0009】
【発明の実施の形態】
次に、本発明の実施の形態について詳細に説明する。尚、以下の例においては、図1を基に溶融金属として溶鋼を例にとって説明する。図1に示すように、取鍋1に収容された溶鋼2中に溶鋼に投入する成分調整用物質3を投入する為の浸漬管4を浸漬させて、取鍋1下部の浸漬管4下に攪拌用ガス吹込みノズル5を設置して、攪拌用ガス6を吹込み溶鋼2を攪拌しながら常圧下にて取鍋精錬を行う。
【0010】
攪拌用ガス6は溶鋼2内部を上昇しながら、徐々に広がる。この広がり角をθとし、浸漬管4下端から攪拌用ガス吹込みノズル5の吹込み点までの深さをhとしたとき、浸漬管4下端付近に到達した攪拌ガス6のプルームは、半径h・tan(θ/2)の広がりをもつ。即ち、攪拌用ガス6が浸漬管4外へ流出しない為には、浸漬管4径dは2h・tan(θ/2)以上必要であり、下記(6)式を満足させる必要がある。
2h・tan(θ/2)≦d .(6)
【0011】
この場合、攪拌用ガス6によって浸漬管4に流入した溶鋼2が、直ちに浸漬管4から流出し、取鍋1内部に下降する溶鋼流7を効果的に生成させるためには、浸漬管4径dと浸漬管4下端の高さ位置へ到達した攪拌ガス6のプルーム径とが理想的には同じ値にするべきであり、従って、上記(6)式は下記(7)式となる。
d=2h・tan(θ/2) .(7)
【0012】
更に、前述のようにプルームを完全に浸漬管4内に収容しつつ、浸漬管4径を最小とするためには、幾何学的な位置関係の検討から浸漬管4径方向中心部直下に攪拌用ガス6吹込み点を設けることが必要となる。
【0013】
しかしながら溶鋼流7や攪拌用ガス6流量,圧力及びノズル状態の不安定性によりプルーム径及びプルーム生成位置の変動は避けられない為、結果として、見掛けのプルーム径が拡大し、浸漬管4内にプルームを完全に収容可能とする浸漬管4径dを適宜選択する必要がある。そこで、浸漬管4径dを変化させ、取鍋1内の溶鋼2に成分調整物質を投入開始から、取鍋1内の溶鋼2に完全に混合するまでの時間τ(以下均一混合時間と称す)を調査した結果、均一混合時間を短くするためには(8)式の範囲とする必要があることが判った。
1.2・2h・tan(θ/2)≦d≦2.0・2h・tan(θ/2)(8)
【0014】
次に、取鍋1径方向中心に対する攪拌用ガス吹込みノズル5位置(=浸漬管4径方向中心)の配置方法について述べる。本発明では、前述の浸漬管4内の混合をも含めた取鍋1内全体の攪拌を効率良く行うため、浸漬管4径方向中心、即ち攪拌ガス吹込みノズル5位置が取鍋1中心に対し偏芯量Xで配置する必要がある。これは図3に示すように、攪拌ガス用吹込みノズル5位置を偏芯させた場合は、取鍋1側壁によって浸漬管4から流出する溶鋼流7が取鍋1側壁方向へ分散し難くなり、その結果、取鍋1内全体の一方向環状流が生じ易くなるためである。しかし、図4に示すように偏芯量Xを大きくし過ぎると、攪拌ガス6のプルームが取鍋1の側壁に接し、プルームを浸漬管4にて確実に覆うことが出来なくなる。以上の結果から、取鍋1径方向中心に対する攪拌ガス吹込みノズル5位置の偏芯量Xは、下記(9)式の範囲にする必要がある。
d/2≦X≦D/2−h・tan(θ/2) .(9)
但し、上記(8)式の浸漬管4径dの値によって、上記(9)式の範囲内の偏芯量Xであっても浸漬管4が取鍋1壁に接触する場合は、浸漬管4が接触しないようなXの値とする。
【0015】
以上説明したように、浸漬管4径と攪拌ガス吹込みノズル5位置を一致させ、浸漬管4径d、浸漬管4径d及び取鍋1径D方向中心に対する攪拌用ガス吹込みノズル5位置(=浸漬管4径方向中心)の偏芯量Xを適正にすることにより、取鍋1内の溶鋼2を効率的に混合・攪拌をすることができる。
尚、図5に示すような攪拌用ガス吹込みノズル5としてランスを用いた際も、吹込み深さが小さくなる為、ポーラスプラグを用いて攪拌用ガスを取鍋1の底から吹込んだ際に比較して攪拌・混合効果は減じられるものの、本発明の効果は同等に得られる。
【0016】
【実施例】
取鍋径D=4770mm,浸漬管下端から攪拌用ガス吹込みノズルとしての取鍋底に設置したポーラスプラグまでの深さh=2500mmとして340tのアルミキルド溶鋼を用い、取鍋径方向中心に対する攪拌ガス吹込みノズル位置の偏芯量X、取鍋径方向中心に対する浸漬管径方向中心の偏芯量Y、さらに浸漬管径dを変化させてそれぞれの均一混合時間を調査した結果を表1に示す。尚、本実施に当たっては、攪拌ガスとしてポーラスプラグから上昇気泡の広がり角θ=20°、流量=500NL/hrのArの吹込みを行った。
【0017】
【表1】

Figure 0004009029
【0018】
実施例1及び2は取鍋径方向中心に対する攪拌ガス吹込みノズル位置の偏芯量Xと浸漬管径dを適正範囲にし、取鍋径方向中心に対する浸漬管径方向中心の偏芯量Yを偏芯量Xと一致(X=Y)させた例である。従来例1は取鍋径方向中心と浸漬管径方向中心を一致(X=0)させた例である。比較例1〜3は偏芯量X、Y、浸漬管径dを本発明の範囲外にした例である。表1より、偏芯量X、Y、浸漬管径dを適正範囲にすることにより均一混合時間を短縮することが可能となった。
【0019】
【発明の効果】
本発明により、溶融金属を収容する取鍋中に常圧下で溶融金属の成分調整用物を投入する為の浸漬管を浸漬させ、その浸漬管下から攪拌用ガス浸漬管内に流入するように吹込み、溶融金属を攪拌しながら行う取鍋精錬において、取鍋内の良好な攪拌を実現し、均一混合時間の短縮により攪拌用ガスの使用量を大幅に削減することが可能となり、大きな経済効果を享受する事を可能とした。
【図面の簡単な説明】
【図1】本発明の概念図
【図2】従来技術における減圧下と常圧下の差異を示す概念図
【図3】取鍋と浸漬管の相対位置と溶融金属流の模式図
【図4】プルーム、浸漬管、取鍋の相対位置関係
【図5】攪拌用ガス吹込みノズルにランスを用いた際の概念図
【符号の説明】
1.取鍋
2.溶鋼(溶融金属)
3.溶鋼に投入する成分調整用物質
4.浸漬管
5.攪拌用ガス吹込みノズル
6.攪拌用ガス
7.溶鋼流(溶融金属流)
d:浸漬管径
h:浸漬管下端から攪拌用ガス吹込み高さ
θ:上昇気泡の広がり角
D:取鍋径
X:取鍋径方向中心に対する攪拌用ガス吹込み位置の偏芯量
Y:取鍋径方向中心に対する浸漬管径方向中心の偏芯量
τ:均一混合時[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molten metal gas stirring method in molten metal ladle refining.
[0002]
[Prior art]
As a component adjustment method for molten metal, immerse the dip tube in the molten metal contained in the ladle, and inject the gas for stirring from the bottom of the dip tube, and put the substance for adjusting the component into the molten metal from above the dip tube. There is a ladle refining method. When the molten metal is molten steel, for example, a method disclosed in Japanese Patent Laid-Open No. 7-113114 has been proposed.
[0003]
In this method, as shown in FIG. 2 (a), considering the spread of the plume (the rising bubble region) formed by blowing the stirring gas 6 from below the dip tube 4, the center of the dip tube 4 in the radial direction is taken into account. The center of the pan 1 diametrical direction is made coincident, and the stirring gas 6 blowing position is decentered by the range Y shown in the following formula (3) with respect to the pan 1 diametrical center.
h · tan (θ / 2) ≦ Y ≦ d / 2−h · tan (θ / 2) (3)
Where d: dip tube diameter
This method is effective for a vacuum refining reaction in which the inside of the dip tube is decompressed and the degassing reaction in the molten metal is promoted together with the component adjustment. That is, as shown in FIG. 2A, when the inside of the dip tube 4 is depressurized, the upper surface of the molten metal 2 in the dip tube 4 rises as compared with the outside of the dip tube 4. As a result, an upward flow is generated in the dip tube 4, and the molten metal 2 rises further in the dip tube 4 due to a synergistic effect with the blown stirring gas 6 from below the dip tube 4, and flows out of the dip tube 4. This is because the metal 2 stirring flow 7 is generated.
Further, in order to efficiently perform the degassing reaction in the vacuum refining apparatus, the reaction area on the upper surface of the molten metal 2 in the dip tube 4 must be increased, and the dip tube diameter D with respect to the ladle diameter d needs to be increased. . However, application of the conventional method to a refining apparatus under normal pressure with little degassing reaction effect cannot sufficiently stir the component adjusting substance.
[0005]
That is, when the ratio of the dip tube diameter d to the ladle diameter D is increased under normal pressure in the dip tube as shown in the above-mentioned JP-A-7-113114 (JP-A-7-113114). In the embodiment of the publication, when the ratio of the stirring plume area of the upper surface of the molten metal 2 in the dip tube 4 to the cross-sectional area of the dip tube 4 is reduced to about 0.03), as shown in FIG. Although the upward flow generated by the working gas 6 flows from the upper surface of the molten metal 2 toward the inner wall of the dip tube, it is decelerated until it collides with the inner wall of the dip tube due to the large diameter of the dip tube. Furthermore, since it further decelerates, the flow which stirs the whole molten metal 2 in a ladle cannot be obtained.
As described above, when this method is applied under normal pressure, there is a problem that it takes time to uniformly mix the entire molten metal 2 in the ladle.
[0006]
[Problems to be solved by the invention]
The purpose of the present invention is to immerse a dip tube for introducing a component for adjusting the composition of molten metal under normal pressure, and to effectively stir the molten metal in a ladle with stirring gas by stirring gas. It is to provide a method for producing agitation and shortening the uniform mixing time.
[0007]
[Means for Solving the Problems]
As a result of repeatedly conducting detailed examinations and detailed experiments on the means for achieving such an object, the present inventor has found that a dip tube is used in a refining facility whose main purpose is mixing and stirring of molten metal under normal pressure. The inventors have found that the above problem can be solved by appropriately setting the stirring gas blowing position while minimizing the diameter, and completed the present invention.
[0008]
Here, the gist of the present invention is that a dip tube is immersed in a ladle containing molten metal as shown in FIG. 1, and a component adjustment material for the molten metal is introduced into the dip tube. When performing ladle refining while agitating gas is blown from a nozzle installed below the lower dip tube while stirring the molten metal, the dip tube diameter d satisfies the condition of the following formula (4) and the stirring gas blown The molten metal gas stirring method is characterized in that the insertion position is the center of the dip tube radial direction, and the eccentric amount X of the dip tube radial direction center with respect to the ladle radial direction center satisfies the following condition (5): is there.
1.2 · 2h · tan (θ / 2) ≦ d ≦ 2.0 · 2h · tan (θ / 2) (4)
d / 2 ≦ X ≦ D / 2−h · tan (θ / 2). (5)
However, h: Stirring gas blowing depth from lower end of dip tube θ: Spreading angle of rising bubble D: Ladle diameter
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail. In the following examples, molten steel is used as an example of molten metal based on FIG. As shown in FIG. 1, a dip tube 4 for introducing a component adjusting substance 3 to be introduced into molten steel is immersed in molten steel 2 accommodated in a ladle 1, and is placed under the dip tube 4 at the bottom of the ladle 1. A stirring gas blowing nozzle 5 is installed, and a ladle smelting is performed under normal pressure while blowing the stirring gas 6 and stirring the molten steel 2.
[0010]
The stirring gas 6 gradually spreads while rising inside the molten steel 2. When the divergence angle is θ and the depth from the lower end of the dip tube 4 to the blowing point of the stirring gas blowing nozzle 5 is h, the plume of the stirring gas 6 reaching the lower end of the dip tube 4 has a radius h. -It has a spread of tan (θ / 2). That is, in order for the stirring gas 6 not to flow out of the dip tube 4, the dip tube 4 diameter d needs to be 2 h · tan (θ / 2) or more, and the following equation (6) needs to be satisfied.
2h · tan (θ / 2) ≦ d. (6)
[0011]
In this case, in order to effectively generate the molten steel flow 7 that the molten steel 2 that has flowed into the dip tube 4 by the stirring gas 6 immediately flows out of the dip tube 4 and descends into the ladle 1, the diameter of the dip tube 4 The plume diameter of the stirring gas 6 that has reached the height position of the lower end of the dip tube 4 should ideally be the same value, and therefore the above equation (6) becomes the following equation (7).
d = 2h · tan (θ / 2). (7)
[0012]
Furthermore, in order to minimize the diameter of the dip tube 4 while accommodating the plume completely in the dip tube 4 as described above, stirring is performed immediately below the central portion in the radial direction of the dip tube 4 in consideration of the geometrical positional relationship. It is necessary to provide a working gas 6 injection point.
[0013]
However, the fluctuation of the plume diameter and the plume generation position is unavoidable due to the instability of the molten steel flow 7 and the stirring gas 6 flow rate, pressure and nozzle state. It is necessary to appropriately select the diameter d of the dip tube 4 that allows the tube to be completely accommodated. Therefore, the time τ (hereinafter referred to as uniform mixing time) from the start of supplying the component adjusting substance to the molten steel 2 in the ladle 1 to the complete mixing with the molten steel 2 in the ladle 1 is changed by changing the diameter d of the dip tube 4. As a result of investigating ()), it was found that the range of the formula (8) is necessary to shorten the uniform mixing time.
1.2 · 2h · tan (θ / 2) ≦ d ≦ 2.0 · 2h · tan (θ / 2) (8)
[0014]
Next, an arrangement method of the position of the stirring gas blowing nozzle 5 with respect to the center of the ladle 1 in the radial direction (= center of the dip tube 4 in the radial direction) will be described. In the present invention, in order to efficiently stir the entire ladle 1 including the mixing in the dip tube 4 described above, the center of the dip tube 4 in the radial direction, that is, the position of the stirring gas blowing nozzle 5 is at the center of the ladle 1. On the other hand, it is necessary to arrange with an eccentric amount X. As shown in FIG. 3, when the position of the stirring gas injection nozzle 5 is eccentric, the molten steel flow 7 flowing out from the dip pipe 4 through the ladle 1 side wall is less likely to be dispersed toward the ladle 1 side wall. As a result, a one-way annular flow in the entire ladle 1 is likely to occur. However, if the eccentric amount X is too large as shown in FIG. 4, the plume of the stirring gas 6 comes into contact with the side wall of the ladle 1 and the plume cannot be reliably covered with the dip tube 4. From the above results, the eccentric amount X of the stirring gas blowing nozzle 5 position with respect to the center of the ladle 1 in the radial direction needs to be in the range of the following formula (9).
d / 2 ≦ X ≦ D / 2−h · tan (θ / 2). (9)
However, if the dip tube 4 is in contact with the ladle 1 wall depending on the value of the dip tube 4 diameter d in the above equation (8), even if the eccentric amount X is in the range of the above equation (9), the dip tube The value of X is such that 4 does not touch.
[0015]
As described above, the diameter of the dip tube 4 and the position of the stirring gas blowing nozzle 5 are matched, and the position of the stirring gas blowing nozzle 5 with respect to the center in the direction of the dip pipe 4 diameter d, the dip tube 4 diameter d, and the ladle 1 diameter D By making the eccentric amount X of (= center of the dip tube 4 radial direction) appropriate, the molten steel 2 in the ladle 1 can be mixed and stirred efficiently.
Even when a lance is used as the stirring gas blowing nozzle 5 as shown in FIG. 5, since the blowing depth becomes small, the stirring gas was blown from the bottom of the pan 1 using a porous plug. Although the stirring / mixing effect is reduced as compared with the case, the effect of the present invention can be obtained equally.
[0016]
【Example】
Ladle diameter D = 4770mm, 340t of aluminum killed molten steel is used as the depth h = 2500mm from the lower end of the dip tube to the porous plug installed at the bottom of the ladle as the stirring gas blowing nozzle, and stirring gas blowing to the center of the ladle radial direction Table 1 shows the results of investigating the respective uniform mixing times by changing the eccentric amount X of the insertion nozzle position, the eccentric amount Y of the dip tube radial direction center with respect to the ladle diametric center, and the dip tube diameter d. In this embodiment, Ar was blown from the porous plug as an agitation gas with a rising bubble spread angle θ = 20 ° and a flow rate = 500 NL / hr.
[0017]
[Table 1]
Figure 0004009029
[0018]
In Examples 1 and 2, the eccentric amount X of the stirring gas blowing nozzle position relative to the ladle diametric center and the dip tube diameter d are within an appropriate range, and the eccentric amount Y of the dip tube radial center relative to the ladle diametric center is set. This is an example in which the eccentricity amount X coincides (X = Y). Conventional Example 1 is an example in which the ladle radial center matches the dip tube radial center (X = 0). Comparative Examples 1 to 3 are examples in which the eccentric amounts X and Y and the dip tube diameter d are out of the scope of the present invention. From Table 1, it became possible to shorten the uniform mixing time by setting the eccentric amounts X and Y and the dip tube diameter d within the proper ranges.
[0019]
【The invention's effect】
According to the present invention, a dip tube for charging a component for adjusting a component of molten metal is immersed in a ladle containing molten metal under normal pressure, and blown so as to flow into the stirring gas dip tube from under the dip tube. In addition, in ladle refining while stirring molten metal, it is possible to achieve good stirring in the ladle and to significantly reduce the amount of stirring gas used by shortening the uniform mixing time. It was possible to enjoy.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of the present invention. FIG. 2 is a conceptual diagram showing the difference between reduced pressure and normal pressure in the prior art. FIG. 3 is a schematic view of a relative position between a ladle and a dip tube and a molten metal flow. Relative positional relationship between plume, dip tube, and ladle [Fig. 5] Conceptual diagram when a lance is used for the stirring gas blowing nozzle [Explanation of symbols]
1. Ladle 2. Molten steel (molten metal)
3. 3. Substance for adjusting the composition to be added to molten steel 4. dip tube 5. Gas blowing nozzle for stirring 6. Gas for stirring Molten steel flow (molten metal flow)
d: Dip tube diameter h: Stirring gas blowing height from bottom of dip tube θ: Spreading angle of rising bubble D: Ladle diameter X: Eccentric amount Y of stirring gas blowing position with respect to ladle radial direction center Y: Eccentric amount τ in the dip tube radial center relative to the ladle diametric center: During uniform mixing

Claims (1)

溶融金属を収容する取鍋中に常圧下で溶融金属の成分調整用物質を投入する為の浸漬管を浸漬させ、その浸漬管下方から攪拌用ガスを浸漬管内に流入するように吹込み、該金属を攪拌しながら取鍋精錬を行うに際して、浸漬管径dが下記(1)式の条件を満たし、且つ、前記攪拌用ガス吹込みノズルの位置を前記浸漬管の中心部下方とし、更に、取鍋径方向中心に対しての浸漬管径方向中心の偏芯量Xが下記(2)式の条件を満たすことを特徴とする溶融金属のガス攪拌方法。
1.2・2h・tan(θ/2)≦d≦2.0・2h・tan(θ/2)(1)
d/2≦X≦D/2−h・tan(θ/2) .(2)
但し、h:浸漬管下端から攪拌用ガス吹込み深さ
θ:上昇気泡の広がり角
D:取鍋径
In a ladle containing molten metal, immersing a dip tube for charging the material for adjusting the component of the molten metal under normal pressure, and blowing the stirring gas into the dip tube from below the dip tube, When performing ladle refining while stirring the metal, the dip tube diameter d satisfies the condition of the following formula (1), and the position of the stirring gas blowing nozzle is below the center of the dip tube, A molten metal gas stirring method, wherein the eccentric amount X of the dip tube radial direction center with respect to the ladle radial direction center satisfies the following equation (2).
1.2 · 2h · tan (θ / 2) ≦ d ≦ 2.0 · 2h · tan (θ / 2) (1)
d / 2 ≦ X ≦ D / 2−h · tan (θ / 2). (2)
However, h: Stirring gas blowing depth from the lower end of the dip tube θ: Spreading angle of rising bubbles D: Ladle diameter
JP00361099A 1999-01-11 1999-01-11 Gas stirring method for molten metal Expired - Fee Related JP4009029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00361099A JP4009029B2 (en) 1999-01-11 1999-01-11 Gas stirring method for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00361099A JP4009029B2 (en) 1999-01-11 1999-01-11 Gas stirring method for molten metal

Publications (2)

Publication Number Publication Date
JP2000204421A JP2000204421A (en) 2000-07-25
JP4009029B2 true JP4009029B2 (en) 2007-11-14

Family

ID=11562269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00361099A Expired - Fee Related JP4009029B2 (en) 1999-01-11 1999-01-11 Gas stirring method for molten metal

Country Status (1)

Country Link
JP (1) JP4009029B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104988343B (en) * 2015-08-12 2017-03-08 北京科技大学 A kind of air cooling multitube stirring prepares the device and method of light alloy semisolid slurry
CN111172354B (en) * 2020-02-28 2021-11-12 鞍钢股份有限公司 Microbubble molten steel purification device and purification method

Also Published As

Publication number Publication date
JP2000204421A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
US5902374A (en) Vacuum refining method for molten steel
JP4009029B2 (en) Gas stirring method for molten metal
JPH07113114A (en) Method for stirring molten metal
JPH0420967B2 (en)
JP2004249315A (en) Continuous casting method and continuous casting apparatus for molten metal
KR101504973B1 (en) Refining method of molten steel and an apparatus thereof
JP6848437B2 (en) Desulfurization method and desulfurization equipment for molten steel
JPS5837112A (en) Vacuum refining method of molten steel
JP3749622B2 (en) Dehydrogenation method for molten steel
JP3777065B2 (en) Powder dephosphorization method for low carbon molten steel under reduced pressure and reaction vessel for powder dephosphorization under reduced pressure
JP2978045B2 (en) Vacuum refining method for molten steel with high decarburization characteristics
JPH09287016A (en) Method for melting stainless steel
JP3550039B2 (en) Powder desulfurization method of molten steel under reduced pressure and reaction vessel for powder desulfurization under reduced pressure
JP2819424B2 (en) Manufacturing method of ultra-low carbon steel
JPS61195915A (en) Method and device for refining of molten metal by reduced pressure gas atomizing
JP3118606B2 (en) Manufacturing method of ultra-low carbon steel
JPH06212241A (en) Method for vacuum-refining molten steel by using large diameter immersion tube
JPH059552A (en) Top blowing lance type ladle refining apparatus
JPH0741834A (en) Method for vacuum-refining molten steel having high circulating flow characteristic
JPH0696738B2 (en) Vacuum degassing apparatus for ultra-low carbon steel production and operating method
JP3290794B2 (en) Molten steel refining method under reduced pressure
JPH05279721A (en) Method for removing slag in converter
KR20120060456A (en) Operating Method for Bottom Bubbling Molten Steel
JPH06116624A (en) Method for vacuum-refining molten steel
JPH11293331A (en) Refining of molten steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees