JP4008944B2 - Liquid crystal aberration correction element - Google Patents

Liquid crystal aberration correction element Download PDF

Info

Publication number
JP4008944B2
JP4008944B2 JP2005514549A JP2005514549A JP4008944B2 JP 4008944 B2 JP4008944 B2 JP 4008944B2 JP 2005514549 A JP2005514549 A JP 2005514549A JP 2005514549 A JP2005514549 A JP 2005514549A JP 4008944 B2 JP4008944 B2 JP 4008944B2
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
electrodes
aberration correction
electrode portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005514549A
Other languages
Japanese (ja)
Other versions
JPWO2005036242A1 (en
Inventor
信義 中川
裕行 前山
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BINIT CORPORATION
Original Assignee
BINIT CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BINIT CORPORATION filed Critical BINIT CORPORATION
Publication of JPWO2005036242A1 publication Critical patent/JPWO2005036242A1/en
Application granted granted Critical
Publication of JP4008944B2 publication Critical patent/JP4008944B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • G11B7/13927Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means during transducing, e.g. to correct for variation of the spherical aberration due to disc tilt or irregularities in the cover layer thickness
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/18Function characteristic adaptive optics, e.g. wavefront correction

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Head (AREA)

Description

【技術分野】
【0001】
本発明は、光ディスク装置において、光ピックアップでの記録・再生時に生ずる収差を補正するために用いられる液晶収差補正素子の技術分野に属する。
【背景技術】
【0002】
従来、情報記録媒体としてCD、DVD等の各種光ディスクが知られている。これらの光ディスクは、回転することによる厚さずれや反り等によって収差(集光スポットの歪)を生ずるため、この収差を補正して記録・再生の精度を上げることが求められる。
特に最近では、次世代光ディスクとしてBD(Blu-ray Disc)が注目されている。この規格は、光源波長を650nmから405nmに、対物レンズの開口数(NA)を0.6から0.85に高め、面記録密度を従来のDVDの約5倍に向上させたものである。ここで、厚さずれで生じる球面収差は、光源の波長に反比例し、NAの4乗に比例するため、BDでは収差が急激に増大する傾向がある。したがって、より高精度に収差を補正する技術の開発が望まれていた。
【0003】
上記収差を補正する技術として、コリメータレンズをアクチュエータで駆動させる方式と、液晶収差補正素子を利用する方式が知られている。
前者の方式は、アクチュエータが必要となるため光ピックアップが複雑になり、また高精度な補正には対応し切れないという問題があった。
これに対し、液晶収差補正素子は、液晶パネルの電極を同心円状に分割し、これにより光束の中央部と外縁部とで異なる位相制御を行うものが一般的である。
【0004】
例えば、(特許文献1)には、光ディスクで生じる球面収差の分布に対応付けられた同心円状の複数の電極部を有する第1電極層と、前記第1電極層に対向する第2電極層と、前記第1及び第2電極層に狭持され、前記第1及び第2電極層への印加電圧に応じた位相変化を通過する光ビームに生じせしめる液晶と、を有する収差補正素子が記載されている。
【0005】
また、(特許文献2)には、記録層を複数有する多層ディスクを再生するための多層ディスク再生装置に用いられる光ピックアップにおいて、光源と対物レンズの間の光路中に配置され、選択された記録層に応じて、前記光源から射出された光の波面収差を補正するための波面収差補正手段を備えた光ピックアップが記載されており、さらに、前記波面収差補正手段が、液晶素子により構成され、電圧を印加するための同心円状に分割された電極を備えることが記載されている。
【0006】
良好な補正を行うためには、発生した収差に対して逆の位相波を加えることが理想的である。したがって、上記従来の液晶収差補正素子の場合には、同心円状に分割された電極の領域をできるだけ多く形成することが望まれるが、素子は一般に超小型サイズ(直径3〜4mm程度)であるため、領域を増やすことは極めて困難(10数階調程度が限界)であった。
それゆえ、発生する収差に対しリニアな補正を行うことのできる液晶収差補正素子の開発が望まれていた。
【0007】
また別の問題として、上述のように液晶収差補正素子を利用して逆の位相波を加えようとするとき、発生した収差が大きいと、その収差に見合うだけの位相差を得ることが困難になる場合があった。その結果、収差を完全に補正し切れないという問題があった。
したがって、発生する収差に対しリニアな補正を行うのと同時に、その補正の絶対量(位相差)を十分に得ることができる液晶収差補正素子の開発が望まれていた。
【0008】
【特許文献1】
特開2002−237077号公報(請求項1、段落0014)
【特許文献2】
特開平10−269611号公報(請求項1〜4)
【発明の開示】
【発明が解決しようとする課題】
【0009】
そこで本発明は、上記従来の状況に鑑み、光ディスクの厚さずれ等によって発生する収差をリニアに補正し、それによって記録・再生の精度を高めることができる新規な液晶収差補正素子を提供することを目的とする。
また、収差をリニアに補正するだけでなく、その補正量が大きい新規な液晶収差補正素子を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記課題を解決するため、本発明の液晶収差補正素子は、液晶と、前記液晶を挟んで対向する複数の電極とを備え、前記電極の少なくとも一つには電極材の存在しない複数の非電極部位を形成し、前記非電極部位の内側では電圧印加時に液晶が不均一に配向するように構成したことを特徴とする。
【発明の効果】
【0011】
本発明の液晶収差補正素子は、電極に複数の非電極部位を形成し、その非電極部位の位置に形成される不均一な電界分布に沿って液晶分子を配向させることで、レンズ効果を生じさせる。これにより、光ディスクの厚さずれ等によって発生する収差をリニアに補正することができる。なお、印加電圧によって液晶の配向状態を制御し、それによって補正量を任意に変化させることが可能である。
本発明により、集光スポットの歪が補正され、記録・再生の精度を高めることができる。したがって、次世代の高密度光ディスクの補正素子として好適である。
【0012】
また、本発明の液晶収差補正素子は、複数の非電極部位の大きさや配置間隔を電極上の位置によって変化させるとともに、その非電極部位の配置パターンに沿って複数本の線状電極を所定の間隔で配設したことを特徴とする。これにより、非電極部位によって得られる位相差が、線状電極が配設されている複数箇所において強制的に高められ、全体として非電極部位に起因する位相差カーブが強調された、補正量の大きい状態を得ることができる。
【図面の簡単な説明】
【0013】
【図1】実施の形態(1)に係る液晶収差補正素子の平面図である。
【図2】図1のA部分の拡大図である。
【図3】実施の形態(1)に係る液晶収差補正素子を断面図である。
【図4】実施の形態(1)に係る液晶収差補正素子の電圧印加時の状態を説明する図である。
【図5】実施の形態(2)に係る液晶収差補正素子の平面図である。
【図6】実施の形態(3)に係る液晶収差補正素子の平面図である。
【図7】実施の形態(3)に係る液晶収差補正素子によって得られる位相変化量を模式的に示す図である。
[図8]実施の形態(3)に係る液晶収差補正素子の製造過程を説明する図である。
【符号の説明】
【0014】
1 液晶収差補正素子
10 液晶
20 電極
21 電極
201 非電極部位
30 基板
31 基板
40a〜40d 線状電極
400 電極
50 SiO
E 電界
S1、S2 端子
R1〜R3 抵抗
P、Q 位相差カーブ
【発明を実施するための最良の形態】
【0015】
本発明は、液晶と、前記液晶を挟んで対向する複数の電極とを備え、前記電極の少なくとも一つには電極材の存在しない複数の非電極部位を形成し、前記非電極部位の内側では電圧印加時に液晶が不均一に配向させ、複数の非電極部位の大きさ及び配置間隔は、電極上を同心円状に分けたときの半径方向に沿って変化するように構成してなる液晶収差補正素子を提供するものである(第1発明)。
【0016】
この構成によれば、複数形成された非電極部位の中心部では電極に対して垂直方向に弱い電界が形成され、非電極部位の端の部分では電界が傾いた方向に形成されるため、その電界分布に沿って液晶分子が不均一に配向することで、非電極部位の中心から周辺にかけて屈折率が連続的に変化するレンズ効果が得られる。したがって、そのレンズ部分に光束を通過させることで、所定の位相差が与えられ収差が補正される。また、非電極部位の大きさもしくは配置間隔を変化させることで、それぞれの領域で得られる位相差が設定され、素子全体として収差に応じた最適な補正が行われる。さらに、この構成によれば、得られる位相差を同心円状に変化させるこで、球面収差が良好に補正される。
【0017】
【0018】
【0019】
また、本発明は、液晶と、前記液晶を挟んで対向する複数の電極とを備え、前記電極の少なくとも一つには電極材の存在しない複数の非電極部位を前記電極上の位置によって大きさもしくは配置間隔又はその両方を変化させた配置パターンで形成し、前記非電極部位の内側では電圧印加時に液晶が不均一に配向するように構成するとともに、相異なる電圧を印加する複数本の線状電極を前記配置パターンに沿って所定の間隔で配設してなる液晶収差補正素子を提供するものである(第2発明)。
【0020】
この構成によれば、上述のようにレンズ効果を伴う非電極部位の大きさもしくは配置間隔を変化させることで、発生する収差に応じた位相差カーブが得られるとともに、複数本の線状電極を配設し所定部位にさらに電圧を印加することによって、上記の位相差カーブが強調され、最適な補正量となる。
【0021】
【0022】
【0023】
また、本発明は、上記第2発明に係る液晶収差補正素子において、複数の非電極部位の大きさ及び配置間隔が、電極上を同心円状に分けたときの半径方向に沿って変化し、複数本の線状電極は、前記同心円状に変化する配置パターンに沿って環状に配設されることを特徴とする(第3発明)。
【0024】
この構成によれば、環状に配設した線状電極により、電極の半径方向に沿った複数の箇所における位相差が強制的に引き上げられ、上記非電極部位による作用と相まって球面収差が良好に補正される。
【0025】
また、本発明は、上記第1又は第3発明に係る液晶収差補正素子において、複数の非電極部位の配置間隔は、電極上の同心円状に分けられた各領域内において不規則であることを特徴とする(第4発明)。
【0026】
この構成によれば、隣接する非電極部位との間隔を不規則(ランダム)にすることで、光干渉効果による波面の乱れが防止される。
【0027】
さらに、本発明は、上記第1〜第4発明に係る液晶収差補正素子において、非電極部位の形状が円形であることを特徴とする(第5発明)。
【0028】
この構成によれば、発生する収差に対して非電極部位の形状が最適化される。
【0029】
以下、本発明を詳細に説明する。
まず、本発明の実施の形態(1)を図1〜4に示す。図1は液晶収差補正素子1の平面図であり、図2は図1のA部分の拡大図、そして図3は液晶収差補正素子1の断面を拡大した図である。図3に示すように、液晶収差補正素子1は、液晶10と、その液晶10を挟んで対向する2つの電極20、21、及び基板30、31とを備え、電極20には電極材の存在しない複数の非電極部位201が穴状に形成されている。なお、図3において、基板30、31上に設けられる反射防止膜(AR膜)や、電極20、21と液晶10との間に一般的に設けられる液晶配向膜、透明絶縁層等は図示を省略している。また、電極20及び電極21には電圧を印加するためリード線等が接続されている。
【0030】
図1に示すように、複数の非電極部位201は、電極20上の位置によって大きさ及び配置間隔を連続的に変化させている。なお、非電極部位201の数は、図1では便宜上少なく描いているが、実際には図2に示すように多数の非電極部位201が微細に形成されている。そして、この実施の形態(1)では、電極20上を同心円状に分けたときの半径方向Rに沿って、非電極部位201の大きさd1が大きい径から一旦小さい径となり再び大きい径となるように、また、配置間隔d2が広い間隔から一旦狭い間隔となり再び広い間隔となるように連続的なパターンを形成している。
【0031】
電極20、21間に電圧を印加した場合、非電極部位201の近傍での電界Eの状態は図4に示すようになる。すなわち、電極20と電極21とが対向している部分aでは、電極に垂直な方向へ強い電界が形成され、非電極部位201の中心部である部分bでは、やはり電極に垂直な方向へ弱い電界が形成される。そして、非電極部位201と電極20との境界に近い部分cでは、電極20へ向かって電界が傾いた状態となる。
【0032】
すると、液晶10の誘電異方性が正である場合には、液晶分子が電界Eに沿って配向するため、部分aでは液晶分子が電極に対して垂直に並び、部分bでは電界が弱いため電極に平行な状態のままとなり、部分cでは斜めに配向することになる。すなわち、非電極部位201の内側において液晶が不均一な配向状態となる。このとき、素子を通過する光(異常光)に対する屈折率は、非電極部位201の中心から周辺へ向かって連続的に小さくなる分布を形成するため、非電極部位201の部分においては凸レンズの効果を示すことになる。これにより、通過する光に位相差を与えることができる。
したがって、図1のように、非電極部位201の大きさ及び配置間隔を電極上の位置によって連続的に変化させた場合、それぞれの位置で得られる位相差は異なるため、発生する収差に応じて非電極部位201の配置パターンを適宜設計することで、素子全体として収差をリニアに補正することができる。
【0033】
なお、印加する電圧を変化させた場合、それに応じて液晶分子の配向状態が変化する。例えば、電圧を大きくした場合には、非電極部位201の中心でも液晶分子が垂直に配向するため、逆に、非電極部位201の中心から周辺にかけて屈折率が大きくなる凹レンズ効果を示すようになる。すなわち、印加する電圧によって、素子全体で得られる位相差カーブを変化させることができるため、例えば再生(RF)波形に基づいて補正量を計算し、その結果に応じて電圧を制御することで発生する収差をリアルタイムで補正することも可能である。
【0034】
また、図1の例では、非電極部位201の大きさ及び配置間隔を、半径方向Rに沿って変化させている。このようにすると、非電極部位201の配置パターンに対応して同心円状に変化する位相差カーブが得られるため、ディスクの厚さずれによって発生する球面収差を良好に補正することができる。しかも、非電極部位201の大きさ及び配置間隔は連続的に変化させているため、電極を同心円状に分割した従来の収差補正素子のように階段状の不連続な補正ではなく、よりリニアな補正が可能となる。
【0035】
さらに、非電極部位201の配置間隔は、電極20上の同心円状に分けられた各領域内(例えば領域X、領域Y)で不規則(ランダム配置)とすることが好ましい。すなわち、図2に示すように、配置間隔h1とh2とが若干異なるようにする。このようにすると、隣接する非電極部位をそれぞれ通過する光が互いに干渉し合って波面が乱れるような事態を防止することができる。
なお、光の波長と配置間隔との関係で干渉効果がほとんど無いと見込まれる場合には、h1とh2とを同一にして規則的に配置しても構わない。
【0036】
電極20、21としては、従来知られた一般的な電極を用いることができる。具体的には、透明な基板30、31に対してインジウム−スズ酸化膜を形成したITO電極が好適に用いられる。非電極部位201を形成する側の電極20については、例えばアルミニウム等の金属を基板30上に蒸着等することによって構成しても良い。
【0037】
また、非電極部位201を形成する方法としては、まず基板30上の全面に電極20を形成した後に、フォトプロセスによって複数の非電極部位201を所望の配置パターンで形成する方法が好適に用いられる。このようにすると、連続的に変化する微細な配置パターンを容易に作り出すことができる。あるいは、基板30に電極20を蒸着、めっき等する際にマスクを介して行う方法を用いても良い。
【0038】
図5には、本発明の実施の形態(2)を示す。この液晶収差補正素子1は、上記実施の形態(1)と同様に、電極20に複数の非電極部位201を形成しているが、非電極部位201の大きさを同径としている。そして、電極20の中心から周辺に向かって、非電極部位201の配置間隔を広い間隔から狭い間隔、再び広い間隔へと連続的に変化させている。このように、非電極部位201の配置に疎密を持たせた場合には、電圧印加時に個々の非電極部位におけるレンズ効果によって、非電極部位201の密度が濃い領域と薄い領域とでは得られる位相差が異なり、全体として素子を通過する光束の球面収差をリニアに補正することができる。
【0039】
次に、本発明の実施の形態(3)について図6〜図8に基づき説明する。図6の液晶収差補正素子1は、上記実施の形態(1)と同様に、液晶を挟む電極20に複数の非電極部位201を形成し、その非電極部位201の大きさ及び配置間隔を半径方向Rへ連続的に変化させている。そして、この実施の形態(3)では、非電極部位201の配置パターン(同心円状に変化するパターン)に沿って環状の線状電極40a〜40dを配設したことを特徴としている。
【0040】
線状電極40a〜40dは、端子S1、S2に接続されており、抵抗R1〜R3を利用して相異なる電圧が印加されるように構成されている。
この液晶収差補正素子1によって得られる位相差カーブを、図7に模式的に示す。図7に示すように、非電極部位201のレンズ効果によって位相差カーブPが得られるとき、線状電極40a〜40dが配設された部位s、t、u、vにおいて液晶がより配向し、それによって位相差が所定量だけ引き上げられ、結果として補正量の大きい位相差カーブQの状態となる。ここで、線状電極40a〜40dの配設する位置、及びそれぞれに印加する電圧値は、非電極部位201に起因する位相差カーブPに基づいて決定することができる。すなわち、位相差カーブPの位相変化量に比例した電圧値を設定することが好ましく、例えば端子S1、S2間に1Vの電圧を印加する場合、線状電極40a(図7のsに相当する)には0V、線状電極40b(tに相当)には0.6V、線状電極40c(uに相当)には1V、線状電極40d(vに相当)には0.1V、の印加電圧となるように抵抗R1〜R3を設定することができる。なお、線状電極40a〜40dについては、図6の回路構成に限定されないことは無論である。
【0041】
図8には、実施の形態(3)に係る液晶収差補正素子1の製造過程の一例を示す。まず、図8(a)に示すように、ガラスの基板30上にITO等の電極400(低抵抗膜、数〜数十Ω)を形成する。なお、この例では基板30と電極400との間にSiO膜50を形成している。この膜は、基板30からのナトリウム分の溶出を防ぐパッシベーション膜であり、必要に応じて設けることができる。
【0042】
続いて、図8(b)(c)に示すように、電極400のパターンニングを行って線状電極40aを形成し、その上にITO等の電極20(高抵抗膜、数十〜数百kΩ)を形成する。そして、図8(d)に示すように、所定の位置に複数の非電極部位201を形成することにより、線状電極40a(40b〜40d)と電極20とが形成された目的の基板を得ることができる。なお、線状電極40aは、素子の大きさに比べて極細(数〜数十μm程度)であるため、場合によってはITO以外の不透明な金属で構成しても良い。
【0043】
複数の非電極部位201の配置パターンは、上記実施の形態(1)〜(3)に限定されない。すなわち、発生する収差等に応じて、非電極部位201の大きさもしくは配置間隔又はその両方を電極20上の位置によって適宜設定することができる。具体的には、例えば、図1とは逆に非電極部位の大きさを電極20の中心から周辺に向かって小さい径から大きい径、また小さい径へと連続的に変化させる場合、あるいは図5とは逆に、非電極部位の配置間隔を電極20の中心から周辺に向かって狭い間隔から広い間隔、また狭い間隔へと連続的に変化させる場合等が挙げられる。また、図1及び5のように大きさ及び配置間隔を同心円状に変化させる場合に限らず、例えば電極20を左右の領域に分けたときに、それぞれの領域で異なる配置パターンとなるように形成しても良い。この場合には、ディスクの反り等によって生じるコマ収差を有効に補正することができる。
【0044】
なお、上記各実施の形態では、電極20にのみに非電極部位201を形成していたが、電極20と電極21の両方に非電極部位を形成しても良い。この場合、電極21の近傍でも液晶分子が不均一に配向するため、得られるレンズ効果がより強くなり、補正量を大きくすることができる。
また、電極20を、分割された幾つかの電極から構成し、それぞれに複数の非電極部位を形成し、各電極に異なる電圧を印加することによって全体としてさらに複雑な位相差カーブを与えることもできる。
【0045】
また、対向する電極は、上記のように一対とは限らず、それ以上の電極が液晶を挟みつつ積層していても良い。
【0046】
上記実施の形態(1)〜(3)では、複数の非電極部位201の形状が円形の場合について説明したが、これに限定されず、例えば発生する収差の種類や、ラビング方向等を考慮して、別の形状にすることができる。具体的には、楕円形状、半円形状等が挙げられる。
【0047】
以上のような液晶収差補正素子1は、例えばレーザ光源、偏光子、1/2波長板、1/4波長板、対物レンズ、受光素子等とともに光ピックアップを構成し、光ディスク装置に組み込んで使用することができる。
発生する収差をリニアに補正可能であるため、次世代BDや、多層ディスク等の高密度光ディスクにも好適に用いることができる。
【産業上の利用可能性】
【0048】
本発明の液晶収差補正素子は、光ディスク装置において、光ピックアップでの記録・再生時に生ずる収差を補正するために用いられる。
【Technical field】
[0001]
The present invention belongs to the technical field of a liquid crystal aberration correction element used to correct aberrations occurring during recording / reproduction with an optical pickup in an optical disc apparatus.
[Background]
[0002]
Conventionally, various optical discs such as CD and DVD are known as information recording media. Since these optical discs generate aberrations (distortion of the condensing spot) due to thickness deviation or warping caused by rotation, it is required to correct the aberrations and improve recording / reproducing accuracy.
Particularly recently, BD (Blu-ray Disc) has attracted attention as a next-generation optical disc. In this standard, the light source wavelength is increased from 650 nm to 405 nm, the numerical aperture (NA) of the objective lens is increased from 0.6 to 0.85, and the surface recording density is improved to about 5 times that of the conventional DVD. Here, since the spherical aberration caused by the thickness deviation is inversely proportional to the wavelength of the light source and proportional to the fourth power of NA, the aberration tends to increase rapidly in BD. Therefore, development of a technique for correcting aberrations with higher accuracy has been desired.
[0003]
As a technique for correcting the aberration, a method of driving a collimator lens with an actuator and a method of using a liquid crystal aberration correction element are known.
In the former method, an actuator is required, so that the optical pickup becomes complicated, and there is a problem that it cannot cope with high-precision correction.
On the other hand, the liquid crystal aberration correction element generally divides the electrodes of the liquid crystal panel into concentric circles, thereby performing different phase control between the central portion and the outer edge portion of the light beam.
[0004]
For example, (Patent Document 1) discloses a first electrode layer having a plurality of concentric electrode portions associated with a distribution of spherical aberration generated in an optical disc, and a second electrode layer facing the first electrode layer. A liquid crystal that is sandwiched between the first and second electrode layers and causes a light beam that passes through a phase change in accordance with a voltage applied to the first and second electrode layers. ing.
[0005]
Further, in Patent Document 2, in an optical pickup used in a multi-layer disc reproducing apparatus for reproducing a multi-layer disc having a plurality of recording layers, the recording is arranged and selected in an optical path between a light source and an objective lens. According to the layer, there is described an optical pickup provided with wavefront aberration correction means for correcting wavefront aberration of light emitted from the light source, and the wavefront aberration correction means is configured by a liquid crystal element. It is described that a concentrically divided electrode for applying a voltage is provided.
[0006]
In order to perform good correction, it is ideal to add an opposite phase wave to the generated aberration. Therefore, in the case of the above conventional liquid crystal aberration correcting element, it is desirable to form as many concentric divided electrode regions as possible, but the element is generally of a very small size (about 3 to 4 mm in diameter). It is extremely difficult to increase the area (about 10 tones is the limit).
Therefore, it has been desired to develop a liquid crystal aberration correction element capable of linearly correcting the generated aberration.
[0007]
As another problem, when an opposite phase wave is applied using the liquid crystal aberration correction element as described above, if the generated aberration is large, it is difficult to obtain a phase difference corresponding to the aberration. There was a case. As a result, there is a problem that the aberration cannot be completely corrected.
Therefore, it has been desired to develop a liquid crystal aberration correction element that can sufficiently obtain an absolute amount (phase difference) of the correction while performing linear correction on the generated aberration.
[0008]
[Patent Document 1]
JP 2002-237077 A (Claim 1, paragraph 0014)
[Patent Document 2]
Japanese Patent Laid-Open No. 10-269611 (Claims 1 to 4)
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
[0009]
Accordingly, in view of the above-described conventional situation, the present invention provides a novel liquid crystal aberration correction element that linearly corrects an aberration caused by a thickness deviation of an optical disk and the like, thereby improving recording / reproducing accuracy. With the goal.
It is another object of the present invention to provide a novel liquid crystal aberration correction element that not only corrects aberrations linearly but also has a large correction amount.
[Means for Solving the Problems]
[0010]
In order to solve the above-described problem, a liquid crystal aberration correcting element of the present invention includes a liquid crystal and a plurality of electrodes facing each other with the liquid crystal interposed therebetween, and a plurality of non-electrodes in which no electrode material is present in at least one of the electrodes A portion is formed, and inside the non-electrode portion, the liquid crystal is configured to be non-uniformly aligned when a voltage is applied.
【The invention's effect】
[0011]
The liquid crystal aberration correction element of the present invention produces a lens effect by forming a plurality of non-electrode portions on an electrode and orienting liquid crystal molecules along a non-uniform electric field distribution formed at the positions of the non-electrode portions. Let As a result, it is possible to linearly correct the aberration caused by the thickness deviation of the optical disk. The alignment state of the liquid crystal can be controlled by the applied voltage, and the correction amount can be arbitrarily changed accordingly.
According to the present invention, the distortion of the focused spot is corrected, and the recording / reproducing accuracy can be improved. Therefore, it is suitable as a correction element for the next generation high density optical disc.
[0012]
In addition, the liquid crystal aberration correcting element of the present invention changes the size and arrangement interval of the plurality of non-electrode portions depending on the positions on the electrodes, and the plurality of linear electrodes are arranged along the arrangement pattern of the non-electrode portions. It is characterized by being arranged at intervals. Thereby, the phase difference obtained by the non-electrode part is forcibly increased at a plurality of places where the linear electrodes are arranged, and the phase difference curve resulting from the non-electrode part as a whole is emphasized. A big state can be obtained.
[Brief description of the drawings]
[0013]
FIG. 1 is a plan view of a liquid crystal aberration correction element according to an embodiment (1).
FIG. 2 is an enlarged view of a portion A in FIG.
FIG. 3 is a cross-sectional view of the liquid crystal aberration correcting element according to Embodiment (1).
FIG. 4 is a diagram for explaining a state when a voltage is applied to the liquid crystal aberration correcting element according to the embodiment (1).
FIG. 5 is a plan view of a liquid crystal aberration correcting element according to Embodiment (2).
FIG. 6 is a plan view of a liquid crystal aberration correcting element according to Embodiment (3).
FIG. 7 is a diagram schematically showing the amount of phase change obtained by the liquid crystal aberration correcting element according to Embodiment (3).
FIG. 8 is a diagram for explaining a manufacturing process of the liquid crystal aberration correcting element according to the embodiment (3).
[Explanation of symbols]
[0014]
1 liquid crystal aberration correcting element 10 liquid crystal 20 electrode 21 electrode 201 non-electrode portion 30 substrate 31 substrate 40a~40d linear electrodes 400 electrodes 50 SiO 2 film E field S1, S2 terminal R1~R3 resistance P, Q phase difference curve INVENTION BEST MODE FOR IMPLEMENTING
[0015]
The present invention includes a liquid crystal and a plurality of electrodes facing each other with the liquid crystal interposed therebetween, and at least one of the electrodes is formed with a plurality of non-electrode portions where no electrode material is present. Corrects liquid crystal aberrations by aligning the liquid crystal in a non-uniform manner when applying voltage, and changing the size and spacing of multiple non-electrode parts along the radial direction when the electrodes are divided concentrically. An element is provided (first invention).
[0016]
According to this configuration, a weak electric field is formed in the vertical direction with respect to the electrode at the center of the formed non-electrode part, and an electric field is inclined at the end of the non-electrode part. By aligning liquid crystal molecules non-uniformly along the electric field distribution, a lens effect is obtained in which the refractive index continuously changes from the center to the periphery of the non-electrode part. Therefore, by allowing the light beam to pass through the lens portion, a predetermined phase difference is given and the aberration is corrected. Further, by changing the size or arrangement interval of the non-electrode portions, the phase difference obtained in each region is set, and the entire element is optimally corrected according to the aberration. Furthermore, according to this configuration, the spherical aberration is favorably corrected by changing the obtained phase difference concentrically.
[0017]
[0018]
[0019]
Further, the present invention includes a liquid crystal and a plurality of electrodes facing each other with the liquid crystal interposed therebetween, and a plurality of non-electrode portions where no electrode material is present in at least one of the electrodes is sized according to positions on the electrodes. Alternatively, it is formed in an arrangement pattern in which the arrangement interval or both are changed, and a plurality of linear shapes are applied inside the non-electrode portion so that liquid crystals are non-uniformly oriented when a voltage is applied, and different voltages are applied. The present invention provides a liquid crystal aberration correcting element in which electrodes are arranged at predetermined intervals along the arrangement pattern (second invention).
[0020]
According to this configuration, the phase difference curve corresponding to the generated aberration can be obtained by changing the size of the non-electrode portion or the arrangement interval with the lens effect as described above, and a plurality of linear electrodes can be obtained. By disposing and applying a voltage to a predetermined part, the above-mentioned phase difference curve is emphasized and an optimum correction amount is obtained.
[0021]
[0022]
[0023]
Further, according to the present invention, in the liquid crystal aberration correcting element according to the second invention, the sizes and arrangement intervals of the plurality of non-electrode portions change along the radial direction when the electrodes are divided concentrically. The linear electrodes of the book are arranged in an annular shape along the arrangement pattern changing concentrically (third invention).
[0024]
According to this configuration, the phase difference at a plurality of locations along the radial direction of the electrode is forcibly raised by the linear electrodes arranged in an annular shape, and the spherical aberration is well corrected in combination with the action of the non-electrode portion. Is done.
[0025]
Further, according to the present invention, in the liquid crystal aberration correcting element according to the first or third invention, the arrangement interval of the plurality of non-electrode portions is irregular in each of the concentrically divided regions on the electrode. Features (fourth invention).
[0026]
According to this configuration, the wavefront disturbance due to the light interference effect is prevented by making the interval between adjacent non-electrode parts irregular (random).
[0027]
Furthermore, the invention is characterized in that in the liquid crystal aberration correcting element according to the first to fourth inventions, the shape of the non-electrode part is circular (fifth invention).
[0028]
According to this configuration, the shape of the non-electrode portion is optimized with respect to the generated aberration.
[0029]
Hereinafter, the present invention will be described in detail.
First, an embodiment (1) of the present invention is shown in FIGS. 1 is a plan view of the liquid crystal aberration correction element 1, FIG. 2 is an enlarged view of a portion A in FIG. 1, and FIG. 3 is an enlarged view of a cross section of the liquid crystal aberration correction element 1. As shown in FIG. 3, the liquid crystal aberration correction element 1 includes a liquid crystal 10, two electrodes 20 and 21 and substrates 30 and 31 that are opposed to each other with the liquid crystal 10 interposed therebetween, and the electrode 20 includes an electrode material. A plurality of non-electrode portions 201 that are not formed are formed in a hole shape. In FIG. 3, an antireflection film (AR film) provided on the substrates 30 and 31, a liquid crystal alignment film generally provided between the electrodes 20 and 21 and the liquid crystal 10, a transparent insulating layer, and the like are illustrated. Omitted. Further, a lead wire or the like is connected to the electrode 20 and the electrode 21 in order to apply a voltage.
[0030]
As shown in FIG. 1, the size and arrangement interval of the plurality of non-electrode portions 201 are continuously changed depending on the position on the electrode 20. Although the number of the non-electrode portions 201 is illustrated as small in FIG. 1 for the sake of convenience, in practice, a large number of non-electrode portions 201 are finely formed as shown in FIG. In this embodiment (1), along the radial direction R when the electrode 20 is divided into concentric circles, the size d1 of the non-electrode portion 201 is once changed from a large diameter to a small diameter and then becomes a large diameter again. In addition, a continuous pattern is formed so that the arrangement interval d2 is once changed from a wide interval to a narrow interval and then becomes a wide interval again.
[0031]
When a voltage is applied between the electrodes 20 and 21, the state of the electric field E in the vicinity of the non-electrode portion 201 is as shown in FIG. That is, a strong electric field is formed in the direction a perpendicular to the electrode at the portion a where the electrode 20 and the electrode 21 are opposed to each other, and the portion b which is the central portion of the non-electrode portion 201 is weak in the direction perpendicular to the electrode. An electric field is formed. Then, in the portion c close to the boundary between the non-electrode portion 201 and the electrode 20, the electric field is inclined toward the electrode 20.
[0032]
Then, when the dielectric anisotropy of the liquid crystal 10 is positive, since the liquid crystal molecules are aligned along the electric field E, the liquid crystal molecules are aligned perpendicular to the electrodes in the portion a, and the electric field is weak in the portion b. The state remains parallel to the electrode, and the portion c is oriented obliquely. That is, the liquid crystal is in a non-uniform alignment state inside the non-electrode portion 201. At this time, the refractive index for light passing through the element (abnormal light) forms a distribution that continuously decreases from the center to the periphery of the non-electrode portion 201. Will be shown. Thereby, a phase difference can be given to the passing light.
Therefore, as shown in FIG. 1, when the size and arrangement interval of the non-electrode portion 201 are continuously changed depending on the position on the electrode, the phase difference obtained at each position is different. By appropriately designing the arrangement pattern of the non-electrode portion 201, the aberration can be linearly corrected for the entire element.
[0033]
In addition, when the voltage to apply is changed, the orientation state of a liquid crystal molecule changes according to it. For example, when the voltage is increased, the liquid crystal molecules are vertically aligned even at the center of the non-electrode portion 201, and conversely, a concave lens effect is exhibited in which the refractive index increases from the center to the periphery of the non-electrode portion 201. . In other words, the phase difference curve obtained for the entire device can be changed by the applied voltage. For example, the correction amount is calculated based on the reproduction (RF) waveform, and the voltage is controlled according to the result. It is also possible to correct the aberration to be performed in real time.
[0034]
Further, in the example of FIG. 1, the size and arrangement interval of the non-electrode portions 201 are changed along the radial direction R. In this way, a phase difference curve that changes concentrically in accordance with the arrangement pattern of the non-electrode portions 201 is obtained, so that the spherical aberration caused by the disc thickness deviation can be corrected well. In addition, since the size and the arrangement interval of the non-electrode portion 201 are continuously changed, it is not a stepwise discontinuous correction as in the conventional aberration correction element in which the electrodes are concentrically divided, but more linear. Correction is possible.
[0035]
Furthermore, it is preferable that the arrangement interval of the non-electrode portions 201 be irregular (random arrangement) in each region (for example, the region X and the region Y) divided concentrically on the electrode 20. That is, as shown in FIG. 2, the arrangement intervals h1 and h2 are slightly different. In this way, it is possible to prevent a situation in which light passing through adjacent non-electrode portions interferes with each other and disturbs the wavefront.
If it is expected that there will be almost no interference effect due to the relationship between the wavelength of light and the arrangement interval, h1 and h2 may be arranged regularly.
[0036]
Conventionally known general electrodes can be used as the electrodes 20 and 21. Specifically, an ITO electrode in which an indium-tin oxide film is formed on the transparent substrates 30 and 31 is preferably used. The electrode 20 on the side where the non-electrode portion 201 is formed may be configured by evaporating a metal such as aluminum on the substrate 30.
[0037]
In addition, as a method of forming the non-electrode portion 201, a method in which the electrode 20 is first formed on the entire surface of the substrate 30 and then a plurality of non-electrode portions 201 are formed in a desired arrangement pattern by a photo process is suitably used. . In this way, it is possible to easily create a fine arrangement pattern that changes continuously. Alternatively, a method of performing through a mask when the electrode 20 is vapor-deposited or plated on the substrate 30 may be used.
[0038]
FIG. 5 shows an embodiment (2) of the present invention. The liquid crystal aberration correction element 1 has a plurality of non-electrode portions 201 formed on the electrode 20 as in the above-described embodiment (1), but the non-electrode portions 201 have the same diameter. Then, the arrangement interval of the non-electrode portions 201 is continuously changed from a wide interval to a narrow interval and again to a wide interval from the center of the electrode 20 to the periphery. As described above, when the arrangement of the non-electrode portions 201 is made sparse and dense, the non-electrode portion 201 can be obtained in a region where the density of the non-electrode portions 201 is high and thin due to a lens effect in each non-electrode portion when a voltage is applied. The phase difference is different, and the spherical aberration of the light beam passing through the element as a whole can be linearly corrected.
[0039]
Next, Embodiment (3) of this invention is demonstrated based on FIGS. The liquid crystal aberration correction element 1 of FIG. 6 forms a plurality of non-electrode portions 201 on the electrode 20 that sandwiches the liquid crystal, and the size and arrangement interval of the non-electrode portions 201 are radiused, as in the first embodiment (1). It is continuously changed in the direction R. The embodiment (3) is characterized in that the annular linear electrodes 40a to 40d are arranged along the arrangement pattern of the non-electrode portion 201 (pattern changing concentrically).
[0040]
The linear electrodes 40a to 40d are connected to the terminals S1 and S2, and are configured such that different voltages are applied using the resistors R1 to R3.
A phase difference curve obtained by the liquid crystal aberration correcting element 1 is schematically shown in FIG. As shown in FIG. 7, when the phase difference curve P is obtained by the lens effect of the non-electrode portion 201, the liquid crystal is more aligned in the portions s, t, u, v where the linear electrodes 40a to 40d are disposed, As a result, the phase difference is increased by a predetermined amount, and as a result, a phase difference curve Q having a large correction amount is obtained. Here, the positions where the linear electrodes 40 a to 40 d are disposed and the voltage value applied to each can be determined based on the phase difference curve P caused by the non-electrode portion 201. That is, it is preferable to set a voltage value proportional to the phase change amount of the phase difference curve P. For example, when a voltage of 1 V is applied between the terminals S1 and S2, the linear electrode 40a (corresponding to s in FIG. 7). Applied voltage is 0V, 0.6V for the linear electrode 40b (corresponding to t), 1V for the linear electrode 40c (corresponding to u), and 0.1V for the linear electrode 40d (corresponding to v). The resistors R1 to R3 can be set so that Needless to say, the linear electrodes 40a to 40d are not limited to the circuit configuration of FIG.
[0041]
FIG. 8 shows an example of a manufacturing process of the liquid crystal aberration correcting element 1 according to the embodiment (3). First, as shown in FIG. 8A, an electrode 400 (low resistance film, several to several tens Ω) such as ITO is formed on a glass substrate 30. In this example, the SiO 2 film 50 is formed between the substrate 30 and the electrode 400. This film is a passivation film that prevents elution of the sodium content from the substrate 30 and can be provided as necessary.
[0042]
Subsequently, as shown in FIGS. 8B and 8C, the electrode 400 is patterned to form the linear electrode 40a, and the electrode 20 (high resistance film, several tens to several hundreds) such as ITO is formed thereon. kΩ). And as shown in FIG.8 (d), the target board | substrate with which the linear electrode 40a (40b-40d) and the electrode 20 were formed is obtained by forming the some non-electrode site | part 201 in a predetermined position. be able to. The linear electrode 40a is extremely thin (several to several tens of μm) compared to the size of the element, and may be made of an opaque metal other than ITO depending on the case.
[0043]
The arrangement pattern of the plurality of non-electrode portions 201 is not limited to the above embodiments (1) to (3). That is, according to the aberration etc. which generate | occur | produce, the magnitude | size of the non-electrode site | part 201, an arrangement | positioning space | interval, or both can be suitably set with the position on the electrode 20. FIG. Specifically, for example, contrary to FIG. 1, when the size of the non-electrode portion is continuously changed from a small diameter to a large diameter or a small diameter from the center to the periphery of the electrode 20, or FIG. On the contrary, there is a case where the arrangement interval of the non-electrode portions is continuously changed from a narrow interval to a wide interval or a narrow interval from the center of the electrode 20 toward the periphery. 1 and 5 are not limited to the case where the size and the arrangement interval are changed concentrically. For example, when the electrode 20 is divided into left and right areas, different arrangement patterns are formed in the respective areas. You may do it. In this case, coma caused by the warp of the disk can be effectively corrected.
[0044]
In each of the above embodiments, the non-electrode portion 201 is formed only on the electrode 20, but the non-electrode portion may be formed on both the electrode 20 and the electrode 21. In this case, since the liquid crystal molecules are aligned non-uniformly even in the vicinity of the electrode 21, the obtained lens effect becomes stronger and the correction amount can be increased.
Further, the electrode 20 is composed of several divided electrodes, each of which is formed with a plurality of non-electrode portions, and a different voltage is applied to each electrode to give a more complicated phase difference curve as a whole. it can.
[0045]
Further, the opposing electrodes are not limited to a pair as described above, and more electrodes may be stacked with the liquid crystal sandwiched therebetween.
[0046]
In the above-described embodiments (1) to (3), the case where the shape of the plurality of non-electrode portions 201 is circular has been described. However, the present invention is not limited to this. Can be made into another shape. Specific examples include an elliptical shape and a semicircular shape.
[0047]
The liquid crystal aberration correcting element 1 as described above constitutes an optical pickup together with, for example, a laser light source, a polarizer, a half-wave plate, a quarter-wave plate, an objective lens, a light receiving element, etc., and is used by being incorporated in an optical disc apparatus. be able to.
Since the generated aberration can be corrected linearly, it can be suitably used for next-generation BDs and high-density optical disks such as multilayer disks.
[Industrial applicability]
[0048]
The liquid crystal aberration correction element of the present invention is used in an optical disc apparatus to correct aberrations that occur during recording / reproduction with an optical pickup.

Claims (5)

液晶と、前記液晶を挟んで対向する複数の電極とを備え、前記電極の少なくとも一つには電極材の存在しない複数の非電極部位を形成し、前記非電極部位の内側では電圧印加時に液晶が不均一に配向させ、複数の非電極部位の大きさ及び配置間隔は、電極上を同心円状に分けたときの半径方向に沿って変化するように構成してなる液晶収差補正素子。  A liquid crystal and a plurality of electrodes opposed to each other with the liquid crystal interposed therebetween, wherein at least one of the electrodes is formed with a plurality of non-electrode portions where no electrode material is present; A non-uniformly oriented liquid crystal aberration correcting element configured such that the size and arrangement interval of the plurality of non-electrode portions change along the radial direction when the electrodes are divided concentrically. 液晶と、前記液晶を挟んで対向する複数の電極とを備え、前記電極の少なくとも一つには電極材の存在しない複数の非電極部位を前記電極上の位置によって大きさもしくは配置間隔又はその両方を変化させた配置パターンで形成し、前記非電極部位の内側では電圧印加時に液晶が不均一に配向するように構成するとともに、相異なる電圧を印加する複数本の線状電極を前記配置パターンに沿って所定の間隔で配設してなる液晶収差補正素子。A liquid crystal and a plurality of electrodes opposed to each other with the liquid crystal interposed therebetween, and at least one of the electrodes has a plurality of non-electrode portions where no electrode material is present, the size and / or the arrangement interval depending on the position on the electrodes The liquid crystal is configured to be non-uniformly oriented when a voltage is applied inside the non-electrode portion, and a plurality of linear electrodes that apply different voltages are formed in the arrangement pattern. A liquid crystal aberration correction element arranged at a predetermined interval along the line. 請求項2記載の液晶収差補正素子において、複数の非電極部位の大きさ及び配置間隔が、電極上を同心円状に分けたときの半径方向に沿って変化し、複数本の線状電極は、前記同心円状に変化する配置パターンに沿って環状に配設されることを特徴とする液晶収差補正素子。The liquid crystal aberration correction element according to claim 2, wherein the size and arrangement interval of the plurality of non-electrode portions change along a radial direction when the electrodes are divided concentrically, and the plurality of linear electrodes are: A liquid crystal aberration correcting element, wherein the liquid crystal aberration correcting element is arranged in an annular shape along the concentrically changing arrangement pattern. 請求項1又は3記載の液晶収差補正素子において、複数の非電極部位の配置間隔は、電極上の同心円状に分けられた各領域内において不規則であることを特徴とする液晶収差補正素子。  4. The liquid crystal aberration correction element according to claim 1, wherein the intervals between the plurality of non-electrode portions are irregular in each of the concentric areas on the electrode. 請求項1〜4のいずれか記載の液晶収差補正素子において、非電極部位の形状が円形であることを特徴とする液晶収差補正素子。5. The liquid crystal aberration correction element according to claim 1, wherein the non-electrode portion has a circular shape.
JP2005514549A 2003-10-14 2004-09-24 Liquid crystal aberration correction element Expired - Fee Related JP4008944B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003353770 2003-10-14
JP2003353770 2003-10-14
PCT/JP2004/013940 WO2005036242A1 (en) 2003-10-14 2004-09-24 Liquid crystal aberration correcting element

Publications (2)

Publication Number Publication Date
JPWO2005036242A1 JPWO2005036242A1 (en) 2006-12-21
JP4008944B2 true JP4008944B2 (en) 2007-11-14

Family

ID=34431170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005514549A Expired - Fee Related JP4008944B2 (en) 2003-10-14 2004-09-24 Liquid crystal aberration correction element

Country Status (4)

Country Link
JP (1) JP4008944B2 (en)
KR (1) KR100761950B1 (en)
CN (1) CN100394257C (en)
WO (1) WO2005036242A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003739A (en) * 2004-06-18 2006-01-05 Sony Corp Phase correction optical element, optical pickup apparatus and phase correction method
JP4581969B2 (en) * 2005-11-14 2010-11-17 コニカミノルタホールディングス株式会社 Liquid crystal device and optical pickup
JP2008203574A (en) * 2007-02-20 2008-09-04 Binit:Kk Liquid crystal optical element and method for manufacturing the same
CN110058464B (en) * 2019-05-29 2022-01-07 京东方科技集团股份有限公司 Liquid crystal photon sieve structure and near-to-eye display device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06301036A (en) * 1993-04-12 1994-10-28 Sanyo Electric Co Ltd Liquid crystal display device
US6480454B1 (en) * 1998-12-15 2002-11-12 Matsushita Electric Industrial Co., Ltd. Optical element, optical head using the optical element, and optical recording and reproducing apparatus using the optical element
JP3493335B2 (en) * 1999-07-07 2004-02-03 松下電器産業株式会社 Optical element, optical head and optical recording / reproducing device
US6532202B1 (en) * 1999-07-07 2003-03-11 Matsushita Electric Industrial Co., Ltd. Optical element, optical head and optical recording reproducing apparatus
JP4915028B2 (en) * 1999-09-02 2012-04-11 旭硝子株式会社 Optical head device
JP3781262B2 (en) * 2000-03-28 2006-05-31 パイオニア株式会社 Aberration correction apparatus and driving method thereof
JP3601786B2 (en) * 2000-08-11 2004-12-15 シャープ株式会社 Liquid crystal display
JP4479134B2 (en) * 2001-07-26 2010-06-09 旭硝子株式会社 Optical head device
JP2003228871A (en) * 2002-01-31 2003-08-15 Asahi Glass Co Ltd Optical head device

Also Published As

Publication number Publication date
WO2005036242A1 (en) 2005-04-21
JPWO2005036242A1 (en) 2006-12-21
CN1867859A (en) 2006-11-22
CN100394257C (en) 2008-06-11
KR100761950B1 (en) 2007-10-02
KR20060054476A (en) 2006-05-22

Similar Documents

Publication Publication Date Title
KR101047830B1 (en) Liquid Crystal Lens Element and Optical Head Device
JP4552556B2 (en) Liquid crystal lens element and optical head device
JP4008944B2 (en) Liquid crystal aberration correction element
JP4915028B2 (en) Optical head device
US20090052303A1 (en) Objective optical element and optical head apparatus
JP4532482B2 (en) Double liquid crystal aberration correction element and manufacturing method thereof
JP4436070B2 (en) Liquid crystal optical element and optical device
JP4008945B2 (en) Liquid crystal aberration correction element and manufacturing method thereof
JP4436069B2 (en) Liquid crystal optical element and optical device
JP4449239B2 (en) Optical head device
JP2006012344A (en) Optical pickup device
JP5005850B2 (en) Optical head device
JP4479134B2 (en) Optical head device
JP4337255B2 (en) Optical head device
JP2010040070A (en) Aberration correcting device, optical head, and optical disc apparatus
JP2001331964A (en) Aberration correcting unit, optical pickup device and recording/reproducing device
JP4583444B2 (en) Aberration correction apparatus, optical pickup, and spherical aberration correction method
JP2002133697A (en) Optical head device
JP2002148581A (en) Aberration correction element and aberration correction device
JP2004110959A (en) Optical head device
JP2006003739A (en) Phase correction optical element, optical pickup apparatus and phase correction method
JP2005275185A (en) Optical phase correcting element and optical head device
JP2008076928A (en) Liquid crystal optical element and optical pickup device
JP2005292326A (en) Liquid crystal element
JP2011053605A (en) Liquid crystal optical element, method of manufacturing the same and pickup apparatus provided with the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees