JP4008248B2 - Electrolytic water treatment equipment - Google Patents

Electrolytic water treatment equipment Download PDF

Info

Publication number
JP4008248B2
JP4008248B2 JP2002019730A JP2002019730A JP4008248B2 JP 4008248 B2 JP4008248 B2 JP 4008248B2 JP 2002019730 A JP2002019730 A JP 2002019730A JP 2002019730 A JP2002019730 A JP 2002019730A JP 4008248 B2 JP4008248 B2 JP 4008248B2
Authority
JP
Japan
Prior art keywords
electrolytic
water
cathode
electrode
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002019730A
Other languages
Japanese (ja)
Other versions
JP2003211166A (en
Inventor
宏行 宮嶋
正明 山上
一彦 山内
Original Assignee
株式会社東京久栄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東京久栄 filed Critical 株式会社東京久栄
Priority to JP2002019730A priority Critical patent/JP4008248B2/en
Publication of JP2003211166A publication Critical patent/JP2003211166A/en
Application granted granted Critical
Publication of JP4008248B2 publication Critical patent/JP4008248B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電解式水処理装置に関するものである。
【0002】
【従来の技術】
無機、あるいは有機性の電解質を含む処理対象水に電解処理を施して処理対象水中の汚濁成分を分離する電解式水処理装置の従来例を図6に示す。
【0003】
この従来例において、水処理装置は、アルミニウム板からなる陽極電極6と陰極電極7とを処理室2内に対向配置した電解槽1と、電解槽1の後段に連結される浮上分離槽4とを有する。電解槽1の処理室2内において、陽極電極からAl3+イオンが電解により溶出し、水の電気分解によって発生した(OH)-イオンと反応してAl(OH)3が生成され、(-)に帯電して親水コロイド懸濁物となっている生成物粒子を凝集してフロック8となる。
【0004】
発生したフロック8は、比重が大きなものは沈殿し、また、浮遊微少固形物は陰極電極7より発生する水素ガス気泡の付着により見かけの比重が小さくなってスカムとして浮上し、次工程の浮上分離槽4に配置されるスカム掻き取り装置9によって回収される。
【0005】
【発明が解決しようとする課題】
しかし、上述した従来例には以下の欠点がある。まず、陰極電極7において、抵抗皮膜が発生して陰極抵抗が増加し、電解効率が著しく低下する。
【0006】
また、陰極電極7における水素発生量は、電解供給電流により左右され、処理対象水の汚濁度に影響されない。通常の運転時においては、汚濁度が高い場合には電解供給電流は高く維持され、結果、発生したフロック8を浮上させるに十分な量の水素が陰極電極7から発生するためにその相関は意識されないが、例えば、低汚濁度処理対象水の処理に際して陽極側のアルミニウムの溶出量を減少させるために、電解供給電流を低減させた省電力運転においては、発生フロック量に対して陰極電極7での発生水素量が不足し、浮上分離が有効に行われない。
【0007】
本発明は、以上の欠点を解消すべくなされたものであって、水処理能力を向上させた電解式水処理装置の提供を目的とする。
【0008】
【課題を解決するための手段】
本発明によれば上記目的は、
アルミニウム陽極電極を備えた電解槽1内に導入した処理対象水に電解処理を施して処理対象水中の汚濁成分を分離する電解式水処理装置であって、
前記電解槽1内の処理室2が、陰極側に鉄を使用した複合電極3によって区画される電解式水処理装置を提供することにより達成される。
【0009】
従来の陽極・陰極ともにAlを使用した電解槽1において陰極に付着するスケールはAl(OH)3・nH2Oを主成分とすることが知られており、発明者は、原因成分となるAlは、陽極からの溶出成分の泳動により供給されるものではなく、陰極におけるアルミン酸塩としての溶出に基因する可能性があることを知るに至った。
【0010】
本発明は、以上の知見に基づきなされたものであって、陽極にアルミニウムを使用し、陰極を鉄とした複合電極3を使用することによって、陰極におけるスケールの発生を防止するものである。このような複合電極3を電解槽1内において所定間隔で配置することで、複合電極3間に導入された処理対象水の電解処理がなされる。
【0011】
本発明における複合電極3は、陽極となるアルミニウムプレート(陽極板3a)の片面に陰極となる鉄板(陰極板3b)を接着等の手段によって脱離不能に固定して得ることが可能であるが、例えば、図4(b)に示すように、ボルト10等を使用して陽極板3aと陰極板3bとを分離可能にした場合には、陽極板3aが溶出によって消耗した場合に簡単に陽極板3aのみを交換することが可能となり、メンテナンス性能が向上する。
【0012】
さらに、電解槽1と浮上分離槽4との間に微細気泡発生撹拌装置5を介装させることで、省電力運転時等における陰極板3bでの発生水素が過少であっても、フロック8に吸着する気泡を十分に供給することができる。このため、処理性能を維持したまま処理対象水の汚濁度に応じた運転が可能となる上に、過剰な水酸化アルミニウムが浮上分離槽4で捕捉されずに後工程に流出することが防止できる。
【0013】
【発明の実施の形態】
図1ないし5に発電所の海水系統の取水管に付着堆積する貝類および土砂の清掃時に発生する汚濁水を処理対象水とする廃水処理装置として構成された本発明の実施の形態を示す。廃水処理装置は沈殿槽11を有し、固液分離機12により貝殻、貝肉等の除去が行われた廃水は、まず、この沈殿槽11に導入され、0.1mm以上の懸濁物が自然沈降により分離されて電解槽1に送られる。なお、図1ないし5において処理対象水の処理方向は図中矢印により示される。電解槽1において汚濁物は、アルミニウムイオンにより中和された後、ファン・デル・ワールス力により結合し、陰極から発生する水素ガス、および撹拌槽13内に供給される微細気泡の付着によって浮力を得てスカムとして浮上し、後段の浮上分離槽4に配置されたスカム掻き取り装置9により回収される。
【0014】
以上の工程によって処理された処理済み水は総合廃水処理設備14に送られ、流入処理対象水の減少または停止の際はリターン管路15を経て再び沈殿槽11に送られて再処理される。また、スカム掻き取り装置9により回収されたスカムはスカム貯留槽16に貯留された後、搬出される。なお、図1において17は電解槽1で中和したコロイド粒子をより強力に結合させるための凝集助剤を収容するための高分子凝集剤溶解槽を示す。
【0015】
電解槽1は、複数(図示の例では4個)の電解ユニット1aを処理対象水の流路に対して直交方向に並べて構成され、上下流端に、電解ユニット1aから離れるにしたがって拡幅する導入路18、および排出路19が接続される。撹拌槽13での気泡拡散による混流を防止するために、排出路19は導入路18に比して長寸に形成される。
【0016】
図3に、電解ユニット1aの詳細を示す。電解ユニット1aは、複数の複合電極3、3・・を所定間隔で廃水流路に対して直交方向に並べ、複合電極3、3間に副室2aを形成した電極部20と、電極部20の上下流端に延設される絶縁部21とからなる。絶縁部21は、各複合電極3の上下流端に塩化ビニル樹脂、あるいはアクリル等の絶縁材料、または鋼材に絶縁材料をライニングした材料により形成される絶縁壁21aをシール22を介して連結して形成され、絶縁壁21aにより区画される絶縁流路21bは各副室2aに連通する。
【0017】
複合電極3は、図4(a)に示すように、軟鉄とアルミニウムのプレートを接合し、軟鉄面を陰極板3b、アルミニウム面を陽極板3aとしたもので、処理室2内において陽極板3aと陰極板3bとが互いに対峙するように配置される。この複合電極3は、図4(a)においては陽極板3aと陰極板3bを導電性接着剤等により分離不能に接合した場合が示されているが、図4(b)に示すように、これらをボルト10等により分離可能に連結することもできる。この場合、ステンレス等により形成されるボルト10に締結されるナット23と陽極板3aとの間にスプリング等の付勢手段24を介在させ、陽極板3aを陰極板3b側に付勢すると、陽極板3aが消耗して厚さが減少した場合にも調整を要することなく陽極板3aと陰極板3bとの接合状態を維持することができる。
【0018】
以上のように形成される電解ユニット1aにおいて、汚濁水に電解を生じさせるための電気エネルギーの供給は、図5に示すように、処理室2の最外壁に配置される電極(以下「メイン電極3A」という)間に所定電圧を印加して行われ、メイン電極3A、3A間に印加された電圧は、汚濁水の電気抵抗RSにより分圧されてメイン電極3A以外の複合電極3、3、・・・(以下「サブ電極3B」という)に分配される。絶縁流路21bは、サブ電極3B間での抵抗RLを増加させることによりリーク電流ILの発生を防止し、分圧効率を向上させる。
【0019】
以上の構成の下、電解槽1に導入された処理対象水に含まれる汚濁物は、電極部20において複数の副室2aを通過する際、各副室2aの一方の壁面を形成するアルミニウム製の陽極板3aから溶出するアルミニウムイオンによってマイナス電荷を消されて反発力を消失し、次に水酸化イオンと結合した凝集活性の大きい水酸化アルミニウムが核となるフロック8が形成される。さらに、形成されたフロック8は、前記副室2aのもう一方の壁面を形成する鉄製の陰極板3bから発生する水素ガスに吸着されて比重が軽くなり、浮上する。
【0020】
陰極板3bに軟鉄を使用することで、電解処理によっても陰極に抵抗被膜が生成されないため、電極性能の劣化が防止されるとともに、従来定期的に必要であった抵抗被膜を除去するための研磨を伴う清掃作業の必要はない。したがって、陽極板3aの消耗による交換を除けば、処理能力を維持しつつ電解式水処理装置を長時間連続運転することが可能となる。陽極板3aの交換についても、前述したように陽極板3aと陰極板3bとを分離可能とすることで、消耗した陽極板3aのみを交換すれば足りることから、ランニングコストが低減でき、メンテナンスも楽になる。
【0021】
長時間連続運転において、電解式水処理装置は電解供給電流Iを調整することで電極からのアルミニウムの溶出量を調整できるが、時間の経過によって変動する処理対象水の汚濁度に応じた適切な運転をするために、電解槽1の後段の撹拌槽13には微細気泡発生撹拌装置5が設置される。
【0022】
微細気泡発生撹拌装置5は、電解槽1の後段の撹拌槽13に設置され、電解供給電流Iを減少させた場合の陰極板3bからの水素ガスの減少による発生気泡の減少を補い、フロック8の浮上に十分な微細気泡を汚濁水中に供給する。本実施の形態において、微細気泡発生撹拌装置5は、手動操作により微細気泡の供給量を調整できるように構成されるが、電解供給電流Iの変化に連動させて微細気泡発生撹拌装置5を稼動させることで、不足する微細気泡の程度に応じた運転を自動で行うことも可能である。微細気泡を発生させる手段としては泡沫発生用として使用される周知の気泡攪拌機が使用され、本実施の形態においては、下端に小さな羽根が形成される管体の上端から気体を吸引し下端近傍において排出する構造のものが流路に対して直交方向に2個並列に配置される。なお、気泡攪拌機の下端を攪拌槽の底面から100ミリ程度上方に配置することで、沈殿スラッジを避けて効率的な撹拌が図られる。
【0023】
また、微細気泡発生撹拌装置5が設置される撹拌槽13には、高分子凝集剤溶解槽17から、溶解されたアクリル酸エステルなどの凝集助剤が供給され、回転する気泡攪拌機によって汚濁水に対する凝集助剤の効率的な攪拌供給も行われ、該凝集助剤により結合を強くしたスカムは、後段に配置される浮上分離槽4のスカム掻き取り装置9によって効率的に回収することができる。
【0024】
【発明の効果】
以上の説明から明らかなように、本発明によれば、陰極電極に抵抗被膜が発生しないため電解効率の低下が防止でき、また、電解効率を維持しながら処理対象水の汚濁度に影響せずに省電力運転が可能となり、適正運転下における水処理能力の向上を達成することができる。
【図面の簡単な説明】
【図1】本発明を示す全体構成図である。
【図2】図1の1A-1A線断面図である。
【図3】電解ユニットを示す図で、(a)は平面図、(b)は(a)の3B部拡大図である。
【図4】 複合電極を示す図で、(a)は図3(b)の4A-4A線断面図、(b)は複合電極の変形例を示す図である。
【図5】電解ユニットの回路図である。
【図6】従来例を示す図である。
【符号の説明】
1 電解槽
2 処理室
3 複合電極
3a 陽極板
3b 陰極板
4 浮上分離槽
5 微細気泡発生撹拌装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolytic water treatment apparatus.
[0002]
[Prior art]
FIG. 6 shows a conventional example of an electrolytic water treatment apparatus for subjecting water to be treated containing an inorganic or organic electrolyte to electrolytic treatment to separate pollutant components in the water to be treated.
[0003]
In this conventional example, the water treatment apparatus includes an electrolytic cell 1 in which an anode electrode 6 and a cathode electrode 7 made of an aluminum plate are disposed opposite to each other in the treatment chamber 2, and a floating separation tank 4 connected to a subsequent stage of the electrolytic cell 1. Have In the treatment chamber 2 of the electrolytic cell 1, Al 3+ ions are eluted from the anode electrode by electrolysis and react with (OH) ions generated by electrolysis of water to produce Al (OH) 3 , (− ) To form floc 8 by agglomerating the product particles that are charged with a hydrocolloid suspension.
[0004]
The generated floc 8 is precipitated with a large specific gravity, and the suspended fine solids are reduced in apparent specific gravity due to the adhesion of hydrogen gas bubbles generated from the cathode electrode 7 and float as scum. It is collected by a scum scraping device 9 arranged in the tank 4.
[0005]
[Problems to be solved by the invention]
However, the conventional example described above has the following drawbacks. First, in the cathode electrode 7, a resistance film is generated, the cathode resistance is increased, and the electrolytic efficiency is remarkably lowered.
[0006]
Further, the amount of hydrogen generated in the cathode electrode 7 depends on the electrolytic supply current and is not affected by the degree of contamination of the water to be treated. During normal operation, when the pollution level is high, the electrolytic supply current is maintained high, and as a result, a sufficient amount of hydrogen is generated from the cathode electrode 7 to float the generated floc 8, so that the correlation is conscious. However, for example, in the power-saving operation in which the electrolytic supply current is reduced in order to reduce the elution amount of aluminum on the anode side in the treatment of the low-pollution treatment target water, the cathode electrode 7 is used with respect to the generated floc amount. The amount of generated hydrogen is insufficient, and the floating separation is not performed effectively.
[0007]
The present invention has been made to solve the above-described drawbacks, and an object of the present invention is to provide an electrolytic water treatment apparatus with improved water treatment capacity.
[0008]
[Means for Solving the Problems]
According to the present invention, the object is
An electrolytic water treatment apparatus that separates polluted components in water to be treated by subjecting the water to be treated introduced into the electrolytic cell 1 having an aluminum anode electrode to electrolytic treatment,
This is achieved by providing an electrolytic water treatment apparatus in which the treatment chamber 2 in the electrolytic cell 1 is partitioned by a composite electrode 3 using iron on the cathode side.
[0009]
In the conventional electrolytic cell 1 that uses Al for both the anode and the cathode, it is known that the scale attached to the cathode is mainly composed of Al (OH) 3 · nH 2 O. Has not been supplied by migration of the eluted components from the anode, but has been found to be possibly due to elution as aluminate at the cathode.
[0010]
The present invention has been made on the basis of the above knowledge, and prevents the generation of scale in the cathode by using the composite electrode 3 using aluminum as the anode and iron as the cathode. By disposing such composite electrodes 3 at predetermined intervals in the electrolytic cell 1, electrolytic treatment of water to be treated introduced between the composite electrodes 3 is performed.
[0011]
The composite electrode 3 according to the present invention can be obtained by fixing an iron plate (cathode plate 3b) serving as a cathode to one surface of an aluminum plate (anode plate 3a) serving as an anode by means such as adhesion. For example, as shown in FIG. 4B, when the anode plate 3a and the cathode plate 3b are separable using bolts 10 or the like, the anode plate 3a can be easily removed when the anode plate 3a is consumed due to elution. Only the plate 3a can be replaced, and the maintenance performance is improved.
[0012]
Further, by interposing a fine bubble generating / stirring device 5 between the electrolytic cell 1 and the floating separation tank 4, even if the amount of hydrogen generated in the cathode plate 3b during power saving operation is too small, the floc 8 Adsorbed bubbles can be sufficiently supplied. For this reason, the operation according to the pollution degree of the water to be treated can be performed while maintaining the treatment performance, and the excess aluminum hydroxide can be prevented from flowing out to the subsequent process without being captured by the floating separation tank 4. .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIGS. 1 to 5 show an embodiment of the present invention configured as a wastewater treatment apparatus that uses, as a treatment target water, shellfish that adhere to and accumulate on intake pipes of a seawater system of a power plant and polluted water that is generated during cleaning of earth and sand. The wastewater treatment apparatus has a sedimentation tank 11, and wastewater from which shells, shellfish, and the like have been removed by the solid-liquid separator 12 is first introduced into the sedimentation tank 11, and a suspension of 0.1 mm or more is obtained. It is separated by natural sedimentation and sent to the electrolytic cell 1. In addition, in FIG. 1 thru | or 5, the process direction of process target water is shown by the arrow in a figure. In the electrolytic cell 1, the contaminants are neutralized by aluminum ions, and then combined by van der Waals force. The buoyancy is increased by adhesion of hydrogen gas generated from the cathode and fine bubbles supplied into the stirring vessel 13. The resulting scum is levitated as scum and collected by a scum scraping device 9 disposed in the subsequent levitating separation tank 4.
[0014]
The treated water treated by the above steps is sent to the general wastewater treatment facility 14, and when the inflow treatment target water is reduced or stopped, it is sent again to the settling tank 11 via the return line 15 and reprocessed. The scum collected by the scum scraping device 9 is stored in the scum storage tank 16 and then carried out. In FIG. 1, reference numeral 17 denotes a polymer flocculant dissolution tank for containing an agglomeration aid for binding colloidal particles neutralized in the electrolytic cell 1 more strongly.
[0015]
The electrolytic cell 1 is configured by arranging a plurality (four in the illustrated example) of electrolysis units 1a in a direction orthogonal to the flow path of the water to be treated, and widening the upstream and downstream ends as the distance from the electrolysis unit 1a increases. A path 18 and a discharge path 19 are connected. In order to prevent mixed flow due to bubble diffusion in the stirring tank 13, the discharge path 19 is formed to be longer than the introduction path 18.
[0016]
FIG. 3 shows details of the electrolysis unit 1a. The electrolysis unit 1a includes a plurality of composite electrodes 3, 3,... Arranged in a direction perpendicular to the waste water flow path at predetermined intervals, and an electrode unit 20 having a sub chamber 2a formed between the composite electrodes 3, 3; And an insulating portion 21 extending to the upstream and downstream ends. The insulating portion 21 has an insulating wall 21a formed of a material obtained by lining an insulating material such as vinyl chloride resin or acrylic, or a steel material connected to the upstream and downstream ends of each composite electrode 3 via a seal 22. The insulating flow path 21b formed and partitioned by the insulating wall 21a communicates with each sub chamber 2a.
[0017]
As shown in FIG. 4A, the composite electrode 3 is formed by joining soft iron and aluminum plates, the soft iron surface being a cathode plate 3b, and the aluminum surface being an anode plate 3a. And the cathode plate 3b are arranged so as to face each other. The composite electrode 3 is shown in FIG. 4 (a) in which the anode plate 3a and the cathode plate 3b are joined in a non-separable manner with a conductive adhesive or the like. As shown in FIG. 4 (b), These can also be detachably connected by a bolt 10 or the like. In this case, when an urging means 24 such as a spring is interposed between the nut 23 fastened to the bolt 10 formed of stainless steel or the like and the anode plate 3a and the anode plate 3a is urged toward the cathode plate 3b, the anode Even when the plate 3a is consumed and the thickness is reduced, the joined state between the anode plate 3a and the cathode plate 3b can be maintained without requiring adjustment.
[0018]
In the electrolysis unit 1a formed as described above, the supply of electrical energy for causing electrolysis in the polluted water is performed by an electrode (hereinafter referred to as “main electrode”) disposed on the outermost wall of the processing chamber 2, as shown in FIG. 3A "), and the voltage applied between the main electrodes 3A and 3A is divided by the electric resistance R S of the polluted water and combined with the composite electrodes 3, 3 other than the main electrode 3A. ,... (Hereinafter referred to as “sub-electrode 3B”). The insulating channel 21b increases the resistance R L between the sub-electrodes 3B, thereby preventing the leak current I L from being generated and improving the voltage dividing efficiency.
[0019]
Under the above configuration, the contaminants contained in the water to be treated introduced into the electrolytic cell 1 are made of aluminum which forms one wall surface of each sub chamber 2a when passing through the plurality of sub chambers 2a in the electrode unit 20. The negative charges are extinguished by the aluminum ions eluted from the anode plate 3a, the repulsive force disappears, and then the flocs 8 are formed in which aluminum hydroxide having a high aggregating activity combined with hydroxide ions serves as a nucleus. Further, the formed floc 8 is adsorbed by the hydrogen gas generated from the iron cathode plate 3b forming the other wall surface of the sub chamber 2a, becomes lighter in specific gravity, and rises.
[0020]
By using soft iron for the cathode plate 3b, no resistance film is formed on the cathode even by electrolytic treatment, so that the electrode performance is prevented from being deteriorated and polishing for removing the resistance film that has been regularly required in the past is performed. There is no need for cleaning work. Therefore, except for replacement due to consumption of the anode plate 3a, the electrolytic water treatment apparatus can be operated continuously for a long time while maintaining the treatment capacity. As for the replacement of the anode plate 3a, since the anode plate 3a and the cathode plate 3b can be separated as described above, it is sufficient to replace only the consumed anode plate 3a. It will be easy.
[0021]
In continuous operation over a long period of time, the electrolytic water treatment device can adjust the amount of aluminum eluted from the electrode by adjusting the electrolytic supply current I, but it is appropriate for the degree of contamination of the water to be treated, which varies over time. In order to operate, the fine bubble generating stirring device 5 is installed in the stirring tank 13 at the rear stage of the electrolytic cell 1.
[0022]
The fine bubble generating and agitating device 5 is installed in the agitating tank 13 subsequent to the electrolytic cell 1 to compensate for the reduction of generated bubbles due to the decrease of hydrogen gas from the cathode plate 3b when the electrolytic supply current I is decreased. Supply enough fine bubbles into the polluted water. In the present embodiment, the fine bubble generating and agitating device 5 is configured to be able to adjust the supply amount of fine bubbles by manual operation, but the fine bubble generating and agitating device 5 is operated in conjunction with a change in the electrolytic supply current I. By doing so, it is possible to automatically perform the operation according to the degree of the insufficient fine bubbles. As a means for generating fine bubbles, a well-known bubble stirrer used for foam generation is used, and in the present embodiment, gas is sucked from the upper end of a tubular body in which a small blade is formed at the lower end, and in the vicinity of the lower end. Two discharge structures are arranged in parallel in a direction orthogonal to the flow path. In addition, by disposing the lower end of the bubble stirrer about 100 mm above the bottom surface of the stirring tank, efficient stirring can be achieved while avoiding sediment sludge.
[0023]
In addition, agglomeration aid such as dissolved acrylate ester is supplied from the polymer flocculant dissolution tank 17 to the agitation tank 13 in which the fine bubble generating and agitating device 5 is installed. Efficient stirring and supply of the coagulation aid is also performed, and the scum strengthened by the coagulation aid can be efficiently recovered by the scum scraping device 9 of the floating separation tank 4 disposed in the subsequent stage.
[0024]
【The invention's effect】
As is clear from the above description, according to the present invention, no resistance film is generated on the cathode electrode, so that a decrease in electrolytic efficiency can be prevented, and the pollution degree of the water to be treated is not affected while maintaining the electrolytic efficiency. In addition, power saving operation is possible, and improvement of water treatment capacity under proper operation can be achieved.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing the present invention.
2 is a cross-sectional view taken along line 1A-1A in FIG.
3A and 3B are diagrams showing an electrolysis unit, in which FIG. 3A is a plan view, and FIG. 3B is an enlarged view of a part 3B of FIG.
4A and 4B are views showing a composite electrode, where FIG. 4A is a cross-sectional view taken along line 4A-4A in FIG. 3B, and FIG. 4B is a view showing a modification of the composite electrode.
FIG. 5 is a circuit diagram of an electrolysis unit.
FIG. 6 is a diagram showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrolysis tank 2 Processing chamber 3 Composite electrode 3a Anode plate 3b Cathode plate 4 Levitation separation tank 5 Fine bubble generation stirring apparatus

Claims (3)

アルミニウム陽極電極を備えた電解槽内に導入した処理対象水に電解処理を施して処理対象水中の汚濁成分を分離する電解式水処理装置であって、
前記電解槽内の処理室が、陰極側に鉄を使用した複合電極によって区画される電解式水処理装置。
An electrolytic water treatment apparatus that performs electrolytic treatment on water to be treated introduced into an electrolytic cell equipped with an aluminum anode electrode to separate contaminants in the water to be treated,
An electrolytic water treatment apparatus in which a treatment chamber in the electrolytic cell is partitioned by a composite electrode using iron on the cathode side.
前記複合電極が、陽極板と陰極板に分離可能である請求項1記載の電解式水処理装置。The electrolytic water treatment apparatus according to claim 1, wherein the composite electrode is separable into an anode plate and a cathode plate. 電解槽と電解処理後のスカムを浮上分離する浮上分離槽との間に微細気泡発生撹拌装置を介装した請求項1または2記載の電解式水処理装置。The electrolytic water treatment apparatus according to claim 1 or 2, wherein a fine bubble generating and stirring device is interposed between the electrolytic tank and a floating separation tank for floating and separating the scum after electrolytic treatment.
JP2002019730A 2002-01-29 2002-01-29 Electrolytic water treatment equipment Expired - Lifetime JP4008248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002019730A JP4008248B2 (en) 2002-01-29 2002-01-29 Electrolytic water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002019730A JP4008248B2 (en) 2002-01-29 2002-01-29 Electrolytic water treatment equipment

Publications (2)

Publication Number Publication Date
JP2003211166A JP2003211166A (en) 2003-07-29
JP4008248B2 true JP4008248B2 (en) 2007-11-14

Family

ID=27654283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002019730A Expired - Lifetime JP4008248B2 (en) 2002-01-29 2002-01-29 Electrolytic water treatment equipment

Country Status (1)

Country Link
JP (1) JP4008248B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4942400B2 (en) * 2006-06-02 2012-05-30 ヤンマー株式会社 Wastewater treatment method and equipment
CN112093862A (en) * 2020-08-06 2020-12-18 福州福龙膜科技开发有限公司 Electric floating treatment device for low-turbidity, low-temperature and micro-polluted water source
CN113582298A (en) * 2021-08-09 2021-11-02 奇瑞商用车(安徽)有限公司 Electrolytic separation type paint mist treatment device

Also Published As

Publication number Publication date
JP2003211166A (en) 2003-07-29

Similar Documents

Publication Publication Date Title
US4294697A (en) Apparatus for treatment of sewage
US8858790B2 (en) Three phase electrocoagulation effluent treatment apparatus and methods
US20060108273A1 (en) Ballasted flocculation process and system incorporating an electro-coagulation reactor for treating water or wastewater
CN110422913A (en) A kind of electric floating combination electric flocculation sewage treatment process and its processing equipment
CN201309849Y (en) Electrocagulation device for wastewater treatment
CN203411423U (en) Electric-flocculation and dissolved gas gas-flotation complete equipment
CN208135937U (en) Micro-nano bubble electric flocculation sewage disposal system
CN114790056B (en) Electroflocculation sewage treatment system and method
CN113856254A (en) Inclined tube sedimentation tank capable of being cleaned on line
JP4008248B2 (en) Electrolytic water treatment equipment
CN108467093A (en) Electric flocculation oilfield sewage treatment device
JP5347111B2 (en) Suspended particle aggregator
CN211546036U (en) Electrolysis air-float equipment
CN210855619U (en) Contain salt organic waste water electrocatalytic oxidation coupling preprocessing device
CN112390478B (en) Device for efficiently treating aged garbage leachate by biological membrane and electric flocculation
CN109384358B (en) Integrated denitrification filter tank with electric flocculation device
CN216571680U (en) Inclined tube sedimentation tank capable of being cleaned online
CN217077323U (en) Upflow activated sludge-biomembrane electrocoagulation air-flotation sewage treatment system
CN202968218U (en) Electrocoagulation equipment for wastewater treatment
CN217677143U (en) Electronic drainage pore water nitrogen phosphorus double anode recovery unit in coordination
KR102402268B1 (en) Physico-chemical Wastewater treatment facilities using electro-coagulation and floatation process
SU1411289A1 (en) Apparatus for electrochemical purification of waste water
JP2738890B2 (en) Oil-water separator using electrolysis
JPS6312678B2 (en)
RU2464235C2 (en) Natural water and effluents treatment plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4008248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term