JP4007769B2 - Vehicle tracking control device - Google Patents

Vehicle tracking control device Download PDF

Info

Publication number
JP4007769B2
JP4007769B2 JP2001095240A JP2001095240A JP4007769B2 JP 4007769 B2 JP4007769 B2 JP 4007769B2 JP 2001095240 A JP2001095240 A JP 2001095240A JP 2001095240 A JP2001095240 A JP 2001095240A JP 4007769 B2 JP4007769 B2 JP 4007769B2
Authority
JP
Japan
Prior art keywords
vehicle
vehicle speed
preceding vehicle
target
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001095240A
Other languages
Japanese (ja)
Other versions
JP2002283875A (en
Inventor
敏明 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001095240A priority Critical patent/JP4007769B2/en
Publication of JP2002283875A publication Critical patent/JP2002283875A/en
Application granted granted Critical
Publication of JP4007769B2 publication Critical patent/JP4007769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、先行車との間に所定の目標車間距離を置いて先行車に追従走行するための車両用追従走行制御装置に関する。
【0002】
【従来の技術】
特開平10−166894号公報には、自車が追従走行する先行車が急激な加減速を行った場合に、自車は先行車にそのまま追従走行することなく、自車の車速を所定時間一定値に保持したり、ブレーキ制御の制御ゲインを所定時間小さく変更したりすることにより、自車が急激に加減速して乗り心地が損なわれるのを防止する車両用追従走行制御装置が記載されている。
【0003】
【発明が解決しようとする課題】
しかしながら上記従来のものは、先行車が継続して急加速を行った場合でも自車は目標車速を所定時間保持するので、先行車との相対速度および車間距離が極端に増加してしまい、先行車との車間距離を設定車間距離に復帰させるために通常よりも長い加速時間や加速度が必要となる問題があった。
【0004】
本発明は前述の事情に鑑みてなされたもので、先行車の加減速状態に応じて自車の追従走行特性を変更し、乗り心地性能および追従性能の両立を図ることを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載された発明によれば、自車速を検知する自車速検知手段と、先行車との車間距離および相対速を検知する先行車検知手段と、自車速に基づいて先行車との目標車間距離を算出する目標車間距離算出手段と、自車速および先行車との相対速に基づいて先行車の車速を算出する先行車車速算出手段と、目標車間距離および先行車の車速に基づいて自車の目標車速を算出する目標車速算出手段と、目標車速に基づいて自車速を制御する自車速制御手段とを備えた車両用追従走行制御装置において、目標車速算出手段が出力する自車の目標車速をフィルタリングするフィルタ手段と、先行車の車速に基づいて先行車の加減速度を算出する先行車加減速度算出手段と、先行車の加減速度に応じてフィルタ手段の特性を変更するフィルタ特性変更手段とを備え、前記フィルタ手段はカットオフ周波数が0.08Hzから2Hzの間の値となる複数のローパスフイルタから構成され、前記フィルタ特性変更手段は、先行車の加減速度が所定値以上になった場合に、より高いカットオフ周波数を持つローパスフイルタに切り換えることを特徴とする車両用追従走行制御装置が提案される。
【0006】
上記構成によれば、先行車加減速度算出手段で算出した先行車の加減速度に応じて、自車の目標車速をフィルタリングするフィルタ手段の特性をフィルタ特性変更手段が変更するので、先行車の加減速度の変化に対する自車の目標車速の変化特性を任意に変更し、自車の乗り心地性能および追従性能を両立させることができる。しかも先行車の加減速度が所定値以上になると、フィルタ特性変更手段が、フィルタ手段を構成するカットオフ周波数が0.08Hzから2Hzの間の値となる複数のローパスフイルタのうち、より高いカットオフ周波数を持つローパスフイルタに切り換えるので、目標車速に対する自車速の応答特性が高くなって先行車に対する追従性能が向上する。逆に先行車の加減速度が所定値未満になると、より低いカットオフ周波数を持つローパスフイルタに切り換えるので、目標車速に対する自車速の応答特性が低くなって乗り心地性能が向上する。
【0007】
また請求項に記載された発明によれば、自車速を検知する自車速検知手段と、先行車との車間距離および相対速を検知する先行車検知手段と、自車速に基づいて先行車との目標車間距離を算出する目標車間距離算出手段と、自車速および先行車との相対速に基づいて先行車の車速を算出する先行車車速算出手段と、目標車間距離および先行車の車速に基づいて自車の目標車速を算出する目標車速算出手段と、目標車速に基づいて自車速を制御する自車速制御手段とを備えた車両用追従走行制御装置において、目標車速算出手段が出力する自車の目標車速をフィルタリングするフィルタ手段と、先行車との車間距離に基づいて先行車との追突予測時間を算出する追突予測時間算出手段と、先行車との追突予測時間に応じてフィルタ手段の特性を変更するフィルタ特性変更手段とを備え、前記フィルタ手段はカットオフ周波数が0.08Hzから2Hzの間の値となる複数のローパスフイルタから構成され、前記フィルタ特性変更手段は、先行車との追突予測時間が所定値以下になった場合に、より高いカットオフ周波数を持つローパスフイルタに切り換えることを特徴とする車両用追従走行制御装置が提案される。
【0008】
上記構成によれば、追突予測時間算出手段で算出した先行車との追突予測時間に応じて、自車の目標車速をフィルタリングするフィルタ手段の特性をフィルタ特性変更手段で変更するので、先行車との追突予測時間の変化に対する自車の目標車速の変化特性を任意に変更し、自車の乗り心地性能および追従性能を両立させることができる。しかも先行車との衝突予測時間が所定値以下になると、フィルタ特性変更手段が、フィルタ手段を構成するカットオフ周波数が0.08Hzから2Hzの間の値となる複数のローパスフイルタのうち、より高いカットオフ周波数を持つローパスフイルタに切り換えるので、目標車速に対する自車速の応答特性が高くなって先行車に対する追従性能が向上する。逆に先行車との衝突予測時間が所定値を越えると、より低いカットオフ周波数を持つローパスフイルタに切り換えるので、目標車速に対する自車速の応答特性が低くなって乗り心地性能が向上する。
【0009】
尚、実施例のレーザーレーダー装置Stは本発明の先行車検知手段に対応する。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面に示した本発明の実施例に基づいて説明する。
【0011】
図1〜図6は本発明の第1実施例を示すもので、図1はレーダー装置のブロック図、図2はレーダー装置の斜視図、図3は車両用追従走行制御装置の構成を示すブロック図、図4はフィルタ手段の特性を示すグラフ、図5は作用を説明するフローチャート、図6はフィルタ手段を通過した目標車速の変化特性を示すグラフである。
【0012】
図1および図2に示すように、先行車のような自車前方の物体を検知するためのレーザーレーダー装置Stは本発明の先行車検知手段を構成するもので、送光部1と、送光走査部2と、受光部3と、受光走査部4と、距離計測処理部5とを備える。送光部1は、送光レンズを一体に備えたレーザーダイオード11と、レーザーダイオード11を駆動するレーザーダイオード駆動回路12とを備える。送光走査部2は、レーザーダイオード11が出力したレーザーを反射させる送光ミラー13と、送光ミラー13を上下軸14回りに往復回動させるモータ15と、モータ15の駆動を制御するモータ駆動回路16とを備える。送光ミラー13から出る送光ビームは左右幅が制限されて上下方向に細長いパターンを持ち、それが所定周期で左右方向に往復移動して物体を走査する。
【0013】
受光部3は、受光レンズ17と、受光レンズ17で収束させた反射波を受けて電気信号に変換するフォトダイオード18と、フォトダイオード18の出力信号を増幅する受光アンプ回路19とを備える。受光走査部4は、物体からの反射波を反射させて前記フォトダイオード18に導く受光ミラー20と、受光ミラー20を左右軸21回りに往復回動させるモータ22と、モータ22の駆動を制御するモータ駆動回路23とを備える。上下幅が制限されて左右方向に細長いパターンを持つ受光エリアは、受光ミラー20によって所定周期で上下方向に往復移動して物体を走査する。
【0014】
距離計測処理部5は、前記レーザーダイオード駆動回路12やモータ駆動回路16,23を制御する制御回路24と、全速度領域追従システムを制御する電子制御ユニット25との間で通信を行う通信回路26と、レーザーの送光から受光までの時間をカウントするカウンタ回路27と、物体までの距離および物体の方向を算出する中央演算処理装置28とを備える。
【0015】
而して、上下方向に細長い送光ビームと左右方向に細長い受光エリアとが交わる部分が瞬間的な検知エリアになり、この検知エリアは、送光ビームの左右走査幅と等しい左右幅を持ち、受光エリアの上下走査幅と等しい上下幅を持つ検知領域の全域をジグザグに移動して物体を走査する。そして送光ビームが送光されてから、該送光ビームが物体に反射された反射波が受光されるまでの時間に基づいて物体までの距離が検知され、そのときの瞬間的な検知エリアの方向に基づいて物体の方向が検知される。更に、前回の走査で検知した物体までの距離と今回の走査で検知した物体までの距離との差分を走査周期で除算することにより、自車に対する物体の相対速を検知することができる。
【0016】
図3に示すように、先行車がない場合にはセット車速で定速走行制御を行い、先行車がある場合にはセット車間距離で追従走行制御を行うACCシステム(アダプティブ・クルーズ・コントロール・システム)の電子制御ユニットUには、車輪速に基づいて自車速を検知する自車速検知手段Svからの信号と、前記レーザーレーダー装置St(先行車検知手段)からの信号とが入力される。尚、図示されていないが、ACCシステムの電子制御ユニットUには、自車速検知手段Svおよびレーザーレーダー装置St以外に、メインスイッチ、セットスイッチ、レジュームスイッチ、キャンセルスイッチ、アクセルペダルスイッチ、スロットル開度センサ、ブレーキ油圧センサ等が接続される。
【0017】
電子制御ユニットUは、目標車間距離算出手段M1と、先行車車速算出手段M2と、目標車速算出手段M3と、自車速制御手段M4と、フィルタ手段M5と、先行車加減速度算出手段M6と、フィルタ特性変更手段M7とを備える。
【0018】
目標車間距離算出手段M1は、自車速検知手段Svで検知した自車速に基づいて、追従走行制御を行うための目標車間距離を算出する。目標車間距離は自車速が大きいときに増加し、自車速が小さいときに減少する。先行車車速算出手段M2は、自車速検知手段Svで検知した自車速と、レーザーレーダー装置Stで検知した先行車の相対速とに基づいて先行車車速を算出する。先行車車速は、自車速+先行車の相対速で与えられる。目標車速算出手段M3は、目標車間距離算出手段M1で算出した目標車間距離と、先行車車速算出手段M2で算出した先行車車速とに基づいて先行車に追従走行するための自車の目標車速を算出する。目標車速は、先行車車速+距離偏差補正項で与えられ、前記距離偏差補正項は、α×(実車間距離−目標車間距離)で与えられる。ここで、αは状況に応じて変化する係数である。
【0019】
フィルタ手段M5は、高周波成分をカットして低周波成分だけをパスさせるローパスフイルタで構成される。図4に示すように、目標車速算出手段M3からの目標車速信号が入力されるフィルタ手段M5は、入力周波数が閾値未満の場合にはゲインが一定に保持されるが、入力周波数が前記閾値以上になるとゲインが0に向かってリニアに減少する特性を有している。そして前記閾値は、0.08Hzから2Hzの範囲で可変である。先行車加減速度算出手段M6は、先行車車速算出手段M2で算出した先行車車速を時間微分して先行車の加減速度を算出し、フィルタ特性変更手段M7は、先行車の加減速度(絶対値)が小さいときには前記閾値を小さい側(0.08Hz側)に変更し、先行車の加減速度(絶対値)が大きいときには前記閾値を大きい側(2Hz側)に変更する。
【0020】
しかして、自車速制御手段M4は、フィルタ手段M5が出力する目標車速に基づいてスロットルやブレーキのアクチュエータAを作動させ、自車速を目標車速に制御することで実車間距離を目標車間距離に一致させる。
【0021】
以上のように、先行車が急加速や急減速を行った場合には、フィルタ手段M5のカットオフ周波数が高い側に変化するので、急加速や急減速を行う先行車に自車を確実に追従させて追従性能を高めることができ、これにより先行車が急加速したときに車間距離が極端に増加したり、先行車が急減速したときに車間距離が極端に減少したりする不具合を回避することができる。逆に、先行車が緩やかに加速や減速を行った場合には、フィルタ手段M5のカットオフ周波数が低い側に変化するので、先行車の加減速に対する自車の応答性を低くし、自車速の変動を最小限に抑えて乗り心地性能を高めることができる。
【0022】
上記作用を図5のフローチャートに基づいて説明する。
【0023】
先ず、ステップS1で現在ACCシステムによる制御中であるとき、ステップS2で先行車が存在し、かつステップS3で定速走行制御の設定車速Vmemが追従走行制御の目標車速Vaccよりも大きければ、ステップS4で先行車の加減速度を算出し、ステップS5で前記加減速度に応じたフィルタ設定を選択する。そしてステップS6で、前記選択したフィルタ設定が現在のフィルタ設定と異なっていれば、ステップS7でフィルタ設定の切替えを行う。尚、前記ステップS2で先行車が存在しない場合、あるいは前記ステップS3で設定車速Vmemが目標車速Vacc以下の場合には、ステップS8で予め設定したフィルタ設定に切替える。
【0024】
図6には、フィルタ手段M5を通過した目標車速の変化特性が示される。同図から明らかなように、先行車車速の変化率が小さい領域ではフィルタ手段M5のカットオフ周波数が低くなるため、目標車速の変化率が小さくなって乗り心地性能が向上する。一方、先行車が急制動を行って先行車車速が急激に低下したときには、フィルタ手段M5のカットオフ周波数が高くなるため、自車速が先行車車速に速やかに追従して追従性能が向上する。
【0025】
次に、図7に基づいて本発明の第2実施例を説明する。
【0026】
第1実施例を示す図3と本第2実施例を示す図7とを比較すると明らかなように、第1実施例の車両用追従走行制御装置が先行車加減速度算出手段M6を備えているのに対し、本第2実施例の車両用追従走行制御装置は衝突予測時間算出手段M6′を備えており、その衝突予測時間算出手段M6′で算出した衝突予測時間に応じてフィルタ特性変更手段M7がフィルタ手段M5の特性を変更する。衝突予測時間はレーザーレーダー装置St(先行車検知手段)で検知した先行車との車間距離に基づいて算出されるが、先行車の相対速や自車速を併せて考慮すれば衝突予測時間を更に精度良く算出することができる。
【0027】
そして衝突予測時間算出手段M6′で算出した衝突予測時間が長くなるほどフィルタ手段M5のカットオフ周波数が低くなるため、目標車速の変化率が小さくなって乗り心地性能が向上する。一方、衝突予測時間算出手段M6′で算出した衝突予測時間が短くなるほどフィルタ手段M5のカットオフ周波数が高くなるため、自車速が先行車車速に速やかに追従して追従性能が向上する。このように、本第2実施例によっても、乗り心地性能と追従性能とを効果的に両立させることができる。
【0028】
次に、図8に基づいて本発明の第3実施例を説明する。
【0029】
図4で説明したように、第1実施例および第2実施例ではフィルタ手段M5のカットオフ周波数を無段階に(つまり連続的に)変化させていたが、図8に示すように、本実施例ではフィルタ手段M5のカットオフ周波数を先行車加減速度あるいは衝突予測時間に応じて段階的に(つまり不連続に)に変化させるようになっている。この場合、フィルタ手段M5のカットオフ周波数を切り替えるときのノイズを防止するために、前回の選択されていたフィルタの出力値を用いて新たに選択されたフィルタの出力値を初期化する必要がある。
【0030】
以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
【0031】
例えば、実施例で先行車検知装置としてレーザーレーダー装置Stを例示したが、レーザーレーダー装置Stに代えてミリ波レーダー装置を用いることができる。
【0032】
【発明の効果】
以上のように請求項1に記載された発明によれば、先行車加減速度算出手段で算出した先行車の加減速度に応じて、自車の目標車速をフィルタリングするフィルタ手段の特性をフィルタ特性変更手段が変更するので、先行車の加減速度の変化に対する自車の目標車速の変化特性を任意に変更し、自車の乗り心地性能および追従性能を両立させることができる。しかも先行車の加減速度が所定値以上になると、フィルタ特性変更手段が、フィルタ手段を構成するカットオフ周波数が0.08Hzから2Hzの間の値となる複数のローパスフイルタのうち、より高いカットオフ周波数を持つローパスフイルタに切り換えるので、目標車速に対する自車速の応答特性が高くなって先行車に対する追従性能が向上する。逆に先行車の加減速度が所定値未満になると、より低いカットオフ周波数を持つローパスフイルタに切り換えるので、目標車速に対する自車速の応答特性が低くなって乗り心地性能が向上する。
【0033】
また請求項に記載された発明によれば、追突予測時間算出手段で算出した先行車との追突予測時間に応じて、自車の目標車速をフィルタリングするフィルタ手段の特性をフィルタ特性変更手段で変更するので、先行車との追突予測時間の変化に対する自車の目標車速の変化特性を任意に変更し、自車の乗り心地性能および追従性能を両立させることができる。しかも先行車との衝突予測時間が所定値以下になると、フィルタ特性変更手段が、フィルタ手段を構成するカットオフ周波数が0.08Hzから2Hzの間の値となる複数のローパスフイルタのうち、より高いカットオフ周波数を持つローパスフイルタに切り換えるので、目標車速に対する自車速の応答特性が高くなって先行車に対する追従性能が向上する。逆に先行車との衝突予測時間が所定値を越えると、より低いカットオフ周波数を持つローパスフイルタに切り換えるので、目標車速に対する自車速の応答特性が低くなって乗り心地性能が向上する。
【図面の簡単な説明】
【図1】 レーダー装置の全体構成を示すブロック図
【図2】 レーダー装置の斜視図
【図3】 車両用追従走行制御装置の構成を示すブロック図
【図4】 フィルタ手段の特性を示すグラフ
【図5】 作用を説明するフローチャート
【図6】 フィルタ手段を通過した目標車速の変化特性を示すグラフ
【図7】 本発明の第2実施例に係る車両用追従走行制御装置の構成を示すブロック図
【図8】 本発明の第3実施例に係るフィルタ手段を示す図
【符号の説明】
M1 目標車間距離算出手段
M2 先行車車速算出手段
M3 目標車速算出手段
M4 自車速制御手段
M5 フィルタ手段
M6 先行車加減速度算出手段
M6′ 追突予測時間算出手段
M7 フィルタ特性変更手段
Sv 自車速検知手段
St レーダー装置(先行車検知手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle follow-up travel control device for following a preceding vehicle with a predetermined target inter-vehicle distance from the preceding vehicle.
[0002]
[Prior art]
In Japanese Patent Laid-Open No. 10-166894, when a preceding vehicle that the vehicle follows is suddenly accelerated and decelerated, the vehicle does not follow the preceding vehicle as it is and the vehicle speed of the vehicle is constant for a predetermined time. A vehicle follow-up travel control device is described that prevents the host vehicle from suddenly accelerating or decelerating and losing the ride comfort by maintaining the value or changing the control gain of the brake control small for a predetermined time. Yes.
[0003]
[Problems to be solved by the invention]
However, in the above-mentioned conventional vehicle, even if the preceding vehicle continuously accelerates rapidly, the host vehicle maintains the target vehicle speed for a predetermined time, so that the relative speed and the inter-vehicle distance with the preceding vehicle increase extremely, and the preceding vehicle In order to return the inter-vehicle distance to the set inter-vehicle distance, there is a problem that acceleration time and acceleration longer than usual are required.
[0004]
The present invention has been made in view of the above circumstances, and an object of the present invention is to change the following traveling characteristic of the own vehicle in accordance with the acceleration / deceleration state of the preceding vehicle and to achieve both riding comfort performance and following performance.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, according to the invention described in claim 1, the vehicle speed detecting means for detecting the vehicle speed, the preceding vehicle detecting means for detecting the inter-vehicle distance and the relative speed with the preceding vehicle, Target inter-vehicle distance calculating means for calculating the target inter-vehicle distance from the preceding vehicle based on the vehicle speed, preceding vehicle speed calculating means for calculating the vehicle speed of the preceding vehicle based on the host vehicle speed and the relative speed with the preceding vehicle, and the target inter-vehicle distance. In the vehicle follow-up travel control device, the target vehicle speed includes a target vehicle speed calculation unit that calculates the target vehicle speed of the host vehicle based on the vehicle speed of the preceding vehicle, and a host vehicle speed control unit that controls the host vehicle speed based on the target vehicle speed. Filter means for filtering the target vehicle speed output from the calculation means, preceding vehicle acceleration / deceleration calculation means for calculating the acceleration / deceleration of the preceding vehicle based on the vehicle speed of the preceding vehicle, and filter means according to the acceleration / deceleration of the preceding vehicle And a filter characteristic changing means for changing the characteristics, the filter means is composed of a plurality of low-pass filter becomes a value between 2Hz cutoff frequency from 0.08 Hz, the filter characteristic changing means, the preceding vehicle acceleration A vehicle follow-up travel control device is proposed, which switches to a low-pass filter having a higher cut-off frequency when the speed exceeds a predetermined value .
[0006]
According to the above configuration, the filter characteristic changing unit changes the characteristic of the filter unit that filters the target vehicle speed of the own vehicle according to the acceleration / deceleration of the preceding vehicle calculated by the preceding vehicle acceleration / deceleration calculating unit. The change characteristic of the target vehicle speed of the own vehicle with respect to the change of the speed can be arbitrarily changed, and both the riding comfort performance and the following performance of the own vehicle can be achieved. Moreover, when the acceleration / deceleration of the preceding vehicle exceeds a predetermined value, the filter characteristic changing means has a higher cutoff value among a plurality of low-pass filters having a cutoff frequency between 0.08 Hz and 2 Hz constituting the filter means. Since the low-pass filter having the frequency is switched, the response characteristic of the own vehicle speed with respect to the target vehicle speed is enhanced, and the follow-up performance with respect to the preceding vehicle is improved. Conversely, when the acceleration / deceleration of the preceding vehicle is less than the predetermined value, the low-pass filter having a lower cutoff frequency is switched, so that the response characteristic of the own vehicle speed with respect to the target vehicle speed is lowered and the riding comfort performance is improved.
[0007]
According to the invention described in claim 2 , the own vehicle speed detecting means for detecting the own vehicle speed, the preceding vehicle detecting means for detecting the inter-vehicle distance and the relative speed with the preceding vehicle, the preceding vehicle based on the own vehicle speed, Based on the target inter-vehicle distance calculating means for calculating the target inter-vehicle distance, the preceding vehicle speed calculating means for calculating the vehicle speed of the preceding vehicle based on the own vehicle speed and the relative speed with the preceding vehicle, and the target inter-vehicle distance and the vehicle speed of the preceding vehicle. In the vehicle follow-up travel control device comprising target vehicle speed calculation means for calculating the target vehicle speed of the host vehicle and host vehicle speed control means for controlling the host vehicle speed based on the target vehicle speed, the host vehicle output by the target vehicle speed calculation means Filter means for filtering the target vehicle speed of the vehicle, a collision prediction time calculation means for calculating a collision prediction time with the preceding vehicle based on the inter-vehicle distance from the preceding vehicle, and characteristics of the filter means according to the collision prediction time with the preceding vehicle And a filter characteristic changing means for changing the filter means is composed of a plurality of low-pass filter becomes a value between 2Hz cutoff frequency from 0.08 Hz, the filter characteristic changing means, collision prediction to the preceding vehicle A vehicle follow-up travel control device is proposed that switches to a low-pass filter having a higher cut-off frequency when the time falls below a predetermined value .
[0008]
According to the above configuration, the characteristic of the filter means for filtering the target vehicle speed of the own vehicle is changed by the filter characteristic changing means according to the predicted collision time with the preceding vehicle calculated by the predicted collision time calculating means. The change characteristic of the target vehicle speed of the own vehicle with respect to the change in the predicted rear-end collision time can be arbitrarily changed, and both the riding comfort performance and the follow-up performance of the own vehicle can be achieved. In addition, when the predicted collision time with the preceding vehicle is less than or equal to the predetermined value, the filter characteristic changing unit is higher among the plurality of low-pass filters in which the cutoff frequency constituting the filter unit is a value between 0.08 Hz and 2 Hz. Since the low-pass filter having the cut-off frequency is switched, the response characteristic of the own vehicle speed with respect to the target vehicle speed is enhanced, and the follow-up performance with respect to the preceding vehicle is improved. On the other hand, when the predicted collision time with the preceding vehicle exceeds a predetermined value, switching to a low-pass filter having a lower cut-off frequency results in lower response characteristics of the host vehicle speed with respect to the target vehicle speed and improved ride comfort performance.
[0009]
The laser radar device St of the embodiment corresponds to the preceding vehicle detection means of the present invention.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples of the present invention shown in the accompanying drawings.
[0011]
1 to 6 show a first embodiment of the present invention. FIG. 1 is a block diagram of a radar device, FIG. 2 is a perspective view of the radar device, and FIG. 3 is a block diagram showing the configuration of a vehicle tracking control device. FIG. 4 is a graph showing the characteristics of the filter means, FIG. 5 is a flowchart for explaining the operation, and FIG. 6 is a graph showing the change characteristics of the target vehicle speed that has passed through the filter means.
[0012]
As shown in FIG. 1 and FIG. 2, a laser radar device St for detecting an object ahead of the host vehicle such as a preceding vehicle constitutes a preceding vehicle detecting means of the present invention. An optical scanning unit 2, a light receiving unit 3, a light receiving scanning unit 4, and a distance measurement processing unit 5 are provided. The light transmission unit 1 includes a laser diode 11 integrally provided with a light transmission lens, and a laser diode drive circuit 12 that drives the laser diode 11. The light transmission scanning unit 2 includes a light transmission mirror 13 that reflects the laser output from the laser diode 11, a motor 15 that reciprocates the light transmission mirror 13 about the vertical axis 14, and a motor drive that controls the driving of the motor 15. Circuit 16. The light transmission beam emitted from the light transmission mirror 13 is limited in the left-right width and has an elongated pattern in the vertical direction, which reciprocates in the left-right direction in a predetermined cycle to scan the object.
[0013]
The light receiving unit 3 includes a light receiving lens 17, a photodiode 18 that receives a reflected wave converged by the light receiving lens 17 and converts it into an electrical signal, and a light receiving amplifier circuit 19 that amplifies an output signal of the photodiode 18. The light receiving scanning unit 4 controls the driving of the light receiving mirror 20 that reflects the reflected wave from the object and guides it to the photodiode 18, the motor 22 that reciprocates the light receiving mirror 20 around the left and right axis 21, and the driving of the motor 22. And a motor drive circuit 23. The light receiving area having a vertically narrowed pattern with a narrow vertical width is scanned back and forth in the vertical direction by the light receiving mirror 20 in a predetermined cycle.
[0014]
The distance measurement processing unit 5 communicates between the control circuit 24 that controls the laser diode drive circuit 12 and the motor drive circuits 16 and 23 and the electronic control unit 25 that controls the full speed region following system. And a counter circuit 27 that counts the time from laser transmission to reception, and a central processing unit 28 that calculates the distance to the object and the direction of the object.
[0015]
Thus, the portion where the light transmission area elongated in the vertical direction and the light receiving area elongated in the left-right direction becomes an instantaneous detection area, and this detection area has a horizontal width equal to the horizontal scanning width of the light transmission beam, The entire detection area having the vertical width equal to the vertical scanning width of the light receiving area is moved zigzag to scan the object. The distance to the object is detected based on the time from when the light transmission beam is transmitted to when the reflected wave reflected by the object is received, and the instantaneous detection area at that time is detected. The direction of the object is detected based on the direction. Further, by dividing the difference between the distance to the object detected in the previous scan and the distance to the object detected in the current scan by the scan period, the relative speed of the object with respect to the host vehicle can be detected.
[0016]
As shown in FIG. 3, an ACC system (adaptive cruise control system) that performs constant speed running control at the set vehicle speed when there is no preceding vehicle, and performs follow-up running control at the set inter-vehicle distance when there is a preceding vehicle. The electronic control unit U) receives a signal from the vehicle speed detection means Sv for detecting the vehicle speed based on the wheel speed and a signal from the laser radar device St (preceding vehicle detection means). Although not shown, the electronic control unit U of the ACC system includes a main switch, a set switch, a resume switch, a cancel switch, an accelerator pedal switch, a throttle opening, in addition to the own vehicle speed detection means Sv and the laser radar device St. A sensor, a brake hydraulic pressure sensor, and the like are connected.
[0017]
The electronic control unit U includes a target inter-vehicle distance calculation means M1, a preceding vehicle speed calculation means M2, a target vehicle speed calculation means M3, a host vehicle speed control means M4, a filter means M5, a preceding vehicle acceleration / deceleration calculation means M6, Filter characteristic changing means M7.
[0018]
The target inter-vehicle distance calculating means M1 calculates a target inter-vehicle distance for performing the follow-up running control based on the own vehicle speed detected by the own vehicle speed detecting means Sv. The target inter-vehicle distance increases when the host vehicle speed is high, and decreases when the host vehicle speed is low. The preceding vehicle speed calculation means M2 calculates the preceding vehicle speed based on the own vehicle speed detected by the own vehicle speed detection means Sv and the relative speed of the preceding vehicle detected by the laser radar device St. The preceding vehicle speed is given by the own vehicle speed + the relative speed of the preceding vehicle. The target vehicle speed calculating means M3 is a target vehicle speed for following the preceding vehicle based on the target inter-vehicle distance calculated by the target inter-vehicle distance calculating means M1 and the preceding vehicle speed calculated by the preceding vehicle speed calculating means M2. Is calculated. The target vehicle speed is given by the preceding vehicle speed + distance deviation correction term, and the distance deviation correction term is given by α × (actual inter-vehicle distance−target inter-vehicle distance). Here, α is a coefficient that changes depending on the situation.
[0019]
The filter means M5 is composed of a low-pass filter that cuts high-frequency components and passes only low-frequency components. As shown in FIG. 4, the filter means M5 to which the target vehicle speed signal from the target vehicle speed calculation means M3 is input has a constant gain when the input frequency is less than the threshold, but the input frequency is not less than the threshold. Then, the gain linearly decreases toward zero. The threshold value is variable in the range of 0.08 Hz to 2 Hz. The preceding vehicle acceleration / deceleration calculating means M6 calculates the acceleration / deceleration of the preceding vehicle by differentiating the preceding vehicle speed calculated by the preceding vehicle speed calculating means M2 with respect to time, and the filter characteristic changing means M7 calculates the acceleration / deceleration (absolute value) of the preceding vehicle. ) Is small, the threshold value is changed to the smaller side (0.08 Hz side), and when the acceleration / deceleration (absolute value) of the preceding vehicle is large, the threshold value is changed to the larger side (2 Hz side).
[0020]
Accordingly, the own vehicle speed control means M4 operates the throttle or brake actuator A based on the target vehicle speed output from the filter means M5, and controls the own vehicle speed to the target vehicle speed, thereby matching the actual inter-vehicle distance with the target inter-vehicle distance. Let
[0021]
As described above, when the preceding vehicle suddenly accelerates or decelerates, the cut-off frequency of the filter means M5 changes to the higher side. The following performance can be improved by following the vehicle, which avoids the problem that the distance between the vehicles increases drastically when the preceding vehicle suddenly accelerates or the distance between the vehicles decreases drastically when the preceding vehicle suddenly decelerates. can do. Conversely, when the preceding vehicle slowly accelerates or decelerates, the cut-off frequency of the filter means M5 changes to the lower side, so that the response of the own vehicle to acceleration / deceleration of the preceding vehicle is lowered, and the own vehicle speed is reduced. The ride performance can be improved by minimizing fluctuations.
[0022]
The above operation will be described with reference to the flowchart of FIG.
[0023]
First, when the control by the ACC system is currently being performed in step S1, if there is a preceding vehicle in step S2, and if the set vehicle speed Vmem for constant speed traveling control is greater than the target vehicle speed Vacc for following traveling control in step S3, step In step S4, the acceleration / deceleration of the preceding vehicle is calculated. In step S5, a filter setting corresponding to the acceleration / deceleration is selected. In step S6, if the selected filter setting is different from the current filter setting, the filter setting is switched in step S7. If no preceding vehicle is present in step S2 or if the set vehicle speed Vmem is equal to or lower than the target vehicle speed Vacc in step S3, the filter setting is changed to a preset filter in step S8.
[0024]
FIG. 6 shows a change characteristic of the target vehicle speed that has passed through the filter means M5. As is clear from the figure, since the cutoff frequency of the filter means M5 is low in the region where the change rate of the preceding vehicle speed is small, the change rate of the target vehicle speed is reduced and the riding comfort performance is improved. On the other hand, when the preceding vehicle suddenly brakes and the preceding vehicle speed rapidly decreases, the cutoff frequency of the filter means M5 increases, so that the own vehicle speed quickly follows the preceding vehicle speed and the follow-up performance is improved.
[0025]
Next, a second embodiment of the present invention will be described with reference to FIG.
[0026]
As is apparent from a comparison between FIG. 3 showing the first embodiment and FIG. 7 showing the second embodiment, the vehicle follow-up travel control device of the first embodiment includes a preceding vehicle acceleration / deceleration calculation means M6. On the other hand, the vehicle follow-up travel control apparatus of the second embodiment includes a collision prediction time calculation unit M6 ′, and a filter characteristic changing unit according to the collision prediction time calculated by the collision prediction time calculation unit M6 ′. M7 changes the characteristics of the filter means M5. The predicted collision time is calculated based on the inter-vehicle distance from the preceding vehicle detected by the laser radar device St (preceding vehicle detection means). If the relative speed of the preceding vehicle and the vehicle speed are taken into account, the estimated collision time is further increased. It is possible to calculate with high accuracy.
[0027]
As the collision prediction time calculated by the collision prediction time calculation means M6 ′ becomes longer, the cutoff frequency of the filter means M5 becomes lower, so that the rate of change of the target vehicle speed becomes smaller and the riding comfort performance improves. On the other hand, as the collision prediction time calculated by the collision prediction time calculation means M6 ′ becomes shorter, the cutoff frequency of the filter means M5 becomes higher, so that the own vehicle speed quickly follows the preceding vehicle speed and the follow-up performance is improved. Thus, according to the second embodiment, it is possible to effectively achieve both riding comfort performance and tracking performance.
[0028]
Next, a third embodiment of the present invention will be described with reference to FIG.
[0029]
As described with reference to FIG. 4, in the first embodiment and the second embodiment, the cutoff frequency of the filter means M5 is changed steplessly (that is, continuously). However, as shown in FIG. In the example, the cutoff frequency of the filter means M5 is changed stepwise (that is, discontinuously) in accordance with the preceding vehicle acceleration / deceleration or the predicted collision time. In this case, in order to prevent noise when switching the cut-off frequency of the filter means M5, it is necessary to initialize the output value of the newly selected filter using the output value of the previously selected filter. .
[0030]
Although the embodiments of the present invention have been described above, various design changes can be made without departing from the scope of the present invention.
[0031]
For example, the laser radar device St is exemplified as the preceding vehicle detection device in the embodiment, but a millimeter wave radar device can be used instead of the laser radar device St.
[0032]
【The invention's effect】
As described above, according to the first aspect of the present invention, the characteristic of the filter means for filtering the target vehicle speed of the own vehicle is changed according to the acceleration / deceleration of the preceding vehicle calculated by the preceding vehicle acceleration / deceleration calculating means. Since the means is changed, the change characteristic of the target vehicle speed of the own vehicle with respect to the change of the acceleration / deceleration of the preceding vehicle can be arbitrarily changed, and both the riding comfort performance and the following performance of the own vehicle can be achieved. Moreover, when the acceleration / deceleration of the preceding vehicle exceeds a predetermined value, the filter characteristic changing means has a higher cutoff value among a plurality of low-pass filters having a cutoff frequency between 0.08 Hz and 2 Hz constituting the filter means. Since the low-pass filter having the frequency is switched, the response characteristic of the own vehicle speed with respect to the target vehicle speed is enhanced, and the follow-up performance with respect to the preceding vehicle is improved. Conversely, when the acceleration / deceleration of the preceding vehicle is less than the predetermined value, the low-pass filter having a lower cutoff frequency is switched, so that the response characteristic of the own vehicle speed with respect to the target vehicle speed is lowered and the riding comfort performance is improved.
[0033]
According to the invention described in claim 2 , the characteristic of the filter means for filtering the target vehicle speed of the own vehicle is determined by the filter characteristic changing means according to the predicted collision time with the preceding vehicle calculated by the predicted collision time calculation means. Since the change is made, it is possible to arbitrarily change the change characteristic of the target vehicle speed of the own vehicle with respect to the change in the predicted collision time with the preceding vehicle, and to achieve both the riding comfort performance and the follow-up performance of the own vehicle. In addition, when the predicted collision time with the preceding vehicle is less than or equal to the predetermined value, the filter characteristic changing unit is higher among the plurality of low-pass filters in which the cutoff frequency constituting the filter unit is a value between 0.08 Hz and 2 Hz. Since the low-pass filter having the cut-off frequency is switched, the response characteristic of the own vehicle speed with respect to the target vehicle speed is enhanced, and the follow-up performance with respect to the preceding vehicle is improved. On the other hand, when the predicted collision time with the preceding vehicle exceeds a predetermined value, switching to a low-pass filter having a lower cut-off frequency results in lower response characteristics of the host vehicle speed with respect to the target vehicle speed and improved ride comfort performance.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an overall configuration of a radar device. FIG. 2 is a perspective view of the radar device. FIG. 3 is a block diagram showing a configuration of a vehicle follow-up control device. FIG. 5 is a flowchart for explaining the operation. FIG. 6 is a graph showing a change characteristic of the target vehicle speed that has passed through the filter means. FIG. 7 is a block diagram showing the configuration of the vehicle follow-up travel control apparatus according to the second embodiment of the invention. FIG. 8 is a diagram showing filter means according to a third embodiment of the present invention.
M1 target inter-vehicle distance calculating means M2 preceding vehicle speed calculating means M3 target vehicle speed calculating means M4 own vehicle speed control means M5 filter means M6 preceding vehicle acceleration / deceleration calculating means M6 ′ rear-end collision prediction time calculating means M7 filter characteristic changing means Sv own vehicle speed detecting means St Radar device (preceding vehicle detection means)

Claims (2)

自車速を検知する自車速検知手段(Sv)と、
先行車との車間距離および相対速を検知する先行車検知手段(St)と、
自車速に基づいて先行車との目標車間距離を算出する目標車間距離算出手段(M1)と、
自車速および先行車との相対速に基づいて先行車の車速を算出する先行車車速算出手段(M2)と、
目標車間距離および先行車の車速に基づいて自車の目標車速を算出する目標車速算出手段(M3)と、
目標車速に基づいて自車速を制御する自車速制御手段(M4)と、
を備えた車両用追従走行制御装置において、
目標車速算出手段(M3)が出力する自車の目標車速をフィルタリングするフィルタ手段(M5)と、
先行車の車速に基づいて先行車の加減速度を算出する先行車加減速度算出手段(M6)と、
先行車の加減速度に応じてフィルタ手段(M5)の特性を変更するフィルタ特性変更手段(M7)と、
を備え
前記フィルタ手段(M5)はカットオフ周波数が0.08Hzから2Hzの間の値となる複数のローパスフイルタから構成され、
前記フィルタ特性変更手段(M7)は、先行車の加減速度が所定値以上になった場合に、より高いカットオフ周波数を持つローパスフイルタに切り換えることを特徴とする車両用追従走行制御装置。
Own vehicle speed detecting means (Sv) for detecting the own vehicle speed;
Preceding vehicle detection means (St) for detecting the inter-vehicle distance and relative speed with the preceding vehicle;
Target inter-vehicle distance calculation means (M1) for calculating a target inter-vehicle distance from the preceding vehicle based on the own vehicle speed;
Preceding vehicle vehicle speed calculation means (M2) for calculating the vehicle speed of the preceding vehicle based on the host vehicle speed and the relative speed with the preceding vehicle;
Target vehicle speed calculation means (M3) for calculating the target vehicle speed of the host vehicle based on the target inter-vehicle distance and the vehicle speed of the preceding vehicle;
Own vehicle speed control means (M4) for controlling the own vehicle speed based on the target vehicle speed;
In a vehicle follow-up travel control device comprising:
Filter means (M5) for filtering the target vehicle speed of the host vehicle output by the target vehicle speed calculation means (M3);
Preceding vehicle acceleration / deceleration calculating means (M6) for calculating the acceleration / deceleration of the preceding vehicle based on the vehicle speed of the preceding vehicle;
Filter characteristic changing means (M7) for changing the characteristics of the filter means (M5) according to the acceleration / deceleration of the preceding vehicle;
Equipped with a,
The filter means (M5) is composed of a plurality of low-pass filters having a cutoff frequency between 0.08 Hz and 2 Hz,
The vehicle follow-up travel control device, wherein the filter characteristic changing means (M7) switches to a low-pass filter having a higher cut-off frequency when the acceleration / deceleration of the preceding vehicle exceeds a predetermined value .
自車速を検知する自車速検知手段(Sv)と、
先行車との車間距離および相対速を検知する先行車検知手段(St)と、
自車速に基づいて先行車との目標車間距離を算出する目標車間距離算出手段(M1)と、
自車速および先行車との相対速に基づいて先行車の車速を算出する先行車車速算出手段(M2)と、
目標車間距離および先行車の車速に基づいて自車の目標車速を算出する目標車速算出手段(M3)と、
目標車速に基づいて自車速を制御する自車速制御手段(M4)と、
を備えた車両用追従走行制御装置において、
目標車速算出手段(M3)が出力する自車の目標車速をフィルタリングするフィルタ手段(M5)と、
先行車との車間距離に基づいて先行車との追突予測時間を算出する追突予測時間算出手段(M6′)と、
先行車との追突予測時間に応じてフィルタ手段(M5)の特性を変更するフィルタ特性変更手段(M7)と、
を備え
前記フィルタ手段(M5)はカットオフ周波数が0.08Hzから2Hzの間の値となる複数のローパスフイルタから構成され、
前記フィルタ特性変更手段(M7)は、先行車との追突予測時間が所定値以下になった場合に、より高いカットオフ周波数を持つローパスフイルタに切り換えることを特徴とする車両用追従走行制御装置。
Own vehicle speed detecting means (Sv) for detecting the own vehicle speed;
Preceding vehicle detection means (St) for detecting the inter-vehicle distance and relative speed with the preceding vehicle;
Target inter-vehicle distance calculation means (M1) for calculating a target inter-vehicle distance from the preceding vehicle based on the own vehicle speed;
Preceding vehicle vehicle speed calculation means (M2) for calculating the vehicle speed of the preceding vehicle based on the host vehicle speed and the relative speed with the preceding vehicle;
Target vehicle speed calculation means (M3) for calculating the target vehicle speed of the host vehicle based on the target inter-vehicle distance and the vehicle speed of the preceding vehicle;
Own vehicle speed control means (M4) for controlling the own vehicle speed based on the target vehicle speed;
In a vehicle follow-up travel control device comprising:
Filter means (M5) for filtering the target vehicle speed of the host vehicle output by the target vehicle speed calculation means (M3);
A rear-end collision prediction time calculation means (M6 ′) for calculating a rear-end collision prediction time with the preceding vehicle based on the inter-vehicle distance from the preceding vehicle;
Filter characteristic changing means (M7) for changing the characteristics of the filter means (M5) according to the predicted collision time with the preceding vehicle;
Equipped with a,
The filter means (M5) is composed of a plurality of low-pass filters having a cutoff frequency between 0.08 Hz and 2 Hz,
The vehicle follow-up travel control device, wherein the filter characteristic changing means (M7) switches to a low-pass filter having a higher cut-off frequency when a rear-end collision prediction time with a preceding vehicle becomes a predetermined value or less .
JP2001095240A 2001-03-29 2001-03-29 Vehicle tracking control device Expired - Fee Related JP4007769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001095240A JP4007769B2 (en) 2001-03-29 2001-03-29 Vehicle tracking control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001095240A JP4007769B2 (en) 2001-03-29 2001-03-29 Vehicle tracking control device

Publications (2)

Publication Number Publication Date
JP2002283875A JP2002283875A (en) 2002-10-03
JP4007769B2 true JP4007769B2 (en) 2007-11-14

Family

ID=18949316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001095240A Expired - Fee Related JP4007769B2 (en) 2001-03-29 2001-03-29 Vehicle tracking control device

Country Status (1)

Country Link
JP (1) JP4007769B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126529B2 (en) * 2008-09-19 2013-01-23 トヨタ自動車株式会社 Radar apparatus and target velocity traveling direction estimation method
JP5943305B2 (en) * 2012-10-24 2016-07-05 トヨタ自動車株式会社 Travel control device
JP6453102B2 (en) * 2015-02-19 2019-01-16 本田技研工業株式会社 Vehicle motion control device

Also Published As

Publication number Publication date
JP2002283875A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
JP3909647B2 (en) Auto cruise equipment
US5761629A (en) Method and apparatus for cruise control
JP3681052B2 (en) Follow-up control device
US7668638B2 (en) Inter-vehicle distance control apparatus
JP3978170B2 (en) Vehicle inter-vehicle distance control device
JP3104998B2 (en) Autonomous driving control
US6889140B2 (en) Collision avoidance control system for vehicle
KR101679273B1 (en) Speed control method and system
US20040140143A1 (en) Following distance control apparatus
US7177749B2 (en) Vehicle driving support apparatus
GB2393527A (en) Vehicle adaptive cruise control system and method
JPH08230514A (en) Equipment and method for cruise control
US20090118958A1 (en) Vehicle travel control device and vehicle travel control method
JPH11348746A (en) Driving controlling device for vehicle
JP2006038697A (en) Another vehicle detection device and inter-vehicle distance control device
JP3518424B2 (en) Inter-vehicle distance control device
JP4007769B2 (en) Vehicle tracking control device
US20210213918A1 (en) Vehicle control device
JP4771602B2 (en) Auto cruise equipment
JP2006088771A (en) Travel controller
JP2013043514A (en) Vehicle traveling control system
JP2004123081A (en) Tracking running gear for vehicle
JP5118468B2 (en) Vehicle travel control device.
JP2005028896A (en) Following running control device
JP2003054395A (en) Deceleration control device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees