JP4007260B2 - Tapered roller bearing - Google Patents

Tapered roller bearing Download PDF

Info

Publication number
JP4007260B2
JP4007260B2 JP2003163361A JP2003163361A JP4007260B2 JP 4007260 B2 JP4007260 B2 JP 4007260B2 JP 2003163361 A JP2003163361 A JP 2003163361A JP 2003163361 A JP2003163361 A JP 2003163361A JP 4007260 B2 JP4007260 B2 JP 4007260B2
Authority
JP
Japan
Prior art keywords
tapered roller
inner ring
roller bearing
tapered
curved surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003163361A
Other languages
Japanese (ja)
Other versions
JP2004360879A (en
Inventor
弘 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2003163361A priority Critical patent/JP4007260B2/en
Priority to US10/830,428 priority patent/US7281855B2/en
Priority to EP04009737A priority patent/EP1471271A3/en
Publication of JP2004360879A publication Critical patent/JP2004360879A/en
Application granted granted Critical
Publication of JP4007260B2 publication Critical patent/JP4007260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/225Details of the ribs supporting the end of the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • F16C33/366Tapered rollers, i.e. rollers generally shaped as truncated cones

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、円すいころ軸受、さらに詳しくは、トルク損失を減少させた円すいころ軸受に関する。
【0002】
【従来の技術】
外輪、内輪およびこれらの間に配置された複数の円すいころを有する円すいころ軸受は、コンパクトで、大きなラジアル荷重およびアキシャル荷重を支持することができ、しかも、高速回転で使用することができるため、広く使用されている。しかしながら、玉軸受に比べると、アキシャル荷重を及ぼし合う円すいころの大端面と内輪の大つば面とのすべり接触部におけるトルク損失が大きく、エネルギー節約の観点から、そのトルクの減少が課題となっている。
【0003】
すべり接触によるトルク損失を小さくした円すいころ軸受(21)としては、図4(a)(b)に示すように、外輪(22)、内輪(23)および円すいころ(24)を有し、円すいころ(24)の大端面(25)を円すい形状に形成するとともに、内輪(23)の大つば面(26)をころ大端面(25)に対向する傾斜面に形成したものが提案されている(特許文献1)。
【0004】
【特許文献1】
実開昭61−139310号公報
【0005】
【発明が解決しようとする課題】
上記特許文献1に記載の円すいころ軸受(21)では、図4(a)に破線のハッチングで示す応力分布を有するように、内輪(23)に設けられた環状凹所(27)を除く部分で線接触しているが、アキシャル荷重が作用すると、図4(b)に示すように、図の右上方向に円すいころ(24)が内輪(23)の大つば面(26)にのりあげるように移動し、同図に破線のハッチングで示す応力分布を有するようになる。すなわち、円すいころ(24)の小端面側端部(24a)と内輪(23)軌道面の小つば側端部(23a)との間およびころ大端面(25)の本体寄りの端部と内輪(23)の大つば面(26)との間の2箇所において、特に大きな力を及ぼし合うようになり(エッジロードの発生)、軸受(21)が早期焼き付きや剥離に至るため、その機能を十分に果たせないという問題があった。また、予圧やすき間の調整も難しいという問題もあった。
【0006】
この発明の目的は、上記の問題を解決し、早期焼き付きや剥離を防止し、しかも、トルク損失を減少させることができる円すいころ軸受を提供することにある。
【0007】
【課題を解決するための手段および発明の効果】
この発明による円すいころ軸受は、外輪、内輪およびこれらの間に配置された複数の円すいころを有する円すいころ軸受において、円すいころの大端面が円すい面と連続する凸の曲面とされ、内輪の大つば面がこの曲面に対応する凹の曲面とされ、円すいころと内輪軌道の接触ラインが、コーンセンタを通るラインを基準として、ころ小端側では径方向外側に、ころ大端側では径方向内側にあることを特徴とするものである。
【0008】
コーンセンタを通るラインは、円すいころの円すい面と内輪の軌道面にクラウニングが施されない場合に得られる直線状ラインであり、通常の円すいころ軸受では、円すいころと内輪軌道の接触ラインは、このコーンセンタラインに一致させられている。
【0009】
円すいころの凸の曲面は、例えば、曲率が一定の球面とされるが、曲率が一定のものに限られるものではなく、異なる曲率を有する複数個の球面から構成されるようにしてもよく、また、双曲線、放物線などの二次曲線や指数曲線などでもよく、要するに、連続した曲線であればよい。ころ大端面に対応する内輪の大つば面の凹の曲面は、円すいころの曲面が球面の場合には、例えば、この球面の径の50〜53%の曲率となるように形成されるが、内輪の曲面についても、曲率が一定のものに限られるものではなく、双曲線などの二次曲線や指数曲線などでもよく、ころ大端面と同様、連続した曲線であればよい。内輪の大つば面は、円すい状の内輪軌道面に連続した曲面とされる。
【0010】
円すいころの大端面に対応する外輪肩部の形状は、任意であり、ころ大端面の形状に対応させて曲面としてももちろんよいが、円すいころで一般的に使用されている円すい状の内面を有する外輪をそのまま使用することもできる。また、内輪の小つば面側形状は、従来のものと同一とされる。
【0011】
この発明の円すいころ軸受によると、円すいころの大端面が円すい面と連続する凸の曲面とされるとともに、内輪の大つば面がこの曲面に対応する凹の曲面とされているので、アキシャル荷重が作用しても前記従来の円すいころ軸受のような円すいころの移動はなく、エッジロードがほとんど発生しない。よって、曲面部における転がり・すべり接触による荷重支持で、トルク低減を可能とするとともに、応力分布が連続していてエッジロードが防止されるので、早期焼き付きや剥離を防止することもできる。また、予圧やすき間の調整も容易に行うことができる。
【0012】
また、曲面部分は、コーンセンターラインから径方向外側にずれた位置で転がり・すべり接触するため、内輪からの駆動で発生するころ自転回転速度が直線接触部より早くなることになるが、円すいころと内輪軌道の接触ラインが、コーンセンタラインを基準として、ころ小端側では径方向外側に、ころ大端側では径方向内側にあるので、円すいころの小端側部分は早く、同大端側部分では遅く回ることになり、この量を適切に設定することにより、ころ倒れや、ころの公転速度を不均一にする要因を打ち消すことができ、円滑な回転をもたらす最適調製が可能となる。
【0013】
円すいころの大端面の曲面形状および内輪の大つば面の曲面形状は、両者の接触成分の内のすべり成分を減らして転がり成分が多くなるように、軸受の寸法や使用条件によって適宜設定される。これに伴い、接触角やつばの高さなども適宜変更されることはもちろんである。
【0014】
ころ大端面の凸の曲面は、上記のように特に限定されないが、好ましくは、球面とされる。曲面を形状が簡単な球面にすることにより、製造上の手間を少なくして上記効果を得ることができる。
【0015】
また、内輪の大つば面と軌道面との境界部分に、凹所が形成されていることがある。この凹所は、製作上の干渉を防止することを可能とするとともに、潤滑油の溜まり部としても使用可能であり、これにより、上記の効果を維持し、さらに、製作性や潤滑性を向上させることができる。
【0016】
【発明の実施の形態】
以下、図面を参照して、この発明の実施形態について説明する。以下の説明において、左右は、図の左右をいうものとする。
【0017】
図1に示すこの発明による円すいころ軸受(41)は、外輪(42)、内輪(43)、これらの間に配置された複数の円すいころ(44)、および円すいころ(44)を保持する保持器(45)を有している。
【0018】
円すいころ(44)は、円すい状の本体部分(51)と、その右端部に設けられた大端面(52)とを有している。円すいころ(44)の大端面(52)は、本体部分(51)の円すい面に連続する凸の曲面とされている。この実施形態では、この曲面は、凸の球面とされている。
【0019】
内輪(43)は、円すい状の軌道面(53)と、軌道面(53)の左端部に設けられた小つば面(54)と、軌道面(53)の右端部に設けられた大つば面(55)とを有している。大つば面(55)は、円すいころ(44)の大端面(52)の凸の曲面に対応する凹の曲面とされている。この実施形態では、大つば面(55)の断面形状は、軌道面(53)に連続する凹円弧面とされている。
【0020】
外輪(42)は、円すい軌道面(56)を有している。この実施形態では、円すいころ(44)の大端面(52)の凸の曲面に対応する部分の軌道も円すい状に形成されている。
【0021】
図1に二点鎖線で示すラインL2は、円すい形の頂点が軸受の中心軸上の1点(コーンセンタ)に集まるように設計されている従来の円すいころ軸受におけるコーンセンタを通るラインであり、この発明の円すいころ軸受においては、円すいころ(44)と内輪(43)の軌道面(53)との接触ラインL1は、このコーンセンタラインL2と点Pで交差し、コーンセンタラインL2を基準として、ころ小端側では径方向外側に、ころ大端側では径方向内側に位置させられている。
【0022】
上記のように形成された円すいころ軸受(41)によると、図2に破線のハッチングで示す応力分布を有するように、外輪(42)および内輪(43)と円すいころ(44)とが線接触している。この状態からさらにアキシャル荷重が作用した場合、円すいころ(44)の凸曲面状大端面(52)がこれと対応する凹曲面を有する内輪大つば面(55)に抱きかかえられるように接触するため、円すいころ(44)の軸方向の位置が安定し、内輪軌道面(53)に対して軸方向にほとんど移動しない。よって、同様の応力分布が維持される。こうして、連続した応力分布による転がりで荷重を支持することにより、エッジロードの発生を防止することができる。また、前記凸曲面と凹曲面の接触面では、すべり接触ではなく、すべり成分を大幅に低減した転がり・すべり接触の状態にあるため、トルク損失を大幅に減少した円すいころ軸受(41)を得ることができる。
【0023】
また、曲面状の大端面(52)は、コーンセンターラインL2から径方向外側にずれた位置で転がり・すべり接触するため、内輪(43)からの駆動で発生するころ自転回転速度が本体部分(51)より早くなることになるが、円すいころ(44)と内輪(43)の軌道面(53)との接触ラインL1が、コーンセンタラインL2を基準として、ころ小端側では径方向外側に、ころ大端側では径方向内側にあるので、円すいころ(44)の小端側部分は早い速度で、同大端側部分は遅い速度で自転することになる。円すいころ(44)と内輪(43)の軌道面(53)との接触ラインL1とコーンセンタラインL2との交点および交差角度は、変更可能であることから、この値を適切に設定することにより、ころ倒れや、ころの公転速度を不均一にする要因を打ち消すことができ、円滑な回転をもたらす最適調製が可能となる。
【0024】
図3は、この発明による円すいころ軸受(41)の他の実施形態を示すもので、内輪(43)には、円すい状軌道面(53)と凹曲面状の大端面(55)との間に、製作上の干渉を防止するために環状の凹所(ぬすみ)(58)が形成されている。これ以外の構成は、図1に示した実施形態と同じであり、同じ構成に同じ符号を付してその説明は省略する。
【0025】
この図3に示した円すいころ軸受(41)によると、同図に破線のハッチングで示す応力分布を有するように、外輪(42)および内輪(43)と円すいころ(44)とが線接触している。内輪(43)に形成されている環状凹所(58)によって、内輪(43)のその部分の応力はゼロになっているが、全体の応力分布については、図2のものとほぼ同様である。この状態からさらにアキシャル荷重が作用した場合、第1の実施形態と同様に、円すいころ(44)の凸曲面状大端面(52)がこれと対応する凹曲面を有する内輪大つば面(55)に抱きかかえられるように接触するため、軸方向の位置が安定し、内輪軌道面(53)に対して軸方向にほとんど移動しない。よって、同様の応力分布が維持される。こうして、エッジロードの発生を防止することができるとともに、トルク損失を大幅に減少した円すいころ軸受(41)を得ることができ、しかも、円すいころ(44)と内輪(43)の軌道面(53)との接触ラインL1とコーンセンタラインL2との交点および交差角度を変更することにより、円滑な回転をもたらす最適調製も可能となる。内輪(43)に形成されている環状凹所(58)は、潤滑油の溜まり部として使用可能であり、こうして、連続した応力分布による転がりで荷重を支持することによるトルク損失の減少に加えて、潤滑性にも優れた円すいころ軸受(41)を得ることができる。
【図面の簡単な説明】
【図1】図1は、この発明の円すいころ軸受の実施形態を示す上半部の縦断面図である。
【図2】図2は、この発明の円すいころ軸受の応力分布を示す図である。
【図3】図3は、この発明の円すいころ軸受の他の実施形態を示す図2に対応する図である。
【図4】図4は、従来の円すいころ軸受の応力分布を示す図である。
【符号の説明】
(41) 円すいころ軸受
(42) 外輪
(43) 内輪
(44) 円すいころ
(52) 大端面
(55) 大つば面
(58) 環状凹所
L1 接触ライン
L2 コーンセンタライン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tapered roller bearing, and more particularly to a tapered roller bearing with reduced torque loss.
[0002]
[Prior art]
A tapered roller bearing having an outer ring, an inner ring and a plurality of tapered rollers disposed between them is compact, can support a large radial load and axial load, and can be used at a high speed rotation. Widely used. However, compared to ball bearings, the torque loss at the sliding contact portion between the large end face of the tapered roller that exerts an axial load and the large collar face of the inner ring is large, and from the viewpoint of energy saving, the reduction of the torque becomes an issue. Yes.
[0003]
As shown in FIGS. 4 (a) and 4 (b), the tapered roller bearing (21) having reduced torque loss due to sliding contact has an outer ring (22), an inner ring (23) and a tapered roller (24). The roller (24) has a large end surface (25) formed in a conical shape, and the inner ring (23) has a large collar surface (26) formed on an inclined surface facing the roller large end surface (25). (Patent Document 1).
[0004]
[Patent Document 1]
Japanese Utility Model Publication No. 61-139310 [0005]
[Problems to be solved by the invention]
In the tapered roller bearing (21) described in Patent Document 1 above, a portion excluding the annular recess (27) provided in the inner ring (23) so as to have a stress distribution indicated by hatching in broken lines in FIG. However, when an axial load is applied, the tapered roller (24) is lifted on the large collar surface (26) of the inner ring (23) as shown in FIG. 4 (b). And has a stress distribution indicated by hatching in the broken line in FIG. That is, between the end (24a) on the small end surface side of the tapered roller (24) and the end on the small collar side (23a) of the raceway surface and the end of the roller large end surface (25) near the main body and the inner ring The two parts between (23) and the large brim surface (26) will exert a particularly large force (occurrence of edge load), and the bearing (21) will be prematurely seized and peeled off. There was a problem that it could not be fulfilled sufficiently. There is also a problem that it is difficult to adjust the preload and the gap.
[0006]
An object of the present invention is to provide a tapered roller bearing that solves the above-described problems, prevents premature seizure and peeling, and can reduce torque loss.
[0007]
[Means for Solving the Problems and Effects of the Invention]
A tapered roller bearing according to the present invention is a tapered roller bearing having an outer ring, an inner ring, and a plurality of tapered rollers disposed between them, wherein the large end surface of the tapered roller is a convex curved surface continuous with the tapered surface, and the inner ring is large. The collar surface is a concave curved surface corresponding to this curved surface, and the contact line between the tapered roller and the inner ring raceway is radially outward on the roller small end side and radially on the roller large end side with reference to the line passing through the cone center. It is characterized by being inside.
[0008]
The line passing through the cone center is a straight line obtained when the conical surface of the tapered roller and the raceway surface of the inner ring are not crowned. Matched to the cone center line.
[0009]
The convex curved surface of the tapered roller is, for example, a spherical surface with a constant curvature, but is not limited to a constant curvature, and may be composed of a plurality of spherical surfaces having different curvatures, Further, it may be a quadratic curve such as a hyperbola or a parabola, an exponential curve, etc. In short, it may be a continuous curve. The concave curved surface of the large collar surface of the inner ring corresponding to the roller large end surface is formed so as to have, for example, a curvature of 50 to 53% of the diameter of the spherical surface when the tapered roller curved surface is a spherical surface. The curved surface of the inner ring is not limited to a constant curvature, and may be a quadratic curve such as a hyperbola, an exponential curve, or the like, and may be a continuous curve like the roller large end surface. The large brim surface of the inner ring is a curved surface continuous with the conical inner ring raceway surface.
[0010]
The shape of the outer ring shoulder corresponding to the large end surface of the tapered roller is arbitrary, and it may be a curved surface corresponding to the shape of the roller large end surface, but the conical inner surface generally used for tapered rollers is also acceptable. The outer ring which it has can also be used as it is. Further, the shape of the inner ring on the small brim surface side is the same as the conventional one.
[0011]
According to the tapered roller bearing of the present invention, the large end surface of the tapered roller is a convex curved surface continuous with the tapered surface, and the large collar surface of the inner ring is a concave curved surface corresponding to this curved surface. However, the tapered roller does not move like the conventional tapered roller bearing, and the edge load hardly occurs. Therefore, torque can be reduced by load support by rolling / sliding contact at the curved surface portion, and stress distribution is continuous and edge loading is prevented, so that early seizure and peeling can be prevented. Also, preload and clearance can be adjusted easily.
[0012]
In addition, since the curved surface portion comes into rolling / sliding contact at a position shifted radially outward from the cone center line, the roller rotation speed generated by driving from the inner ring is faster than the linear contact portion. Since the contact line of the inner ring raceway is on the radially outer side on the roller small end side and radially inward on the roller large end side with respect to the cone center line as a reference, the small end side portion of the tapered roller is fast and has the same large end. It will turn slowly at the side part, and by setting this amount appropriately, it is possible to counteract the factors that make the rollers fall over and uneven rotation speed of the rollers, and it is possible to make an optimal preparation that brings about smooth rotation .
[0013]
The curved shape of the large end face of the tapered roller and the curved face shape of the large collar surface of the inner ring are appropriately set according to the dimensions and operating conditions of the bearing so as to reduce the slip component of both contact components and increase the rolling component. . Along with this, it is a matter of course that the contact angle, the height of the collar, and the like are appropriately changed.
[0014]
The convex curved surface of the roller large end surface is not particularly limited as described above, but is preferably a spherical surface. By making the curved surface into a simple spherical surface, the above effects can be obtained with less manufacturing effort.
[0015]
In addition, a recess may be formed at the boundary between the large collar surface of the inner ring and the raceway surface. This recess makes it possible to prevent interference in production and can also be used as a reservoir for lubricating oil, thereby maintaining the above effects and further improving manufacturability and lubricity Can be made.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In the following description, the left and right refer to the left and right in the figure.
[0017]
A tapered roller bearing (41) according to the present invention shown in FIG. 1 includes an outer ring (42), an inner ring (43), a plurality of tapered rollers (44) disposed therebetween, and a holding unit that holds the tapered rollers (44). (45).
[0018]
The tapered roller (44) has a conical main body portion (51) and a large end surface (52) provided at the right end portion thereof. The large end surface (52) of the tapered roller (44) is a convex curved surface that is continuous with the tapered surface of the main body portion (51). In this embodiment, the curved surface is a convex spherical surface.
[0019]
The inner ring (43) includes a conical raceway surface (53), a small brim surface (54) provided at the left end of the raceway surface (53), and a large brim provided at the right end of the raceway surface (53). Surface (55). The large brim surface (55) is a concave curved surface corresponding to the convex curved surface of the large end surface (52) of the tapered roller (44). In this embodiment, the cross-sectional shape of the large brim surface (55) is a concave arc surface continuous to the raceway surface (53).
[0020]
The outer ring (42) has a conical raceway surface (56). In this embodiment, the track of the portion corresponding to the convex curved surface of the large end surface (52) of the tapered roller (44) is also formed in a cone shape.
[0021]
A line L2 indicated by a two-dot chain line in FIG. 1 is a line passing through a cone center in a conventional tapered roller bearing designed so that the apex of the cone is gathered at one point (cone center) on the center axis of the bearing. In the tapered roller bearing of the present invention, the contact line L1 between the tapered roller (44) and the raceway surface (53) of the inner ring (43) intersects the cone center line L2 at a point P, and the cone center line L2 is crossed. As a reference, it is positioned radially outward on the roller small end side and radially inward on the roller large end side.
[0022]
According to the tapered roller bearing (41) formed as described above, the outer ring (42) and the inner ring (43) and the tapered roller (44) are in line contact so as to have the stress distribution shown by the hatching in FIG. is doing. When an axial load is further applied from this state, the convex curved large end surface (52) of the tapered roller (44) comes into contact with the inner ring large collar surface (55) having a concave curved surface corresponding thereto. The position of the tapered roller (44) in the axial direction is stable and hardly moves in the axial direction with respect to the inner ring raceway surface (53). Therefore, the same stress distribution is maintained. Thus, by supporting the load by rolling with a continuous stress distribution, the occurrence of edge load can be prevented. Further, the contact surface of the convex curved surface and the concave curved surface is not in sliding contact but in a rolling / sliding contact state in which the slip component is greatly reduced, so that a tapered roller bearing (41) having a greatly reduced torque loss is obtained. be able to.
[0023]
Further, the curved large end face (52) makes rolling / sliding contact at a position shifted radially outward from the cone center line L2, so that the roller rotation speed generated by driving from the inner ring (43) is the main body portion ( 51) The contact line L1 between the tapered roller (44) and the raceway surface (53) of the inner ring (43) is radially outward on the roller small end side with respect to the cone center line L2. Since the roller large end side is radially inward, the small end side portion of the tapered roller (44) rotates at a high speed and the large end side portion rotates at a low speed. Since the intersection and intersection angle between the contact line L1 and the cone center line L2 between the tapered roller (44) and the raceway surface (53) of the inner ring (43) can be changed, this value should be set appropriately. It is possible to counteract the factors that cause the rollers to fall over or cause the revolution speed of the rollers to be non-uniform, so that an optimum preparation that brings about smooth rotation becomes possible.
[0024]
FIG. 3 shows another embodiment of the tapered roller bearing (41) according to the present invention. The inner ring (43) has a conical raceway surface (53) and a concave curved large end surface (55). In addition, an annular recess (58) is formed to prevent manufacturing interference. Other configurations are the same as those of the embodiment shown in FIG. 1, and the same reference numerals are given to the same configurations, and the description thereof is omitted.
[0025]
According to the tapered roller bearing (41) shown in FIG. 3, the outer ring (42) and the inner ring (43) and the tapered roller (44) are in line contact so as to have the stress distribution shown by the hatched lines in the figure. ing. Due to the annular recess (58) formed in the inner ring (43), the stress in that portion of the inner ring (43) is zero, but the overall stress distribution is almost the same as in FIG. . When an axial load is further applied from this state, the inner ring large collar surface (55) in which the convex curved large end surface (52) of the tapered roller (44) has a concave curved surface corresponding thereto as in the first embodiment. Therefore, the position in the axial direction is stable and hardly moves in the axial direction with respect to the inner ring raceway surface (53). Therefore, the same stress distribution is maintained. In this way, the occurrence of edge load can be prevented, and a tapered roller bearing (41) with a greatly reduced torque loss can be obtained, and the raceway surfaces (53) of the tapered roller (44) and the inner ring (43) can be obtained. By changing the intersection point and the intersection angle between the contact line L1 and the cone center line L2, the optimum preparation that enables smooth rotation is also possible. The annular recess (58) formed in the inner ring (43) can be used as a lubricating oil reservoir, thus reducing torque loss by supporting the load with rolling due to continuous stress distribution. In addition, a tapered roller bearing (41) having excellent lubricity can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an upper half portion showing an embodiment of a tapered roller bearing of the present invention.
FIG. 2 is a view showing a stress distribution of the tapered roller bearing of the present invention.
FIG. 3 is a view corresponding to FIG. 2 showing another embodiment of the tapered roller bearing of the present invention.
FIG. 4 is a diagram showing a stress distribution of a conventional tapered roller bearing.
[Explanation of symbols]
(41) Tapered roller bearings
(42) Outer ring
(43) Inner ring
(44) Tapered roller
(52) Large end face
(55) Large brim
(58) Annular recess L1 Contact line L2 Cone center line

Claims (3)

外輪、内輪およびこれらの間に配置された複数の円すいころを有する円すいころ軸受において、
円すいころの大端面が円すい面と連続する凸の曲面とされ、内輪の大つば面がこの曲面に対応する凹の曲面とされ、円すいころと内輪軌道の接触ラインが、コーンセンタを通るラインを基準として、ころ小端側では径方向外側に、ころ大端側では径方向内側にあることを特徴とする円すいころ軸受。
In a tapered roller bearing having an outer ring, an inner ring, and a plurality of tapered rollers disposed therebetween,
The large end surface of the tapered roller is a convex curved surface that is continuous with the tapered surface, the large collar surface of the inner ring is a concave curved surface corresponding to this curved surface, and the contact line between the tapered roller and the inner ring raceway is a line that passes through the cone center. As a reference, a tapered roller bearing characterized by being radially outward on the roller small end side and radially inward on the roller large end side.
ころ大端面の凸の曲面は、球面である請求項1の円すいころ軸受。2. The tapered roller bearing according to claim 1, wherein the convex curved surface of the roller large end surface is a spherical surface. 内輪の大つば面と軌道面との境界部分に、凹所が形成されている請求項1または2の円すいころ軸受。The tapered roller bearing according to claim 1 or 2, wherein a recess is formed in a boundary portion between the large collar surface and the raceway surface of the inner ring.
JP2003163361A 2003-04-25 2003-06-09 Tapered roller bearing Expired - Fee Related JP4007260B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003163361A JP4007260B2 (en) 2003-06-09 2003-06-09 Tapered roller bearing
US10/830,428 US7281855B2 (en) 2003-04-25 2004-04-23 Tapered roller bearing and final reduction gear
EP04009737A EP1471271A3 (en) 2003-04-25 2004-04-23 Tapered roller bearing and final reduction gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003163361A JP4007260B2 (en) 2003-06-09 2003-06-09 Tapered roller bearing

Publications (2)

Publication Number Publication Date
JP2004360879A JP2004360879A (en) 2004-12-24
JP4007260B2 true JP4007260B2 (en) 2007-11-14

Family

ID=34055202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003163361A Expired - Fee Related JP4007260B2 (en) 2003-04-25 2003-06-09 Tapered roller bearing

Country Status (1)

Country Link
JP (1) JP4007260B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005058149A1 (en) * 2005-12-06 2007-07-05 Schaeffler Kg Tapered roller bearings with curved raceways
JP5268580B2 (en) * 2008-11-14 2013-08-21 株式会社ミクニ Conical roller bearing
JP2017180481A (en) * 2016-03-28 2017-10-05 Ntn株式会社 Conical roller bearing
CN107327494A (en) * 2017-08-31 2017-11-07 高夫 Double-conical-surface roller bearing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065191A (en) * 1976-05-13 1977-12-27 Skf Industries, Inc. Roller skew control for tapered roller bearings
JP2951036B2 (en) * 1991-04-30 1999-09-20 エヌティエヌ株式会社 Tapered roller bearing
DE19701086A1 (en) * 1997-01-15 1998-07-16 Skf Gmbh Tapered roller bearing rollers part-spherical at thicker end, interface seamless

Also Published As

Publication number Publication date
JP2004360879A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JPS5913369Y2 (en) cylindrical roller bearing
CN101365889B (en) Rolling bearing with improved rim geometry
EP2952763B1 (en) Multipoint contact ball bearing
TWI694215B (en) Hybrid dynamic pressure gas radial bearing
WO2002093029A9 (en) Bearing with low wear and low power loss characteristics
CN101520071B (en) Tapered roller bearing with high strength and low friction torque
JP4007260B2 (en) Tapered roller bearing
JP2002122146A (en) Conical roller bearing
JP2001173665A (en) Roller bearing
JP3815027B2 (en) Roller support bearing device
US7281855B2 (en) Tapered roller bearing and final reduction gear
JP2001241446A (en) Roller bearing
JP3892213B2 (en) 4-point contact ball bearing
JP2014196758A (en) Self-aligning rolling bearing
CN201083231Y (en) Automatic aligning axial direction displacement precision bearing
JP2004324785A (en) Tapered roller bearing
CN201487049U (en) Tapered roller bearing with high strength and low frictional moment
JP2005326023A (en) Roller supporting bearing device
JP2615959B2 (en) Spherical roller bearing
JP4206715B2 (en) Tapered roller bearing
CN206290578U (en) A kind of novel bearing
JP2004324733A (en) Cross roller bearing
JP2009008240A (en) Tapered roller bearing
JP2000213545A5 (en) Cage for roller bearings and roller bearings
JP2004522089A (en) Contoured roller bearings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060524

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070820

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees