JP2014196758A - Self-aligning rolling bearing - Google Patents

Self-aligning rolling bearing Download PDF

Info

Publication number
JP2014196758A
JP2014196758A JP2013071872A JP2013071872A JP2014196758A JP 2014196758 A JP2014196758 A JP 2014196758A JP 2013071872 A JP2013071872 A JP 2013071872A JP 2013071872 A JP2013071872 A JP 2013071872A JP 2014196758 A JP2014196758 A JP 2014196758A
Authority
JP
Japan
Prior art keywords
inner ring
raceway surface
ring raceway
self
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013071872A
Other languages
Japanese (ja)
Inventor
建 小永井
Ken Konagai
建 小永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2013071872A priority Critical patent/JP2014196758A/en
Publication of JP2014196758A publication Critical patent/JP2014196758A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/50Crowning, e.g. crowning height or crowning radius

Abstract

PROBLEM TO BE SOLVED: To provide a self-aligning roller bearing having means for suppressing the negative skew of rollers for a longer period and at a lower cost.SOLUTION: The self-aligning roller bearing includes an outer ring 1 having a spherical outer ring raceway surface on the inner peripheral face, an inner ring 2 having double-row inner ring raceway surfaces opposite to the outer ring raceway surface on the outer peripheral face, the plurality of rollers rollably arranged in double rows between the outer ring raceway surface and each inner ring raceway surface, and a cage 4 for holding the rollers at equal intervals in the rolling direction. Each raceway surface of the inner ring 2 is formed to establish R1<R2, where R1 is the curvature radius on the axial end face side of the inner ring at the axial center of the raceway surface in each row and R2 is the curvature radius on the axial center side of the inner ring.

Description

本発明は、大きな負荷や自重によって撓みを生じる回転軸を支持するための自動調心ころ軸受に関するものである。   The present invention relates to a self-aligning roller bearing for supporting a rotating shaft that is bent by a large load or its own weight.

鉄鋼設備や製紙機械のロール等で用いられる自動調心ころ軸受は、図1に示すような構成となっている。内周面に球面状の外輪軌道面1aを有する外輪1と、外径面に外輪軌道面1aと対向する複列の球面状の内輪軌道面2aを有する内輪2と、外輪軌道面1a及び内輪軌道面2aとの間を転動自在且つ複列に配置される複数のころ3と、ころ3の転動方向の間隔を一定に保持する保持器4と、を備えている。   A self-aligning roller bearing used in a steel facility or a roll of a papermaking machine has a configuration as shown in FIG. An outer ring 1 having a spherical outer ring raceway surface 1a on the inner peripheral surface, an inner ring 2 having a double row spherical inner ring raceway surface 2a opposed to the outer ring raceway surface 1a on the outer diameter surface, an outer ring raceway surface 1a and an inner ring There are provided a plurality of rollers 3 that can freely roll between the raceway surfaces 2a and are arranged in double rows, and a cage 4 that keeps the intervals in the rolling direction of the rollers 3 constant.

図1に示す自動調心ころ軸受10において、ころ3に過大な負のスキューを生じた場合に、摩擦、発熱が増大し、軸受寿命が低下することが従来より知られている。ここで、ころのスキューについて図を用いて説明する。図3の(a)、(b)、(c)について、外輪1が固定され、内輪2が各図の奥側に向かう様に回転するばあい、自動調心ころ軸受1の運転時におけるころ3の回転軸が、図3(a)に示すような正規の位置に対して、図3(b)および(c)に示すように傾斜する現象をスキューと言い、図3(b)に示す状態を正のスキュー、図3(c)に示す状態を、負のスキューと言う。特に、過大な負のスキューが生じる場合、軸受内部の摩擦、発熱が増大する虞がある。   In the self-aligning roller bearing 10 shown in FIG. 1, it has been conventionally known that when an excessive negative skew is generated in the roller 3, friction and heat generation increase, and the bearing life decreases. Here, the roller skew will be described with reference to the drawings. 3 (a), (b), and (c), when the outer ring 1 is fixed and the inner ring 2 is rotated toward the back side of each figure, the roller during operation of the self-aligning roller bearing 1 is used. A phenomenon in which the rotation axis 3 is inclined as shown in FIGS. 3B and 3C with respect to a normal position as shown in FIG. 3A is called skew, and is shown in FIG. 3B. The state is called a positive skew, and the state shown in FIG. 3C is called a negative skew. In particular, when excessive negative skew occurs, there is a possibility that friction and heat generation inside the bearing may increase.

一般的な自動調心ころ軸受の場合、運転時に負のスキューを生じ易い。この問題に対する手段として、特許文献1には、内輪と球面ころとの間の接触部の滑り摩擦係数を、外輪と球面ころとの間の接触部の滑り摩擦係数よりも小さくし、負のスキューを抑える発明が開示されている。この様な条件を満たす為には、外輪軌道の表面粗さを内輪軌道の表面粗さよりも粗くすれば良い。また、特許文献2には、負のスキューを抑える為に、外輪軌道の各球面ころと接触する部分のうち、外輪の軸方向端面側の表面粗さを、同じく軸方向中央側の表面粗さよりも小さくする発明が開示されている。   In the case of a general spherical roller bearing, a negative skew is likely to occur during operation. As means for solving this problem, Patent Document 1 discloses that the sliding friction coefficient of the contact portion between the inner ring and the spherical roller is made smaller than the sliding friction coefficient of the contact portion between the outer ring and the spherical roller, and negative skew is applied. An invention for suppressing the above is disclosed. In order to satisfy such a condition, the surface roughness of the outer ring raceway may be made rougher than the surface roughness of the inner ring raceway. Further, in Patent Document 2, in order to suppress negative skew, the surface roughness on the axial end face side of the outer ring in the portion of the outer ring raceway that is in contact with each spherical roller is similarly determined from the surface roughness on the axial center side. An invention for reducing the size is disclosed.

特開2007−071281号公報JP 2007-071281 A 特開2009−222166号公報JP 2009-222166 A

しかしながら、特許文献1、特許文献2共に、軌道面の表面粗さをコントロールして加工することが困難であること、軸受の使用による軌道面の磨耗により軌道面の表面粗さが変化し、負のスキュー抑制の効果が得られなくなる虞がある、といった課題があった。   However, in both Patent Documents 1 and 2, it is difficult to process by controlling the surface roughness of the raceway surface, and the surface roughness of the raceway surface changes due to wear of the raceway surface due to the use of bearings. There is a problem that the effect of suppressing the skew may not be obtained.

本発明は上記課題を解決するものであり、ころに過大な負のスキューが生じることを長期間に渡って防止し、自動調心ころ軸受の長寿命化を低コストで実現すること目的とする。   An object of the present invention is to solve the above problems, and to prevent excessive negative skew from occurring over a long period of time, and to extend the life of a self-aligning roller bearing at a low cost. .

上記目的を達成するため、本発明の請求項1に係る発明は内周面に球面状の外輪軌道面を有する外輪と、外周面に前記外輪軌道面に対向する複列の内輪軌道面を有する内輪と、前記外輪軌道面と内輪軌道面との間に転動自在に複列に配置される複数のころと、前記ころを転動方向に等間隔に保持する保持器と、を備える自動調心ころ軸受において、内輪の各列の内輪軌道面形状は、内輪の軸方向端面側及び各列の内輪軌道面中央部の曲率半径をR1、内輪の軸方向中央側の曲率半径をR2としたとき、R1<R2であることを特徴とする。
また、請求項2に記載の発明は、請求項1に記載の自動調心ころ軸受であって、前記内輪の各列の軌道面形状を構成する曲率半径R1及びR2の中心位置は、無負荷時における自動調心ころ軸受のころ接触角の線上にあることを特徴とする。
In order to achieve the above object, an invention according to claim 1 of the present invention has an outer ring having a spherical outer ring raceway surface on an inner peripheral surface, and a double row inner ring raceway surface facing the outer ring raceway surface on an outer peripheral surface. An automatic adjustment comprising an inner ring, a plurality of rollers arranged in a double row so as to roll between the outer ring raceway surface and the inner ring raceway surface, and a cage that holds the rollers at equal intervals in the rolling direction. In the center roller bearing, the inner ring raceway surface shape of each row of the inner ring is R1 as the radius of curvature at the axial end surface side of the inner ring and the center portion of the inner ring raceway surface of each row, and the radius of curvature at the center side in the axial direction of the inner ring is R2. In this case, R1 <R2.
The invention according to claim 2 is the self-aligning roller bearing according to claim 1, wherein the center positions of the curvature radii R1 and R2 constituting the raceway surface shape of each row of the inner ring are unloaded. It is characterized by being on the line of the roller contact angle of the self-aligning roller bearing at the time.

本発明によれば、自動調心ころ軸受の内輪軌道面について、内輪の軸方向端面側及び各内輪軌道面の軸方向中央部の曲率半径をR1、内輪の軸方向中央側の曲率半径をR2としたときに、R1<R2となるように形成することにより、ころの負のスキューを抑制することができる。また、軌道面の表面粗さの変化に関係なく負のスキューの抑制効果を長期間に渡って維持することができる。さらに、上記軌道面形状の形成には従来の研削加工を適用できる為、製造コストの上昇も生じない。   According to the present invention, for the inner ring raceway surface of the self-aligning roller bearing, the radius of curvature of the inner ring axial end surface side and the axial center portion of each inner ring raceway surface is R1, and the radius of curvature of the inner ring axial center side is R2. By forming such that R1 <R2, the negative skew of the rollers can be suppressed. Further, the negative skew suppression effect can be maintained over a long period of time regardless of the change in the surface roughness of the raceway surface. Further, since the conventional grinding process can be applied to the formation of the raceway surface shape, the manufacturing cost does not increase.

従来の自動調心ころ軸受の構成を示す図である。It is a figure which shows the structure of the conventional self-aligning roller bearing. 本発明による自動調心ころ軸受の内輪軌道面を示す図である。It is a figure which shows the inner ring raceway surface of the self-aligning roller bearing by this invention. 自動調心ころ軸受のころスキューを示す図である。It is a figure which shows the roller skew of a self-aligning roller bearing.

以下に、本発明の実施系体を図に基づいて説明する。
図1は、本発明による自動調心ころ軸受の実施形態の一例である。複列自動調心ころ軸受100は、内周面に球面状の外輪軌道面1aを有する外輪1と、外周面に外輪軌道面1aと対向する複列の内輪軌道面20aを有する内輪2と、前記外輪軌道面1aと内輪軌道面20aとの間に転動自在に配置される複数のころ3と、ころを周方向に略等間隔に保持する保持器4と、から構成される。内輪軌道面20aは、図2に示すように、曲率半径R1を有する軌道面21aと、曲率半径R1よりも大きい曲率半径R2を有する軌道面22aと、からなる。曲率半径R1を有する内輪軌道面21aと曲率半径R2を有する内輪軌道面22aとの境界は、軸受の接触角を表す線cよりも内輪2の軸方向中央側に位置する。これにより、高荷重条件においてもころ3と内輪軌道面22aは接触しないため、ころ3と内輪軌道面21aとの間に働くスキューモーメントが減少し、ころ3に負のスキューモーメントが働くのを抑制している。
Below, the implementation system body of this invention is demonstrated based on figures.
FIG. 1 is an example of an embodiment of a self-aligning roller bearing according to the present invention. The double-row self-aligning roller bearing 100 includes an outer ring 1 having a spherical outer ring raceway surface 1a on the inner peripheral surface, and an inner ring 2 having a double row inner ring raceway surface 20a facing the outer ring raceway surface 1a on the outer peripheral surface. It comprises a plurality of rollers 3 that are rotatably arranged between the outer ring raceway surface 1a and the inner ring raceway surface 20a, and a cage 4 that holds the rollers at substantially equal intervals in the circumferential direction. As shown in FIG. 2, the inner ring raceway surface 20a includes a raceway surface 21a having a curvature radius R1 and a raceway surface 22a having a curvature radius R2 larger than the curvature radius R1. The boundary between the inner ring raceway surface 21a having the curvature radius R1 and the inner ring raceway surface 22a having the curvature radius R2 is located closer to the center side in the axial direction of the inner ring 2 than the line c representing the contact angle of the bearing. As a result, since the roller 3 and the inner ring raceway surface 22a do not contact even under high load conditions, the skew moment acting between the roller 3 and the inner ring raceway surface 21a is reduced, and the negative skew moment acting on the roller 3 is suppressed. doing.

内輪軌道面21a、22aは下記に示す加工方法により形成することができる。まず、内輪軌道面全体を曲率半径R1の砥石で研削加工し、内輪軌道面21aを形成する。続いて、内輪軌道面の軸方向中央側のみを、曲率半径R2の砥石で研削加工し、内輪軌道面22aを形成する。なお、内輪軌道面21a、22aの形成方法は上記方法に限定されない。
例えば、内輪軌道面21a、22aの形状を、複合円弧形状を有する砥石で一度に研削加工してもよい。また、曲率半径R2の砥石で内輪軌道面全体を研削加工して内輪軌道面22aを形成し、その後、内輪軌道面の内輪軸方向中央側以外を、曲率半径R1でSF加工して内輪軌道面21aを形成してもよい。
また、内輪軌道面22aを形成するにあたり、内輪軌道面22aの曲率半径R2の中心位置を、軸受の接触角を表す線cの線上又内輪軸方向中央よりとすることが望ましい。そうでない場合、内輪軌道面22aを形成できなくなることがあるため望ましくない。
The inner ring raceway surfaces 21a and 22a can be formed by the following processing method. First, the entire inner ring raceway surface is ground with a grindstone having a radius of curvature R1 to form an inner ring raceway surface 21a. Subsequently, only the axially central side of the inner ring raceway surface is ground with a grindstone having a radius of curvature R2 to form the inner ring raceway surface 22a. In addition, the formation method of the inner ring raceway surfaces 21a and 22a is not limited to the above method.
For example, the inner ring raceway surfaces 21a and 22a may be ground at once with a grindstone having a composite arc shape. Further, the inner ring raceway surface 22a is formed by grinding the entire inner ring raceway surface with a grindstone having a radius of curvature R2, and then the inner ring raceway surface is subjected to SF machining with a radius of curvature R1 other than the center side in the inner ring axial direction. 21a may be formed.
In forming the inner ring raceway surface 22a, the center position of the radius of curvature R2 of the inner ring raceway surface 22a is preferably on the line c representing the bearing contact angle or from the center in the inner ring axial direction. Otherwise, the inner ring raceway surface 22a may not be formed, which is not desirable.

10 自動調心ころ軸受(従来)
100 自動調心ころ軸受(本発明)
1 外輪
1a 外輪軌道面
2 内輪
2a 内輪軌道面(従来)
20a 内輪軌道面 (本発明)
21a 内輪軌道面(曲率半径R1)
22a 内輪軌道面(曲率半径R2)
3 ころ
3a ころ転動面
4 保持器
10 Spherical roller bearings (conventional)
100 Spherical roller bearing (present invention)
1 Outer ring 1a Outer ring raceway surface 2 Inner ring 2a Inner ring raceway surface (conventional)
20a Inner ring raceway surface (present invention)
21a Inner ring raceway surface (radius of curvature R1)
22a Inner ring raceway surface (radius of curvature R2)
3 Roller 3a Roller rolling surface 4 Cage

Claims (2)

内周面に球面状の外輪軌道面を有する外輪と、外周面に前記外輪軌道面に対向する複列の内輪軌道面を有する内輪と、前記外輪軌道面と内輪軌道面との間に転動自在に複列に配置される複数のころと、前記ころを転動方向に等間隔に保持する保持器と、を備える自動調心ころ軸受において、内輪の各列の内輪軌道面形状は、内輪の軸方向端面側及び各列の内輪軌道面中央部の曲率半径をR1、内輪の軸方向中央側の曲率半径をR2としたとき、R1<R2であることを特徴とする自動調心ころ軸受。   Rolling between an outer ring having a spherical outer ring raceway surface on the inner peripheral surface, an inner ring having a double row inner ring raceway surface facing the outer ring raceway surface on the outer peripheral surface, and the outer ring raceway surface and the inner ring raceway surface In a self-aligning roller bearing comprising a plurality of rollers freely arranged in double rows and a cage for holding the rollers at equal intervals in the rolling direction, the inner ring raceway surface shape of each row of the inner rings is an inner ring Spherical roller bearings wherein R1 <R2 where R1 is the radius of curvature of the axial end face side and the center of the inner ring raceway surface of each row is R1, and R2 is the radius of curvature of the inner ring axially central side. . 請求項1に記載の自動調心ころ軸受であって、前記内輪の各列の内輪軸方向中央側の軌軌道面形状を構成する曲率半径R2の中心位置は、無負荷時における自動調心ころ軸受のころ接触角の線上、又は、内輪軸方向中央側にあることを特徴とする自動調心ころ軸受。   2. The self-aligning roller bearing according to claim 1, wherein the center position of the radius of curvature R <b> 2 constituting the rail raceway surface shape on the center side in the inner ring axial direction of each row of the inner rings is a self-aligning roller when no load is applied. A self-aligning roller bearing characterized by being on the line of the roller contact angle of the bearing or on the center side in the axial direction of the inner ring.
JP2013071872A 2013-03-29 2013-03-29 Self-aligning rolling bearing Pending JP2014196758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013071872A JP2014196758A (en) 2013-03-29 2013-03-29 Self-aligning rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013071872A JP2014196758A (en) 2013-03-29 2013-03-29 Self-aligning rolling bearing

Publications (1)

Publication Number Publication Date
JP2014196758A true JP2014196758A (en) 2014-10-16

Family

ID=52357686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013071872A Pending JP2014196758A (en) 2013-03-29 2013-03-29 Self-aligning rolling bearing

Country Status (1)

Country Link
JP (1) JP2014196758A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164256A1 (en) * 2016-03-24 2017-09-28 Ntn株式会社 Rolling bearing, and abrasion resistance treatment method for bearing raceway surface
CN108488229A (en) * 2018-03-14 2018-09-04 中国航发哈尔滨轴承有限公司 A kind of centripetal self-aligning roller bearing of novel full rolling element
DE102021123313A1 (en) 2021-09-09 2023-03-09 Schaeffler Technologies AG & Co. KG Double row spherical roller bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164256A1 (en) * 2016-03-24 2017-09-28 Ntn株式会社 Rolling bearing, and abrasion resistance treatment method for bearing raceway surface
CN109072978A (en) * 2016-03-24 2018-12-21 Ntn株式会社 The wear-resistant processing method of rolling bearing and bearing track face
EP3434920A4 (en) * 2016-03-24 2019-10-02 NTN Corporation Rolling bearing, and abrasion resistance treatment method for bearing raceway surface
US10808761B2 (en) 2016-03-24 2020-10-20 Ntn Corporation Rolling bearing, and abrasion resistance treatment method for bearing raceway surface
CN108488229A (en) * 2018-03-14 2018-09-04 中国航发哈尔滨轴承有限公司 A kind of centripetal self-aligning roller bearing of novel full rolling element
DE102021123313A1 (en) 2021-09-09 2023-03-09 Schaeffler Technologies AG & Co. KG Double row spherical roller bearing

Similar Documents

Publication Publication Date Title
US20150098825A1 (en) Bearing arrangement
WO2013051696A1 (en) Rolling bearing
KR20150005926A (en) Toroidal roller bearing
JP2014196758A (en) Self-aligning rolling bearing
JP2009074600A (en) Roller bearing
JP2012202453A (en) Self-aligning roller bearing
JP6019703B2 (en) Self-aligning roller bearing with sealing device and manufacturing method thereof
CN106438683A (en) Spherical roller bearing and wind turbine main shaft transmission chain system comprising same
JP5050619B2 (en) Tapered roller bearing
JP2014105809A (en) Retainer for rolling bearing
JP2010196861A (en) Roll bearing
CN203670467U (en) Self-aligningroller bearing
JP2017078480A (en) Self-aligning roller bearing
JP2014167329A (en) Self-aligning roller bearing
CN106321624B (en) Tapered roller bearing
JP2014194244A (en) Self-aligning roller bearing
JP2006266464A (en) Self-aligning roller bearing
JP2014196776A (en) Self-aligning roller bearing
JP2012172812A (en) Rolling bearing
JP2009210078A (en) Self-aligning roller bearing
JP2014194249A (en) Self-aligning roller bearing
JP2010164179A (en) Rolling bearing
JP2023102849A (en) Self-aligning roller bearing
JP2013130242A (en) Thrust roller bearing
JP2015055256A (en) Self-aligning roller bearing