JP4006557B2 - Sediment detection method in pneumatic feeding system - Google Patents

Sediment detection method in pneumatic feeding system Download PDF

Info

Publication number
JP4006557B2
JP4006557B2 JP03034099A JP3034099A JP4006557B2 JP 4006557 B2 JP4006557 B2 JP 4006557B2 JP 03034099 A JP03034099 A JP 03034099A JP 3034099 A JP3034099 A JP 3034099A JP 4006557 B2 JP4006557 B2 JP 4006557B2
Authority
JP
Japan
Prior art keywords
pipe
sediment
load
phase
mud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03034099A
Other languages
Japanese (ja)
Other versions
JP2000230851A (en
Inventor
清一 高梨
茂巳 佐藤
惣一郎 藤井
和貴 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP03034099A priority Critical patent/JP4006557B2/en
Publication of JP2000230851A publication Critical patent/JP2000230851A/en
Application granted granted Critical
Publication of JP4006557B2 publication Critical patent/JP4006557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Air Transport Of Granular Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気圧送式土砂輸送装置における土砂検出方式、より詳しくは、土砂、特にはヘドロや浚渫土等の軟弱土を圧力空気を用いて輸送し、その輸送過程において固化剤を混合して固化処理土として所定の場所に排出するようにした空気圧送式土砂輸送装置における土砂検出方式に関するものである。
【0002】
【従来技術】
従来、ヘドロや浚渫泥土等の軟弱土を輸送する一つの方式として、かかる軟弱土を送泥管が接続されている例えば圧送タンクの如き土砂供給装置に供給するとともに、この圧送タンクに圧力空気を供給することによって土砂相、いわゆる「プラグ」と空気相とが交互に縞状に存在する流動状態体、すなわち流動体として送泥管中を輸送し、この送泥管の後端部に設けられた排出装置、例えばサイクロンの如き排出装置により空気相と土砂相とを分離してこの土砂相を所定の場所に排出するようにした空気圧送式土砂輸送装置が知られている。
【0003】
ところで、前記したような軟弱土を埋め立てに用いる際は、これを早期に固化するためにこの軟弱土に石灰やセメント等の固化剤を混合させている。そこでこの混合効率を高めるため前記空気圧送式土砂輸送装置において送泥管に固化剤供給装置を接続し、送泥管中を輸送されてくる土砂相に固化剤を供給し、この軟弱土を固化処理土となして所定の埋め立て場所に排出する方式が、例えば特許第2554141号として提案されている。
【0004】
ところで、前記したような空気圧送式土砂輸送装置により軟弱土を固化処理土として排出する方式においては、土砂相として輸送される軟弱土の量と速度を検出し、固化剤供給装置から供給される固化剤を前記検出値によって制御するのが好ましい。
【0005】
即ち、土砂相として輸送される軟弱土は、その土質によって供給される固化剤の分量(割合)が定められるが、この送泥管中を輸送されてくる土砂相の量(大きさ)はしばしば変化するため、この変化に対応して固化剤の供給量を増減させるのがよい。
【0006】
一方、送泥管中においては、前記のように空気相と土砂相とが交互に輸送されているが、固化剤の混合効率を高めるために、この土砂相が固化処理剤供給装置の接続箇所に到達したときにこの固化剤を供給するのがよい。このような技術的な問題から、送泥管中の土砂の状態、即ち、土砂の量と輸送速度を検出することによって固化剤の供給時期と供給量を制御する必要がある。
【0007】
従来、かかる土砂検出方式としては、a)送泥管の内圧を検出し、その圧力が高い場合には土砂相が存在すると見なす方式、b)根元に歪み計を取り付けた棒状のセンサーを送泥管中に突出して取付けておき、このセンサーの振動特性から土砂相の存在を検出する方式、更に、c)送泥管外に振動計や超音波を発生する送受信機を取付け、この振動特性や音波の減衰特性から土砂相の存在を判定する方式等が採られている。
【0008】
【発明が解決しようとする課題】
ところで、前記したような従来の土砂検出方式にはそれぞれ問題がある。即ち、前記a)の方式は、圧力が高い時に必ずそこに土砂相が存在するとは限らず、そのため信頼性が低いものとなっている。そして、前記b)の方式においては、センサーに接触しないような土砂相は検出できず、又混入物や瓦礫等の重い粗大粒子がセンサーに絡んで送泥管の底部に堆積し始めると、この送泥管を閉鎖する恐れがあった。更に前記c)の方式においては、土砂の中に異物や瓦礫が混入している場合は、それらが送泥管内壁と接触する振動音等が雑音となるため、土砂相の判別が困難であったり又は土砂の一部が送泥管内に付着し又は堆積すると以降の土砂相の検出が困難になるという問題があった。即ち、前記従来の土砂の検出方式は何れにおいても土砂相を正確に検出することが出来ないという問題があったのである。
【0009】
【課題を解決するための手段】
本発明は、前記したような従来の問題点を解決するためになされたものであって、次のように構成されている。
【0010】
1)請求項1記載の空気圧送式土砂輸送装置における土砂検出方式は、送泥管中を空気相と土砂相とが交互に存在する流動体となって移動し、前記土砂相に固化処理剤供給装置から固化剤を供給して前記土砂を固化処理土となして排出装置から排出するようにした空気圧送式土砂輸送装置において、
【0011】
泥管の途中に少なくとも2本の中間管体を、可撓管によって内部を移動する流動体重量で変位可能に連結すると共に、該中間管体にそれぞれ荷重計を介在させて支持し、該荷重計の信号を演算装置で処理して土砂の輸送速度と輸送量を求めるようにしたことを特徴としている。
【0012】
前記のように送泥管の途中に少なくとも2本の中間管体を可撓性を持って荷重計で支持していることから、この中間管体を土砂相が通過する際に荷重が変化するので、この荷重変化の信号により土砂の輸送速度と輸送量とを求めることができる。
【0013】
2)請求項2記載の空気圧送式土砂輸送装置における土砂検出方式は、送泥管を、第一の送泥管と、第二の送泥管と、第一の中間管体と第二の中間管体と、2つの中間体に挟まれる第三の送泥管と、第一乃至第四の可撓管とにより連結構成し、
【0014】
前記第一の送泥管と前記第一の中間管体とを前記第一の可撓管により、前記第一の中間管体と前記第三の送泥管とを前記第二の可撓管により、前記第三の送泥管と前記第二の中間管体とを前記第三の可撓管により、前記第二の中間管体と前記第二の送泥管とを前記第四の可撓管によりそれぞれ連結し、
前記第一の中間管体を第一の荷重計で支持し、前記第二の中間管体を第二の荷重計で支持し、前記第一の荷重計と前記第二の荷重計の信号を演算装置に入力し、該演算装置により土砂の輸送速度と輸送量を求めるように構成している。
【0015】
従って、第一の中間管体と第二の中間管体は、第一の送泥管、第二の送泥管および第三の送泥管に可撓的に連結されているため、土砂相がこの第一の中間管体又は第二の中間管体内に到達すると、それぞれの中間管体の荷重が大となり、この荷重の変化を第一の荷重計と第二の荷重計により検出し、その信号を演算装置に入力して土砂の輸送速度と輸送量とを求めるので、信頼性のある土砂検出ができる。
【0016】
3)請求項3記載の空気圧送式土砂輸送装置における土砂検出方式は、第一の荷重計により土砂相の始点と終点とを、また、第二の荷重計により土砂相の始点をそれぞれ検知し、この第一の荷重計の始点信号と終点信号と、更に第二の荷重計の始点信号とを演算装置に入力し、該演算装置において前記第一の荷重計の始点信号と前記第二の荷重計の始点信号と、予め記憶装置に入力されている第一の荷重計と第二の荷重計との距離信号とにより土砂相の輸送速度を演算するとともに、この土砂相の輸送速度と第一の荷重計の始点信号及び終点信号と予め記憶装置に入力されている送泥管の断面積の信号と前記土砂相の輸送速度とにより土砂の輸送量を検出するようにしたものである。
【0017】
このような土砂検出方式によれば、第一の中間管体内に土砂相が流入した時点とこの土砂相が流下して第二の中間管体内に流入した時点との時間差と、第一の荷重計と第二の荷重計との距離とによりこの土砂相の輸送速度が演算でき、又この輸送速度と第一の荷重計により検出された始点信号と終点信号、即ち、土砂相の第一の中間管体への流入時点と流出時点との時間差による土砂相の管軸方向の長さと送泥管の断面積により土砂の輸送量が演算されるのである。
【0018】
そして、先ず第一の中間管体内に土砂相が流入すると、この土砂相の荷重を第一の荷重計により検出するとともに、この土砂相が第二の中間管体内に流入した場合の荷重の変化を第二の荷重計により検出し、それぞれの荷重計の信号を演算装置に入力し、土砂相の輸送速度と輸送量とを検出することができるのである。
【0019】
4)請求項4記載の空気圧送式土砂輸送装置における土砂検出方式は、送泥官中を空気層と土砂層とが交互に存在する流動体となって移動し、前記土砂相に固化処理剤供給装置から固化剤を供給して前記土砂を固化処理となして排出装置から排出するようにした空気圧送式土砂輸送装置において、
【0020】
前記送泥管を、第一の送泥管と、第二の送泥管と第一の中間管体と、第二の中間管体と、2つの中間体に挟まれる第三の送泥管と、第一乃至第四の可撓管とにより構成し、前記第一の送泥管と前記第一の中間管体とを前記第一の可撓管により、前記第一の中間管体と前記第三の送泥管とを前記第二の可撓管により、前記第三の送泥管と前記第二の中間管体とを前記第三の可撓管により、前記第二の中間管体と前記第二の送泥管とを前記第四の可撓管によりそれぞれ連結し、
【0021】
前記第一の中間管体を第一の荷重計と第三の荷重計とにより支持し、前記第二の中間管体を第二の荷重計により支持し、
前記第一の荷重計と前記第二の荷重計と前記第三の荷重計のそれぞれの信号を演算装置に入力し、該演算装置により土砂の輸送速度と輸送量を求めるように構成している。
【0022】
この構成によれば、送泥管の途中の少なくとも2本の中間管体を可撓管によって連結し、この内の一本の中間管体を2つの荷重計で支持していることから、この中間管体を通過する土砂相の荷重を計測することができるので、この荷重と、各荷重計の荷重変化の信号により土砂の輸送速度と輸送量とを求めることができる。
【0023】
5)請求項5記載の空気圧送式土砂輸送装置における土砂検出方式は、第一の荷重計により土砂相の始点を検知するとともに、該第一の荷重計と第三の荷重計とにより土砂相の荷重値を検知し、第二の荷重計により土砂相の始点を検知し、これら各荷重計の信号を演算装置に入力し、該演算装置において前記荷重値の信号と予め記憶装置に入力されている土砂相の比重信号とにより土砂の輸送量を求めるとともに前記第一の荷重計の始点信号と前記第二の荷重計の始点信号と予め記憶装置に入力されている前記第一の荷重計と第二の荷重計との距離信号により土砂相の輸送速度を求めるように構成している。
【0024】
第一の中間管体を第一の荷重計と第三の荷重計とにより支持し、第二の中間管体を第二の荷重計により支持した場合において、第一の荷重計により土砂相の始点を検知するとともにこの第一の荷重計と第三の荷重計とにより土砂相の総荷重を検出し、第二の荷重計により土砂相の始点を検出し、これら各荷重計の信号を演算装置に入力して土砂相の輸送速度と輸送量とが演算される。
【0025】
即ち、土砂相が第一の中間管体に流入した時を始点として検出するとともに土砂相が流下し第二の中間管体内に達したとき第二の荷重計により土砂相の始点を検出し、これら第一の荷重計の始点信号と第二の荷重計の始点信号と予め記憶装置に入力されている第一の荷重計と第二の荷重計との距離の信号とにより土砂相の輸送速度が演算される。
【0026】
一方、第一の荷重計と第三の荷重計とにより検出された土砂相の総荷重の信号と記憶装置に予め入力されている土砂相の比重の信号とにより土砂相の輸送量が演算されるようにしたものである。
【0027】
このような土砂検出方式によれば、第一の荷重計と第三の荷重計とにより土砂相の総荷重が検出されるとともに第一の荷重計の始点信号と第二の荷重計の始点信号と第一の荷重計と第二の荷重計との距離とにより土砂相の輸送速度が演算されるのである。
【0028】
【発明の実施の形態】
以下図1に乃至図4を参照して本発明による空気圧送式土砂輸送装置における土砂検出方式の実施例を説明する。
【0029】
なお、以下の説明における演算及び制御は、アナログ式の演算及び制御を念頭において説明しているが、デジタル式の演算及び制御でも良く、機器構成やプログラミングの難易やコストとの関連において適切な演算及び制御方法を選択することができる。
【0030】
図1は空気圧送式土砂輸送装置の系統図であって、途中に固化処理剤供給装置1を接続した送泥管2の一端に、土砂供給装置として圧送タンク3a,3bが連結され、この送泥管2の他端にはサイクロンの如き排出装置4が連結されている。そして、この圧送タンク3a,3bに圧力空気Aと土砂、特に軟弱土Bが供給され、吐出弁5a,5bを開放することにより土砂相Dと空気相Eとが交互に、縞状に存在する流動体Fとなって送泥管2中を流下し、この土砂相Dが固化剤供給装置1の接続箇所に達すると石灰やセメント等の固化剤Cが供給され、そしてこの土砂相Dは固化処理土D′となって排出装置4から所定の場所に排出されるようになっている。
【0031】
送泥管2は、前端に圧送タンク3a,3bを接続した第一の送泥管6と、固化処理剤供給装置1を接続し、かつ後端に排出装置4を連結した第二の送泥管7と、第一の中間管体9と、第二の中間管体10と、前記2つの中間管体9,10に挟まれる第三の送泥管8と、第一乃至第四の可撓管11,12,13,14とにより構成されている。
【0032】
そして、第一の中間管体9は、図2にも示されるように第一の荷重計15により、又第二の中間管体10は、第二の荷重計16によりそれぞれ支持されるとともにこの第一の荷重計15の信号V1 ,V2 及び第二の荷重計16の信号V3 とは制御装置17を構成する演算装置18に入力されるようになっている。
【0033】
詳述すれば、図3に示すように第一の中間管体9内に土砂相Dの先端が達すると、この中間管体9は傾斜等の姿勢を変化させるので、その変化に伴う荷重変化を第一の荷重計15により検出し、これを始点信号V1 として演算装置18に入力する。そしてこの中間管体9の出口側に前記土砂相Dが移動(Daの位置)した際に、前記第一の荷重計15により荷重変化を検出し、その信号を終点信号V2 として演算装置18に入力するようになっている。なお、この第一の荷重計15において土砂相Dの先端部と後端部との2つ信号が発せられることになる。
【0034】
一方、土砂相Dの先端が第二の中間管体10内に達すると、その荷重変化を第二の中間管体10を支持している第二の荷重計16により検出し、その信号を始点信号V3 として演算装置18に入力するようになっている。
【0035】
制御装置17は、演算装置18と記憶装置19と制御信号作成装置20等で構成され、記憶装置19には、送泥管2の断面積Gと第一の荷重計15と第二の荷重計16との距離L1 とこの第二の荷重計16と固化剤供給装置1の接続箇所との距離L2 とが予め入力されている。そして、この記憶装置19から必要に応じて送泥管2の断面積Gの信号V4 第一の荷重計15と第二の荷重計16との距離L1 の信号V6 とが演算装置18に入力されるようになっている。
【0036】
このように構成された装置において、今、土砂相Dと空気相Eとが交互に存在する流動体Fが第一の送泥管6中を流下し、その土砂相Dの先端部が第一の可撓管11を経て第一の中間管体9に達すると第一の荷重計15からの始点信号V1 が演算装置18に入力され、そしてこの土砂相Dが更に流下してその先端部が第二の中間管体10に達すると第二の荷重計16からの始点信号V3 が演算装置18に入力され、この始点信号V1 と始点信号V3 と、前記記憶装置17からの距離L1 の信号V6 とにより土砂相Dの輸送速度tが演算して求められる。
【0037】
そして、この輸送速度tが後述する土砂の輸送量Hの演算に用いられるとともに、この輸送速度tの信号V7 と、記憶装置19からの距離L2 の信号V9 と後述する土砂の輸送量Hの信号V8 とが制御信号作成装置20に入力され、ここで作成された制御信号V10が固化剤供給装置1に導かれ、この固化剤供給装置1が制御されて土砂相Dに必要とする量の固化剤Cをタイミングよく供給して混合させるようになっている。
【0038】
一方、土砂相Dが流下し、その後端が第一の中間管体9を通過したとき第一の荷重計15から終点信号V2 が演算装置18に入力され、ここで第一の荷重計15から始点信号V1 と終点信号V2 と、更に記憶装置18からの送泥管2の断面積Gの信号V4 と、土砂の輸送速度tとにより土砂相Dの輸送量Hが演算して求められ、そして前記したようにこの輸送量Hの信号V8 が制御信号作成装置20に入力されるようになっている。
【0039】
前記のように中間管体9,10は、第一の送泥管6、第二の送泥管7、及び第三の送泥管8から切り離されており、第一の中間管体9のみに土砂相Dが存在する場合は第一の荷重計15ではその荷重を検知するが、第二の荷重計16では検知しない。
【0040】
前記装置による土砂相Dの移送量の検知方法を簡単に説明すると、第一の荷重計15において、直前まで続いた荷重値(土砂相Dが来ていない状態)から、一定以上の荷重増加が計測された時刻を土砂相Dの検知開始時刻として、この開始時刻と土砂相Dの継続時間を計測する。同時に第二の荷重計16において土砂相Dの検知開始時刻を計測し、両荷重計15,16の検知開始時刻の時間差から移動速度を得る。
そして第一の荷重計15(または第二の荷重計16)での土砂相Dの検知状態の継続時間と先に求めた移動速度から土砂相Dの長さを求め、これに中間管体9の断面積をかけて土砂相Dの移送量を算出するのである。
【0041
また、上記においては、中間管体9,10は各1個の荷重計15,16で支持され、土砂相Dの先端又は後端の通過に伴う荷重の変化を検出しているが、1本の中間管体9(又は10)を2個以上の間隔を設けて配置した荷重計で支持し、中間管体9(又は10)の傾斜及び沈下を伴った、これらの荷重計の計測値の和の値の変化から、土砂相Dの先端又は後端の通過を検知することもできる。
【0042
この構成のように、1本の中間管体を2個以上の間隔を設けて配置した荷重計で支持すると、中間管体の傾斜量が少なくなるので、両側の可撓管の変形量を減少することができ、これらの可撓管の寿命を長くすることができる。
また、これにより、中間管体同士や中間管体と送泥管との間に生じる段差を小さくすることができるので、土砂相が可撓管部分等で突っ掛かるのを防止して、土砂相の移送を円滑に行なうことができる。
要するに、動くように支持された中間管体を通過する土砂相の先端又は後端の通過を、この中間管体の重量変化で検知することがポイントであり、これに適した荷重計の配置を行なえばよい。
【0043
図4は、他の発明による空気圧送式土砂輸送装置における土砂検出方式を実施するための装置の要拡大図であって、図1乃至図3と同一符号は、同一名称を示している。
【0044
この図4において、第一の中間管体9の長さL5 は、予め予測される土砂相Dの長さL6 よりも長くなるよう形成されるとともに、この第一の中間管体9は第一の荷重計15と第三の荷重計21とにより支持されている。また、第一の荷重計15と第二の荷重計16との距離L3 は既知である。
【0045
第一の荷重計15での土砂相Dの検知開始から第一の荷重計15と第三の荷重計21の荷重値を計測し始め、2つの荷重値の和の最大値をもって土砂相Dの荷重値とするもので、移送速度は第一と第二の荷重計15,16の土砂相Dの検知開始時刻の時間差から求める。
【0046
図4に示す装置を更に具体的に説明すると、第一の荷重計15では、土砂相Dの始点が検出されてその信号V1 が演算装置18に入力されるとともに第三の荷重計21の信号V11が演算装置18に入力され、この第一の荷重計15の信号のV1 と第三の荷重計21の信号V11 とにより、土砂相Dの総荷重が検出されるようになっている。
【0047
なお、制御装置17を構成する記憶装置19には第一の荷重計15と第二の荷重計16との距離L3 と第二の荷重計16と固化剤供給装置1の接続部との距離 2 と土砂相Dの比重Wが予め記憶装置19に入力されている。
【0048
このような構成において、土砂相Dの前端が第一の中間管体9内に達すると第一の荷重計15がこれを検出し、この始点信号V1 を演算装置18に入力する。そして土砂相Dがさらに流下し、この土砂相Dの全てが第一の中間管体9内に流入すると、演算装置18において第一の荷重計15の信号V1 と第三の荷重計21の信号V11 とにより土砂層Dの総荷重が求められるとともに、記憶装置19からの土砂相Dの比重Wの信号V5 とにより土砂の輸送量Hが演算されて求められる。
したがって、土砂相Dが管断面上部まで達していないような不完全な充填状態の土砂相Dであっても、又は管壁管底部に土砂が多少残っていたとしても、土砂の輸送量Hを正確に検出することができるのである。
【0049
更に又、この土砂相Dが流下し、その前端が第二の中間管体10内に達すると第二の荷重計16からの始点信号V3 が演算装置18に入力される、この演算装置18において、第一の荷重計15の始点信号V1 と第二の荷重計16の始点信号V3 と記憶装置19からの第一の荷重計15と第二の荷重計16との距離L3 の信号V6 とにより土砂相Dの輸送速度tが演算して求められるのである。そして、この土砂の輸送量Hの信号V8 と輸送速度tの信号V7 と記憶装置19からの距離 2 の信号 9 とが制御信号作成装置20に入力され、ここで固化処理剤供給装置1を制御するための制御信号V10が作成される。
【0050
第一の荷重計15の始点信号V1 、第二の荷重計16の始点信号V3 、第三の荷重計21の信号V11を、制御装置17を構成する演算装置18に直接入力する場合を示したが、これは例えば記憶装置19に予め所定の荷重値を入力しておくとともに制御装置17に比較器を設け、前記各信号をこの比較器に入力するとともに記憶装置19からの所定の荷重値と比較した後演算装置18に入力することもできる。
【0051
【発明の効果】
以上の説明から明らかなように、本発明による空気圧送式土砂輸送装置における土砂検出方式によれば、送泥管を第一の送泥管と第二の送泥管と第一の中間管体と第二の中間管体と2つの中間管体に挟まれる第三の送泥管と第一乃至第四の可撓管とにより構成し、第一の中間管体及び第二の中間管体に流入する土砂相の輸送量と輸送速度とをこれら第一の中間管体および第二の中間管体の荷重変化より検出するようにしたため土砂の雑音や混入物等により悪影響を受けることがなく、結果として、土砂検出の信頼性を高めることができるという効果がある。
【図面の簡単な説明】
【図1】本発明による空気圧送式土砂輸送装置における土砂検出方式を実施するための概略系統図である。
【図2】図1の要部Xの拡大図である。
【図3】本発明による空気圧送式土砂輸送装置における土砂検出方式を実施する場合の信号取り出しの一部説明図である。
【図4】他の発明による空気圧送式土砂輸送装置における土砂検出方式を実施するための装置の要部拡大図である。
【符号の説明】
1 固化剤供給装置
2 送泥管
3a,3b 圧送タンク
4 排出装置
5a,5b 吐出弁
6 第一の送泥管
7 第二の送泥管
8 第三の送泥管
9 第一の中間管体
10 第二の中間管体
11 第一の可撓管
12 第二の可撓管
13 第三の可撓管
14 第四の可撓管
15 第一の荷重計
16 第二の荷重計
17 制御装置
18 演算装置
19 記憶装置
20 制御信号作成装置
21 第三の荷重計
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting sediment in a pneumatic feeding type earth and sand transport device, more specifically, earth and sand, particularly soft soil such as sludge and dredged soil, is transported using pressurized air, and a solidifying agent is mixed in the transportation process. The present invention relates to a sediment detection method in a pneumatic feeding type earth and sand transporting device which is discharged as a solidified soil to a predetermined place.
[0002]
[Prior art]
Conventionally, as one method for transporting soft soil such as sludge and dredged mud, such soft soil is supplied to a sediment supply device such as a pressure feed tank to which a mud pipe is connected, and pressure air is supplied to the pressure feed tank. By supplying, the soil phase, so-called "plug" and the air phase, are transported in the mud pipe as a fluidized state body in which the air phase exists alternately in stripes, that is, provided at the rear end of the mud pipe. 2. Description of the Related Art There is known a pneumatic-type sediment transport apparatus in which an air phase and a sediment phase are separated by a discharge device such as a cyclone and the sediment phase is discharged to a predetermined place.
[0003]
By the way, when soft soil such as that described above is used for land reclamation, a solidifying agent such as lime or cement is mixed with the soft soil in order to solidify it early. Therefore, in order to increase the mixing efficiency, a solidifying agent supplying device is connected to the mud pipe in the pneumatic feeding type sand transporting device, and the solidifying agent is supplied to the earth and sand phase transported in the mud feeding pipe to solidify the soft soil. For example, Japanese Patent No. 2554141 proposes a method of discharging to a predetermined landfill as processing soil.
[0004]
By the way, in the method of discharging soft soil as solidified soil by the pneumatic feeding type sand transport device as described above, the amount and speed of the soft soil transported as the soil phase is detected and supplied from the solidifying agent supply device. The solidifying agent is preferably controlled by the detected value.
[0005]
That is, the amount (ratio) of the solidifying agent supplied by the soil is determined for the soft soil transported as the sediment phase, but the amount (size) of the sediment phase transported through the mud pipe is often Therefore, it is preferable to increase or decrease the supply amount of the solidifying agent in response to this change.
[0006]
On the other hand, in the mud pipe, the air phase and the earth and sand phase are alternately transported as described above. However, in order to increase the mixing efficiency of the solidifying agent, the earth and sand phase is connected to the solidifying agent supply device. It is better to supply this solidifying agent when it reaches From such a technical problem, it is necessary to control the supply timing and the supply amount of the solidifying agent by detecting the state of the sediment in the mud pipe, that is, the amount of sediment and the transport speed.
[0007]
Conventionally, as such a sediment detection method, a) a method in which the internal pressure of a mud pipe is detected, and when the pressure is high, a sediment phase is considered to exist, b) a rod-shaped sensor having a strain gauge attached to the root is provided. A system that protrudes into the pipe and detects the presence of the sediment phase from the vibration characteristics of this sensor, and c) a vibration meter and a transmitter / receiver that generates ultrasonic waves are installed outside the mud pipe. A method for determining the presence of a sediment phase from the attenuation characteristics of sound waves is employed.
[0008]
[Problems to be solved by the invention]
By the way, the conventional soil detection methods as described above have their respective problems. That is, the method a) does not always have an earth and sand phase when the pressure is high, and therefore has low reliability. And in the method of b), the earth and sand phase that does not contact the sensor cannot be detected, and when heavy coarse particles such as contaminants and debris are entangled with the sensor and begin to accumulate at the bottom of the mud pipe, There was a risk of closing the mud pipe. Furthermore, in the method c), when foreign matter or debris is mixed in the earth and sand, the vibration sound that comes into contact with the inner wall of the mud pipe becomes noise, so it is difficult to discriminate the earth and sand phase. There is a problem that it becomes difficult to detect the subsequent sediment phase when a part of the soil or sand adheres or accumulates in the mud pipe. That is, there is a problem that the conventional sediment detection method cannot accurately detect the sediment phase.
[0009]
[Means for Solving the Problems]
The present invention has been made to solve the conventional problems as described above, and is configured as follows.
[0010]
1) Sediment detection method in pneumatic Okushiki sediment transport apparatus according to claim 1, wherein the feed mud tube moves the air phase and sediment phase becomes fluid which alternately present, solidification agent to the soil phase In the pneumatic feeding type earth and sand transporting device which supplies the solidifying agent from the feeding device and turns the soil into solidified soil and discharges it from the discharging device,
[0011]
At least two intermediate tube body in the middle of the feed mud tubes, as well as displaceably connected a fluidized weight of moving inside the flexible tube, is supported by interposing the respective load cell to said each intermediate tube, It is characterized in that processing the signals of the respective load meter computing unit to determine a transport speed and transport volume of sediment.
[0012]
As described above, since at least two intermediate tubes are supported by a load meter in the middle of the mud pipe, the load changes when the sediment phase passes through the intermediate tubes. Therefore, the transport speed and transport volume of the earth and sand can be obtained from this load change signal.
[0013]
2) soil detection method in pneumatic Okushiki sediment transport apparatus according to the second aspect, the feed mud pipe, a first Okudoro tube, a second feed mud pipe, a first intermediate tube body and a second The intermediate pipe body, a third mud pipe sandwiched between two intermediate bodies, and a first to fourth flexible pipe are connected and configured,
[0014]
The first mud pipe and the first intermediate pipe are connected to the first flexible pipe, and the first intermediate pipe and the third mud pipe are connected to the second flexible pipe. The third mud pipe and the second intermediate pipe are connected by the third flexible pipe, and the second intermediate pipe and the second mud pipe are connected by the fourth flexible pipe. Each connected by a flexible tube,
The first intermediate tube is supported by a first load cell, the second intermediate tube is supported by a second load cell, and the signals of the first load cell and the second load cell are It inputs to a calculating device, and it is comprised so that the transport speed and transport amount of earth and sand may be calculated | required by this calculating device.
[0015]
Therefore, since the first intermediate pipe and the second intermediate pipe are flexibly connected to the first mud pipe, the second mud pipe and the third mud pipe, When reaching the first intermediate tube or the second intermediate tube, the load of each intermediate tube becomes large, and the change in the load is detected by the first load meter and the second load meter, Since the signal is input to the arithmetic unit to determine the transport speed and transport volume of the sediment, reliable sediment detection can be performed.
[0016]
3) The sediment detection method in the pneumatic feeding type sediment transport apparatus according to claim 3 detects the start and end points of the sediment phase with the first load meter, and the start point of the sediment phase with the second load meter. The start point signal and end point signal of the first load cell, and the start point signal of the second load cell are input to the calculation device, and the start point signal of the first load cell and the second load signal are input to the calculation device. The transport speed of the sediment phase is calculated from the start point signal of the load meter and the distance signal between the first load meter and the second load meter previously input to the storage device. The transport amount of the earth and sand is detected from the start point signal and end point signal of one load cell, the cross section signal of the mud pipe previously input to the storage device, and the transport speed of the sediment phase.
[0017]
According to such a sediment detection method, the time difference between the time when the sediment phase flows into the first intermediate pipe and the time when the sediment phase flows down and flows into the second intermediate pipe, and the first load. The transport speed of this sediment phase can be calculated by the distance between the gauge and the second load meter, and the start and end signals detected by the transport speed and the first load meter, that is, the first phase of the sediment phase. The amount of sediment transport is calculated from the length of the sediment phase in the direction of the pipe axis and the cross-sectional area of the mud pipe due to the time difference between the inflow time and the outflow time to the intermediate pipe.
[0018]
First, when the sediment phase flows into the first intermediate pipe, the load of the sediment phase is detected by the first load meter, and the load changes when the sediment phase flows into the second intermediate pipe. Can be detected by the second load cell, and the signal of each load cell can be input to the arithmetic unit to detect the transport speed and transport amount of the sediment phase.
[0019]
4) soil detection method in pneumatic Okushiki sediment transport apparatus according to claim 4, wherein the feed mud officer in moves and the air layer and the soil layer becomes fluid which alternately present, solidification agent to the soil phase In a pneumatic feeding type earth and sand transporting device that supplies a solidifying agent from a feeding device and solidifies the earth and discharges it from a discharging device,
[0020]
The mud pipe is a third mud pipe sandwiched between a first mud pipe, a second mud pipe, a first intermediate pipe, a second intermediate pipe, and two intermediate pipes. The first intermediate pipe body is constituted by a pipe and first to fourth flexible pipes, and the first mud pipe and the first intermediate pipe body are constituted by the first flexible pipe. And the third mud feeding pipe by the second flexible pipe, and the third mud feeding pipe and the second intermediate pipe by the third flexible pipe, the second intermediate pipe. The pipe body and the second mud pipe are connected by the fourth flexible pipe,
[0021]
The first intermediate tube is supported by a first load meter and a third load meter, and the second intermediate tube is supported by a second load meter,
Each signal of said 1st load cell, said 2nd load cell, and said 3rd load cell is inputted into a computing device, and it is constituted so that the transportation speed and transportation volume of earth and sand may be obtained by this computing device. .
[0022]
According to this configuration, at least two intermediate tubes in the middle of the mud pipe are connected by the flexible tube, and one of the intermediate tubes is supported by the two load meters. Since the total load of the sediment phase passing through the intermediate tube can be measured, the transport speed and transport amount of the sediment can be obtained from this total load and a load change signal of each load cell.
[0023]
5) The earth and sand detection method in the pneumatic feeding type earth and sand transport apparatus according to claim 5 detects the starting point of the earth and sand phase with the first load meter, and the earth and sand phase with the first load meter and the third load meter. The load value is detected, the start point of the earth and sand phase is detected by the second load meter, the signals of each load meter are input to the calculation device, and the load value signal and the storage device are input in advance in the calculation device. The first load meter preliminarily input to the storage device and the start point signal of the first load cell, the start point signal of the second load cell and the first load meter The transport speed of the earth and sand phase is obtained from the distance signal between the load meter and the second load cell.
[0024]
When the first intermediate tube is supported by the first load meter and the third load meter and the second intermediate tube is supported by the second load meter, the first load meter While detecting the start point, the first load meter and the third load meter detect the total load of the sediment phase, the second load meter detects the start point of the sediment phase, and calculates the signal of each load meter Inputting into the apparatus, the transport speed and transport amount of the sediment phase are calculated.
[0025]
That is, when the earth and sand phase flows into the first intermediate pipe, the start point is detected, and when the earth and sand phase flows down and reaches the second intermediate pipe, the second load meter detects the starting point of the earth and sand phase, The transport speed of the sediment phase based on the start point signal of the first load cell, the start point signal of the second load cell, and the signal of the distance between the first load cell and the second load cell previously input to the storage device Is calculated.
[0026]
On the other hand, the transport amount of the sediment phase is calculated from the signal of the total load of the sediment phase detected by the first load meter and the third load meter and the specific gravity signal of the sediment phase previously input to the storage device. It was made to do.
[0027]
According to such a sediment detection method, the total load of the sediment phase is detected by the first load meter and the third load meter, and the start point signal of the first load meter and the start point signal of the second load meter The transport speed of the sediment phase is calculated from the distance between the first load meter and the second load meter.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the sediment detection method in the pneumatic feeding system according to the present invention will be described with reference to FIGS.
[0029]
Note that the calculation and control in the following description are described with analog calculation and control in mind, but digital calculation and control may be used, and appropriate calculation is related to the difficulty of device configuration, programming, and cost. And a control method can be selected.
[0030]
FIG. 1 is a system diagram of a pneumatic feed type earth and sand transporting device. One end of a mud pipe 2 to which a solidifying agent supply device 1 is connected in the middle is connected with pressure feeding tanks 3a and 3b as earth and sand feeding devices. A discharge device 4 such as a cyclone is connected to the other end of the mud pipe 2. Then, pressurized air A and earth and sand, particularly soft earth B are supplied to the pressure tanks 3a and 3b, and the earth and sand phase D and the air phase E are alternately present in a striped pattern by opening the discharge valves 5a and 5b. When the earth and sand phase D reaches the connection point of the solidifying agent supply device 1 as the fluid F flows down the mud pipe 2, the solidifying agent C such as lime and cement is supplied, and the earth and sand phase D is solidified. The treated soil D 'is discharged from the discharge device 4 to a predetermined place.
[0031]
The mud feed pipe 2 is a second mud feed pipe in which the first mud feed pipe 6 connected to the pressure feed tanks 3a and 3b at the front end and the solidifying agent supply device 1 are connected and the discharge device 4 is connected to the rear end. A pipe 7, a first intermediate pipe 9, a second intermediate pipe 10, a third mud feed pipe 8 sandwiched between the two intermediate pipes 9 , 10 , and first to fourth possible pipes. It consists of flexible tubes 11, 12, 13, and 14.
[0032]
The first intermediate tube 9 is supported by a first load meter 15 as shown in FIG. 2, and the second intermediate tube 10 is supported by a second load meter 16, respectively. The signals V 1 and V 2 of the first load cell 15 and the signal V 3 of the second load cell 16 are input to the arithmetic unit 18 constituting the control device 17.
[0033]
More specifically, as shown in FIG. 3, when the tip of the earth and sand phase D reaches the first intermediate tube 9, the intermediate tube 9 changes its posture such as inclination, so that the load change accompanying the change Is detected by the first load meter 15 and input to the arithmetic unit 18 as the start point signal V 1 . And when the sediment phase D is moved (positions of Da) on the outlet side of the intermediate tube member 9 detects a load change by the first load meter 15, the arithmetic unit the signal as endpoint signal V 2 18 To enter. In the first load meter 15, two signals of the front end portion and the rear end portion of the earth and sand phase D are generated.
[0034]
On the other hand, when the tip of the sediment phase D reaches the second intermediate tube 10, the load change is detected by the second load meter 16 supporting the second intermediate tube 10 , and the signal is the starting point. The signal V 3 is input to the arithmetic unit 18.
[0035]
The control device 17 includes an arithmetic device 18, a storage device 19, a control signal generation device 20, and the like. The storage device 19 includes a cross-sectional area G of the mud pipe 2, a first load meter 15, and a second load meter. 16 and the second load meter 16 of the distance L 1 Toko between the distance L 2 between the connection point of the solidifying agent supply device 1 is input in advance. Then, the signal V 4 of the cross-sectional area G of Okudoro tube 2 as required from the storage unit 19, a signal V 6 of the distance L 1 between the first load meter 15 and the second load cell 16 operation It is input to the device 18.
[0036]
In the apparatus configured as described above, the fluid F in which the sediment phase D and the air phase E are present alternately flows down through the first mud pipe 6 and the tip of the sediment phase D is the first. When the first intermediate tube 9 is reached through the flexible tube 11, the start point signal V 1 from the first load cell 15 is input to the arithmetic unit 18, and this earth and sand phase D further flows down to its tip. Reaches the second intermediate tube 10, the starting point signal V 3 from the second load cell 16 is input to the arithmetic unit 18, and the starting point signal V 1 , the starting point signal V 3, and the distance from the storage unit 17. transport rate t of sediment phase D by the signal V 6 of L 1 is determined by calculating.
[0037]
The transport speed t is used for the calculation of the earth and sand transport amount H described later, the signal V 7 of the transport speed t, the signal V 9 of the distance L 2 from the storage device 19, and the transport amount of earth and sand described later. H and the signal V 8 of is inputted to the control signal creation unit 20, where the control signal V 10 that is created by the directed solidification agent supply device 1, solidifying agent supply device 1 of this is controlled in the sediment phase D The required amount of solidifying agent C is supplied and mixed in a timely manner.
[0038]
On the other hand, when the earth and sand phase D flows down and the rear end thereof passes through the first intermediate tube 9, the end point signal V 2 is input from the first load meter 15 to the arithmetic unit 18, where the first load meter 15 The transport amount H of the sediment phase D is calculated from the start point signal V 1 and the end point signal V 2 , the signal V 4 of the cross-sectional area G of the mud pipe 2 from the storage device 18 and the transport speed t of the sediment. As described above, the transport amount H signal V 8 is input to the control signal generator 20.
[0039]
As described above, the intermediate pipes 9 and 10 are separated from the first mud pipe 6, the second mud pipe 7 , and the third mud pipe 8, and only the first intermediate pipe 9. When the earth and sand phase D exists, the first load meter 15 detects the load, but the second load meter 16 does not detect it.
[0040]
Briefly explaining the method for detecting the transfer amount of the earth and sand phase D by the device, the first load meter 15 increases the load more than a certain amount from the load value (state in which the earth and sand phase D does not come) immediately before. Using the measured time as the detection start time of the sediment phase D, the start time and the duration of the sediment phase D are measured. At the same time, the second load meter 16 measures the detection start time of the sediment phase D, and obtains the moving speed from the time difference between the detection start times of the two load meters 15 and 16.
And the length of the sediment phase D is calculated | required from the duration of the detection state of the sediment phase D in the 1st load cell 15 (or the 2nd load meter 16) and the moving speed calculated | required previously, and the intermediate pipe 9 The transfer amount of the earth and sand phase D is calculated by multiplying the cross-sectional area.
[00 41 ]
Moreover, in the above, the intermediate pipes 9 and 10 are supported by one load meter 15 and 16 respectively, and the change of the load accompanying the passage of the front or rear end of the sediment phase D is detected. The intermediate tube body 9 (or 10) is supported by a load meter arranged at two or more intervals, and the measured values of these load cells with inclination and subsidence of the intermediate tube body 9 (or 10) are measured. From the change in the sum value, the passage of the front or rear end of the sediment phase D can also be detected.
[00 42 ]
As in this configuration, if one intermediate tube is supported by a load meter with two or more intervals, the amount of inclination of the intermediate tube is reduced, so the amount of deformation of the flexible tubes on both sides is reduced. The life of these flexible tubes can be extended.
In addition, this makes it possible to reduce the level difference between the intermediate pipes or between the intermediate pipe and the mud pipe, thereby preventing the earth and sand phase from sticking to the flexible pipe part, etc. Can be carried out smoothly.
In short, the passage of the leading end or the trailing end of the sediment phase which passes through a supported intermediate tube body for movement, the be detected by change in weight of the intermediate tube is point, the arrangement of the load meter suitable for this Just do it.
[00 43 ]
FIG. 4 is an enlarged view of an apparatus for carrying out the sediment detection method in the pneumatic feeding type sediment transport apparatus according to another invention, wherein the same reference numerals as those in FIGS. 1 to 3 denote the same names.
[00 44 ]
In FIG. 4, the length L 5 of the first intermediate tubular body 9 is formed to be longer than the length L 6 of the earth and sand phase D predicted in advance, and the first intermediate tubular body 9 is It is supported by the first load meter 15 and the third load meter 21. Further, the distance L 3 between the first load meter 15 and the second load meter 16 is known.
[00 45 ]
From the start of detection of the sediment phase D by the first load cell 15, the load values of the first load meter 15 and the third load cell 21 are measured, and the maximum value of the sum of the two load values is measured. The transfer speed is obtained from the time difference between the detection start times of the earth and sand phases D of the first and second load cells 15 and 16 .
[00 46 ]
The device shown in FIG. 4 will be described more specifically. In the first load meter 15, the starting point of the sediment phase D is detected, and its signal V 1 is input to the calculation device 18 and the third load meter 21. The signal V 11 is input to the arithmetic unit 18, and the total load of the sediment phase D is detected from the signal V 1 of the first load cell 15 and the signal V 11 of the third load cell 21. ing.
[00 47 ]
The storage device 19 constituting the control device 17 includes a distance L 3 between the first load meter 15 and the second load meter 16 and a distance between the second load meter 16 and the connecting portion of the solidifying agent supply device 1. The specific gravity W between L 2 and the earth and sand phase D is input to the storage device 19 in advance.
[00 48 ]
In such a configuration, when the front end of the sediment phase D reaches the first intermediate tube 9, the first load meter 15 detects this and inputs this start point signal V 1 to the arithmetic unit 18. When the sediment phase D further flows down and all of the sediment phase D flows into the first intermediate tube 9, the signal V 1 of the first load meter 15 and the third load meter 21 are The total load of the sediment layer D is determined from the signal V 11 and the transport amount H of the sediment is calculated from the signal V 5 of the specific gravity W of the sediment phase D from the storage device 19.
Therefore, even if the earth and sand phase D is incompletely filled such that the earth and sand phase D does not reach the upper section of the pipe, or even if some earth and sand remain at the bottom of the pipe wall pipe, the transport amount H of the earth and sand is reduced. It can be detected accurately.
[00 49 ]
Furthermore, when this earth and sand phase D flows down and the front end thereof reaches the second intermediate tube 10, the start point signal V 3 from the second load cell 16 is input to the arithmetic unit 18. , The start point signal V 1 of the first load cell 15, the start point signal V 3 of the second load cell 16, and the distance L 3 between the first load cell 15 and the second load cell 16 from the storage device 19. is the transport rate t of the sediment phase D is obtained by calculating by the signal V 6. Then, the signal V 8 of the transport amount H of the earth and sand, the signal V 7 of the transport speed t, and the signal V 9 of the distance L 2 from the storage device 19 are input to the control signal generating device 20 where the solidifying agent supply A control signal V 10 for controlling the device 1 is created.
[00 50 ]
First start signal V 1 of the load meter 15, a second load cell 16 starting signal V 3, and if the third load meter 21 of the signal V 11, is directly input to the arithmetic unit 18 constituting the control unit 17 However, for example, a predetermined load value is input to the storage device 19 in advance and a comparator is provided to the control device 17, and each signal is input to the comparator and a predetermined load from the storage device 19 is provided. It can also be input to the arithmetic unit 18 after being compared with the load value.
[00 51 ]
【The invention's effect】
As is apparent from the above description, according to the sediment detection method in the pneumatic feeding type sediment transport apparatus according to the present invention, the mud pipe is divided into the first mud pipe, the second mud pipe, and the first intermediate pipe. And the second intermediate pipe, the third mud pipe sandwiched between the two intermediate pipes, and the first to fourth flexible pipes, the first intermediate pipe and the second intermediate pipe The transport volume and transport speed of the sediment phase flowing into the soil are detected from changes in the load of the first intermediate tube and the second intermediate tube, so there is no adverse effect due to sediment noise or contaminants. As a result, there is an effect that the reliability of earth and sand detection can be improved.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic system diagram for carrying out a sediment detection method in a pneumatic feeding system according to the present invention.
FIG. 2 is an enlarged view of a main part X of FIG.
FIG. 3 is a partial explanatory diagram of signal extraction in the case of carrying out a sediment detection method in the pneumatic feed type sediment transport apparatus according to the present invention.
FIG. 4 is an enlarged view of a main part of an apparatus for carrying out a sediment detection method in a pneumatic feeding type sediment transport apparatus according to another invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Solidifying agent supply apparatus 2 Mud feed pipe 3a, 3b Pressure feed tank 4 Discharge device 5a, 5b Discharge valve 6 First mud feed pipe 7 Second mud feed pipe 8 Third mud feed pipe 9 First intermediate pipe 10 second intermediate tube 11 first flexible tube 12 second flexible tube 13 third flexible tube 14 fourth flexible tube 15 first load meter 16 second load meter 17 controller 18 Arithmetic device 19 Storage device 20 Control signal creation device 21 Third load meter

Claims (5)

泥管中を空気相と土砂相とが交互に存在する流動体となって移動し、前記土砂相に固化処理剤供給装置から固化剤を供給して前記土砂を固化処理土となして排出装置から排出するようにした空気圧送式土砂輸送装置において、
記送泥管の途中に少なくとも2本の中間管体を、可撓管によって内部を移動する流動体重量で変位可能に連結すると共に、該中間管体にそれぞれ荷重計を介在させて支持し、該荷重計の信号を演算装置で処理して土砂の輸送速度と輸送量を求めるようにしたことを特徴とする空気圧送式土砂輸送装置における土砂検出方式。
And the feed mud tube and the air phase and sediment phase move a fluid present in alternating, without the solidification soil the soil by supplying solidifying agent from the solid processing agent supply device to the sediment phase in pneumatic Okushiki sediment transport apparatus adapted to discharge from the discharge detection device,
At least two intermediate tube body in the middle of the front Symbol Okudoro tube and thereby displaceably connected a fluidized weight of moving inside the flexible tube, are interposed respectively load meter to the respective intermediate tube support and, sediment detection method in pneumatic Okushiki sediment transport apparatus being characterized in that processing the signals of the respective load meter computing unit to determine a transport speed and transport volume of sediment.
送泥管を、第一の送泥管と、第二の送泥管と、第一の中間管体と第二の中間管体と、2つの中間体に挟まれる第三の送泥管と、第一乃至第四の可撓管とにより連結構成し、
前記第一の送泥管と前記第一の中間管体とを前記第一の可撓管により、前記第一の中間管体と前記第三の送泥管とを前記第二の可撓管により、前記第三の送泥管と前記第二の中間管体とを前記第三の可撓管により、前記第二の中間管体と前記第二の送泥管とを前記第四の可撓管によりそれぞれ連結し、
前記第一の中間管体を第一の荷重計で支持し、前記第二の中間管体を第二の荷重計で支持し、前記第一の荷重計と前記第二の荷重計の信号を演算装置に入力し、該演算装置により土砂の輸送速度と輸送量を求めるようにした請求項1記載の空気圧送式土砂輸送装置における土砂検出方式。
A mud pipe, a first mud pipe, a second mud pipe, a first intermediate pipe, a second intermediate pipe, and a third mud pipe sandwiched between two intermediate bodies; , Connected to the first to fourth flexible tubes,
The first mud pipe and the first intermediate pipe are connected to the first flexible pipe, and the first intermediate pipe and the third mud pipe are connected to the second flexible pipe. The third mud pipe and the second intermediate pipe are connected by the third flexible pipe, and the second intermediate pipe and the second mud pipe are connected by the fourth flexible pipe. Each connected by a flexible tube,
The first intermediate tube is supported by a first load cell, the second intermediate tube is supported by a second load cell, and the signals of the first load cell and the second load cell are The sediment detection method in the pneumatic feeding type sediment transport apparatus according to claim 1 , wherein the sediment is input to the computation device, and the sediment transport speed and transport amount are obtained by the computation device.
第一の荷重計により土砂相の始点と終点とを検知するとともに第二の荷重計により土砂相の始点を検知し、
前記第一の荷重計及び第二の荷重計の信号を演算装置に入力し、該演算装置において前記第一の荷重計の土砂相の始点信号と前記第二の荷重計の始点信号と、予め記憶装置に入力されている第一の荷重計と第二の荷重計との距離信号とにより土砂相の輸送速度を求めるとともに、
この土砂相の輸送速度と第一の荷重計の始点信号及び終点信号と予め記憶装置に入力されている送泥管の断面積の信号と前記土砂相の輸送速度とにより土砂の輸送量を検出するようにした請求項記載の空気圧送式土砂輸送装置における土砂検出方式。
The first load meter detects the start and end points of the sediment phase and the second load meter detects the sediment phase start point,
The signals of the first load meter and the second load meter are input to an arithmetic device, and in the arithmetic device, the starting point signal of the earth and sand phase of the first load meter, the starting point signal of the second load meter, the first load meter that is input to the storage device and the distance signal with a second load meter determined transport speed of the sediment phase Rutotomoni,
The amount of sediment transport is detected from the transport speed of this sediment phase, the start and end signals of the first load cell, the cross-sectional area signal of the mud pipe previously input to the storage device, and the transport speed of the sediment phase. The earth and sand detection method in the pneumatic feeding type earth and sand transporting apparatus according to claim 1 .
泥管中を空気相と土砂相とが交互に存在する流動体となって移動し、前記土砂相に固化処理剤供給装置から固化剤を供給して前記土砂を固化処理となして排出装置から排出するようにした空気圧送式土砂輸送装置において、
前記送泥管を、第一の送泥管と、第二の送泥管と、第一の中間管体と、第二の中間管体と、2つの中間体に挟まれる第三の送泥管と、第一乃至第四の可撓管とにより構成し、前記第一の送泥管と前記第一の中間管体とを前記第一の可撓管により、前記第一の中間管体と前記第三の送泥管とを前記第二の可撓管により、前記第三の送泥管と前記第二の中間管体とを前記第三の可撓管により、前記第二の中間管体と前記第二の送泥管とを前記第四の可撓管によりそれぞれ連結し、
前記第一の中間管体を第一の荷重計と第三の荷重計とにより支持し、前記第二の中間管体を第二の荷重計により支持し、
前記第一の荷重計と前記第二の荷重計と前記第三の荷重計のそれぞれの信号を演算装置に入力し、該演算装置により土砂の輸送速度と輸送量を求めるようにした請求項1記載の空気圧送式土砂輸送装置における土砂検出方式。
Te feed mud tube moves the air phase and sediment phase becomes fluid which alternately present, solidification soil ungated the sediment by supplying solidifying agent from the solid processing agent supply device to the sediment phase in pneumatic Okushiki sediment transport apparatus adapted to discharge from the discharge detection device,
The mud pipe is a first mud pipe, a second mud pipe , a first intermediate pipe, a second intermediate pipe, and a third mud fed between two intermediate bodies. The first intermediate pipe body is constituted by a pipe and first to fourth flexible pipes, and the first mud pipe and the first intermediate pipe body are constituted by the first flexible pipe. And the third mud feeding pipe by the second flexible pipe, and the third mud feeding pipe and the second intermediate pipe by the third flexible pipe, the second intermediate pipe. The pipe body and the second mud pipe are connected by the fourth flexible pipe,
The first intermediate tube is supported by a first load meter and a third load meter, and the second intermediate tube is supported by a second load meter,
Enter each signal of the first load cell and the second load cell and said third load cell in the arithmetic unit, according to claim 1 so as to obtain the transport rate and transport of sediment by the computing device Sediment detection method in the pneumatic feed type sediment transport equipment described .
第一の荷重計により土砂相の始点を検知するとともに、該第一の荷重計と第三の荷重計とにより土砂相の荷重値を検知し、第二の荷重計により土砂相の始点を検知し、これら各荷重計の信号を演算装置に入力し、該演算装置において前記荷重値の信号と予め記憶装置に入力されている土砂相の比重信号とにより土砂の輸送量を求めるとともに前記第一の荷重計の始点信号と前記第二の荷重計の始点信号と予め記憶装置に入力されている前記第一の荷重計と第二の荷重計との距離信号により土砂相の輸送速度を求めるようにした請求項4記載の空気圧送式土砂輸送装置における土砂検出方式。The first load meter detects the starting point of the sediment phase, the first load meter and the third load meter detect the load value of the sediment phase, and the second load meter detects the sediment phase start point. Then, the signals of these load cells are input to an arithmetic device, and the load of the load value and the specific gravity signal of the sediment phase previously input to the storage device are obtained in the arithmetic device, and the first and second transport amounts of the earth and sand are obtained. The load speed of the earth and sand phase is obtained from the start point signal of the load cell, the start point signal of the second load cell, and the distance signal between the first load cell and the second load cell previously input to the storage device. The sediment detection method in the pneumatic feeding type sediment transport apparatus according to claim 4.
JP03034099A 1999-02-08 1999-02-08 Sediment detection method in pneumatic feeding system Expired - Lifetime JP4006557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03034099A JP4006557B2 (en) 1999-02-08 1999-02-08 Sediment detection method in pneumatic feeding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03034099A JP4006557B2 (en) 1999-02-08 1999-02-08 Sediment detection method in pneumatic feeding system

Publications (2)

Publication Number Publication Date
JP2000230851A JP2000230851A (en) 2000-08-22
JP4006557B2 true JP4006557B2 (en) 2007-11-14

Family

ID=12301110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03034099A Expired - Lifetime JP4006557B2 (en) 1999-02-08 1999-02-08 Sediment detection method in pneumatic feeding system

Country Status (1)

Country Link
JP (1) JP4006557B2 (en)

Also Published As

Publication number Publication date
JP2000230851A (en) 2000-08-22

Similar Documents

Publication Publication Date Title
JP5922174B2 (en) Dredging system and its control method
US11041280B2 (en) Device for a sediment transfer in waters, and also a method for a transfer of sediment in waters
JP4006557B2 (en) Sediment detection method in pneumatic feeding system
Baldock et al. Seepage effects on sediment transport by waves and currents
CN110242312A (en) A kind of Anti-blocking structure, a kind of shield machine blowdown anti-block apparatus and its application
CN207582423U (en) A kind of precisely jackstone system waterborne
US8738240B2 (en) Method for high capacity stone delivery with concentric flow and enhanced nosecone for soil improvement
JP3787741B2 (en) Sediment underwater placing device
JP3586805B2 (en) Excavation soil removal control device
KR100801350B1 (en) Device and method for producing columns of materials in the ground of bodies of water
JP2002054173A (en) Sediment detecting method for pneumatic force-feeding sediment transport device
JPH06201534A (en) Device and method for detecting blocked position inside pipe and method for controlling amount of unloaded oil
JPH0663260B2 (en) Tank switching method in mud pressure feeder
CN209555932U (en) Floating underwater rubble base bed flattening ship
BE1020654A4 (en) METHOD AND DEVICE FOR DETERMINING THE HYDROSTATIC PRESSURE IN A LIQUID MASS.
JP3970008B2 (en) Method for measuring transport volume in slag flow
JP2683410B2 (en) How to release the blockage of the upward pipeline
JP3021848B2 (en) Method and apparatus for measuring flow rate of pumped mud
JP3379042B2 (en) Method and apparatus for injecting improver into sediment transport pipe
JP3659782B2 (en) Slurry property measuring system and method, and muddy water treatment system and method using the same
JP2683411B2 (en) How to release the blockage of the downward pipeline
JP2743222B2 (en) Mixing pressure feeder for earth and sand
JP3184999B2 (en) Flow measurement method of earth and sand plug flow
JP3124505B2 (en) Mud treatment system and mud treatment system for mud method
JPH09137697A (en) Measuring device of excavated soil volume in mud earth pressure shield machine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050912

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070814

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140907

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term