JP4006421B2 - Formaldehyde adsorbent and method for producing the same - Google Patents

Formaldehyde adsorbent and method for producing the same Download PDF

Info

Publication number
JP4006421B2
JP4006421B2 JP2004209626A JP2004209626A JP4006421B2 JP 4006421 B2 JP4006421 B2 JP 4006421B2 JP 2004209626 A JP2004209626 A JP 2004209626A JP 2004209626 A JP2004209626 A JP 2004209626A JP 4006421 B2 JP4006421 B2 JP 4006421B2
Authority
JP
Japan
Prior art keywords
water
formaldehyde
formaldehyde adsorbent
soluble lignin
lignin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004209626A
Other languages
Japanese (ja)
Other versions
JP2006026544A (en
Inventor
和夫 原田
朋弘 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Original Assignee
Hokkaido Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc filed Critical Hokkaido Electric Power Co Inc
Priority to JP2004209626A priority Critical patent/JP4006421B2/en
Publication of JP2006026544A publication Critical patent/JP2006026544A/en
Application granted granted Critical
Publication of JP4006421B2 publication Critical patent/JP4006421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

この発明は、一般住宅、自動車内など気密性の高い空間においてその発生が問題となっている揮発性有機化合物(以下、単にVOC;Volatile Organic Compoundとも称する。)、特にホルムアルデヒドを効率的に除去するための吸着剤及びその製造方法に関する。 The present invention efficiently removes volatile organic compounds (hereinafter also simply referred to as VOC; Volatile Organic Compound), particularly formaldehyde, which are problematic in high airtight spaces such as ordinary houses and automobiles. a method of manufacturing the adsorbent and its for.

近年の住宅の高断熱化、高機密化、さらにはビニールクロスや接着剤などの化学物質の住宅建材への適用により、ホルムアルデヒドやトルエン等のいわゆるVOCが、人体に悪影響を及ぼす濃度で、室内空間へ放散される傾向が高まっている。   Due to the recent high insulation and high confidentiality of houses and the application of chemical substances such as vinyl cloth and adhesives to residential building materials, so-called VOCs such as formaldehyde and toluene have a concentration that adversely affects the human body. The tendency to be released is increasing.

結果として、人体がVOCに過敏に反応することにより、様々な症状を発症するシックハウス症候群が大きな社会問題となっている。   As a result, sick house syndrome that causes various symptoms due to hypersensitivity of the human body to VOC has become a major social problem.

このような問題を解決するために、厚生労働省では「揮発性有機化合物の室内濃度指針値」を制定し、ホルムアルデヒドの室内濃度については、100μg/m3以下とする指針を示している。 In order to solve such problems, the Ministry of Health, Labor and Welfare has established the “Indoor Concentration Guideline Value for Volatile Organic Compounds” and provides a guideline for the indoor concentration of formaldehyde to be 100 μg / m 3 or less.

これを受けて、ハウスメーカや塗料会社などでは、この指針の遵守および自社製品の差別化の目的から低VOC製品や各種VOC吸着剤の開発などの対策を行っている。しかしながら、現状では、上述した問題が、根本的に解決されるには至っていない。   In response, house makers and paint companies are taking measures such as developing low VOC products and various VOC adsorbents for the purpose of complying with this guideline and differentiating their products. However, at present, the above-described problem has not been fundamentally solved.

これまでに報告されているVOC吸着剤としては、特に植物由来のものとして、茶葉由来のポリフェノールであるカテキン類を用いて建築用建材、家具用材料などへ適用する技術が開示されている(特許文献1参照。)。   As the VOC adsorbents reported so far, a technique for applying to catechins, which are polyphenols derived from tea leaves, as a plant-derived one, is disclosed (patents). Reference 1).

また、本発明者らは、カラマツ由来のポリフェノールを塩基性物質を用いて重合させることでホルムアルデヒド吸着活性を奏するアルカリ処理生成物及びその製造方法を開示している(特許文献2参照。)。
特開平11−226100号公報 特開2003−245543号公報
In addition, the present inventors have disclosed an alkaline treatment product that exhibits formaldehyde adsorption activity by polymerizing larch-derived polyphenols using a basic substance (see Patent Document 2).
JP-A-11-226100 JP 2003-245543 A

天然物質を原料としてVOC吸着剤を製造する場合には、製造コストの低減が、極めて重要な課題となっている。従来の製造方法では、天然物質から抽出された物質、例えば、カテキン、タキシホリンなどのフラボノイド類を原料天然物から単離し、これを塩基物質で重合させる手法をとっている。このような製造方法によれば、フラボノイド類の抽出、単離、精製およびフラボノイド類の重合工程、さらにはその間の秤量、乾燥工程など非常に多くの製造工程を経る必要がある。このため、製造プロセスは極めて複雑となってしまう。従って、製造コストが高騰してしまい、化学合成品などと比較して性能的には同等であったとしても価格面で競合することが困難となっていた。   In the case of producing a VOC adsorbent using a natural substance as a raw material, a reduction in production cost is a very important issue. In a conventional production method, a substance extracted from a natural substance, for example, a flavonoid such as catechin or taxifolin is isolated from a raw material, and this is polymerized with a basic substance. According to such a production method, it is necessary to go through a great number of production steps such as extraction, isolation, purification of flavonoids, polymerization step of flavonoids, and weighing and drying in the meantime. For this reason, the manufacturing process becomes extremely complicated. Therefore, the manufacturing cost has risen, and it has been difficult to compete in terms of price even if the performance is equivalent to that of a chemically synthesized product.

この発明の目的は、極めて簡易なプロセスにより、目的とする活性成分を多量に抽出でき、また、製造コストの顕著な低減を可能とするVOC吸着剤、すなわちホルムアルデヒド吸着剤及びその製造方法を提供することにある。 The purpose of this invention, provided by a very simple process, can large amount of extract the active ingredient of interest, also, VOC adsorbent to allow a significant reduction in manufacturing cost, i.e. a method of manufacturing a formaldehyde adsorbent and its There is to do.

上述した課題を解決するに当たり、この発明のホルムアルデヒド吸着剤の製造方法は、下記のような工程を含んでいる。 In solving the above-described problems, the method for producing a formaldehyde adsorbent of the present invention includes the following steps.

すなわち、まず、カラマツ、トドマツ、エゾマツ及びミズナラを含む群から選択される1又は2以上の樹木の木質部分を、0℃から50℃の雰囲気下で、0.025mol/l以上0.25mol/l以下の濃度のアンモニア水溶液または水酸化ナトリウム水溶液で処理する。このようにしてプルラン換算で1000〜30000の範囲である分子量の水溶性リグニンを抽出することにより、水溶性リグニンを活性成分として含有する当該水溶性リグニンの水溶液を得る。 That is, first, a woody portion of one or two or more trees selected from the group including larch, todomatsu, spruce, and oak is 0.025 mol / l to 0.25 mol / l in an atmosphere of 0 ° C. to 50 ° C. Treat with an aqueous ammonia solution or aqueous sodium hydroxide solution of the following concentration: By extracting water-soluble lignin having a molecular weight in the range of 1000 to 30000 in terms of pullulan in this manner, an aqueous solution of the water-soluble lignin containing water-soluble lignin as an active ingredient is obtained.

次いで、得られた水溶性リグニンの水溶液を、凍結乾燥することにより、固形状のホルムアルデヒド吸着剤を得る。 Next, the obtained aqueous solution of water-soluble lignin is freeze-dried to obtain a solid formaldehyde adsorbent.

さらに、樹木の木質部分を、アンモニア水溶液または水酸化ナトリウム水溶液により処理する前に、水溶性リグニン以外の水溶性の不純物を除去し、さらに水溶性リグニン以外の脂溶性の不純物を除去してもよい。 Furthermore, before the woody part of the tree is treated with an aqueous ammonia solution or an aqueous sodium hydroxide solution , water-soluble impurities other than water-soluble lignin may be removed, and fat-soluble impurities other than water-soluble lignin may be further removed. .

上述したような製造工程及び条件とすれば、水溶性リグニンを効率的に抽出して、簡易な工程で、大量の活性成分を含有するホルムアルデヒド吸着剤を製造することができる。さらに、予め不純物の除去を行っておけば、より高純度で、優れた活性を奏するホルムアルデヒド吸着剤を製造することができる。 If it is set as the manufacturing process and conditions as mentioned above, formaldehyde adsorbent containing a lot of active ingredients can be manufactured by a simple process by extracting water-soluble lignin efficiently. Furthermore, if the impurities are removed in advance, a formaldehyde adsorbent with higher purity and excellent activity can be produced.

また、天然に豊富に存在し、かつ有効利用が図られていない樹木である特に針葉樹、例えばトドマツ、カラマツ等を原料として使用すれば、資源の有効利用を図ることができる。   In addition, effective use of resources can be achieved by using, as a raw material, conifers that are naturally abundant and have not been effectively used, such as Todomatsu and larch.

この発明のホルムアルデヒド吸着剤の製造方法において、プルラン換算で、好ましくは、500〜50000の範囲、より好ましくは10000〜30000の範囲の分子量の水溶性リグニンを、本質的な活性成分として含有するものとすれば、極めて顕著なホルムアルデヒド吸着活性を示す吸着剤を得ることができる。 In the method for producing a formaldehyde adsorbent according to the present invention, a water-soluble lignin having a molecular weight in the range of 500 to 50,000, more preferably in the range of 10,000 to 30,000, in terms of pullulan, is contained as an essential active ingredient. by words, it is possible to obtain the shown to adsorbents very significant formaldehyde adsorption activity.

以下、この発明の実施の形態につき説明する。以下の説明において、特定の材料、条件及び数値条件等を用いることがあるが、これらは好適例の1つに過ぎず、従って、この発明は、何らこれら好適例に限定されるものではない。   Hereinafter, embodiments of the present invention will be described. In the following description, specific materials, conditions, numerical conditions, and the like may be used. However, these are only preferred examples, and the present invention is not limited to these preferred examples.

この発明のホルムアルデヒド吸着剤において、本質的なホルムアルデヒド吸着活性を担う活性成分は水溶性リグニンである。 In the formaldehyde adsorbent of the present invention, the active ingredient responsible for the essential formaldehyde adsorption activity is water-soluble lignin.

リグニンとは、木材の主要成分の1つで、セルロースと強固に結合している。すなわち、リグニンは、木材骨格の主要部分を成す物質である。リグニンを木材骨格から除去するためには、例えば、パルプを製造する工程で用いられているように、非常に強い塩基性の水溶液に浸漬させる必要がある。   Lignin is one of the main components of wood and is strongly bonded to cellulose. That is, lignin is a substance that forms the main part of the wood skeleton. In order to remove lignin from the wood skeleton, it is necessary to immerse it in a very strong basic aqueous solution, for example, as used in the process of producing pulp.

しかしながら、分子量が500〜50000程度と、比較的小さいリグニンは、例えば、0.25mol/l以下の低濃度の水酸化ナトリウム溶液等で容易に抽出することができる。このように抽出されるリグニンを水溶性リグニンまたは低分子リグニンと称する。   However, a relatively small lignin having a molecular weight of about 500 to 50,000 can be easily extracted, for example, with a low concentration sodium hydroxide solution of 0.25 mol / l or less. The lignin extracted in this way is called water-soluble lignin or low-molecular lignin.

また、水溶性リグニンは、リグニン単体として存在している他に、大抵の場合には木材骨格内にリグニン配糖体として存在している。しかしながら、この発明のホルムアルデヒド吸着剤の本質的な活性成分である水溶性リグニンは単体である必要はなく、配糖体であってもよい。 Further, water-soluble lignin exists as a lignin glycoside in the wood skeleton in addition to lignin alone. However, the water-soluble lignin which is an essential active ingredient of the formaldehyde adsorbent of the present invention does not need to be a simple substance, and may be a glycoside.

この発明のホルムアルデヒド吸着剤の本質的な活性成分である水溶性リグニンやその配糖体の精製に関しては、高純度の水溶性リグニンを得るまでもなく、後述する抽出生成物の状態でも必要十分なホルムアルデヒド吸着活性を得られることから、特別な精製工程は、必ずしも実施しなくともよい。このようにすれば、この発明のホルムアルデヒド吸着剤の製造方法は、より簡便に、かつ、より低コストで実施することができる。 Regarding the purification of water-soluble lignin, which is an essential active ingredient of the formaldehyde adsorbent of the present invention, and its glycoside, it is necessary and sufficient not only to obtain high-purity water-soluble lignin but also in the state of the extraction product described later. Since the formaldehyde adsorption activity can be obtained, a special purification step is not necessarily performed. If it does in this way, the manufacturing method of the formaldehyde adsorbent of this invention can be implemented more simply and at lower cost.

抽出処理に際しては、樹木の幹部分を使用する。原料に適用可能な樹種としては、広葉樹、針葉樹を問わずあらゆる樹木が適用可能である。好ましくは、リグニンを多く含み、かつ資源量も豊富なカラマツ、トドマツ、エゾマツ等の針葉樹の幹部分を使用するのがよい。原料としては、これらの樹木を粉砕した粉砕物を用いるのがよい。また、原料として、製材等の木材加工によって生じるおがくず等を利用することもできる。これらの樹木は、単一の樹種の木質部分の粉砕物を用いてもよいし、複数種類の樹木の木質部分の粉砕物の混合物を用いてもよい。   In the extraction process, the trunk portion of the tree is used. As a tree species applicable to the raw material, any tree can be applied regardless of whether it is a hardwood or a conifer. Preferably, it is preferable to use a coniferous trunk such as larch, todomatsu, and spruce that contain a large amount of lignin and abundant resources. As a raw material, a pulverized product obtained by pulverizing these trees is preferably used. In addition, sawdust and the like produced by processing wood such as lumber can be used as a raw material. For these trees, a pulverized product of a woody part of a single tree species may be used, or a mixture of pulverized products of a woody part of a plurality of types of trees may be used.

粉砕された原料、すなわち粉砕物の大きさは抽出効率、ハンドリングなどの面から考慮すると1cmφ(粒径)以下の大きさが好ましい。続いて、容器に粉砕物を入れる。後述するが、抽出に使用される塩基性水溶液は、比較的低濃度である。従って、容器の材質は特に問わない。容器の容量は、所望の実施規模に応じた任意好適な容量のものを適宜選択すればよい。アンモニア水、又は水酸化ナトリウム水溶液により常温(0℃〜50℃)の雰囲気下、好ましくは10℃〜30℃の雰囲気下で浸漬する。このとき、塩基性物質の水溶液としては、水酸化カリウム(KOH)、炭酸ナトリウム(Na2CO3)、炭酸水素ナトリウム(NaHCO3)等の水溶液を適用してもよい。 The size of the pulverized raw material, that is, the pulverized product, is preferably 1 cmφ (particle diameter) or less in consideration of extraction efficiency, handling, and the like. Subsequently, the pulverized material is put in a container. As will be described later, the basic aqueous solution used for extraction has a relatively low concentration. Therefore, the material of the container is not particularly limited. What is necessary is just to select suitably the capacity | capacitance of the container according to the desired implementation scale suitably. It is immersed in an atmosphere of normal temperature (0 ° C. to 50 ° C.), preferably 10 ° C. to 30 ° C., with ammonia water or an aqueous sodium hydroxide solution. At this time, as an aqueous solution of the basic substance, an aqueous solution of potassium hydroxide (KOH), sodium carbonate (Na 2 CO 3 ), sodium hydrogen carbonate (NaHCO 3 ) or the like may be applied.

また、抽出効率や塩基性水溶液の量などを考慮したコスト、取り扱いなどの面から考えると、この発明のホルムアルデヒド吸着剤の製造方法における抽出工程においては、0.025〜0.25mol/l、好ましくは0.05〜0.2mol/lの濃度での塩基性物質の水溶液、特に好ましくは水酸化ナトリウム水溶液を抽出用の塩基性物質の水溶液として用いるのが好適である。 In view of cost, handling, etc. considering the extraction efficiency and the amount of the basic aqueous solution, in the extraction step in the method for producing a formaldehyde adsorbent of the present invention, 0.025 to 0.25 mol / l, preferably It is preferable to use an aqueous solution of a basic substance at a concentration of 0.05 to 0.2 mol / l, particularly preferably an aqueous sodium hydroxide solution as an aqueous solution of a basic substance for extraction.

この抽出工程における浸漬に必要な塩基性物質の水溶液の液量は、粉砕物の重量に対して100〜1500重量%の間で適当な量とすればよい。このとき、粉砕物の全てが塩基性の水溶液に浸るようにすればよい。   The amount of the aqueous solution of the basic substance necessary for the immersion in the extraction step may be an appropriate amount between 100 and 1500% by weight with respect to the weight of the pulverized product. At this time, all of the pulverized material may be immersed in a basic aqueous solution.

この浸漬、すなわち抽出工程に際しては、例えば、スクリュープレス機などのような装置を利用して、粉砕物の体積を圧縮するのがよい。このようにすれば、抽出に必要な塩基性物質の水溶液の量を極力低減できる。すなわち、塩基性物質の水溶液の使用量を減らすことができる。このようにすれば、後の工程における乾燥工程のコストを低減することできる。   In the dipping, that is, the extraction step, the volume of the pulverized product is preferably compressed using an apparatus such as a screw press. In this way, the amount of the basic substance aqueous solution necessary for extraction can be reduced as much as possible. That is, the usage amount of the aqueous solution of the basic substance can be reduced. If it does in this way, the cost of the drying process in a later process can be reduced.

この発明のホルムアルデヒド吸着剤の製造方法によれば、得られる活性成分、すなわち水溶性リグニンの抽出量は、原料に使用する樹種にもよるが概ね原料比で5〜10%にものぼり、例えば、フラボノイド類を原料としている従来技術と比較すると格段に多い量を安価に抽出することができる。 According to the method for producing a formaldehyde adsorbent of the present invention, the amount of the active ingredient to be obtained, that is, the amount of water-soluble lignin extracted is roughly 5 to 10% in terms of the raw material ratio, although it depends on the tree species used as the raw material. Compared with the prior art using flavonoids as raw materials, a much larger amount can be extracted at a low cost.

抽出工程後に、好ましくは、例えば濾紙(5C)又は中空子膜(0.45μm)を用いて残滓からろ別された抽出液は、精製又は濃縮を行った後に、凍結乾燥、スプレードライなどの方法で乾燥する。この乾燥工程により、常法に従って、例えばペレット状に成形された固形物であるホルムアルデヒド吸着剤を得ることができる。 After the extraction step, preferably, the extract liquid filtered from the residue using, for example, filter paper (5C) or hollow core membrane (0.45 μm) is purified or concentrated, and then subjected to a method such as freeze drying or spray drying. Dry with. By this drying step, for example, a formaldehyde adsorbent that is a solid material formed into pellets can be obtained according to a conventional method.

水溶性リグニンは、後述するように、例えば既存の吸着剤と比較して、顕著に高いホルムアルデヒド吸着活性を示す。このため、活性成分である水溶性リグニンの純度を敢えて高めなくとも、必要十分なホルムアルデヒド吸着活性を発揮する。   As will be described later, water-soluble lignin exhibits significantly higher formaldehyde adsorption activity than, for example, existing adsorbents. For this reason, even if it does not dare to raise the purity of water-soluble lignin which is an active ingredient, it exhibits necessary and sufficient formaldehyde adsorption activity.

しかしながら、より高性能(高活性)なホルムアルデヒド吸着剤が必要であれば、抽出工程後に、常法に従って、上述した製造工程によっては不可避的にホルムアルデヒド吸着剤に混入するヘミセルロース、フラボノイド類を除去する工程を行うか、または、抽出工程前に、ヘミセルロース、フラボノイド類を除去した原料を用いて、上述した抽出工程を行えばよい(詳細は後述する。)。 However, if a higher-performance (highly active) formaldehyde adsorbent is required, a process for removing hemicellulose and flavonoids inevitably mixed in the formaldehyde adsorbent, depending on the production process described above, after the extraction process, in accordance with conventional methods Or the extraction step described above may be performed using the raw material from which hemicellulose and flavonoids have been removed before the extraction step (details will be described later).

得られた固形物であるホルムアルデヒド吸着剤は、水(H2O)に対して極めて易溶性であるため、種々の態様で、種々の用途につき適用することができる。 Since the obtained formaldehyde adsorbent, which is a solid, is extremely soluble in water (H 2 O), it can be applied to various applications in various modes.

例えば、得られた吸着剤を密閉空間(室内)用のホルムアルデヒド吸着剤として使用する例を説明する。 For example, an example of using as a formaldehyde adsorbent for enclosed space (room) the adsorbents obtained will be described.

市販されている芳香剤等と同様に、上述した水溶性リグニンの水溶液を、常法に従って、ゲル状の基材に含有させる。   In the same manner as a commercially available fragrance, etc., the above-mentioned aqueous solution of water-soluble lignin is contained in a gel-like substrate according to a conventional method.

このような態様とすると、室内雰囲気中に存在するホルムアルデヒドは、まず、基材中の水分に吸着して捕捉される。捕捉されたホルムアルデヒドは、基材中の有効成分である水溶性のリグニンと結合して基材中に固定される。結果として、所定の期間にわたって、基材中の水分及び水溶性リグニンは、ホルムアルデヒドを効率的に吸着及び固定して、室内雰囲気から除去する。 In such a manner, sulfo Rumuarudehi de be present in the room atmosphere is first captured by adsorbing moisture in the substrate. The trapped formaldehyde binds to water-soluble lignin which is an active ingredient in the substrate and is fixed in the substrate. As a result, over a predetermined period of time, moisture and water-soluble lignin in the substrate removes from the room atmosphere by efficiently adsorbing and fixing formaldehyde .

具体的には、この発明のホルムアルデヒド吸着剤を、所定の期間の放散を維持するのに所要の量で、水に溶解させる。この水溶液をアガロースやカラギーナンといった天然高分子、例えば紙おむつ等に利用されている保水性合成高分子に混合して、ゲル状の製剤とすればよい。例えば、製品寿命、すなわち、アルデヒド吸収能を発揮可能な期間を1〜2ヶ月と仮定すると、一般的な8〜10畳間に対して、ゲル状の製剤は、200〜500ml程度の容量を必要とする。この程度のゲル容量に対して、この発明のホルムアルデヒド吸着剤(固形物の粉末)を、好ましくは0.5〜2.0重量部添加して、ゲル状の製剤とするのがよい。 Specifically, the formaldehyde adsorbent of the present invention is dissolved in water in an amount necessary to maintain the emission for a predetermined period. This aqueous solution may be mixed with a natural polymer such as agarose or carrageenan, for example, a water-retaining synthetic polymer used in paper diapers or the like to form a gel-form preparation. For example, assuming that the product life, that is, the period in which the aldehyde absorption ability can be exhibited is 1 to 2 months, the gel-like preparation needs a volume of about 200 to 500 ml with respect to a general space of 8 to 10 tatami mats. And It is preferable to add 0.5 to 2.0 parts by weight of the formaldehyde adsorbent (solid powder) according to the present invention for this degree of gel volume to obtain a gel-form preparation.

以下に、この発明のホルムアルデヒド吸着剤にかかる具体的な実施例、比較例、及び実証実験につき説明する。 Hereinafter, specific examples, comparative examples, and demonstration experiments according to the formaldehyde adsorbent of the present invention will be described.

(実施例1)
北海道産カラマツ(学名Larix leprolepis Gordon)の粉砕物10g(粒径1cm以下)を、0.025、0.05、0.1、0.25mol/lの水酸化ナトリウム溶液またはアンモニア水90mlを用いて、常温、1時間の条件で処理した。得られた抽出溶液を凍結乾燥して固形物とした。この固形物の重量を測定した。結果を表1に示す。
Example 1
10g of Hokkaido larch (scientific name Larix leprolepis Gordon) ground (particle size 1cm or less) using 0.025, 0.05, 0.1, 0.25mol / l sodium hydroxide solution or 90ml of ammonia water , Treated at room temperature for 1 hour. The obtained extraction solution was freeze-dried to obtain a solid. The weight of this solid was measured. The results are shown in Table 1.

(実施例2)
北海道産トドマツ(Abies Sachalinemsis Fr Schm)、エゾマツ(Picea jezoensis Carr.)の混合粉砕物10g(粒径0.1cm以下)を0.025、0.05、0.1、0.25mol/lの水酸化ナトリウム溶液90mlを用いて、常温、1時間の条件で処理した。得られた抽出溶液を凍結乾燥して固形物とした。この固形物の重量を測定した。結果を表1に示す。
(Example 2)
0.025, 0.05, 0.1, 0.25 mol / l of mixed pulverized product of Hokkaido Todomatsu (Abies Sachalinemsis Fr Schm) and Scots pine (Picea jezoensis Carr.) (Particle size 0.1 cm or less) The treatment was performed at room temperature for 1 hour using 90 ml of a sodium oxide solution. The obtained extraction solution was freeze-dried to obtain a solid. The weight of this solid was measured. The results are shown in Table 1.

(実施例3)
ロシア産カラマツ(学名Larix gmelinii Gordon)の粉砕物10g(粒径1cm以下)を0.025、0.05、0.1、0.25mol/lの水酸化ナトリウム溶液90mlを用いて常温、1時間の条件で処理した。得られた抽出溶液を凍結乾燥して固形物とした。この固形物の重量を測定した。結果を表1に示す。
(Example 3)
10g of pulverized Russian larch (scientific name: Larix gmelinii Gordon) (particle size: 1cm or less) with 90ml of 0.025, 0.05, 0.1, 0.25mol / l sodium hydroxide solution at room temperature for 1 hour Processed under the conditions. The obtained extraction solution was freeze-dried to obtain a solid. The weight of this solid was measured. The results are shown in Table 1.

(実施例4)
北海道産ミズナラ(学名Quercus mongolica v.grosseserrats) の粉砕物10g(粒径1cm以下)を0.1mol/lの水酸化ナトリウム溶液90mlを用いて常温、1時間の条件で処理した。得られた抽出溶液を凍結乾燥して固形物とした。この固形物の重量を測定した。結果を表1に示す。
(Example 4)
10 g of a pulverized product of Hokkaido Mizunara (scientific name Quercus mongolica v. Grosseserrats) (particle size: 1 cm or less) was treated with 90 ml of 0.1 mol / l sodium hydroxide solution at room temperature for 1 hour. The obtained extraction solution was freeze-dried to obtain a solid. The weight of this solid was measured. The results are shown in Table 1.

(実施例5)
カラマツおがくず100gを70℃の脱イオン水900mlで2時間処理した後、濾紙(5C)を用いて濾過し、カラマツおがくずを回収した。この工程を合計3回繰り返して行い、不要な成分であるアラビノガラクタンを、カラマツおがくずから除去した。
(Example 5)
After treating 100 g of larch sawdust with 900 ml of deionized water at 70 ° C. for 2 hours, it was filtered using filter paper (5C) to collect larch sawdust. This process was repeated a total of 3 times to remove arabinogalactan, an unnecessary component, from larch sawdust.

このアラビノガラクタン除去済みカラマツおがくずに、エタノールを900ml加えて、常温で、24時間静置した。   900 ml of ethanol was added to this arabinogalactan-removed larch sawdust and allowed to stand at room temperature for 24 hours.

次いで、濾紙(5C)を用いた濾過を行って、カラマツおがくずを回収した。さらにカラマツおがくずにアセトンを900ml加えて、常温で24時間静置した。次いで、濾過して不純物除去済みカラマツおがくずを回収することにより、タキシホリン等の脂溶性物質を除去した。回収された不純物除去済みカラマツおがくずを、乾燥器を用いて、50℃で1時間、乾燥した。   Next, filtration using filter paper (5C) was performed, and larch sawdust was collected. Furthermore, 900 ml of acetone was added to the larch sawdust and allowed to stand at room temperature for 24 hours. Subsequently, filtration was performed to collect larch sawdust from which impurities were removed, thereby removing fat-soluble substances such as taxifolin. The collected larch sawdust from which impurities were removed was dried at 50 ° C. for 1 hour using a dryer.

この不純物除去済みカラマツおがくず10gを、0.1mol/lの水酸化ナトリウム溶液90mlを用いて、常温、1時間の条件で処理した。   10 g of this larch-removed larch sawdust was treated with 90 ml of a 0.1 mol / l sodium hydroxide solution at room temperature for 1 hour.

次いで、濾紙(5C)を用いて濾過した抽出溶液を凍結乾燥して固形物とした。固形物の重量を測定した。結果を表1に示す。   Next, the extracted solution filtered using filter paper (5C) was freeze-dried to obtain a solid. The weight of the solid was measured. The results are shown in Table 1.

(ホルムアルデヒド吸収能測定実験)
実施例1〜5において得られた固形物10mgを10リットルのテドラーバッグに入れた。40〜50ppmのホルムアルデヒドを含有する空気10リットルを導入して、24時間後のホルムアルデヒド除去率を測定した。結果を表1に示す。ホルムアルデヒドの濃度測定にはADVANTEC製ホルムアルデヒド用検知管91および91Lを使用した。
(Formaldehyde absorption capacity measurement experiment)
10 mg of the solid material obtained in Examples 1 to 5 was placed in a 10-liter Tedlar bag. 10 liters of air containing 40 to 50 ppm of formaldehyde was introduced, and the formaldehyde removal rate after 24 hours was measured. The results are shown in Table 1. For formaldehyde concentration measurement, detector tubes 91 and 91L for formaldehyde manufactured by ADVANTEC were used.

(比較例1)
市販されているリグニン(関東化学株式会社製、カタログ番号;24104−32(以下、単に試薬リグニンとも称する。))100mgを10リットルのテドラーバッグに入れた。40〜50ppmのホルムアルデヒドを含有する空気10リットルを導入し、24時間後のホルムアルデヒド除去率を測定した。結果を表1に示す。ホルムアルデヒドの濃度測定には、ADVANTEC製ホルムアルデヒド用検知管91および91Lを使用した。
(Comparative Example 1)
100 mg of commercially available lignin (manufactured by Kanto Chemical Co., Ltd., catalog number: 24104-32 (hereinafter also simply referred to as reagent lignin)) was placed in a 10 liter Tedlar bag. 10 liters of air containing 40 to 50 ppm of formaldehyde was introduced, and the formaldehyde removal rate after 24 hours was measured. The results are shown in Table 1. For the measurement of formaldehyde concentration, detector tubes 91 and 91L for formaldehyde manufactured by ADVANTEC were used.

(比較例2)
市販されている活性炭(味の素ファインテクノ製CL−H)10mgを10リットルのテドラーバッグに入れた。40〜50ppmのホルムアルデヒドを含有する空気10リットルを導入し、24時間後のホルムアルデヒド除去率を測定した。結果を表1に示す。ホルムアルデヒドの濃度測定にはADVANTEC製ホルムアルデヒド用検知管91および91Lを使用した。
(Comparative Example 2)
10 mg of commercially available activated carbon (CL-H manufactured by Ajinomoto Fine-Techno) was placed in a 10 liter Tedlar bag. 10 liters of air containing 40 to 50 ppm of formaldehyde was introduced, and the formaldehyde removal rate after 24 hours was measured. The results are shown in Table 1. For formaldehyde concentration measurement, detector tubes 91 and 91L for formaldehyde manufactured by ADVANTEC were used.

Figure 0004006421
Figure 0004006421

表中、抽出量は、原料の粉砕物10gあたりの抽出量を示している。   In the table, the extraction amount indicates the extraction amount per 10 g of the pulverized material.

得られた固形物(ホルムアルデヒド吸着剤)は、原料に用いる樹木の種類、部位等の条件にもよるが、表1に示した抽出量あたり、およそ40〜99重量%もの水溶性リグニンを含有していた。また、固形物は、その他にヘミセルロースを0.1〜60重量%、フラボノイドおよびその重合物などを0.1〜20重量%含んでいた。この結果は、常法に従って、HPLCにより、測定された結果である。 The obtained solid ( formaldehyde adsorbent) contains about 40 to 99% by weight of water-soluble lignin per extraction amount shown in Table 1, although it depends on conditions such as the type of tree used for the raw material and the site. It was. In addition, the solid contained 0.1 to 60% by weight of hemicellulose and 0.1 to 20% by weight of flavonoids and polymers thereof. This result is a result measured by HPLC according to a conventional method.

従来のVOC吸着剤の製造方法によれば、活性成分であるフラボノイド類の含有量は、原料の量を同一とした場合の抽出された固形物の重量あたり、せいぜい0.1重量%〜1重量%に過ぎなかった。   According to the conventional method for producing a VOC adsorbent, the content of flavonoids which are active ingredients is at most 0.1% by weight to 1% per weight of the extracted solid when the amount of the raw material is the same. It was only%.

このように、この発明の製造方法により得られるホルムアルデヒド吸着剤が含有する水溶性リグニンの単位原料あたりの量(含有量)は、これまで一般的にホルムアルデヒド吸収能を有する物質として知られていたフラボノイド類のそれと比較して、著しく多いことがわかった。 As described above, the amount (content) per unit raw material of the water-soluble lignin contained in the formaldehyde adsorbent obtained by the production method of the present invention is the flavonoid that has been generally known as a substance having formaldehyde absorption ability so far. It was found to be significantly more than that of the class.

また、水溶性リグニンのVOC吸着能は、同重量で比較すると、従来のフラボノイド類のVOC吸着能を、上回ることがわかっている。   In addition, it has been found that the VOC adsorption capacity of water-soluble lignin exceeds that of conventional flavonoids when compared with the same weight.

従って、この発明のホルムアルデヒド吸着剤の製造方法によれば、優れたホルムアルデヒド吸着能を有する水溶性リグニンを多量に含有するホルムアルデヒド吸着剤を、簡易な工程で提供することができる。 Therefore, according to the manufacturing method of the formaldehyde adsorbing agent of the invention, the formaldehyde adsorbing agent containing a water-soluble lignin having excellent formaldehyde adsorption capacity in a large amount, it is possible to provide a simple process.

表1から明らかなように、上述の実施例で用いた全ての樹種、すなわち、カラマツ(北海道産及びロシア産)、トドマツ、エゾマツ、及びミズナラについて、試薬リグニン及び活性炭よりも優れたホルムアルデヒド吸収能を示すホルムアルデヒド吸着剤を得ることができた。 As is apparent from Table 1, all the tree species used in the above-mentioned examples, namely, larch (from Hokkaido and Russia), Todomatsu, Suzumatsu, and Mizunara have better formaldehyde absorption capacity than reagent lignin and activated carbon. The indicated formaldehyde adsorbent could be obtained.

塩基の濃度については、少なくとも0.025(mol/l)〜0.25(mol/l)の範囲で試薬リグニン及び活性炭よりも優れたホルムアルデヒド吸収能を示すホルムアルデヒド吸着剤を得ることができた。 With respect to the concentration of the base, a formaldehyde adsorbent exhibiting a formaldehyde absorption ability superior to that of the reagent lignin and activated carbon could be obtained in the range of at least 0.025 (mol / l) to 0.25 (mol / l).

また、実施例5の、不純物を予め除去する構成によっても優れたホルムアルデヒド吸収能を有するホルムアルデヒド吸着剤を得ることができた。なお、実施例5の工程により得られた固形物は、活性成分として、分子量20000程度の水溶性リグニンを主として含んでいることが明らかとなっている(データは示さない。)。 Moreover, the formaldehyde adsorbent which has the excellent formaldehyde absorption ability was able to be obtained also by the structure of Example 5 which removes impurities in advance. In addition, it is clear that the solid obtained by the process of Example 5 mainly contains water-soluble lignin having a molecular weight of about 20000 as an active ingredient (data not shown).

この製造方法により抽出された水溶性リグニン、すなわち実施例2−3及び試薬リグニンの分子量を、高速液体クロマトグラフ(HPLC)により測定した。   The water-soluble lignin extracted by this production method, that is, the molecular weights of Example 2-3 and the reagent lignin were measured by high performance liquid chromatography (HPLC).

(分子量測定実験)
カラムは、昭和電工株式会社製GPCカラム;ShodexKS802及びKS804を直列にして使用した。カラム温度は40℃とし、溶離液として超純水(流量0.6ml/min)を使用した。検出器は(RI)を使用した。また、分子量180、1810、5900、12200、22800、47300のプルランで検量線を作成した。結果を図1に示す。
(Molecular weight measurement experiment)
The column was a GPC column manufactured by Showa Denko KK; Shodex KS802 and KS804 were used in series. The column temperature was 40 ° C., and ultrapure water (flow rate 0.6 ml / min) was used as the eluent. The detector used (RI). In addition, calibration curves were prepared with pullulan having molecular weights of 180, 1810, 5900, 12200, 22800, and 47300. The results are shown in FIG.

図1は、分子量の測定結果を示す図である。   FIG. 1 is a diagram showing the measurement results of molecular weight.

上述した実施例2に従って北海道産トドマツ、エゾマツ混合粉砕物から抽出された水溶性リグニン(プロット1:実線)及び試薬リグニンの水溶液(プロット2:点線)をプルラン換算により算出した分子量をプロットしてある。なお、横軸は、保持時間(分:min)を示している。また、縦軸はピーク強度(a.u.;abitrary unit)である。   The water-soluble lignin (plot 1: solid line) and the aqueous solution of the reagent lignin (plot 2: dotted line) extracted from the Hokkaido Todomatsu and Scots pine mixed pulverized product according to Example 2 described above are plotted with the molecular weight calculated by pullulan conversion. . The horizontal axis indicates the holding time (minute: min). The vertical axis represents peak intensity (au; abitrary unit).

結果として、実施例2により得られた水溶性リグニン、すなわちこの発明のホルムアルデヒド吸着剤は、主として、3つの分子量の画分から構成されており、プルラン換算で、分子量が約250000、20000及び1000におよそのピークを有する画分が存在していることがわかった(プロット1)。また、試薬リグニンの分子量はプルラン換算で250000程度であることがわかった(プロット2)。 As a result, the water-soluble lignin obtained in Example 2, that is, the formaldehyde adsorbent of the present invention, is mainly composed of three molecular weight fractions, and the molecular weights are approximately 250,000, 20000 and 1000 in terms of pullulan. It was found that there was a fraction having a peak (Plot 1). The molecular weight of the reagent lignin was found to be about 250,000 in terms of pullulan (plot 2).

試薬リグニンのホルムアルデヒド吸着活性は、この発明の水溶性リグニンと比較して極めて低いことがわかった。これに対し、上述した3つの分子量を示す画分のうち、250000の分子量のピークを有する画分は、試薬リグニンとほぼ同じ分子量であることから、ホルムアルデヒド吸着活性に寄与する主要な成分ではないといえる。   The formaldehyde adsorption activity of the reagent lignin was found to be extremely low compared to the water-soluble lignin of the present invention. On the other hand, among the fractions showing the above three molecular weights, the fraction having a molecular weight peak of 250,000 has almost the same molecular weight as that of the reagent lignin, and therefore is not a main component contributing to formaldehyde adsorption activity. I can say that.

また、分子量1000及び20000におよそのピークを示す画分、すなわち、プルラン換算の分子量が、1000〜5000の範囲及び10000〜30000の範囲は、試薬リグニンには見られない分子量画分である。従って、これらの範囲の分子量の画分が、この発明のホルムアルデヒド吸着剤の主要な活性成分であるといえる。 Further, the fractions having approximate peaks at molecular weights 1000 and 20000, that is, the range of 1000 to 5000 and the range of 10,000 to 30000 in terms of molecular weight in terms of pullulan are molecular weight fractions not found in the reagent lignin. Therefore, it can be said that the molecular weight fraction in these ranges is the main active ingredient of the formaldehyde adsorbent of the present invention.

図1から明らかなように、試薬リグニンについてはプルラン換算で分子量250000にピークを持つスペクトルだけが検出された。一方、実施例2−3で得られたサンプルでは、分子量250000にピークを有するスペクトルのほかに分子量20000および1000にピークを有するスペクトルが観測された。それぞれの面積比は、250000:20000:1000がおよそ1:4:1であった。   As is apparent from FIG. 1, only a spectrum having a peak at a molecular weight of 250,000 in pullulan conversion was detected for the reagent lignin. On the other hand, in the sample obtained in Example 2-3, a spectrum having peaks at molecular weights of 20000 and 1000 was observed in addition to a spectrum having peaks at a molecular weight of 250,000. The respective area ratios of 250,000: 20000: 1000 were approximately 1: 4: 1.

上述したように、この発明のホルムアルデヒド吸着剤の製造方法によれば、建材等に適用して好適なホルムアルデヒド吸着剤を、極めて簡易なプロセスにより、目的とする活性成分を多量に抽出できる。また、ホルムアルデヒド吸着剤の製造コストの顕著な低減を可能とする。 As described above, according to the method for producing a formaldehyde adsorbent of the present invention, a target active ingredient can be extracted in a large amount by a very simple process using a formaldehyde adsorbent suitable for building materials and the like. In addition, the manufacturing cost of the formaldehyde adsorbent can be significantly reduced.

分子量の測定結果を示す図である。It is a figure which shows the measurement result of molecular weight.

Claims (5)

カラマツ、トドマツ、エゾマツ及びミズナラを含む群から選択される1又は2以上の樹木の木質部分を、0℃から50℃の雰囲気下で、0.025mol/l以上0.25mol/l以下の濃度のアンモニア水溶液または水酸化ナトリウム水溶液で処理して抽出することにより、プルラン換算で1000〜30000の範囲である分子量の水溶性リグニンを活性成分として含有する当該水溶性リグニンの水溶液を得る工程と、
前記水溶性リグニンの水溶液を、凍結乾燥することにより、固形状のホルムアルデヒド吸着剤を得る工程と
を含むことを特徴とするホルムアルデヒド吸着剤の製造方法。
A woody part of one or two or more trees selected from the group comprising larch, todomatsu, spruce, and quail, at a concentration of 0.025 mol / l to 0.25 mol / l in an atmosphere of 0 ° C. to 50 ° C. A step of obtaining an aqueous solution of the water-soluble lignin containing, as an active ingredient, a water-soluble lignin having a molecular weight in the range of 1000 to 30000 in terms of pullulan by extraction with an aqueous ammonia solution or an aqueous sodium hydroxide solution ;
Wherein the aqueous solution of a water-soluble lignin, by freeze drying, method of manufacturing a formaldehyde adsorbent which comprises a step of obtaining a solid formaldehyde adsorbent.
前記アンモニア水溶液または前記水酸化ナトリウム水溶液による処理の前に、
前記水溶性リグニン以外の水溶性の不純物を除去する工程と、
前記水溶性リグニン以外の脂溶性の不純物を除去する工程と
をさらに含むことを特徴とする請求項1に記載のホルムアルデヒド吸着剤の製造方法。
Before the treatment with the aqueous ammonia solution or the aqueous sodium hydroxide solution ,
Removing water-soluble impurities other than the water-soluble lignin;
The method for producing a formaldehyde adsorbent according to claim 1, further comprising a step of removing fat-soluble impurities other than the water-soluble lignin.
前記樹木の木質部分として、トドマツ及びエゾマツの混合粉砕物を用いることを特徴とする請求項1又は2に記載のホルムアルデヒド吸着剤の製造方法。The method for producing a formaldehyde adsorbent according to claim 1 or 2, wherein a mixed pulverized product of todomatsu and spruce is used as the woody portion of the tree. カラマツ、トドマツ、エゾマツ及びミズナラを含む群から選択される1又は2以上の樹木の木質部分を、0℃から50℃の雰囲気下で、0.025mol/l以上0.25mol/l以下の濃度のアンモニア水溶液または水酸化ナトリウム水溶液で処理して抽出することにより、プルラン換算で1000〜30000の範囲である分子量の水溶性リグニンを活性成分として含有する当該水溶性リグニンの水溶液を得る工程と、
前記水溶性リグニンの水溶液を、凍結乾燥することにより、固形状のホルムアルデヒド吸着剤を得る工程とにより、得ることができるホルムアルデヒド吸着剤
A woody part of one or two or more trees selected from the group comprising larch, todomatsu, spruce, and quail, at a concentration of 0.025 mol / l to 0.25 mol / l in an atmosphere of 0 ° C. to 50 ° C. A step of obtaining an aqueous solution of the water-soluble lignin containing, as an active ingredient, a water-soluble lignin having a molecular weight in the range of 1000 to 30000 in terms of pullulan by extraction with an aqueous ammonia solution or an aqueous sodium hydroxide solution;
A formaldehyde adsorbent obtainable by a step of obtaining a solid formaldehyde adsorbent by freeze-drying the aqueous solution of water-soluble lignin .
前記樹木の木質部分が、トドマツ及びエゾマツの混合粉砕物であることを特徴とする請求項4に記載のホルムアルデヒド吸着剤。The formaldehyde adsorbent according to claim 4, wherein the woody portion of the tree is a mixed pulverized product of Todomatsu and Scots pine.
JP2004209626A 2004-07-16 2004-07-16 Formaldehyde adsorbent and method for producing the same Expired - Fee Related JP4006421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004209626A JP4006421B2 (en) 2004-07-16 2004-07-16 Formaldehyde adsorbent and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004209626A JP4006421B2 (en) 2004-07-16 2004-07-16 Formaldehyde adsorbent and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006026544A JP2006026544A (en) 2006-02-02
JP4006421B2 true JP4006421B2 (en) 2007-11-14

Family

ID=35893509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004209626A Expired - Fee Related JP4006421B2 (en) 2004-07-16 2004-07-16 Formaldehyde adsorbent and method for producing the same

Country Status (1)

Country Link
JP (1) JP4006421B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110327770A (en) * 2019-05-30 2019-10-15 天津箐润环保科技发展有限公司 A kind of composition and its preparation method except formaldehyde

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5860480B2 (en) 2011-01-11 2016-02-16 キャプシュゲル・ベルジウム・エヌ・ヴィ New hard capsule containing pullulan
JP7222911B2 (en) 2017-04-14 2023-02-15 カプスゲル・ベルギウム・ナムローゼ・フェンノートシャップ How to make pullulan
CN110678170A (en) 2017-04-14 2020-01-10 比利时胶囊公司 Pullulan polysaccharide capsule
KR102075375B1 (en) * 2017-09-06 2020-03-02 한국화학연구원 Preparing method of saccharification residue for biopolymer
CN110075688A (en) * 2019-05-21 2019-08-02 陕西鸿鹰实业有限公司 The composition and preparation method thereof of potent decomposing formaldehyde and harmful substance of persistently degrading

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110327770A (en) * 2019-05-30 2019-10-15 天津箐润环保科技发展有限公司 A kind of composition and its preparation method except formaldehyde

Also Published As

Publication number Publication date
JP2006026544A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
Othman et al. Cucumis melo rind as biosorbent to remove Fe (II) and Mn (II) from synthetic groundwater solution
JP2009035550A (en) Extract rich in proanthocyanidin, and relating preparation method
CN101279237A (en) Purificant for adsorbing formaldehyde and method of preparing the same
CN101947435B (en) Chitosan polycation additive for reducing phenols in cigarette smoke
JP4006421B2 (en) Formaldehyde adsorbent and method for producing the same
KR100645478B1 (en) Deodorant
Tzeng et al. Spent tea leaves: A new non-conventional and low-cost biosorbent for ethylene removal
Reina et al. Water sorption–desorption in conifer cuticles: the role of lignin
He et al. Preparative separation and purification of phenolic compounds from Canarium album L. by macroporous resins
Parada et al. Modelling the hydrophilic extraction of the bark of Eucalyptus nitens and Eucalyptus globulus: Adsorption isotherm and thermodynamic studies
JP3751630B2 (en) Cosmetics and method for producing the same
CN100503007C (en) Method and product for purifying air
Al-Kadhi Removal of fluorescein dye from aqueous solutions using natural and chemically treated pine sawdust
CN112495343A (en) Anti-mildew drying agent and preparation method thereof
Siswoyo et al. Agar-encapsulated adsorbent based on leaf of platanus sp. to adsorb cadmium ion in water
JP2005263632A (en) Method for producing composition containing high concentration of chlorogenic acid
JP2010163363A (en) Method for producing extract containing apigenin in high concentration
AHSAN et al. Removal of toxic dichlorophenol from water by sorption with chemically activated carbon of almond shells–A green approach
CN112058228A (en) Formaldehyde scavenging agent and preparation method thereof
JP6254457B2 (en) Hazardous oxide remover and method for removing harmful oxide using the same
CN106433975B (en) A method of utilizing the low As content tree moss absolute of molecular clock
Beye et al. Study of the sorption behavior of Hibiscus sabdariffa anthocyanins on a macroporous resin
CN105668684B (en) Application of the phoenix tree leaf as antibiotic and/or the adsorbent of organic pollutant
JP2003245543A (en) Agent having formaldehyde absorptivity and method for producing the same
KR20100074712A (en) A deodorizing agent for refrigerator using natural antibacterial material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4006421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees