JP4005726B2 - Projection display lighting device - Google Patents

Projection display lighting device Download PDF

Info

Publication number
JP4005726B2
JP4005726B2 JP33284698A JP33284698A JP4005726B2 JP 4005726 B2 JP4005726 B2 JP 4005726B2 JP 33284698 A JP33284698 A JP 33284698A JP 33284698 A JP33284698 A JP 33284698A JP 4005726 B2 JP4005726 B2 JP 4005726B2
Authority
JP
Japan
Prior art keywords
light source
light
display
illumination
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33284698A
Other languages
Japanese (ja)
Other versions
JP2000155545A (en
Inventor
久幸 三原
佳典 本宮
稔夫 尾林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33284698A priority Critical patent/JP4005726B2/en
Publication of JP2000155545A publication Critical patent/JP2000155545A/en
Application granted granted Critical
Publication of JP4005726B2 publication Critical patent/JP4005726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光源と光変調素子を利用した投写型ディスプレイに係り、特にこれらの光源として光半導体素子を用いた投写型ディスプレイの照明装置に関する。
【0002】
【従来の技術】
従来投写型ディスプレイの光源としては、水銀ランプやこれにハライド化合物を加えたメタルハライドランプ等が主に用いられてきた。これらの光源は50乃至80[lm/W]の高い発光効率と、1mm程度の小さな電極間距離(アーク長)が実現され、図14(a)に示したようなフライアイレンズを用いた光学照明装置としてほぼ市場を占拠しているのが現状である。
【0003】
図14(a)において、1は光源(ランプ)、2はリフレクタ、3はUVフィルタ、4はIRフィルタ、5,6はフライアイレンズを構成する第1フライアイ素子と、第2フライアイ素子である。光源1より出た光は、フライアイレンズ素子5,6、レンズ7を介して、ダイクロイックミラー8,9,10側へ出射される。ダイクロイックミラー8で反射された光は、ミラー11、レンズ12を介して例えば青(B)用の液晶パネル(空間変調素子)13に入射する。この液晶パネル13から出射された青の光学像は、合成プリズム14で他の色の光学像と合成され、投射レンズ15に入射する。
【0004】
ダイクロイックミラー8を透過した光は、ダイクロイックミラー9で反射され、レンズ16を介して例えば緑(G)用の液晶パネル17に入射する。この液晶パネル17から出射された緑の光学像は、合成プリズム14に入射する。
【0005】
ダイクロイックミラー9を透過した光は、レンズ18,19を介してダイクロイックミラー10に入射する。ダイクロイックミラー10で反射された光は、レンズ20、ミラー21、レンズ22を介して例えば赤(R)用の液晶パネル23に入射する。この液晶パネル23から出射された赤の光学像は、合成プリズム14に入射する。投射レンズ15から出射したフルカラー光学像は、投写スクリーンに投影される。
【0006】
上記した装置において、ランプによる光源は、図14(b)に示す通り不要光を多く含んでおり、これらを3原色分光駆動が一般的な現状の投写型ディスプレイでは示すUVフィルタ3、IRフィルタ4や、ダイクロイックミラー8,9,10等の光学フィルターを用いて除去するようにしている。この結果、部品増加によるコストアップのみならず、迷光または遮光部での発熱による各種不具合を発生させる要因を含んでいた。
【0007】
そのほか点灯後の輝度の立ち上がりが遅い、寿命が短い、水銀使用(環境問題)、起動時に高電圧を要すなどランプの基幹問題に拘わる多くの問題を含んでいた。
【0008】
【発明が解決しようとする課題】
これらに変わる新たな光源候補としてLEDなどの光半導体素子が挙げられる。光半導体素子は上記不具合の殆どを解決することが可能であるが、例えばInGaAlP(赤)LED1素子は通常20mAの使用標準で2V程度の順電圧であるから、光源電力としては0.04Wに過ぎず、投写型ディスプレイ用光源として多大な数を必要とすることは明白である。さらにこれらの半導体素子は光拡散角が大きいうえに半導体結晶の屈折率が高く、大気中への透過効率が悪いとの欠点を持つ。このため通常の単体LEDランプ構造に見られるように照射面逆側にリフレクタを配し、且つ表面をレンズ形状を有する樹脂などにて覆うことで指向特性ならびに光取り出し効率を改善させている。
【0009】
ところがこのような構成にて従来照明のような構成を得ようとすると、フライアイレンズのNA(開口数)を満足し、且つ光半導体素子の配光特性を十分カバーしたLEDリフレクタの形状は大きくなり、必然的に各部品の配置ピッチは大きくなる。従って先述した単体LEDランプを多大数量を配置した場合の光源形状およびフライアイレンズは長大化し、結果としてシステムの巨大化、高コスト化のみならず、例えばライトバルブとして液晶を用いた場合、照明角が大きくなり視野角の影響などでコントラスト等の映像品位が低下する、投射レンズを含め光集光高効率な光学系の構築は非常に難しいなど不具合が多い。このためこのような光学系は、実現されていないのが現状である。併せてこのような構成をとる光源そのものも多くの加工と精度が必要となるために、従来のランプ光源に対し非常に高価とならざるを得ない。
【0010】
当然ながらこれらライトバルブの直前に以上の配光特性改善加工が施された光源を配し、直接照射することも考えられるが、光半導体素子間のばらつきは明るさのみならず発光波長にも存在するため、分割重畳を行わなければ不良、個別経時変化ばらつき等に起因する部分的輝度劣化、不点現象を含め、色むら、輝度むらなどの不具合要因として現れ、高品位な投写型ディスプレイ構築の妨げとなり、これらを包括的に改善する画期的な光学手段は存在しなかった。
【0011】
そこで本発明は、先述した光半導体素子等の面光源を用いた不具合を回避する手段を工夫し、安価で高品位は投写型ディスプレイの照明装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
本発明は、光拡散タイプの面光源を有し、前記面光源は、照射面または表示面に対向し、かつ前記面光源と前記照射面または表示面が対向する間の空間の横断面よりも小さな面形状であり、さらに、前記面光源の外周付近と前記照射面または表示面の外周付近より形成される空間を反射鏡で囲むカライドスコープを有した構造であり、前記面光源は、前記照射面または表示面と所定方向に相似形の2分の1の寸法比を有しており、上記カライドスコープの前記面光源付近に上記所定方向に光の分離及び位相回転処理を行う両偏光利用手段が施されており、前記面光源の上記所定方向のサイズをa、前記照射面または表示面のサイズをbとしたとき、前記照射面または表示面からの光を投射する投射レンズのF値について
F=b/(4a)
上記任意方向と直交する方向の前記面光源のサイズa ' 、同方向の前記照射面または表示面のサイズをb ' としたとき前記照射面または表示面からの光を投射する投射レンズのF値についてF=b ' /(2a ' )なる条件が成立することを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0014】
まず本発明の主な特徴的な部分を述べる。即ち、光半導体光源の特殊加工を必要としないウエハ状態のままでの光半導体素子を、その照明野よりも小さい面積で且つ等しいアスペクト比にて面光源として使用し、このウエハ光源と照明野との間の空間を構成が簡単なカライドスコープで囲む構成とする。そして最も高いF値、即ち最も低コストな投射レンズ仕様にて最良の光利用効率を達成させる光学装置の照明手段を提供する。更に面光源に起因する不具合を回避するための照明距離等各種条件を提示することで、必要最低限の照明品位を最も低コストにて達成するた条件をも提示している。
【0015】
併せて光源を屈折率が1よりも大きな中間媒質で単純に覆うことで、半導体結晶の屈折率の整合を助けて内部反射率および臨界角を改善させている。また両偏光の利用が必要となった場合や、光源発散角に顕著な条件が存在する場合に於いても、最適な照明手段を提供することで、安価で高効率・高品位な光学装置を提供することを可能としている。
【0016】
以後、具体的に本発明による構造の必要性と構成原理を説明する。
【0017】
図1(a)は本発明の前提となる実施の形態である。31は面光源であり、32は照明野である。面光源31の周囲と照明野32の周囲の空間は、例えばミラー(ガイドスコープ)33で囲まれているが、趣旨を満足すれば樹脂が充填された状態、或いはプリズムによる構成の何れでもよい。
【0018】
ここで簡単のために照明野32は任意アスペクト比の長方形であるとし、照明光学部のみを単色構成にて示している。
【0019】
面光源31は、例えば赤のLED光源集合体で、照明野32よりも縦横寸何れも小さな形状である。この面光源31の有効外周部端と照明野32の有効外周部端を隙間無くミラー33a,33b,33c,33dで囲み、照明野32の中央観測部「P」より見ると、面光源31とミラー33a,33b,33c,33dによる鏡像は図(b)に図示するように、照明野32と面光源31の寸法比により求まる半径を有する楕円球光源として観測される。
【0020】
即ち、照明野32の観測点「P」には面光源31の全てのLEDからそれぞれ複数の任意出射角にて発した光が到達しており、面光源31と照明野32間の距離が十分確保され、且つ光源鏡像による最大照明光以上の発散角を投影系(投写レンズ系)34がF値として備わっていれば、高効率で均一な投写型光学装置を得ることが可能である。図1(c)には面光源31の1つのLEDの出射光の拡散の様子を示している。
【0021】
投影系(投射レンズ)34にて達成するF値は、必ずしもこの全ての範囲をカバーする必要はなく、光源が完全拡散状態で発光し、且つミラー33a,33b,33c,33dによる反射損失が殆どない場合にのみこの効果が顕著となる。
【0022】
上記のようにこの発明の基本は、面光源31は、照明野32(照射面または表示面)の方向の何れ断面方向についても小さな形状であり、且つこの面光源31の外周付近と照射野32の外周付近より形成される任意空間を反射鏡で囲むミラー33a,33b,33c,33d、つまりカライドスコープ(万華鏡)33構造としている。つまり上下、左右のミラー33a,33b,33c,33dによりカライドスコープ33が構成されている。
【0023】
図2には、上記の装置を構成する上で、その基本的考え方を示した。簡単のために実施例は単色構成によるものであり、面光源31および照明野32は光軸対称に配置され、且つ図は光源を含む断面の2次元表示としている。
【0024】
面光源31のサイズを「a」、照明野32のサイズを「b」、面光源31〜照明野32間の距離を「d」とする。そして面光源31端〜照明野32端を対面したミラー33a,33b、33c、33dにて隙間無く囲むとする。このとき、照明野32の中心観測点「P」から見た面光源31および光源鏡像35は、面光源31からミラー33a,33bの延長線上交点「O」までの距離「r」を半径とする円36上に並ぶ。
【0025】
照明距離「d」が十分確保されていれば、鏡像35は円36とみなすことが許容される。よって観測点「P」への最大照明角は、「P」から円36への接線が光軸と為す角度「θ」であり、照明野32よりミラー33a,33bの延長交点「O」までの距離を「L」、ミラー33a,33bの対光軸角を「φ」とするとき、
r=d×a/(b−a) …(1)
L=d×b/(b−a) …(2)
φ= tan-1{(b−a)/(2d)} …(3)
であるから照明角「θ」は
θ=sin-1(r/L)=sin-1(a/b) …(4)
となる。よってこの全ての照明角をカバーしうる最小の投影系のF値は
F=1/(2sinθ)=b/(2a) …(5)
であり照明距離「d」によらない。
【0026】
従って、光源と照明野32の寸法比が何れの方向より見ても同じ比を有する、即ち相似形であれば、観測点「P」より見た面光源31とその鏡像35は半径「r」の球状となって観測される。
【0027】
一般に投射レンズ素子は,その加工性から光軸上よりみると円形をしており、従って光軸より見た投射レンズ入射瞳も光軸対称な円形状であるから、面光源31は照明野32と相似形を為すことで最も大きなF値にて最大の瞳通過効率を得ることが可能となる。(F値…光学系の有効角(明るさ)指標、θ…最大有効角)
F=1/(2 sinθ)=b/(2a) …(再掲(5))
の条件が確保されれば、最も高効率な投写型ディスプレイが構築可能となる。そして投射レンズのF値FtがFt<=F=1/(2 sinθ)=b/(2a)であれば損失なく照明光を投影できる。
【0028】
以上は完全拡散に近い出射特性を有する光源時の設計手法であったが、光半導体素子によっては光発散角に顕著な特性を有し、「θL 」以上の出射角は有効とは見なせない場合がある。
【0029】
図3を用いて、光源に対して有効出射角が与えられた場合の本発明の適用例について説明する。
【0030】
光半導体素子の有効出射角が「θL 」で与えられ、その他の条件は図3を用いた前節と同条件であるとする。ここでカライドスコープ33のなす角「φ」よりも面光源31の集光出射角範囲「θL 」が大きい場合、観測点「P」よりみた光源像は前節同様ミラー33a,33bの延長線交点を中心とする半径「r」の円36上に存在する。
【0031】
ここで面光源31の配光特性は「θL 」であるから、円36より「θL 」で発し、観測点「P」に到達する円36上の鏡像35から発する光線が光軸となす角「θT 」が、観測点「P」への照明最大角となる。
【0032】
従って鏡像35と円36中心「O」および光軸との角度を「θM 」とすれば、
θL =θM +θT …(6)
r sinθM =(L−r cosθM ) tanθT …(7)より
sinθT =r sinθL /L …(8)
よって、光源素子に配光特性条件「θL 」が加えられた場合の最も有効な投影系のF値は、(8)、(1)、(2)式より
F=1/(2 sinθT )=b/(2a sinθL ) …(9)
となる。
【0033】
ここで、投写型ディスプレイの光変調素子として液晶を用いる場合、直線偏光光のみが照明有効光として用いられる場合が多勢を占める。半導体素子が半導体レーザーのような直線偏光光であれば、これまで説明した本発明はそのまま適用可能であるが、LEDのようなランダム偏光時にはPBS素子などを用いて直交する2偏光光に分離し、片側に位相回転処理を加えて光利用効率を向上させる手法を適用した方が望ましい。
【0034】
通常のランプ光源では分割重畳を行うフライアイ第2素子(図14(a)中の6)の近辺にて上記のような手法が用いられるが、現在考案されている、いかような両偏光利用手段も、照明系以後の条件が変わらなければ照明有効光を任意方向において半減させ、この隙間を用いてこのような処理を加える手法が要求される。
【0035】
本発明にこのような両偏光利用手段を配す場合も例外なく、任意方向にて照明角を半減させる手段を施した後にランダム偏光を直線偏光に変換する処置を行う必要がある。これまでの説明から、(5)式および(9)式にて照明角を任意方向において半減させる手段は、単純に照明野32と面光源31との相似形状から両偏光利用手段にて分離される方向に2分の1の面光源形状とするのみで、後述する条件の重要性は立証されるが、実施例として光源側に両偏光利用手段を施した場合を想定し、図4を用いて説明する。図4では、下方向(短辺方向)に照明有効光が半減された例である。
【0036】
図4(a)に示す通り、面光源31の長辺寸「a1 」、短辺寸「a2 」、照明野32の長辺寸「b1 」、短辺寸「b2 」であるとし、短辺方向に図4(b)に示す両偏光利用手段を施すものとする。
【0037】
両偏光利用手段を図4(b)を用いて説明すれば、面光源31より発する点線で示したp偏光成分はPBS素子44を通過し、偏光回転板46にてs偏光にて揃えられカライドスコープ33内に出射される。一方、面光源31より発する図中実線で示したs偏光成分はPBS素子44で反射され、さらにミラー45にて方向変換しカライドスコープ33内に出射される。PBS44素子およびミラー45はプリズム47,48で形成されており、一般にプリズム47と48は同じサイズを有する。また、光源31の出射条件によっては光源31とプリズム47間に図示しない凸レンズを配したり、プリズム47,48の外部境界をミラー加工したり、PBS素子44やミラー45は凹レンズ形状加工を施した方が光利用効率は向上する場合がある。
【0038】
このような場合でも、カライドスコープ33と照射面32以降の投影系F値の関係は(5)および(9)式にて既に導かれるから、プリズム47,48の形状がほぼ等しい場合にはプリズム47,48の合算値「2a2 」と長辺「a1 」の形成する合成光源が照明野32と相似形となるよう形成されれば、これまで述べてきた本発明はそのまま適用可能となる。即ち、両偏光利用時の偏光分離方向がa2 ,b2 辺方向であったとき、
1 :2a2 =b1 +b2 …(10)
なる拡散光源形状を有した場合の投影系F値は
F=b/(4a) …(11)
とし、さらに光源有効発散角が「θL 」の条件が加えられた場合の投影系F値はF=b/(4a sinθL ) …(12)
と設定する有効性が検証される。
【0039】
これまで本発明の具体的実施形態の検証は全て光軸上観測点より説明してきたが、光軸以外の照射観測位置から見たカライドスコープによる光源および光源鏡像も、図5に示す通りミラー33a,33bの延長線上交点を中心とする半径rの円36上に存在する。
【0040】
即ち,図5において、照射面周辺観測点「P」、「Q」に於ける照明光主光線は、ほぼカライドスコープ33の傾斜角「θ」となる。従って光変調素子に視野角の影響を受けやすい液晶を用いた場合には、照明野32の直前に焦点距離「L」のレンズ37を配すことで、全ての照明野への照明光主光線は光軸と略平行とすることが可能となる。即ちレンズ37の焦点距離「f」は、
f=L=d×b/(b−a) …(13)
なお、ミラー反射効率が無視できないほど大きい場合には、(13)式よりにて求まる焦点よりもやや短く設定した方が好ましい結果が得られる場合が多い。
【0041】
一方光変調素子が視野角影響を受けない場合には、投影系条件にて焦点を多少変更する方がより好ましい結果が得られる場合が多い。
【0042】
図6(a)に示す通り、物体のレンズ71による結像は殆どの場合に於いて中央部が最も有効角θ1が広く、且つバランスがとれており、光軸より外周部へ向かうほど外周方向の有効角は狭くなる。この状態をワイドアスペクト比を有する照明野の主要観測点より投射レンズ入射瞳形状にて表したものが図6(b)である。図中、左側は集光レンズ焦点を「L」とした場合で、図中、右側は集光レンズ焦点を本投影系の周辺部瞳を考慮してやや短焦点とし、外周部における照明光主光線をやや集光させた状態を模擬している。このようにすると、周辺光量比の小さな投射レンズ等に於いても周辺光量の劣化が少なく、良好な結果が得られることは明白である。
【0043】
以上を総合すれば、配する集光レンズ37の焦点距離「f」は、
f≦L=d×b/(b−a) …(14)
とすることが望ましい。
【0044】
本発明の適用光源として有力と思われるものにLED(発光ダイオード)が挙げられる。しかしながら従来欄で述べた様に、投写型ディスプレイ光源としては各色とも非常に多数個必要とする。従来のLEDでは高密度配置ができず、これはで(5)、(9)、(11)、(12)式より好ましくないことは明白な上に、個々にて構成される光源の多数集合体であるから、非常に高コストとなる。
【0045】
もともとLEDは数インチウエハ上に数十万のLEDが存在する状態で製造されるから、設計に若干の修正を加え、ウエハ状態にて本発明適用に適した任意範囲が結線された状態の光源を製造すれば、分割加工以降の工程が省略され、かなりの数量が使用されてもコスト的に非常に有利である。
【0046】
ただしLEDに用いられる半導体結晶はN(屈折率)=3.5程度の高屈折物質が多く、そのまま大気中へ放出させると、図7のグラフ上細実線にて示す通り透過率も低い上に、臨界角も16度程度とカライドスコープ内部へ有効に出射されない。
【0047】
従って図8に示す通り、面光源31からカライドスコープ33内の任意範囲を、大気よりも大きな屈折率を有する媒質39にて充填することにより、図7の太点線にて示した通り、透過率を向上させることが可能となる。
【0048】
媒質39の充填範囲「t」が任意以上の厚みを有していれば、臨界角付近の光源光線の殆どは媒質39内で対光軸角「φ」のカライドスコープ33の界面にて反射されるから、反射後の光線の対光軸角「θM 」は反射前の対光軸角「θB 」に対し
θM =θB −2φ …(15)
となる。このため、図7のグラフ太線にて示す通り光源臨界角を増加させ、結晶外部への発光効率そのものを増加させる効果を持つ。即ちこれらがカライドスコープの少なくとも面光源付近は、大気屈折率以上半導体屈折率以下の任意屈折率の媒質にて充填されていることを特徴とする構成である。
【0049】
但し、媒質39の厚み「t」が大きすぎると、これまで述べてきた光源サイズ「a」、図示しない光源鏡像の存在する円36の半径「r」はそれぞれ「a′」、「r′」と増加するため、光源および投射条件より最適厚値は決定する。
【0050】
なお、フロント投射タイプの投写型ディスプレイの多くは、変調素子に対して垂直上方向に煽り(編心)を設け、上向きに投射・結像するものが殆どである。これは使用便宜性と、多勢を占める液晶をライトバルブとして用いた場合の視野角特性より、コントラスト性能確保が有利であるとの2つの理由を持つ。
【0051】
このような投写型ディスプレイの光学系では、図9に点線にて示す液晶中央より液晶面放線方向に延びる直線上に光源を配すよりも、図9に実線にて示した照射面中央「P」とイメージ的に示した投影系34の入射瞳位置34aを結ぶ直線34b上にカライドスコープ33のミラーの延長線が交わるように設置した方が投射条件より効率的であることは明白である。即ちこれが,投射レンズ光軸と照射表示面中心に偏差を有する投写型ディスプレイに於いて、投射レンズ入射瞳中心より発し照射面中央を通過する延長線上付近にカライドミラーの延長線上交点が存在することを特徴とする構成の効果である。つまり投射レンズ光軸と、照射表示面中心に偏差を有する場合の配置による効果である。
【0052】
次に、面光源と照射面間の距離dは照射面の最短辺の2倍以上6倍以下の距離を有する構成、つまり光源と照明野との適正照明距離範囲設定の必要性について説明する。
【0053】
図10に示す通り、充分な照明距離「d」が確保された光源31の大きさは変更せずに、照明距離を「d2 」、「d1 」と小さくしてゆくと、照明野観測点「P」より見た光源31は大きくなると同時に鏡像数は減少し、次第に円形モデルとの誤差が大きくなるため、多角形として考えざるを得なくなる。
【0054】
光源鏡像を多角形のままにて照明F値を求める過程を図11に示している。
【0055】
この結果、照明距離と照明範囲サイズ比を変数とした、観測点Psより見た鏡像数Nを図12(a)に、観測点Psに到達する照明光の最小F値を図12(b)に示した。
【0056】
さらにこれらをもとに、損失がなく且つ光源が完全拡散状態にて出射している場合に於ける、(5)式で定めるF値を有する投影系にて投射した場合の投影系効率を図12(c)に、この100%効率付近を拡大したものを図12(d)に示した。
【0057】
図12(b)は、円形より突出した多角形頂点からの照明をF値を換算したものであり、照明野に対して照明距離が短い場合、投影系に必要なF値はかなり小さくする必要があることを示している。
【0058】
仮にこれらの損失が許容レベルにあったとしても、図11に示す断面が照明野短辺方向であった場合には、断面が回転するに伴って照明距離「d」は固定のまま光源寸「a」および照明範囲「b」は連続的に拡大するため、図12(c)のような輝度の波がスクリーンにて円状に発生し、映像品位として許容できないから、結果として図12(b)で示す投影系のF値が必須条件となり、コスト条件からみると適切ではない。
【0059】
よって、照明距離を少なくとも照明野の短辺寸法の2倍以上設けることで、図12(c)より解る通り、(5)式で求めた投影系F値に於ける、多角形面光源主因による投影系損失は5%以下となり、最低限の許容レベルである。一方、最大値6に於いては、先述した投影系損失は0.5%程度にて必要充分な品位が確保されるとともに、これ以上の照明光路長の確保は照明品位上の改善効果が少ないうえ鏡像も10を越えるため、有限の反射効率を有するカライドスコープでは最大鏡像付近での照明光率が劣化し、結果として望ましい輝度が得られない。
【0060】
ここで図11を参照して多角形モデル時の照明F値が決定する過程を説明する。
LED面光源とガイドスコープの組み合わせによる照明系にて照明距離dが小さくなると、簡易円形モデルでは誤差が大きくなる。よって、dの小さい領域での多角形モデルにてシミュレーションを行うと次のようになる。
【0061】
今、a,bのサイズが固定されたとしてdをOから増加させることを考える。r=d・a/(b−a)
L=d・b/(b−a)
φ=tan-1((b−a)/(2・d))である。
【0062】
図中緑作図を用いて光源鏡像S1、S2の延長と光軸が交わる点と、点Oとの距離をLnとすると、
Ln=r/cos(2・n・φ)
Ln<=Lを満足する整数nの最大値が観察可能な鏡映像数Nである。
N=[cos-1(a/b)/(2・tan-1((b−a)/(2d)))]
このとき、Nの鏡像の端(頂点)をCNとすれば角CNOPは、(2N+1)φ
よって、θ=
tan-1[{sin(2・N+1)・φ}/{(b/a)cosφ−cos(2N+1)φ}]
故にF=1/(2・sinθ)にて多角形モデル時の照明F値が決定する。
【0063】
以上の結果に基づいて作成した照明距離と光源反射像数との関係が図13(a)であり、照明距離と照明F値との関係が図13(b)である。円形モデルの設定F値を頂点にして、角度θが悪化する。これは照明距離が短いと多角形頂点による照明角拡大がさらに大きくなることを意味しており、効率維持(光の有効利用)のためには、円形モデルよりも明るいF値を設定する必要があり、コスト的には不利となる。
【0064】
以上の結果を円形モデルによる投影系F値設定時の投影効率換算にてグラフ化したものが図12(c)のグラフである。図12(d)はその拡大図である。このグラフは、照明中心より光源鏡像を見た場合であり、液晶対角方向へ移行するに伴い横軸の方向へ効率が変化する。このことは、照明(投影)むらが発生することを意味し、平面形であってもプロジェクタ照明には適さないことを意味する。
【0065】
効率・輝度むらの観点より代表値を、図14に示している。
【0066】
この代表値からわかるように、対角の2倍程度の照明距離がなければ5%程度の輝度むらが発生することがわかる。
【0067】
以上の説明により、本発明を起用すれば従来ランプに変わる光半導体素子を、安価なウエハ状態のままにて、フライアイ等に比べて単純でコンパクトで且つ安価な照明系構成とすることができる。また、高効率で且つ高品位な投写型ディスプレイシステムが構築可能となることが立証される。
【0068】
本発明では、光源が小さく即ち高効率高密度化すればするほど、より安価でコンパクトな光学系が構築可能となるため、対数グラフに直線にてプロット可能な光半導体素子の発光効率向上が為されている現在および将来に於いて、非常に有望・有益な照明光学装置である。
【0069】
【発明の効果】
上記したようにこの発明は、光半導体素子等の面光源を用いた不具合を回避し、安価で高品位な照明を得ることができる照明装置を提供できる。
【図面の簡単な説明】
【図1】この発明の前提となる実施の形態を示す概略構成図と、照明野観測点よりみた光源鏡像図と、面光源の出射光の説明図。
【図2】この発明の装置の原理を説明する図。
【図3】面光源に指向性を有する場合の本発明の適用例を示す図。
【図4】本発明の具体的な一実施の形態であり、両偏光利用手段を施した場合の説明図。
【図5】光変調素子が視野角特性を有する場合の本発明の実施の形態の説明図。
【図6】光変調素子に指向性がなく、投影系に有効角偏差がある場合の本発明の実施の形態を示す図。
【図7】図8の実施の形態における発光効率手段を適用した場合の効果例をグラフにて表した図。
【図8】半導体結晶が高屈折率であった場合の本発明の実施の形態であり、発光効率向上手段を適用した説明図。
【図9】投射系に煽りが加えられた場合の本発明の他の実施の形態を示す図。
【図10】照明距離が短い場合の不具合を説明するために示した図。
【図11】図10で示した照明距離が短い場合に、鏡像を多角形光源と捉えた場合の照明角算出過程を表した説明図。
【図12】図11で求めた算出結果を用いて鏡像解析を行った結果をグラフ化した説明図。
【図13】照明距離と輝度効率との関係の代表的な数値例を抜粋して示す図。
【図14】従来の透過型液晶ライトバルブ式プロジェクターの光学系の概要図と主要ランプの発光スペクトルグラフを示す図。
【符号の説明】
31…面光源、32…照明野、33…ガイドスコープ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a projection display using a light source and a light modulation element, and more particularly to an illumination device for a projection display using an optical semiconductor element as the light source.
[0002]
[Prior art]
Conventionally, mercury lamps and metal halide lamps obtained by adding halide compounds to the lamps have been mainly used as light sources for projection displays. These light sources realize a high luminous efficiency of 50 to 80 [lm / W] and a small interelectrode distance (arc length) of about 1 mm, and optical using a fly-eye lens as shown in FIG. The current situation is that it occupies the market almost as a lighting device.
[0003]
In FIG. 14A, 1 is a light source (lamp), 2 is a reflector, 3 is a UV filter, 4 is an IR filter, 5 and 6 are a first fly eye element and a second fly eye element constituting a fly eye lens. It is. Light emitted from the light source 1 is emitted to the dichroic mirrors 8, 9, and 10 through the fly-eye lens elements 5 and 6 and the lens 7. The light reflected by the dichroic mirror 8 enters, for example, a blue (B) liquid crystal panel (spatial modulation element) 13 via the mirror 11 and the lens 12. The blue optical image emitted from the liquid crystal panel 13 is combined with an optical image of another color by the combining prism 14 and enters the projection lens 15.
[0004]
The light transmitted through the dichroic mirror 8 is reflected by the dichroic mirror 9 and enters the liquid crystal panel 17 for green (G) through the lens 16. The green optical image emitted from the liquid crystal panel 17 enters the combining prism 14.
[0005]
The light transmitted through the dichroic mirror 9 enters the dichroic mirror 10 through the lenses 18 and 19. The light reflected by the dichroic mirror 10 enters, for example, a red (R) liquid crystal panel 23 via the lens 20, the mirror 21, and the lens 22. The red optical image emitted from the liquid crystal panel 23 enters the combining prism 14. The full color optical image emitted from the projection lens 15 is projected on the projection screen.
[0006]
In the apparatus described above, the light source by the lamp contains a lot of unnecessary light as shown in FIG. 14B, and these are shown in the UV filter 3 and the IR filter 4 which are shown in the current projection display in which the three primary color spectroscopic driving is general. Alternatively, it is removed using an optical filter such as dichroic mirror 8, 9, 10 or the like. As a result, it includes not only the cost increase due to the increase in parts, but also factors that cause various problems due to stray light or heat generation in the light shielding portion.
[0007]
In addition, there were many problems related to the basic problem of the lamp, such as slow rise of brightness after lighting, short life, use of mercury (environmental problem), and high voltage required at startup.
[0008]
[Problems to be solved by the invention]
An optical semiconductor element such as an LED can be given as a new light source candidate that changes to these. An optical semiconductor element can solve most of the above problems, but for example, an InGaAlP (red) LED 1 element usually has a forward voltage of about 2 V with a standard of use of 20 mA, so the light source power is only 0.04 W. Obviously, a large number of light sources for projection displays are required. Furthermore, these semiconductor elements have the disadvantage that the light diffusion angle is large and the refractive index of the semiconductor crystal is high, so that the transmission efficiency into the atmosphere is poor. For this reason, the directivity and the light extraction efficiency are improved by providing a reflector on the opposite side of the irradiation surface and covering the surface with a resin having a lens shape, as seen in a normal single LED lamp structure.
[0009]
However, when trying to obtain a configuration like conventional illumination with such a configuration, the shape of the LED reflector that satisfies the NA (numerical aperture) of the fly-eye lens and sufficiently covers the light distribution characteristics of the optical semiconductor element is large. Therefore, the arrangement pitch of each component is inevitably increased. Therefore, the light source shape and fly-eye lens in the case where a large number of the above-described single LED lamps are arranged are lengthened. As a result, not only the system becomes large and expensive, but also when the liquid crystal is used as a light valve, for example, the illumination angle The image quality such as contrast decreases due to the influence of the viewing angle and the like, and it is very difficult to construct an optical system with high light collection efficiency including the projection lens. Therefore, at present, such an optical system has not been realized. In addition, since the light source itself having such a configuration requires a lot of processing and accuracy, it has to be very expensive compared to the conventional lamp light source.
[0010]
Of course, it is conceivable to directly irradiate a light source with the above light distribution characteristics improvement processing just before these light valves, but the variation between optical semiconductor elements exists not only in the brightness but also in the emission wavelength Therefore, if division and superimposition are not performed, defects such as color unevenness and brightness unevenness, including partial brightness deterioration and astigmatism due to defects, individual aging variations, etc., appear, and high-quality projection display construction There was no groundbreaking optical means to hinder and comprehensively improve them.
[0011]
SUMMARY OF THE INVENTION Accordingly, the present invention has been made to devise means for avoiding the above-described problems using a surface light source such as an optical semiconductor element, and to provide an inexpensive and high-quality illumination device for a projection display.
[0012]
[Means for Solving the Problems]
  The present invention has a light diffusion type surface light source, the surface light source is opposed to an irradiation surface or a display surface, and more than a cross section of a space between the surface light source and the irradiation surface or the display surface. The surface light source is a structure having a kaleidoscope that surrounds a space formed from the vicinity of the outer periphery of the surface light source and the outer periphery of the irradiation surface or display surface with a reflecting mirror. Both polarizations having a size ratio of a half of a similar shape in a predetermined direction to an irradiation surface or a display surface, and performing light separation and phase rotation processing in the predetermined direction in the vicinity of the surface light source of the kaleidoscope F is a projection lens that projects light from the irradiation surface or display surface, where a is the size of the surface light source in the predetermined direction and a is the size of the irradiation surface or display surface. About values
F = b / (4a)
Size a of the surface light source in a direction orthogonal to the arbitrary direction ' The size of the irradiation surface or display surface in the same direction is b ' F = b for the F value of the projection lens that projects the light from the irradiation surface or the display surface ' / (2a ' ) Is satisfied.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
First, main characteristic parts of the present invention will be described. That is, an optical semiconductor element in a wafer state that does not require special processing of the optical semiconductor light source is used as a surface light source with an area smaller than the illumination field and an equal aspect ratio. The space between is surrounded by a simple kaleidoscope. Then, the illumination means of the optical device that achieves the best light utilization efficiency with the highest F value, that is, the lowest cost projection lens specification is provided. Furthermore, by presenting various conditions such as an illumination distance for avoiding problems caused by the surface light source, conditions for achieving the minimum necessary illumination quality at the lowest cost are also presented.
[0015]
At the same time, the light source is simply covered with an intermediate medium having a refractive index larger than 1, thereby helping to match the refractive index of the semiconductor crystal and improving the internal reflectivity and the critical angle. In addition, it is possible to provide an inexpensive, high-efficiency, high-quality optical device by providing the optimum illumination means even when both polarized light needs to be used or when there are significant conditions in the light source divergence angle. It is possible to provide.
[0016]
Hereinafter, the necessity and structure principle of the structure according to the present invention will be specifically described.
[0017]
  FIG. 1 (a) shows the present invention.PremiseIt is an embodiment. 31 is a surface light source, and 32 is an illumination field. The space around the surface light source 31 and the surrounding of the illumination field 32 is surrounded by, for example, a mirror (guide scope) 33. However, if the purpose is satisfied, either a state filled with resin or a configuration with a prism may be used.
[0018]
Here, for the sake of simplicity, the illumination field 32 is assumed to be a rectangle having an arbitrary aspect ratio, and only the illumination optical unit is shown in a monochromatic configuration.
[0019]
  The surface light source 31 is, for example, a red LED light source aggregate, and has a shape that is smaller in both vertical and horizontal dimensions than the illumination field 32. When the effective outer peripheral end of the surface light source 31 and the effective outer peripheral end of the illumination field 32 are surrounded by the mirrors 33a, 33b, 33c, and 33d without a gap and viewed from the central observation section “P” of the illumination field 32, the surface light source 31 The mirror images by the mirrors 33a, 33b, 33c, and 33d are shown in the figure.1As shown in FIG. 5B, the light source is observed as an ellipsoidal light source having a radius determined by the dimensional ratio between the illumination field 32 and the surface light source 31.
[0020]
That is, light emitted from a plurality of arbitrary emission angles from all LEDs of the surface light source 31 reaches the observation point “P” of the illumination field 32, and the distance between the surface light source 31 and the illumination field 32 is sufficient. If the projection system (projection lens system) 34 is provided with a divergence angle equal to or greater than the maximum illumination light by the light source mirror image as the F value, a highly efficient and uniform projection optical device can be obtained. FIG. 1C shows the state of diffusion of the emitted light from one LED of the surface light source 31.
[0021]
The F value achieved by the projection system (projection lens) 34 does not necessarily need to cover the entire range, the light source emits light in a completely diffused state, and reflection loss due to the mirrors 33a, 33b, 33c, and 33d is almost all. This effect is noticeable only when there is not.
[0022]
As described above, the basis of the present invention is that the surface light source 31 has a small shape in any cross-sectional direction of the illumination field 32 (irradiation surface or display surface), and the vicinity of the outer periphery of the surface light source 31 and the irradiation field 32. Mirrors 33a, 33b, 33c, and 33d that surround an arbitrary space formed from the outer periphery of the mirror with a reflecting mirror, that is, a kaleidoscope (kaleidoscope) 33 structure. That is, the kaleidoscope 33 is configured by the upper and lower and left and right mirrors 33a, 33b, 33c, and 33d.
[0023]
FIG. 2 shows the basic concept of the above-described apparatus. For the sake of simplicity, the embodiment is based on a single color configuration, the surface light source 31 and the illumination field 32 are arranged symmetrically with respect to the optical axis, and the figure shows a two-dimensional display of a cross section including the light source.
[0024]
The size of the surface light source 31 is “a”, the size of the illumination field 32 is “b”, and the distance between the surface light source 31 to the illumination field 32 is “d”. Then, it is assumed that the surface light source 31 end to the illumination field 32 end are surrounded by the mirrors 33a, 33b, 33c, and 33d facing each other without a gap. At this time, the surface light source 31 and the light source mirror image 35 viewed from the central observation point “P” of the illumination field 32 have a radius “r” from the surface light source 31 to the intersection “O” on the extension line of the mirrors 33a and 33b. Line up on the circle 36.
[0025]
If the illumination distance “d” is sufficiently secured, the mirror image 35 is allowed to be regarded as a circle 36. Therefore, the maximum illumination angle to the observation point “P” is an angle “θ” formed by the tangent line from “P” to the circle 36 with the optical axis, and from the illumination field 32 to the extended intersection “O” of the mirrors 33a and 33b. When the distance is “L” and the optical axis angle of the mirrors 33a and 33b is “φ”,
r = d × a / (ba) (1)
L = d × b / (ba) (2)
φ = tan-1{(Ba) / (2d)} (3)
Therefore, the illumination angle “θ” is
θ = sin-1(R / L) = sin-1(A / b) (4)
It becomes. Therefore, the minimum F value of the projection system that can cover all the illumination angles is
F = 1 / (2sin θ) = b / (2a) (5)
And does not depend on the illumination distance “d”.
[0026]
Therefore, if the dimensional ratio between the light source and the illumination field 32 has the same ratio when viewed from any direction, that is, if it is similar, the surface light source 31 and its mirror image 35 viewed from the observation point “P” have a radius “r”. Observed as a spherical shape.
[0027]
In general, the projection lens element has a circular shape when viewed from the optical axis because of its workability. Accordingly, the projection lens entrance pupil viewed from the optical axis has a circular shape symmetrical to the optical axis. It is possible to obtain the maximum pupil passage efficiency with the largest F value by making a similar shape. (F value: Effective angle (brightness) index of optical system, θ: Maximum effective angle)
F = 1 / (2 sin θ) = b / (2a) (repost (5))
If this condition is ensured, the most efficient projection display can be constructed. If the F value Ft of the projection lens is Ft <= F = 1 / (2 sin θ) = b / (2a), the illumination light can be projected without loss.
[0028]
The above is a design method at the time of a light source having an emission characteristic close to perfect diffusion, but depending on the optical semiconductor element, it has a remarkable characteristic in the light divergence angle, and `` θL"An output angle greater than or equal to" may not be considered effective.
[0029]
An application example of the present invention when an effective emission angle is given to the light source will be described with reference to FIG.
[0030]
The effective emission angle of the optical semiconductor element is “θL The other conditions are the same as those in the previous section using FIG. Here, the converging emission angle range “θ” of the surface light source 31 is larger than the angle “φ” formed by the kaleidoscope 33.L"Is large, the light source image seen from the observation point" P "exists on a circle 36 having a radius" r "centering on the extended line intersection of the mirrors 33a and 33b as in the previous section.
[0031]
Here, the light distribution characteristic of the surface light source 31 is “θL”, So from the circle 36“ θL”And the angle“ θ ”formed by the light beam emitted from the mirror image 35 on the circle 36 reaching the observation point“ P ”with the optical axis.T"Is the maximum illumination angle for the observation point" P ".
[0032]
Therefore, the angle between the mirror image 35 and the center “O” of the circle 36 and the optical axis is expressed as “θM"given that,
θL= ΘM+ ΘT                                ... (6)
r sinθM= (L-r cosθM) TanθT        ... from (7)
sinθT= R sinθL/ L (8)
Therefore, the light distribution characteristic condition “θLThe F value of the most effective projection system when “” is added is obtained from the equations (8), (1), and (2)
F = 1 / (2 sinθT) = B / (2a sinθL(9)
It becomes.
[0033]
Here, when a liquid crystal is used as a light modulation element of a projection display, there are many cases where only linearly polarized light is used as illumination effective light. If the semiconductor element is linearly polarized light such as a semiconductor laser, the present invention described so far can be applied as it is, but at the time of random polarization such as an LED, it is separated into two orthogonally polarized light using a PBS element or the like. It is desirable to apply a method of improving the light utilization efficiency by adding a phase rotation process on one side.
[0034]
In the ordinary lamp light source, the above-described method is used in the vicinity of the fly-eye second element (6 in FIG. 14 (a)) that performs division and superimposition. As for the means, if the conditions after the illumination system do not change, a technique is required in which the illumination effective light is halved in an arbitrary direction and such processing is applied using this gap.
[0035]
Even in the case where such both polarized light utilization means are provided in the present invention, it is necessary to perform a process of converting random polarized light into linearly polarized light after applying a means for halving the illumination angle in an arbitrary direction. From the description so far, the means for halving the illumination angle in the arbitrary direction in the expressions (5) and (9) is simply separated from the similar shape of the illumination field 32 and the surface light source 31 by both polarized light utilization means. Although the importance of the condition described later is proved only by setting the shape of the surface light source to ½ in the direction of the light source, FIG. 4 is used assuming that both polarized light using means are applied to the light source side as an example. I will explain. FIG. 4 shows an example in which the illumination effective light is halved in the downward direction (short side direction).
[0036]
As shown in FIG. 4A, the long side dimension “a” of the surface light source 31 is used.1”, Short side dimension“ a ”2"Long side dimension of lighting field 32" b1", Short side dimension" b2It is assumed that both polarized light utilization means shown in FIG. 4B are applied in the short side direction.
[0037]
If both polarization utilizing means are described with reference to FIG. 4B, the p-polarized component indicated by the dotted line emitted from the surface light source 31 passes through the PBS element 44 and is aligned with the s-polarized light by the polarization rotating plate 46. The light is emitted into the ride scope 33. On the other hand, the s-polarized component indicated by the solid line in the figure emitted from the surface light source 31 is reflected by the PBS element 44, further redirected by the mirror 45 and emitted into the kaleidoscope 33. The PBS 44 element and the mirror 45 are formed by prisms 47 and 48. In general, the prisms 47 and 48 have the same size. Depending on the emission conditions of the light source 31, a convex lens (not shown) is disposed between the light source 31 and the prism 47, the outer boundary of the prisms 47 and 48 is mirrored, and the PBS element 44 and the mirror 45 are processed into a concave lens shape. The light utilization efficiency may be improved.
[0038]
Even in such a case, since the relationship between the kaleidoscope 33 and the projection system F value after the irradiation surface 32 is already derived by the equations (5) and (9), when the shapes of the prisms 47 and 48 are substantially equal, Total value “2a” of the prisms 47 and 482"And long side" a1If the combined light source formed by “” is formed to have a similar shape to the illumination field 32, the present invention described so far can be applied as it is. That is, the polarization separation direction when using both polarized light is a2, B2When the side direction
a1: 2a2= B1+ B2                    (10)
The projection system F value when the diffused light source shape is
F = b / (4a) (11)
And the effective light source divergence angle is `` θL”Is applied, the projection system F value is F = b / (4a sin θL(12)
The effectiveness of setting is verified.
[0039]
The verification of the specific embodiment of the present invention has been described above from the observation point on the optical axis. However, the light source and the light source mirror image by the kaleidoscope viewed from the irradiation observation position other than the optical axis are also mirrors as shown in FIG. It exists on a circle 36 having a radius r centered on the intersection of the extended lines 33a and 33b.
[0040]
That is, in FIG. 5, the illumination light chief rays at the irradiation surface peripheral observation points “P” and “Q” are approximately the inclination angle “θ” of the kaleidoscope 33. Therefore, when a liquid crystal that is easily affected by the viewing angle is used as the light modulation element, a lens 37 having a focal length “L” is disposed immediately before the illumination field 32, thereby illuminating light chief rays to all illumination fields. Can be substantially parallel to the optical axis. That is, the focal length “f” of the lens 37 is
f = L = d × b / (ba) (13)
When the mirror reflection efficiency is so large that it cannot be ignored, it is often possible to obtain a result that is preferably set slightly shorter than the focal point obtained from the equation (13).
[0041]
On the other hand, when the light modulation element is not affected by the viewing angle, it is often possible to obtain a more preferable result by slightly changing the focus under the projection system conditions.
[0042]
As shown in FIG. 6 (a), in most cases, the object 71 is imaged by the lens 71. The central portion has the widest effective angle θ1 and is balanced, and the outer peripheral direction is closer to the outer peripheral portion from the optical axis. The effective angle of becomes narrower. FIG. 6B shows this state represented by the projection lens entrance pupil shape from the main observation point of the illumination field having a wide aspect ratio. In the figure, the left side is the case where the focus of the condenser lens is “L”, and the right side of the figure is that the focus of the condenser lens is a short focal point considering the peripheral pupil of the projection system, and the chief ray of illumination light at the outer periphery Simulates a slightly focused state. In this way, it is obvious that even with a projection lens or the like having a small peripheral light amount ratio, the peripheral light amount is hardly deteriorated and a good result can be obtained.
[0043]
In summary, the focal length “f” of the condenser lens 37 to be arranged is
f ≦ L = d × b / (ba) (14)
Is desirable.
[0044]
An LED (light emitting diode) is considered to be an effective light source to which the present invention is applied. However, as described in the conventional section, a very large number of projection display light sources are required for each color. It is obvious that conventional LEDs cannot be arranged in high density, which is clearly less preferable than the equations (5), (9), (11), and (12), and a large number of light sources configured individually. Since it is a body, it becomes very expensive.
[0045]
Originally, LEDs are manufactured with hundreds of thousands of LEDs on a several inch wafer, so the light source is in a state where an arbitrary range suitable for application of the present invention is connected in the wafer state with some modifications. If this is manufactured, the steps after the division processing are omitted, and even if a considerable amount is used, it is very advantageous in terms of cost.
[0046]
However, many semiconductor crystals used for LEDs have a high refractive index of N (refractive index) = 3.5, and when released into the atmosphere as they are, the transmittance is low as shown by the thin solid line on the graph of FIG. The critical angle is about 16 degrees, and it is not effectively emitted into the kaleidoscope.
[0047]
Therefore, as shown in FIG. 8, by filling an arbitrary range within the kaleidoscope 33 from the surface light source 31 with a medium 39 having a refractive index larger than that of the atmosphere, transmission is performed as shown by a thick dotted line in FIG. The rate can be improved.
[0048]
If the filling range “t” of the medium 39 has an arbitrary thickness or more, most of the light source rays in the vicinity of the critical angle are reflected in the medium 39 at the interface of the kaleidoscope 33 with respect to the optical axis angle “φ”. Therefore, the angle of the optical axis of the light after reflection “θM”Is the angle of the optical axis before reflection“ θBFor
θM= ΘB-2φ (15)
It becomes. For this reason, it has the effect of increasing the light source critical angle as shown by the thick line in FIG. 7 and increasing the light emission efficiency itself to the outside of the crystal. That is, at least the vicinity of the surface light source of the kaleidoscope is filled with a medium having an arbitrary refractive index not less than the atmospheric refractive index and not more than the semiconductor refractive index.
[0049]
However, if the thickness “t” of the medium 39 is too large, the light source size “a” described so far and the radius “r” of the circle 36 where the light source mirror image (not shown) exists are “a ′” and “r ′”, respectively. Therefore, the optimum thickness value is determined from the light source and projection conditions.
[0050]
Most of the front projection type projection displays are provided with a turning (knitting center) vertically upward with respect to the modulation element, and project and image upward. This has two reasons that it is advantageous to ensure the contrast performance from the convenience of use and the viewing angle characteristics when a large number of liquid crystals are used as light valves.
[0051]
In such an optical system of the projection display, the center of the irradiation surface “P” shown by the solid line in FIG. 9 is arranged rather than arranging the light source on the straight line extending in the direction of the liquid crystal surface from the center of the liquid crystal shown by the dotted line in FIG. It is obvious that it is more efficient than the projection condition to install the extension line of the mirror of the kaleidoscope 33 on a straight line 34b connecting the entrance pupil position 34a of the projection system 34 shown in an image. . That is, in a projection display having a deviation between the optical axis of the projection lens and the center of the irradiation display surface, there is an intersection point on the extension line of the kaleido mirror near the extension line originating from the center of the projection lens entrance pupil and passing through the center of the irradiation surface. This is an effect of the characteristic configuration. In other words, this is an effect due to the arrangement when there is a deviation between the optical axis of the projection lens and the center of the irradiation display surface.
[0052]
Next, a description will be given of a configuration in which the distance d between the surface light source and the irradiation surface has a distance that is not less than 2 times and not more than 6 times the shortest side of the irradiation surface, that is, the necessity of setting an appropriate illumination distance range between the light source and the illumination field.
[0053]
As shown in FIG. 10, the illumination distance is set to “d” without changing the size of the light source 31 in which a sufficient illumination distance “d” is secured.2"," D1As the light source 31 viewed from the illumination field observation point “P” increases, the number of mirror images decreases and the error from the circular model gradually increases, so that it must be considered as a polygon.
[0054]
FIG. 11 shows a process of obtaining the illumination F value while keeping the light source mirror image in a polygonal shape.
[0055]
As a result, the mirror image number N viewed from the observation point Ps with the illumination distance and the illumination range size ratio as variables is shown in FIG. 12A, and the minimum F value of the illumination light reaching the observation point Ps is shown in FIG. It was shown to.
[0056]
Further, based on these, the projection system efficiency when projected by the projection system having the F value defined by the equation (5) when there is no loss and the light source is emitted in a completely diffused state is shown. FIG. 12D shows an enlarged view of the vicinity of 100% efficiency in FIG.
[0057]
FIG. 12B shows the F value converted from illumination from a polygonal vertex protruding from a circle. When the illumination distance is short with respect to the illumination field, the F value necessary for the projection system needs to be considerably small. It shows that there is.
[0058]
Even if these losses are at an acceptable level, if the cross section shown in FIG. 11 is in the direction of the short side of the illumination field, the illumination distance “d” remains fixed as the cross section rotates, and the light source dimension “ Since “a” and the illumination range “b” are continuously expanded, a luminance wave as shown in FIG. 12C is generated in a circular shape on the screen and cannot be allowed as image quality. As a result, FIG. The F value of the projection system indicated by () is an indispensable condition and is not appropriate in terms of cost conditions.
[0059]
Therefore, by providing the illumination distance at least twice as long as the short side dimension of the illumination field, as can be seen from FIG. 12 (c), due to the polygonal surface light source main factor in the projection system F value obtained by equation (5). The projection system loss is 5% or less, which is the minimum allowable level. On the other hand, when the maximum value is 6, the above-mentioned projection system loss is about 0.5%, and necessary and sufficient quality is secured, and securing an illumination light path length longer than this has little improvement effect on illumination quality. In addition, since the mirror image exceeds 10, the illumination light rate in the vicinity of the maximum mirror image deteriorates in a kaleidoscope having a finite reflection efficiency, and as a result, a desirable luminance cannot be obtained.
[0060]
Here, the process of determining the illumination F value in the polygon model will be described with reference to FIG.
When the illumination distance d is reduced in the illumination system using the combination of the LED surface light source and the guide scope, the error is increased in the simple circular model. Therefore, when a simulation is performed with a polygonal model in a region where d is small, the following results.
[0061]
Now, let us consider increasing d from O, assuming that the sizes of a and b are fixed. r = d · a / (ba)
L = d · b / (ba)
φ = tan-1((Ba) / (2 · d)).
[0062]
If the distance between the point where the extension of the light source mirror image S1, S2 and the optical axis intersect with the point O is Ln using the green drawing in the figure,
Ln = r / cos (2 ・ n ・ φ)
The maximum value of the integer n satisfying Ln <= L is the number of observable mirror images N.
N = [cos-1(A / b) / (2.tan-1((Ba) / (2d)))]
At this time, if the end (vertex) of the mirror image of N is CN, the angle CNOP is (2N + 1) φ
Therefore, θ =
tan-1[{Sin (2 · N + 1) · φ} / {(b / a) cosφ−cos (2N + 1) φ}]
Therefore, the illumination F value in the polygonal model is determined by F = 1 / (2 · sin θ).
[0063]
FIG. 13A shows the relationship between the illumination distance and the number of light source reflection images created based on the above results, and FIG. 13B shows the relationship between the illumination distance and the illumination F value. The angle θ deteriorates with the circular model set F value as a vertex. This means that if the illumination distance is short, the illumination angle expansion due to the polygonal vertex is further increased. To maintain efficiency (effective use of light), it is necessary to set a brighter F value than the circular model. There is a disadvantage in terms of cost.
[0064]
FIG. 12C is a graph obtained by graphing the above results in terms of projection efficiency when the projection system F value is set using a circular model. FIG. 12 (d) is an enlarged view thereof. This graph shows a case where the light source mirror image is viewed from the center of illumination, and the efficiency changes in the direction of the horizontal axis as it moves in the diagonal direction of the liquid crystal. This means that illumination (projection) unevenness occurs, and even a planar shape is not suitable for projector illumination.
[0065]
Representative values are shown in FIG. 14 from the viewpoint of efficiency and luminance unevenness.
[0066]
As can be seen from this representative value, it can be seen that brightness unevenness of about 5% occurs if there is no illumination distance of about twice the diagonal.
[0067]
From the above description, if the present invention is used, an optical semiconductor element that can be replaced with a conventional lamp can be made into a simple, compact, and inexpensive illumination system configuration as compared with a fly-eye or the like while maintaining an inexpensive wafer state. . In addition, it is proved that a high-efficiency and high-quality projection display system can be constructed.
[0068]
In the present invention, the smaller the light source, that is, the higher the efficiency and the higher the density, the cheaper and more compact the optical system can be constructed. Therefore, the light emission efficiency of the optical semiconductor device that can be plotted in a straight line on the logarithmic graph can be improved. It is a very promising and useful illumination optical device at present and in the future.
[0069]
【The invention's effect】
As described above, the present invention can provide an illuminating device that can avoid a problem using a surface light source such as an optical semiconductor element and can obtain inexpensive and high-quality illumination.
[Brief description of the drawings]
FIG. 1 of the present inventionPremiseThe schematic block diagram which shows embodiment, the light source mirror image figure seen from the illumination field observation point, and explanatory drawing of the emitted light of a surface light source.
FIG. 2 is a view for explaining the principle of the apparatus of the present invention.
FIG. 3 is a diagram showing an application example of the present invention when a surface light source has directivity.
FIG. 4 of the present inventionOne concreteExplanatory drawing at the time of giving both polarization utilization means which is embodiment.
FIG. 5 is an explanatory diagram of an embodiment of the present invention when a light modulation element has viewing angle characteristics.
FIG. 6 is a diagram showing an embodiment of the present invention when the light modulation element has no directivity and the projection system has an effective angle deviation.
7 is a graph showing an effect example when the light emission efficiency means in the embodiment of FIG. 8 is applied.
FIG. 8 is an explanatory view of an embodiment of the present invention in which a semiconductor crystal has a high refractive index, to which light emission efficiency improving means is applied.
FIG. 9 is a diagram showing another embodiment of the present invention when a projection is added to the projection system.
FIG. 10 is a diagram for explaining a problem when the illumination distance is short.
11 is an explanatory diagram showing an illumination angle calculation process when a mirror image is regarded as a polygonal light source when the illumination distance shown in FIG. 10 is short.
FIG. 12 is an explanatory diagram in which the result of mirror image analysis using the calculation result obtained in FIG. 11 is graphed.
FIG. 13 is a diagram illustrating an example of representative numerical values of the relationship between the illumination distance and the luminance efficiency.
FIG. 14 is a schematic diagram of an optical system of a conventional transmissive liquid crystal light valve projector and a diagram showing an emission spectrum graph of a main lamp.
[Explanation of symbols]
31 ... surface light source, 32 ... illumination field, 33 ... guide scope.

Claims (3)

光拡散タイプの面光源を有し、前記面光源は、照射面または表示面に対向し、かつ前記面光源と前記照射面または表示面が対向する間の空間の横断面よりも小さな面形状であり、さらに、前記面光源の外周付近と前記照射面または表示面の外周付近より形成される空間を反射鏡で囲むカライドスコープを有した構造であり、
前記面光源は、前記照射面または表示面と所定方向に相似形の2分の1の寸法比を有しており、
上記カライドスコープの前記面光源付近に上記所定方向に光の分離及び位相回転処理を行う両偏光利用手段が施されており、
前記面光源の上記所定方向のサイズをa、前記照射面または表示面のサイズをbとしたとき、前記照射面または表示面からの光を投射する投射レンズのF値について
F=b/(4a)
上記任意方向と直交する方向の前記面光源のサイズa ' 、同方向の前記照射面または表示面のサイズをb ' としたとき前記照射面または表示面からの光を投射する投射レンズのF値についてF=b ' /(2a '
なる条件が成立することを特徴とする投写型ディスプレイの照明装置。
A surface light source of a light diffusion type, the surface light source facing the irradiation surface or the display surface, and having a surface shape smaller than a transverse cross section of the space between the surface light source and the irradiation surface or the display surface There further is a structure having a kaleidoscope enclosed in reflector between sky periphery around the Ru is formed from the outer circumferential vicinity of the irradiation surface or the display surface of the surface light source,
The surface light source has a dimensional ratio of a half of a similar shape to the irradiation surface or the display surface in a predetermined direction;
Both polarized light utilization means for performing light separation and phase rotation processing in the predetermined direction are provided near the surface light source of the kaleidoscope,
F value of a projection lens that projects light from the irradiation surface or display surface, where a is the size of the surface light source in the predetermined direction and b is the size of the irradiation surface or display surface.
F = b / (4a)
The F value of the projection lens that projects light from the irradiation surface or display surface when the size a ′ of the surface light source in the direction orthogonal to the arbitrary direction is b and the size of the irradiation surface or display surface in the same direction is b ′. F = b ' / (2a ' )
An illumination device for a projection display, characterized in that:
前記面光源の有効拡散角(半角)がθ L であり、上記カライドスコープの前記面光源付近に上記所定方向に光分離及び位相回転処理を行う両偏光利用手段が施されており、
前記面光源の上記所定方向のサイズをa、前記照射面または表示面サイズをbとしたとき、前記照射面または表示面からの光を投射する投射レンズのF値について
F=b/(4a sin θ L
上記所定方向と直交する方向の前記面光源のサイズa ' 、同方向の前記照射面または表示面のサイズをb ' としたとき前記照射面または表示面からの光を投射する投射レンズのF値について
F=b ' /(4a ' sin θ L
なる条件が成立することを特徴とする請求項1に記載の投写型ディスプレイの照明装置。
The effective diffusion angle (half angle) of the surface light source is θ L , and both polarized light using means for performing light separation and phase rotation processing in the predetermined direction are provided near the surface light source of the kaleidoscope,
When the size of the surface light source in the predetermined direction is a and the irradiation surface or display surface size is b, the F value of the projection lens that projects light from the irradiation surface or display surface
F = b / (4a sin θ L )
The F value of the projection lens that projects light from the irradiation surface or display surface when the size a ′ of the surface light source in the direction orthogonal to the predetermined direction is b and the size of the irradiation surface or display surface in the same direction is b ′. about
F = b / (4a ′ sin θ L )
The projection display illumination device according to claim 1, wherein the following condition is satisfied .
上記カライドスコープの少なくとも前記面光源付近は、大気屈折率以上半導体屈折率以下の屈折率の媒質にて充填されていることを特徴とする、請求項1または2記載の投写型ディスプレイの照明装置。 The illumination device for a projection display according to claim 1 or 2 , wherein at least the vicinity of the surface light source of the kaleidoscope is filled with a medium having a refractive index not lower than the atmospheric refractive index and not higher than the semiconductor refractive index. .
JP33284698A 1998-11-24 1998-11-24 Projection display lighting device Expired - Fee Related JP4005726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33284698A JP4005726B2 (en) 1998-11-24 1998-11-24 Projection display lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33284698A JP4005726B2 (en) 1998-11-24 1998-11-24 Projection display lighting device

Publications (2)

Publication Number Publication Date
JP2000155545A JP2000155545A (en) 2000-06-06
JP4005726B2 true JP4005726B2 (en) 2007-11-14

Family

ID=18259458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33284698A Expired - Fee Related JP4005726B2 (en) 1998-11-24 1998-11-24 Projection display lighting device

Country Status (1)

Country Link
JP (1) JP4005726B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072358A (en) * 2000-08-29 2002-03-12 Toshiba Corp Lighting device for projection type display and projection type display device
JP2003255465A (en) 2002-02-28 2003-09-10 Toshiba Corp Illuminator and projection type display device using the same
JP4144532B2 (en) * 2004-02-23 2008-09-03 セイコーエプソン株式会社 Illumination device and projection display device

Also Published As

Publication number Publication date
JP2000155545A (en) 2000-06-06

Similar Documents

Publication Publication Date Title
KR100834976B1 (en) Video display apparatus
JP6056001B2 (en) Light source device and projection display device
TWI322324B (en) Projector
JP2024023800A (en) Light source device, image projection device, and light source optical system
JP5494678B2 (en) Illumination optical system and projector apparatus
JP7543819B2 (en) Light source device and image projection device
JPH03111806A (en) Optical illumination system and projector with the same
JP2004527804A (en) Digital image projector with directional fixed polarization axis polarization beam splitter
JP2007025308A (en) Projection type video display apparatus and color separation unit
JP7434808B2 (en) Light source device and image projection device
JP2019028361A (en) Illumination device and projector
JPWO2015111145A1 (en) LIGHT SOURCE DEVICE AND VIDEO DISPLAY DEVICE USING THE SAME
JP5644481B2 (en) Image projection device
JP7413740B2 (en) Light source device, image projection device, and light source optical system
JP2006235338A (en) Projection type image display apparatus
JPWO2020054397A1 (en) Light source device and projection type image display device
JPWO2020012751A1 (en) Light source device and projection type display device
JP4005726B2 (en) Projection display lighting device
JPH0588145A (en) Projection optical device
JP2002189192A (en) Illuminator and liquid crystal projector
JP2001222002A (en) Liquid crystal projector device
JP2006337428A (en) Illuminating optical system, optical engine and projection image display apparatus
JPH08129155A (en) Projection type picture display device
JP3652305B2 (en) Optical unit
JP7338410B2 (en) Light source device, image projection device and light source optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees