JP4005301B2 - Method for recovering active ingredients from polyester waste - Google Patents

Method for recovering active ingredients from polyester waste Download PDF

Info

Publication number
JP4005301B2
JP4005301B2 JP2000247236A JP2000247236A JP4005301B2 JP 4005301 B2 JP4005301 B2 JP 4005301B2 JP 2000247236 A JP2000247236 A JP 2000247236A JP 2000247236 A JP2000247236 A JP 2000247236A JP 4005301 B2 JP4005301 B2 JP 4005301B2
Authority
JP
Japan
Prior art keywords
separation
polyester waste
ethylene glycol
solid
active ingredient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000247236A
Other languages
Japanese (ja)
Other versions
JP2002060542A (en
Inventor
憲二 石田
正教 宮本
実 中島
和広 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2000247236A priority Critical patent/JP4005301B2/en
Publication of JP2002060542A publication Critical patent/JP2002060542A/en
Application granted granted Critical
Publication of JP4005301B2 publication Critical patent/JP4005301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリエステル廃棄物から有効成分を回収する方法に関し、更に詳しくは、ポリエチレンテレフタレートと植物繊維とから実質的になるポリエステル廃棄物から、有効成分としてのテレフタル酸ジメチルとエチレングリコールとを効率よく分離・回収する方法に関する。
【0002】
【従来の技術】
ポリアルキレンテレフタレートは、その化学的安定性が優れていることから、繊維、フイルム、樹脂などの生活関連資材、飲料水、炭酸飲料用ボトル等の食品分野等に大量に生産・使用されている。
【0003】
しかしながら、生産量、使用量の増大に伴って大量に発生する、繊維、フィルム、樹脂製品の廃棄物、規格外品のポリアルキレンテレフタレート(以下、単にポリエステル廃棄物と略記することもある。)の処理費用は製品コストにも係わってくるのみならず、これらの処理は現在大きな社会問題となっており、そのリサイクル方法につき各種の提案がなされている。
【0004】
しかしながら、ポリエステル廃棄物を溶融成形により品質グレードの低いものに転化するマテリアルリサイクルは、いわゆる“使い捨て”の状況を大いに改善してはいるが、得られたリサイクル製品は再度リサイクルすると更に品質が低下するために、その用途が限られ、最終的にポリアルキレンテレフタレートの廃棄を回避することは困難である。
【0005】
また、ポリエステル廃棄物を燃料として用いる、サーマルリサイクルも行われている。この方法は、ポリエステル廃棄物の燃焼熱の再利用という利点は有するが、ポリエステル廃棄物を焼失させることに他ならないため、ポリアルキレンテレフタレート原料の損失及び二酸化炭素の発生という問題が有り、省資源及び地球環境保全の面からは好ましくない。
【0006】
他方、上記二種類のリサイクル方法に対して、ポリエステル廃棄物をその構成成分へ変換・回収し、再度重合反応によってポリアルキレンテレフタレートを製造し再利用する、ケミカルリサイクルも検討されている。
【0007】
即ち、回収したポリエステル廃棄物をメタノール(以下、MeOHと略記することがある。)と反応させ、テレフタル酸ジメチル(以下、DMTと略記することがある。)とアルキレングリコールとして回収するケミカルリサイクルは、基本的にロス無く化合物を循環再使用するので、本来目的とする資源再利用が可能となる。
【0008】
しかしながら、流通業や家庭から排出されるポリエステル廃棄物には、樹脂やフィルムの他に、繊維廃棄物では通常天然繊維との混紡(主に、綿、麻との混紡)繊維という形で廃棄されることも多い。
【0009】
混入した天然繊維はポリエステル廃棄物の加熱操作・反応操作等の過程で分解し機器類の損傷、悪臭の発生、その他の問題を生じる恐れがある。さらに分解物が、回収したDMTとアルキレングリコールの品質を著しく低下させる恐れもある。このため、上記ケミカルリサイクルにおいて、ポリエステル廃棄物を有効利用するには、これに含まれる天然繊維を分離する事が必要である。
【0010】
従来、ポリエステル廃棄物の回収方法としては、ポリアルキレンテレフタレートをエチレングリコール(以下、EGと略記することがある。)で解重合し、次いでMeOHでエステル交換反応させてDMTを得るという方法がグリコリシス−エステル交換反応法として広く知られ、工業的にも実施されている。
【0011】
しかしながら、天然繊維の熱分解温度は、動物繊維が130℃程度、植物繊維が200℃程度と低いため、通常200〜240℃で実施されている上記グリコリシス法では天然繊維の熱分解のために天然繊維を含むポリアルキレンテレフタレートのケミカルリサイクルは、その適用が困難であった。このため、テレフタル酸ジメチル、パラトルイル酸メチル、イソフタル酸ジメチル等の芳香族エステルにポリエステルを溶解分離する方法(米国特許第5866622号)が提案されているが、分離性能やコスト的に高くなる等の問題があり、実質的には天然繊維を含むポリエステル廃棄物は、通常、他のポリエステル廃棄物とは前処理で選別除去され、ケミカルリサイクルは行われていないのが現状である。
【0012】
【発明が解決しようとする課題】
本発明の目的は、従来技術が有していた問題点を解決し、植物繊維とポリエチレンテレフタレートとから実質的になるポリエステル廃棄物から、DMTとEGとを効率よく回収する手法を確立することにある。
【0013】
【課題を解決するための手段】
本発明者らは、上記の従来技術に鑑み鋭意検討を行った結果、触媒を使用し、植物繊維の熱分解等の問題を惹起しない温度でポリエステル廃棄物をEGで解重合すれば、混入している植物繊維を固形物のまま残せ、簡単に分離回収できる事を見出し、本発明を完成するに至った。
【0014】
すなわち、本発明の目的は、
植物繊維とポリエチレンテレフタレートとから実質的に成るポリエステル廃棄物から有効成分を分離回収する方法であって、該廃棄物を下記(a)〜(c)の各工程に逐次的に通過させて、有効成分としてのテレフタル酸ジメチルとエチレングリコールとを分離回収することを特徴とする、ポリエステル廃棄物からの有効成分回収方法。
(a)110〜190℃の温度下、解重合触媒を含むエチレングリコール中に、ポリエステル廃棄物を投入する工程。
(b)工程(a)通過後、植物繊維を固形物の状態で固液分離して取り出す工程。
(c)工程(b)の残留物に、エステル交換反応触媒とメタノールとを添加・投入してエステル交換反応を行い、テレフタル酸ジメチルとエチレングリコールとを得た後、両者を分離回収する工程。
【0015】
【発明の実施の形態】
本発明が対象としているポリエステル廃棄物とは、植物繊維とポリエチレンテレフタレートとから実質的になる混合物であって、ここで”実質的に”とは、該植物繊維及びポリエチレンテレフタレートが、全ポリエステル廃棄物を基準として50wt%未満であるような場合には、本発明の方法が対象としていないことをいう。
【0016】
本発明の回収方法においては、ポリエステル廃棄物を上述の(a)〜(c)の各工程に逐次的に通過させることが必要である。以下、各工程について説明する。
【0017】
工程(a)においては、ポリエステル廃棄物を110〜190℃の温度下、解重合触媒を含むEG中に投入する必要がある。ここで、該EGの温度が110℃未満であると、解重合時間が非常に長くなり効率的ではなくなる。一方、190℃を越えると植物繊維の熱分解が顕著になり、回収品の品質を低下させることとなる。該温度の好ましい範囲は、植物繊維として植物性繊維を含む場合は140〜190℃である。なお、触媒の添加量については、あまりに多いと経済的でなくなるので、ポリエステル廃棄物を基準として0.1〜10重量%程度とすればよく、これらの条件下で、1〜10時間加熱保持する。
【0018】
更に、該工程(a)に供給するEGとポリエチレンテレフタレートとの重量比は0.5〜20程度に設定することが好ましく、比率がこの範囲にある時には、ポリエステル廃棄物の形状によらずに解重合時間が大幅に変わることもなく、最終的に再使用するEGの精製コストを抑えることも可能である。該重量比は1〜5とすることが好ましい。
【0019】
なお、ポリエステル廃棄物とEGとの接触及びポリエステル廃棄物の昇温には、溶融槽内の撹拌、外部ポンプによる槽内液の循環等の操作を併用することによって、溶融時間を短縮出来る等の効果を得ることもできるが、過度の撹拌等は動力の無駄になるので槽内の液が流動している程度であれば十分である。
【0020】
次に、工程(b)においては、工程(a)を通過させたポリエステル廃棄物を固液分離する必要がある。該ポリエステル廃棄物はスラリー状態を形成しており、このスラリーを固液分離するにあたっては各種の固液分離装置が使用可能であって、植物繊維の混入が少ない場合には異物除去を目的とするフィルターを用いてもよい。
【0021】
工程(b)の操作により得られるポリエステル廃棄物は、EGとポリエステル廃棄物との重量比率が原料仕込比基準で0.5〜2.0になるまでこのオリゴマーを含んだ液を濃縮することが好ましい。
【0022】
オリゴマー含有のEG液を濃縮する手段としては、蒸留操作によって簡便に行うことが出来、該蒸留操作は減圧下で実施する必要があり、使用するEGの沸点、植物繊維の熱分解温度が140℃以上で顕著になる事、固液分離操作で微少粒子となった植物繊維が洩れ込んでくる事等を考慮し1.33〜100ka、好ましくは1.33〜6.7kaでの減圧蒸留操作を行うことが好ましい。
【0023】
最後に、工程(c)においては、工程(b)の分離液に、好ましくは上述した比率までオリゴマーを濃縮した溶液に、エステル交換反応触媒とMeOHとを添加・投入してエステル交換反応を行い、DMTとEGとを得た後、両者を分離回収する。
【0024】
該エステル交換反応はポリエステル廃棄物を基準として、MeOHを200〜400重量%投入し、同時にエステル交換反応触媒を、ポリエステル廃棄物を基準として1〜10重量%投入する。エステル交換反応槽内の圧力は大気圧下近傍で、エステル交換反応温度は65〜85℃で反応を進行させればよい。
【0025】
該エステル交換反応は0.5〜5時間で完了し、固形状態のDMT、MeOH、EGのスラリーとなる。該スラリーからDMTを回収するにあたっては、常套手段として固液分離装置が適用出来るが、いずれの方法を採用してもよい。
【0026】
なお、MeOH、EG中にはDMTが少量溶解してスラリー状態を形成しており、該スラリーは冷却した後、固液分離装置に供給する。該固液分離操作によって得られたDMTのケークは、母液としてのMeOHとEGとを含んでいるので、該ケークは新しいMeOHの中に投入、撹拌し、再度スラリー化して、DMTを洗浄する。得られたスラリーは再度固液分離装置に供給し、DMTのケークと母液のMeOHとに分離する。
【0027】
この洗浄操作の繰り返し回数は、回収するDMTの要求品質によって一義的に定まるが、通常2〜4回の操作を行えばよい。また、常套手段として各洗浄段階での母液MeOHは、循環させることもできる。さらに、該洗浄操作は連続式で行っても回分式で行ってもよい。
【0028】
なお、DMTから固液分離したEGとMeOHとの混合液は、溶解したDMT、解重合触媒及びエステル交換反応触媒を含有しており、EG、MeOHは再度プロセスで使用するため各々に分離精製される。この精製操作は、蒸留により行うことが好ましいが、蒸留操作に限定する必要はない。なお、蒸留により行う場合には、沸点の低いMeOHを最初に留去し、塔底に残る液を次の蒸留塔に供給し、EGを留去する。このとき、塔底にはEGに溶解したDMT、触媒及び繰り返し単位数1〜3のオリゴマーが存在しているので、触媒使用量の削減と有効成分の回収率向上とを目的として、塔底液の一部を解重合槽に戻してもよい。
【0029】
なお、上述の固液分離操作で回収したDMTには、ポリエステル廃棄物中に含まれた埃、砂など微量の固形物が混入する可能性もあるので、DMTの要求品質の程度に応じて、必要であれば減圧蒸留で精製してもよく、該精製操作における塔底液の一部を解重合槽に戻してもよい。
【0030】
以下、本発明の回収方法の一態様を示したフロー図(図1)を用いて、本発明の回収方法をさらに具体的に説明する。
【0031】
まず、粉砕したポリエチレンテレフタレート、解重合触媒、EGを解重合槽(図中1)に同時に仕込み、ポリエステル廃棄物を解重合する。
【0032】
該解重合槽(図中1)でEGに溶解しない植物繊維は固液分離装置(図中2)で分離でき、固形物として系外に取り除く。なお、該固形物は、更に洗浄槽(図中3)でEGによって洗浄を行って、固形物表面の付着物は、解重合槽(図中1)に循環させ、固形物は植物繊維として分離することができる。ここで、解重合槽の滞留時間は1〜10時間、内温は110〜190℃とすればよい。
【0033】
次いで、解重合反応が終了したエチレンテレフタレートを、仕込み重量比でEGとポリエステル廃棄物とが0.5〜2.0となるように蒸留・濃縮槽(図中4)でEGを蒸留・留去し、留去したEGは解重合槽(図中1)へ循環供給することができる。
【0034】
次いで、濃縮したポリエステル廃棄物解重合液をエステル交換反応槽(図中5)に供給し、更に、エステル交換反応触媒とMeOHとを供給することによって、ポリエステル廃棄物解重合液をDMTとEGとに転換する。この時、エステル交換反応槽内温は65〜85℃、常圧で滞留時間0.5〜5時間の容量を持たせるのが好ましい。
【0035】
生成したDMTとEGとは過剰のMeOHと共に冷却し、ついで固液分離装置(図中6)に供給し、DMTのケークとEG、MeOH液とに分離する。ここで、DMTのケークは母液としてのMeOHを含液しているので、再度MeOHでスラリー化し(図示せず)再度固液分離する。
【0036】
さらに、2回洗浄したDMTのケークをDMT蒸留塔(図中7)に供給し、精製したDMTを回収する。該蒸留塔(図中7)塔底の釜残は一部解重合槽(図中1)に戻し、残りを系外に廃棄する。
【0037】
一方、固液分離装置(図中6)で分離したEGとMeOHとの混合液をMeOH蒸留塔(図中8)に供給しMeOHを留去する。この留去MeOHはエステル交換反応槽(図中5)に供給するMeOHの一部として使用することができる。
【0038】
さらに、MeOH蒸留塔(図中8)塔底の釜残は、EG蒸留塔(図中9)に供給し、EGを留去する。留去したEGの一部は解重合槽(図中1)に供給するEGとして使用し、残ったEGは回収して系外に取出す。
【0039】
なお、該蒸留塔(図中9)の釜残の一部は解重合槽(図中1)に戻し、残りは廃棄物として系外に抜出す。
【0040】
以上の操作を行うことによって、植物繊維とポリエチレンテレフタレートとから実質的になるポリエステル廃棄物から、有効成分としてのDMTとEGとを容易に回収する事が可能となる。
【0041】
【実施例】
以下、実施例により本発明の内容を更に具体的に説明するが、本発明はこれにより何ら限定を受けるものではない。尚、実施例中の各数値は以下の方法により求めた。また、実施例中において特に断らない限り「部」は「重量部」を示す。
【0042】
(1)テレフタル酸ジメチル、モノヒドロキシエチルテレフタレート、ビスヒドロキシエチルテレフタレート含有量(%):
解重合を行った後に含有されているDMT、蒸留前後の液に含有されているDMT、蒸留釜残液に含まれているモノヒドロキシエチルテレフタレート(以下、MHETと略記することがある。)、及びビスヒドロキシエチルテレフタレート(以下、BHETと略記することがある)をガスクロマトグラフィー(ヒューレット パッカード社製 HP−5890、キャピラリーカラム:ジーエルサイエンス社製TC−1701使用)によって定量した。
【0043】
(2)EG含有量(%):
解重合を行った後に含有されているEG量、及び蒸留前後の液に含有されているEGをガスクロマトグラフィー(島津製作所社製 GC−7A、充填式カラム充填剤:ジーエルサイエンス社製 ポリエチレングリコール6000使用)によって定量した。
【0044】
(3)オリゴマー重量平均分子量:
一部解重合し、溶融状態にあるポリアルキレンテレフタレートを試料とし、液クロマトグラフィー(日立製作所社製 L−4000)にて移動相としてテトラヒドロフランを用い、試料の溶媒としてヘキサフルオロ2−プロパノールとクロロホルムとの混合溶媒を用いて、標準ポリスチレンを用いて作成した検量線によって分子量を求めた。
【0045】
[実施例1]
EG399.7部をセパラブルフラスコに投入し、更に繊維状混紡生地((ポリエステル65%、綿35%の市販品)を切断したもの48.2部、炭酸ソーダ1.5部を投入し、撹拌下185℃で4時間保持した。
【0046】
周囲を170℃に加熱している100メッシュ金網を濾材にした濾過装置に、上記EG液を投入し熱時濾過を実施した。フィルター上に残留している植物繊維を170℃に加熱したEG90部で洗浄し、洗浄液は別の受器に受けた。
【0047】
熱時濾過で得られたEG液を6.7kaの減圧蒸留で濃縮し、留分としてEGを309部回収した。
【0048】
この濃縮液にエステル交換反応触媒として炭酸ソーダを5.55部とMeOH136.2部を投入した。常圧で液温を75℃、撹拌下1時間保持し、エステル交換反応を実施した。
【0049】
得られたDMT、EGおよびMeOHの混合物を40℃まで冷却し、ガラス製3G−4のフィルターで濾過した。フィルター上に回収できたDMTを180部のMeOH中に投入し、40℃で撹拌洗浄し、再度ガラス製のフィルターで濾過した。この操作を2回繰り返した。
【0050】
フィルター上に捕捉できたDMTを蒸留装置に仕込み、圧力6.7kaの減圧蒸留で留分としてDMTを留出させ17.1部回収できた。投入したポリエステルを基準にするとDMTは54.5重量%回収できた。又、蒸留DMTの品質に問題はなかった。
【0051】
[比較例1]
解重合の温度を230℃とする以外は実施例1と同様な操作を行ったところ、得られたDMTは着色がみられ、明らかに品質的に問題が認められた。
【0052】
【発明の効果】
本発明の方法によれば、植物繊維とポリエチレンテレフタレートとから実質的になるポリエステル廃棄物から、DMTとEGとを簡便に回収する事が可能となる。
【図面の簡単な説明】
【図1】図1は、本発明の一態様を模式的に示したフロー図である。
【符号の説明】
1 解重合槽
2 固液分離装置
3 洗浄槽
4 蒸留・濃縮槽
5 エステル交換反応槽
6 固液分離装置
7 DMT蒸留塔
8 MeOH蒸留塔
9 EG蒸留塔
10 粉砕したポリエステル廃棄物
11 解重合触媒
12 MeOH
13 エステル交換反応触媒
14 回収DMT
15 回収EG
16 植物繊維固形物
17 廃棄物
18 廃棄物
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of recovering effective components from polyester waste, more particularly, from polyester waste consisting essentially of poly ethylene terephthalate and plant fiber, and dimethyl terephthalate and ethylene glycol as effective ingredient The present invention relates to an efficient separation and recovery method.
[0002]
[Prior art]
Since polyalkylene terephthalate is excellent in chemical stability, it is produced and used in large quantities in food fields such as life-related materials such as fibers, films and resins, drinking water, bottles for carbonated beverages and the like.
[0003]
However, fiber, film, resin product waste, and non-standard polyalkylene terephthalate (hereinafter sometimes simply referred to as “polyester waste”), which are generated in large quantities with increasing production and usage. Treatment costs are not only related to product costs, but these treatments are now a major social problem, and various proposals have been made regarding recycling methods.
[0004]
However, material recycling, which converts polyester waste to a lower quality grade by melt molding, has greatly improved the so-called “disposable” situation, but the quality of the resulting recycled product is further reduced when recycled again. Therefore, its use is limited, and it is difficult to finally avoid discarding polyalkylene terephthalate.
[0005]
Thermal recycling is also carried out using polyester waste as fuel. This method has the advantage of reusing the combustion heat of the polyester waste, but it is nothing but the burning of the polyester waste, so there are problems of loss of the polyalkylene terephthalate raw material and generation of carbon dioxide, saving resources and It is not preferable from the viewpoint of global environmental conservation.
[0006]
On the other hand, chemical recycling, in which polyester waste is converted and recovered into its constituent components, and polyalkylene terephthalate is produced again by a polymerization reaction and reused, has been studied for the above two types of recycling methods.
[0007]
That is, the recovered polyester waste is reacted with methanol (hereinafter may be abbreviated as MeOH), and chemical recycling to recover dimethyl terephthalate (hereinafter may be abbreviated as DMT) and alkylene glycol. Since the compound is basically reused without any loss, it is possible to reuse the originally intended resource.
[0008]
However, polyester waste discharged from the distribution industry and households is usually discarded in the form of fibers (naturally blended with cotton and hemp) in addition to resins and films, as well as fiber waste. There are many cases.
[0009]
The mixed natural fiber may be decomposed in the process of heating / reaction of polyester waste, resulting in damage to equipment, generation of malodor, and other problems. In addition, degradation products may significantly reduce the quality of recovered DMT and alkylene glycol. For this reason, in the chemical recycling, in order to effectively use the polyester waste, it is necessary to separate the natural fibers contained therein.
[0010]
Conventionally, as a method for recovering polyester waste, a method of depolymerizing polyalkylene terephthalate with ethylene glycol (hereinafter sometimes abbreviated as EG) and then transesterifying with MeOH to obtain DMT is glycolysis. It is widely known as a transesterification reaction method and is also practiced industrially.
[0011]
However, the thermal decomposition temperature of natural fibers is as low as about 130 ° C. for animal fibers and about 200 ° C. for plant fibers. The chemical recycling of polyalkylene terephthalate containing fibers has been difficult to apply. For this reason, a method (US Pat. No. 5,866,622) for dissolving and separating polyester in an aromatic ester such as dimethyl terephthalate, methyl paratoluate, dimethyl isophthalate, etc. has been proposed. There is a problem, and polyester waste containing substantially natural fibers is usually separated from other polyester waste by pretreatment, and chemical recycling is not performed at present.
[0012]
[Problems to be solved by the invention]
An object of the present invention is to solve the problems the prior art has had point, from polyester waste consisting essentially of the plant fiber and poly ethylene terephthalate to establish a method to efficiently recover the DMT and EG There is.
[0013]
[Means for Solving the Problems]
As a result of intensive studies in view of the above-described prior art, the present inventors have used a catalyst, and if polyester waste is depolymerized with EG at a temperature that does not cause problems such as thermal decomposition of plant fibers, it will be mixed. The present invention has been completed by finding that the plant fibers can be left as solids and can be easily separated and recovered.
[0014]
That is, the object of the present invention is to
A method of separating and recovering effective components from polyester waste consisting essentially of the plant fiber and poly ethylene terephthalate, and sequentially passed through the waste steps below (a) ~ (c) characterized by separating and recovering dimethyl terephthalate and ethylene glycol as an active ingredient, the active ingredient a method for recovering from polyester waste.
(A) A step of introducing polyester waste into ethylene glycol containing a depolymerization catalyst at a temperature of 110 to 190 ° C.
(B) Step (a) After passing, the step of taking out the plant fiber by solid-liquid separation in a solid state.
(C) A step of adding and adding a transesterification catalyst and methanol to the residue of step (b) to conduct a transesterification reaction to obtain dimethyl terephthalate and ethylene glycol, and then separating and recovering both.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The polyester waste present invention is targeted, a mixture consisting essentially of the plant fiber and poly ethylene terephthalate, wherein the term "substantially", the vegetable fiber and poly ethylene terephthalate is, When the total polyester waste is less than 50 wt%, it means that the method of the present invention is not intended.
[0016]
In the recovery method of the present invention, it is necessary to sequentially pass the polyester waste through the steps (a) to (c) described above. Hereinafter, each step will be described.
[0017]
In the step (a), a temperature of the polyester waste 110 to 19 0 ° C., it is necessary to put into EG containing a depolymerization catalyst. Here, when the temperature of the EG is less than 110 ° C., the depolymerization time becomes very long and it is not efficient. On the other hand, exceeding 19 0 ° C. When becomes significant thermal decomposition of the vegetable fiber, and reducing the quality of the recovered product. A preferred range of temperature is, if it contains vegetable fibers as a plant fiber is 140 to 190 ° C.. In addition, about the addition amount of a catalyst, since it will become economical if it is too much, what is necessary is just about 0.1 to 10 weight% on the basis of a polyester waste, and it heat-holds on these conditions for 1 to 10 hours .
[0018]
Furthermore, the weight ratio of the EG and poly ethylene terephthalate supplied to the step (a) is preferably set to 0.5 to 20, when the ratio is in this range, regardless of the shape of the polyester waste In addition, the depolymerization time does not change significantly, and the purification cost of EG that is finally reused can be reduced. The weight ratio is preferably 1-5.
[0019]
For the contact between polyester waste and EG and the temperature rise of polyester waste, the melting time can be shortened by using operations such as stirring in the melting tank and circulation of the liquid in the tank by an external pump. Although an effect can also be obtained, excessive stirring or the like is a waste of power, so it is sufficient that the liquid in the tank is flowing.
[0020]
Next, in the step (b), it is necessary to solid-liquid separate the polyester waste that has passed the step (a). The polyester waste forms a slurry state, and various solid-liquid separation devices can be used for solid-liquid separation of the slurry, and the purpose is to remove foreign matter when there is little mixing of plant fibers. A filter may be used.
[0021]
The polyester waste obtained by the operation in the step (b) may be concentrated in a liquid containing this oligomer until the weight ratio of EG and polyester waste is 0.5 to 2.0 on the raw material charge ratio basis. preferable.
[0022]
As a means for concentrating the oligomer-containing EG solution, it can be easily carried out by distillation operation, which must be carried out under reduced pressure, and the boiling point of EG used and the thermal decomposition temperature of the plant fiber are 140 ° C. it becomes significant above, considering that come crowded leaks vegetable fibers become fine particles by solid-liquid separation operation such 1.33~100k P a, of preferably 1.33~6.7k P a It is preferable to perform a vacuum distillation operation.
[0023]
Finally, in step (c), the ester exchange reaction catalyst and MeOH are added and added to the solution obtained by concentrating the oligomer to the separation liquid in step (b), preferably to the above-mentioned ratio, to perform the ester exchange reaction. After obtaining DMT and EG, both are separated and recovered.
[0024]
In the transesterification reaction, 200 to 400% by weight of MeOH is charged based on the polyester waste, and at the same time, 1 to 10% by weight of the transesterification reaction catalyst is charged based on the polyester waste. The reaction may proceed at a transesterification reaction tank pressure near atmospheric pressure and a transesterification reaction temperature of 65 to 85 ° C.
[0025]
The transesterification reaction is completed in 0.5 to 5 hours, and becomes a slurry of DMT, MeOH, and EG in a solid state. In recovering DMT from the slurry, a solid-liquid separator can be applied as a conventional means, but any method may be adopted.
[0026]
A small amount of DMT is dissolved in MeOH and EG to form a slurry state. The slurry is cooled and then supplied to a solid-liquid separator. Since the cake of DMT obtained by the solid-liquid separation operation contains MeOH and EG as mother liquors, the cake is put into fresh MeOH, stirred, and slurried again to wash the DMT. The obtained slurry is supplied again to the solid-liquid separator, and separated into a DMT cake and a mother liquor MeOH.
[0027]
The number of repetitions of this washing operation is uniquely determined by the required quality of the DMT to be recovered, but usually it may be performed 2 to 4 times. Further, as a conventional means, the mother liquor MeOH in each washing step can be circulated. Further, the washing operation may be performed continuously or batchwise.
[0028]
The mixed solution of EG and MeOH solid-liquid separated from DMT contains dissolved DMT, depolymerization catalyst and transesterification catalyst. EG and MeOH are separated and purified separately for use in the process again. The This purification operation is preferably carried out by distillation, but need not be limited to the distillation operation. In the case of performing distillation, MeOH having a low boiling point is first distilled off, the liquid remaining at the bottom of the column is supplied to the next distillation column, and EG is distilled off. At this time, since DMT dissolved in EG, a catalyst, and an oligomer having 1 to 3 repeating units are present at the bottom of the tower, the bottom liquid is used for the purpose of reducing the amount of catalyst used and improving the recovery rate of active ingredients. A part of may be returned to the depolymerization tank.
[0029]
In addition, since there is a possibility that a small amount of solid matter such as dust and sand contained in the polyester waste is mixed in the DMT collected by the solid-liquid separation operation described above, depending on the required quality of the DMT, If necessary, it may be purified by distillation under reduced pressure, and a part of the column bottom liquid in the purification operation may be returned to the depolymerization tank.
[0030]
Hereinafter, the recovery method of the present invention will be described more specifically with reference to a flow chart (FIG. 1) showing an embodiment of the recovery method of the present invention.
[0031]
First, ground poly ethylene terephthalate, charged depolymerization catalyst, a depolymerization vessel EG in (figure 1) simultaneously depolymerizing polyester waste.
[0032]
Plant fibers that do not dissolve in EG in the depolymerization tank (1 in the figure) can be separated by a solid-liquid separation device (2 in the figure) and removed out of the system as a solid. The solid matter is further washed by EG in the washing tank (3 in the figure), and the deposit on the surface of the solid is circulated to the depolymerization tank (1 in the figure), and the solid matter is separated as plant fibers. can do. Here, the residence time of the depolymerization tank may be 1 to 10 hours, and the internal temperature may be 110 to 190 ° C.
[0033]
Then, the ethylene terephthalate depolymerization reaction has ended, and the EG and polyester waste feed weight ratio 0.5 to 2. EG is distilled and distilled off in a distillation / concentration tank (4 in the figure) so that it becomes 0, and the distilled EG can be circulated and supplied to the depolymerization tank (1 in the figure).
[0034]
Then, the concentrated polyester waste depolymerization solution is supplied to a transesterification reaction tank (5 in the figure), and further, the polyester waste depolymerization solution is converted into DMT and EG by supplying a transesterification reaction catalyst and MeOH. Convert to At this time, the transesterification reaction tank internal temperature is preferably 65 to 85 ° C. and normal pressure, and the residence time is preferably 0.5 to 5 hours.
[0035]
The produced DMT and EG are cooled together with excess MeOH, then supplied to a solid-liquid separator (6 in the figure), and separated into DMT cake, EG, and MeOH liquid. Here, since the DMT cake contains MeOH as a mother liquor, it is slurried again with MeOH (not shown) and solid-liquid separated again.
[0036]
Further, the DMT cake washed twice is supplied to the DMT distillation column (7 in the figure), and the purified DMT is recovered. The residue at the bottom of the distillation column (7 in the figure) is partially returned to the depolymerization tank (1 in the figure), and the remainder is discarded outside the system.
[0037]
On the other hand, the mixed solution of EG and MeOH separated by the solid-liquid separator (6 in the figure) is supplied to the MeOH distillation column (8 in the figure) to distill off MeOH. This distilled MeOH can be used as a part of MeOH supplied to the transesterification reaction tank (5 in the figure).
[0038]
Further, the residue at the bottom of the MeOH distillation column (8 in the figure) is supplied to the EG distillation column (9 in the figure) to distill off the EG. A part of the distilled EG is used as EG supplied to the depolymerization tank (1 in the figure), and the remaining EG is recovered and taken out of the system.
[0039]
A part of the kettle remaining in the distillation column (9 in the figure) is returned to the depolymerization tank (1 in the figure), and the remainder is taken out of the system as waste.
[0040]
By performing the above operation, it is possible to from polyester waste consisting essentially of the plant fiber and poly ethylene terephthalate, easily be recovered and DMT and EG as an active ingredient.
[0041]
【Example】
Hereinafter, the content of the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. In addition, each numerical value in an Example was calculated | required with the following method. In the examples, “parts” means “parts by weight” unless otherwise specified.
[0042]
(1) Dimethyl terephthalate, monohydroxyethyl terephthalate, bishydroxyethyl terephthalate content (%):
DMT contained after the depolymerization, DMT contained in the liquid before and after distillation, monohydroxyethyl terephthalate (hereinafter sometimes abbreviated as MHET) contained in the distillation residue. Bishydroxyethyl terephthalate (hereinafter sometimes abbreviated as BHET) was quantified by gas chromatography (HP-5890 manufactured by Hewlett-Packard Company, capillary column: TC-1701 manufactured by GL Sciences Inc.).
[0043]
(2) EG content (%):
The amount of EG contained after depolymerization and the EG contained in the liquid before and after distillation were gas chromatographed (GC-7A manufactured by Shimadzu Corporation, packed column filler: polyethylene glycol 6000 manufactured by GL Sciences, Inc. Used).
[0044]
(3) Oligomer weight average molecular weight:
Partly depolymerized, using polyalkylene terephthalate in a molten state as a sample, using tetrahydrofuran as the mobile phase in liquid chromatography (L-4000, manufactured by Hitachi, Ltd.), hexafluoro-2-propanol and chloroform as the solvent for the sample The molecular weight was determined by a calibration curve prepared using standard polystyrene using the above mixed solvent.
[0045]
[Example 1]
9.79.7 parts of EG were put into a separable flask, and 48.2 parts of a fiber blended fabric (commercial product (65% polyester, 35% cotton) cut) and 1.5 parts of sodium carbonate were added and stirred. The temperature was kept at 185 ° C. for 4 hours.
[0046]
The above-mentioned EG solution was put into a filtration device using a 100-mesh wire mesh whose surroundings were heated to 170 ° C. as a filter medium, and filtration was performed while hot. The plant fiber remaining on the filter was washed with 90 parts of EG heated to 170 ° C., and the washing solution was received in another receiver.
[0047]
The EG solution obtained in hot filtration was concentrated by vacuum distillation 6.7k P a, were recovered 309 parts of EG as a fraction.
[0048]
To this concentrate, 5.55 parts of sodium carbonate and 136.2 parts of MeOH were added as a transesterification catalyst. The liquid temperature was maintained at 75 ° C. for 1 hour under stirring at normal pressure, and a transesterification reaction was carried out.
[0049]
The resulting mixture of DMT, EG and MeOH was cooled to 40 ° C. and filtered through a glass 3G-4 filter. DMT recovered on the filter was put into 180 parts of MeOH, washed with stirring at 40 ° C., and filtered again with a glass filter. This operation was repeated twice.
[0050]
It charged DMT was captured on the filter into a distillation apparatus, was recovered 17.1 parts to distill DMT as a fraction by vacuum distillation pressure 6.7k P a. Based on the polyester charged, 54.5% by weight of DMT was recovered. Moreover, there was no problem in the quality of distilled DMT.
[0051]
[Comparative Example 1]
When the same operation as in Example 1 was carried out except that the depolymerization temperature was 230 ° C., the obtained DMT was colored and apparently a problem in quality was recognized.
[0052]
【The invention's effect】
According to the method of the present invention, the polyester waste consisting essentially of the plant fiber and poly ethylene terephthalate, it is possible to easily recover the DMT and EG.
[Brief description of the drawings]
FIG. 1 is a flow diagram schematically illustrating one embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Depolymerization tank 2 Solid-liquid separation apparatus 3 Washing tank 4 Distillation / concentration tank 5 Transesterification reaction tank 6 Solid-liquid separation apparatus 7 DMT distillation tower 8 MeOH distillation tower 9 EG distillation tower 10 Crushed polyester waste 11 Depolymerization catalyst 12 MeOH
13 Transesterification catalyst 14 Recovered DMT
15 Collected EG
16 Plant fiber solids 17 Waste 18 Waste

Claims (13)

植物繊維とポリエチレンテレフタレートとから実質的に成るポリエステル廃棄物から有効成分を分離回収する方法であって、該廃棄物を下記(a)〜(c)の各工程に逐次的に通過させて、有効成分としてのテレフタル酸ジメチルとエチレングリコールとを分離回収することを特徴とする、ポリエステル廃棄物からの有効成分回収方法。
(a)110〜190℃の温度下、解重合触媒を含むエチレングリコール中に、ポリエステル廃棄物を投入する工程。
(b)工程(a)通過後、植物繊維を固形物の状態で固液分離して取り出す工程。
(c)工程(b)の残留物に、エステル交換反応触媒とメタノールとを添加・投入してエステル交換反応を行い、テレフタル酸ジメチルとエチレングリコールとを得た後、両者を分離回収する工程。
A method of separating and recovering effective components from polyester waste consisting essentially of the plant fiber and poly ethylene terephthalate, and sequentially passed through the waste steps below (a) ~ (c) characterized by separating and recovering dimethyl terephthalate and ethylene glycol as an active ingredient, the active ingredient a method for recovering from polyester waste.
(A) A step of introducing polyester waste into ethylene glycol containing a depolymerization catalyst at a temperature of 110 to 190 ° C.
(B) Step (a) After passing, the step of taking out the plant fiber by solid-liquid separation in a solid state.
(C) A step of adding and adding a transesterification catalyst and methanol to the residue obtained in step (b) to conduct transesterification to obtain dimethyl terephthalate and ethylene glycol, and then separating and recovering both.
工程(c)における分離回収を蒸留又は固液分離操作によって行う、請求項1記載の分離回収方法。  The separation and recovery method according to claim 1, wherein the separation and recovery in the step (c) is performed by distillation or solid-liquid separation operation. 工程(a)で用いる解重合触媒として、アルカリ金属の炭酸塩、アルカリ土類金属の炭酸塩、酢酸マンガン、酢酸亜鉛からなる群から選ばれた少なくとも1種の化合物を用い、且つその添加量をポリエステル廃棄物の重量を基準として0.1〜10%とする、請求項1記載の分離回収方法。As depolymerization catalyst used in step (a), the alkali metal carbonates, alkaline earth metal carbonates, acetic acid manganese, with at least one compound selected from the group consisting of zinc acetate, and the amount added The separation and recovery method according to claim 1, wherein 0.1 to 10% is based on the weight of polyester waste. 工程(a)で用いるエチレングリコール量を、ポリエチレンテレフタレートを基準として0.5〜20重量倍とする、請求項1記載の分離回収方法。Ethylene glycol amount used in step (a), the the 0.5 to 20 times by weight based on the poly ethylene terephthalate, separation and recovery process of claim 1. 工程(b)で分離した固形物を、更にエチレングリコールで洗浄し、植物繊維に付着している有効成分を分離除去する、請求項1記載の分離回収方法。The separation and recovery method according to claim 1, wherein the solid matter separated in step (b) is further washed with ethylene glycol to separate and remove the active ingredient adhering to the plant fiber. 工程(b)で固形物を取り出した後の残留物を蒸留・濃縮し、留出したエチレングリコールは工程(a)で循環再使用し、留残物は次工程へ送液する請求項1記載の分離回収方法。  The residue after taking out the solid in the step (b) is distilled and concentrated, and the distilled ethylene glycol is recycled and reused in the step (a), and the residue is sent to the next step. Separation and recovery method. 蒸留・濃縮操作を、解重合槽に仕込んだポリエステル廃棄物重量と、エチレングリコールとの重量比が0.5〜2.0の範囲となるように行う、請求項6記載の回収方法。The distillation, concentration operation, the weight of the polyester waste charged to the depolymerization vessel, the weight ratio of ethylene glycol 0.5-2. The collection | recovery method of Claim 6 performed so that it may become the range of 0 . 蒸留・濃縮操作を1.33〜100kaの圧力下で行う、請求項6記載の分離回収方法。The distillation, concentration operation under pressures of 1.33~100k P a, separation and recovery process of claim 6 wherein. 植物繊維が綿である、請求項1記載の分離回収方法。The separation and recovery method according to claim 1, wherein the plant fiber is cotton. 植物繊維が麻である、請求項1記載の分離回収方法。The separation and recovery method according to claim 1, wherein the plant fiber is hemp. 請求項1記載の回収テレフタル酸ジメチルを、テレフタル酸製造原料として用いる、有効成分の再利用方法。  A method for reusing an active ingredient, wherein the recovered dimethyl terephthalate according to claim 1 is used as a raw material for producing terephthalic acid. 請求項1記載の回収テレフタル酸ジメチルを、ビス(β−ヒドロキシエチル)テレフタレート製造原料として用いる、有効成分の再利用方法。  A method for reusing an active ingredient, wherein the recovered dimethyl terephthalate according to claim 1 is used as a raw material for producing bis (β-hydroxyethyl) terephthalate. 請求項1記載の回収テレフタル酸ジメチルを、ポリエステル製造の原料として用いる、有効成分の再利用方法。  A method for reusing an active ingredient, wherein the recovered dimethyl terephthalate according to claim 1 is used as a raw material for polyester production.
JP2000247236A 2000-08-17 2000-08-17 Method for recovering active ingredients from polyester waste Expired - Lifetime JP4005301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000247236A JP4005301B2 (en) 2000-08-17 2000-08-17 Method for recovering active ingredients from polyester waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000247236A JP4005301B2 (en) 2000-08-17 2000-08-17 Method for recovering active ingredients from polyester waste

Publications (2)

Publication Number Publication Date
JP2002060542A JP2002060542A (en) 2002-02-26
JP4005301B2 true JP4005301B2 (en) 2007-11-07

Family

ID=18737371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000247236A Expired - Lifetime JP4005301B2 (en) 2000-08-17 2000-08-17 Method for recovering active ingredients from polyester waste

Country Status (1)

Country Link
JP (1) JP4005301B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA04009716A (en) 2002-04-24 2005-07-14 Teijin Fibers Ltd Recycle method and system thereof.
KR101645105B1 (en) 2012-01-27 2016-08-02 가부시키가이샤 지나리스 Method for producing useful chemical substance from terephthalic acid potassium salt
PL228319B1 (en) * 2014-06-10 2018-03-30 Rs Pet Spolka Z Ograniczona Odpowiedzialnoscia Method for recycling of PET polyethylene terephthalate
JP7377834B2 (en) * 2021-05-31 2023-11-10 三菱重工業株式会社 Separation system and separation method
JPWO2023190102A1 (en) * 2022-03-29 2023-10-05

Also Published As

Publication number Publication date
JP2002060542A (en) 2002-02-26

Similar Documents

Publication Publication Date Title
JP4067306B2 (en) Method for separating and recovering dimethyl terephthalate and ethylene glycol from polyester waste
JP4908415B2 (en) Method for producing useful components from dyed polyester fiber
JP3983977B2 (en) An improved method for converting contaminated polyethylene terephthalate to decontaminated polybutylene terephthalate.
JP4537288B2 (en) Method for recovering active ingredients from dyed polyester fiber
KR100746678B1 (en) Dimethyl terephthalate composition and process for producing the same
CN114437322A (en) Method for preparing PET slices from waste PET materials and product
JP4212799B2 (en) Method for recovering terephthalic acid from polyester fiber waste
JP4005301B2 (en) Method for recovering active ingredients from polyester waste
CN102532591B (en) Method for depolymerizing waste polyester bottle
JP4080720B2 (en) How to recycle PET bottles
JP2004217871A (en) Method of recovering useful components from dyed polyester fiber
JP4330918B2 (en) How to recycle polyester waste
CN110862520A (en) Method for preparing PET (polyethylene terephthalate) by using terephthalic acid in alkali-minimization wastewater
JP4365592B2 (en) Method for recovering active ingredients from polyester waste
JP4108267B2 (en) Active ingredient recovery method from polyethylene terephthalate film waste
CN114276363A (en) Method for purifying isosorbide by adopting recrystallization of dihydric alcohol
JP2015036393A (en) Depolymerization method of polyester and method for recovering raw ingredient monomer of polyester by using the same depolymerization method
JP2002060536A (en) Method for recovering valuable component from polyester waste
JP5529498B2 (en) Process for producing dimethyl terephthalate from polyester
JP2002087999A (en) Method for recovering effective component from polyester waste
JP2009120766A (en) Method for recovering dimethyl terephthalate and ethylene glycol
JP2002060543A (en) Method for recycling polyester waste
JP2012116779A (en) Method for producing polyester monomer from polyester
JP4444443B2 (en) Method for recovering valuable components from polyester waste
JP4163842B2 (en) Method for recovering dimethyl terephthalate from polyethylene terephthalate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070823

R150 Certificate of patent or registration of utility model

Ref document number: 4005301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term