JP4004639B2 - 酸素消費量計 - Google Patents

酸素消費量計 Download PDF

Info

Publication number
JP4004639B2
JP4004639B2 JP13864598A JP13864598A JP4004639B2 JP 4004639 B2 JP4004639 B2 JP 4004639B2 JP 13864598 A JP13864598 A JP 13864598A JP 13864598 A JP13864598 A JP 13864598A JP 4004639 B2 JP4004639 B2 JP 4004639B2
Authority
JP
Japan
Prior art keywords
oxygen consumption
flow rate
ultrasonic
consumption meter
meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13864598A
Other languages
English (en)
Other versions
JPH11318860A (ja
Inventor
一造 伊藤
Original Assignee
アニマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アニマ株式会社 filed Critical アニマ株式会社
Priority to JP13864598A priority Critical patent/JP4004639B2/ja
Publication of JPH11318860A publication Critical patent/JPH11318860A/ja
Application granted granted Critical
Publication of JP4004639B2 publication Critical patent/JP4004639B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸素消費量計に係るもので、特に、酸素センサを使用せずに、酸素消費量を測定できるものに関する。
【0002】
【従来の技術】
酸素消費量計の測定値は種々あり、例えば、呼気流量、二酸化炭素量、呼吸回数などがあるが、最も知りたい数値は血液中に取り込まれる酸素量である。
現状の酸素消費量計の概略の構成を図1に示す。この図において、符号1はマスク、2は呼気および吸気の流路、3は呼気バイパス流路、4は酸素濃度検出部、5は二酸化炭素濃度検出部、6は吸入ポンプ、7は演算器である。前記呼気・吸気流路2には呼気流量計21が内蔵され、前記酸素濃度検出部4には酸素センサ(O2センサ)41が内蔵され、前記二酸化炭素濃度検出部5には二酸化炭素センサ(CO2センサ)51が内蔵されており、これらセンサ21,41,51は呼気ガスの測定に使用されるようになっている。
【0003】
さて、血液中に取り込まれる酸素量Qmは吸気流量をQi、呼気流量をQo、また、吸気の酸素濃度をρi(O2)、呼気の酸素濃度をρo(O2)とすると、
Qm=Qi×ρi(O2)−Qo×ρo(O2)……(1)
となる。
吸気中の窒素濃度をρi(N2)、酸素濃度をρi(O2)とし、他の成分を無視すると、
ρi(N2)+ρi(O2)=1……(2)
となる。
呼気中の窒素濃度をρo(N2)、酸素濃度をρo(O2)、二酸化炭素濃度をρo(CO2)とし、蒸気などの他の成分を無視すると、
ρo(N2)+ρo(O2)+ρo(CO2)=1……(3)
となる。
吸気される窒素量と呼気される窒素量は変化しないことから、
Qi×ρi(N2)=Qo×ρo(N2)……(4)
となる。
ここで、(4)式より、
Qi=Qo×ρo(N2)/ρi(N2)……(5)
となり、また、(2)と(3)式より、
ρi(N2)=1−ρi(O2)、ρo(N2)=1−[ρo(O2)+ρo(CO2)]…(6)
となる。
(1)式に(5)、(6)式を代入すると、
Qm=Qo[{ρi(O2)(1−ρo(CO2)−ρo(O2)}/(1−ρi(O2))−ρo(O2)]……(7)
となる。
【0004】
(7)式の右辺において、吸気の酸素濃度(ρi(O2))は20.9%と既知であることから、呼気の流量(Qo)、呼気の二酸化炭素濃度(ρo(CO2))と、呼気の酸素濃度(ρo(O2))が測定されれば、Qmが求まる。
すなわち、呼気だけに着目して計測を行なえばよく、吸気に関しては測定しなくてもよいことになる。
なお、図1は基本構成例を示したもので、実際には、除湿器などが付加されている。また、呼気バイパス流路3は呼気時の呼気流量計21の出口に設けられ、呼気信号により、吸入ポンプ6が起動し、呼気流の一部を吸い込むように構成される。
【0005】
【発明が解決しようとする課題】
ところで、上記従来の酸素消費量計における最大の問題点は、前記酸素センサ41にある。特に、携帯用の酸素消費量計においては、小型、軽量低消費電力、振動特性などが要求されることから、ジルコニア式、磁気式などは使用が困難となり、現状ではガルバニ電池のような化学センサが使用されている。この方式では、電解液とガス透過膜が使用され、電解液中における、酸化、還元による電子の移動に伴う電流を計測している。
【0006】
このような酸素センサとしての化学センサの欠点は、電解液の劣化や消失があることから、感度の長期安定性に乏しいことにある。また、化学センサに限らず酸素センサ一般にガス濃度変化に対する応答が遅いことにある。このため、酸素センサにおいては、測定開始時に既知の酸素濃度ガスでの感度補正が必要となり、また、有効期限も数ヶ月になっている。さらに、ガス濃度に対する応答をたかめるには透過膜を薄くするなどの工夫が必要となるが、構造原理から2〜3秒が現状では限界となっている。
【0007】
【課題を解決するための手段】
そこで、本発明者等は、従来の酸素消費量計における最大の問題点となっている酸素センサを使用せずに、酸素消費量を測定できる新たな酸素消費量計を得るべく、鋭意検討した結果、以下の知見を得るに至った。
従来技術の説明において、前記(2)、(3)式より
ρi(O2)=1−ρi(N2)……(8)
ρo(O2)=1−ρo(N2)−ρo(CO2)……(9)
となる。
(8)式、(9)式を(1)式に代入すると
Qm=Qi×(1−ρi(N2))−Qo×(1−ρo(N2)−ρo(CO2))………(10)
ここで、(10)式に(4)式を代入すると、
Qm=Qi−Qo(1−ρo(CO2))……(11)
となる。
(11)式の右辺には酸素濃度測定値はなく、吸気流量(Qi)と呼気流量(Qo)と呼気中の二酸化炭素濃度(ρo(CO2))から血液中に取り込まれる酸素量(Qm)が求まる。
【0008】
なお、呼気の酸素濃度も(3)、(4)式から
ρo(O2)=1−ρo(N2)−ρo(CO2)
=1−Qi×ρi(N2)/Qo−ρo(CO2)……(12)
となる。
ここでρi(N2)は大気中の窒素濃度で既知であり、Qi、Qo、ρo(CO2)は測定値であることから、呼気の酸素濃度(ρo(O2))は求まる。
【0009】
本発明は、血液中に取り込まれる酸素量は、吸気流量と呼気流量と呼気中の二酸化炭素濃度とから求めることができるという上記知見に基づいてなされたもので、請求項1の酸素消費量計は、吸気流量と呼気流量と呼気中の二酸化炭素濃度とを測定し、これらの値によって、血液中に取り込まれる酸素等を計測するものである。
以上の説明では、(2)、(3)式で吸気中の蒸気、アルゴン、二酸化炭素や、呼気中の蒸気などを無視してきたが、これらの成分を既知量として考慮してもよいことは明らかである。
【0010】
ここで、前記吸気流量と呼気流量とを測定するには、例えば、吸気と呼気の2方向の流量を測定できる呼気・吸気両用流量計を用いて測定し、二酸化炭素濃度は二酸化炭素センサ(CO2センサ)が内蔵された二酸化炭素濃度検出部によって測定する。
また、血液中に取り込まれる酸素を計測するには、例えば、前記呼気・吸気両用流量計と二酸化炭素濃度検出部を接続した演算器で行う。この演算器では、前記(11)式の演算を行うことで、血液中に取り込まれる酸素を計測することができる。
【0011】
請求項1の酸素消費量計においては、酸素濃度を測定する必要がない、つまり酸素センサを必要としないので、長期の安定性が確保される。
また、酸素センサがないことから、酸素センサの交換が不要となり、メインテナンス性が向上する。
さらに、応答速度の遅い酸素センサがなくなることから、酸素消費量計の応答速度が格段に速くなる。
【0012】
請求項2の酸素消費量計は、請求項1において、吸気流量と呼気流量を計測する流量計を、超音波流量計としたものである。
請求項3の酸素消費量計は、請求項1において、吸気流量と呼気流量を計測する流量計を、渦流量計としたものである。
【0013】
請求項4の酸素消費量計は、請求項2において、前記超音波流量計の呼吸気の流路の一部をU字に構成し、その端部に1組の超音波送受信器を対峙させ、呼気状態および吸気状態におけるそれぞれの超音波伝播時間の変化を検出し、これらの値によって、呼気流量と吸気流量とを求めるようにしたものである。
請求項5の酸素消費量計は、請求項2において、前記超音波流量計が、1個の送信器と2個の受信器を備え、前記送信機が前記呼吸気の流路の側部に配置され、かつ、前記2個の受信器が、呼吸気の流路を挟んで前記送信器に対して対称な位置に配置され、前記一方の受信器までの超音波伝播時間と、他方の受信器までの超音波伝播時間との差を検出し、この値によって呼気流量と吸気流量とを求めるようにしたものである。
【0014】
請求項6の酸素消費量計は、請求項4において、前記超音波流量計では、超音波として連続波を使用し、超音波伝播時間の変化は受信波と基準波との位相変位で検出し、基準波からの進みまたは遅れから吸気、呼気を判定するようにしたものである。
請求項7の酸素消費量計は、請求項5において、前記超音波流量計では、超音波として連続波を使用し、超音波伝播時間差は2個の受信波間の位相差の正負から、吸気、呼気を判定するようにしたものである。
【0015】
請求項の酸素消費量計は、請求項3において、前記渦流量計において使用する渦発生体を、吸気と呼気の流れに対して対称形状を有する矩形柱としたものである。請求項の酸素消費量計は、請求項3において、前記渦流量計の渦周波数の検出手段として2個のセンサを渦発生体の下流域に配置し、呼気流量、吸気流量を各々のセンサで検出するものである。
【0016】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
図2は、本発明に係る酸素消費量計の一例を示すもので、該酸素消費量計の概略構成を示すブロック図である。図2において、符号1はマスク、2は呼気および吸気の流路、3は呼気バイパス流路、5は二酸化炭素濃度検出部、6は吸入ポンプ、7は演算器である。前記呼気・吸気流路2には呼気・吸気両用流量計21が内蔵され、前記二酸化炭素濃度検出部5には二酸化炭素センサ(CO2センサ)51が内蔵されている。この二酸化炭素センサ(CO2センサ)51としては、例えば、赤外線吸収方式などのセンサが使用されが、高速応答と経年変化のないものが実現されている。
【0017】
そして、上記構成の酸素消費量計では、大気中の空気が呼気・吸気流路2を流れて、マスク1から吸気され、該吸気中の酸素の一部が消費されたうえで、呼気となってマスク1から呼気・吸気流路2を逆に流れる。この際、呼気流量(Qo)と吸気流量(Qi)が、呼気・吸気両用流量計21によって測定されて、その値が前記演算器7に入力される。
また、呼気信号により、吸入ポンプ6が起動し、前記呼気・吸気流路2を流れる呼気の一部を吸い込み、これによって、該呼気の一部が、呼気バイパス流路3を流れて前記二酸化炭素濃度検出部5に流入して、その二酸化炭素センサ(CO2センサ)51によって、呼気中の二酸化炭素濃度(ρo(CO2))が測定され、その値が前記演算器7に入力される。
【0018】
この演算器7では、前記(11)式である、
Qm=Qi−Qo(1−ρo(CO2)) が該演算器7を構成するマイコンシステム内において、メモリされた手順に従ってマイクロプロセッサにより、実行され、これによって血液中に取り込まれる酸素量(Qm)が求められる、つまり酸素消費量が求められる。
また、前記演算器7では、前記(12)式である、
ρo(O2)=1−Qi×ρi(N2)/Qo−ρo(CO2) が該演算器7を構成するマイコンシステム内において、メモリされた手順に従ってマイクロプロセッサにより、実行され、これによって呼気の酸素濃度(ρo(O2))を求めることができる。なお、前記ρi(N2)は大気中の窒素濃度で既知であり、Qi、Qo、ρo(CO2)は測定値であることから、呼気の酸素濃度(ρo(O2))を求めることができる。
【0019】
上記の酸素消費量計によれば、吸気流量と呼気流量と呼気中の二酸化炭素濃度とを測定し、これらの値によって、血液中に取り込まれる酸素等を計測することができ、酸素センサを必要としないので、長期の安定性を確保することができる。
また、酸素センサがないことから、酸素センサの交換が不要となり、メインテナンス性が向上する。
さらに、応答速度の遅い酸素センサがなくなることから、酸素消費量計の応答速度が格段に速くなる。
なお、図2では、3は呼気バイパス流路、6は呼気信号による吸入ポンプとしたが、二酸化炭素センサの応答は呼吸周波数に比較して十分に早いことから、6は常時吸入するポンプ、3を呼吸気バイパス流路としてもよい。
【0020】
図3は、上記酸素消費量計を構成する、呼気・吸気両用流量計21として、超音波流量計を使用した場合の、該超音波流量計の概略構成を示すブロック図である。
図3に示す超音波流量計においては、呼気・吸気流路2中の一部をU字にし、その端部に超音波送信器102と超音波受信器103とを対向して配置する。この時の超音波の伝播時間T1、T2は(13)式で示される。
呼気:T1=L/(C1−V1)、吸気:T2=L/(C2+V2)……(13)
呼気流量ゼロ:T10=L/C1、吸気流量ゼロ:T20=L/C2ここで、Lは送受信器間の距離、C1は呼気時の音速、C2は吸気時の音速をあらわし、また、V1、V2は呼気流速、吸気流速を示す。(13)式より、呼気状態における伝播時間の変化ΔT1、吸気状態における伝播時間の変化ΔT2はそれぞれ(14)、(15)式となる。なお、C1、C2≫V1、V2とする。
ΔT1=LV1/{C1(C1−V1)}≒LV1/C12……(14)
ΔT2=−LV2/{C2( 2 +V 2)}≒−LV2/C22……(15)
ΔT1、ΔT2は呼気流速(流量)と吸気流速(流量)に比例する。ここで、超音波に連続波を使用すると、伝播時間の変化に対応する位相差Δφ1、Δφ2は(16)、(17)式となる。
Δφ1=ωΔT1……(16)
Δφ2=ωΔT2……(17)
すなわち、位相差の感度は角周波数に比例して増大する。図3に、符号106で示す受信処理回路からT1、T2、また、符号105で示す遅延回路(位相シフター)からT10、T20相当の基準波をえるようにすると、符号107で示す位相比較器の出力としてΔφ1、Δφ2に対応する値がえられ、これによって呼気と吸気を判定することができる。また、Δφ1、Δφ2に対応する値がえられと、(14)式〜(17)式によって、流速V1、V2が計測でき、この流速V1、V2に呼気・吸気流路の断面積を乗じることで、呼気流量(Qo)と吸気流量(Qi)とを求めることができる。
【0021】
なお、(14)、(15)式から明らかなように音速の影響をうける。特に温度変化による音速の変化は大きい。呼気はほぼ体温(36℃)でよいことから固定できるが、吸気は外気温となることから、温度補正が必要となる。そこで、外気温を測定し、符号109で示す温度信号処理回路にて、符号108で示す音速補正回路の音声補正に対する適正な補正入力をえている。
また、(14)、(15)式では呼吸気の流速は音速に比べ無視できるほど小さいとしたのは、安静時は妥当であるが、過激な運動時は無視できない。そこで、符号100で示す流速補正回路(リニア補正回路)にて音速補正回路108の出力のノンリニアを補正する。図3では、これら一連の補正機能をブロック図で示したが、実際にはマイコンシステムで実行される。
【0022】
図4は上記酸素消費量計を構成する、呼気・吸気両用流量計21として、他の超音波流量計を使用した場合の、該超音波流量計の概略構成を示すブロック図である。図4に示す超音波流量計は、1個の超音波送信器202と2個の超音波受信器203,204を備えており、前記送信器202は前記呼吸気の流路2の側部に配置され、かつ、前記2個の受信器203,204は、呼吸気の流路2を挟んで前記送信器202に対して対称な位置に配置されており、これによって、呼気、吸気の流れに対して、θなる角度で超音波が交差するように構成されている。なお、図4において、符号205と206はそれぞれ受信処理回路、符号207は位相比較器、符号208は音速による感度補正回路を示す。
【0023】
呼気時における超音波受信器203までの超音波の伝播時間T1と、超音波受信器204までの超音波の伝播時間T2は(18)、(19)式で示される。
また、T1とT2との伝播時間差ΔTは(20)式となる。
T1=L/(C1+V1cosθ)……(18)
T2=L/(C1−V1cosθ)……(19)
ΔT=2Dcotθ・V1/(C12-V12cos2θ)……(20)
ここで、C12≫V12cos2θであるから、
ΔT=2Dcotθ・V1/C12……(21)
ここで、Dは流路径である。
また、吸気時においては、前記(18)、(19)式に対応するT1、T2は次式となる。
T1=L/(C2−V2cosθ)
T2=L/(C2+V2cosθ)
よって、吸気時の伝播時間差ΔTは、
ΔT=−2Dcotθ・V2/C22……(22)
C12≫V12cos2θの条件は過激な運動時でも満足する。図4に示す位相比較器207の出力Δφ1、Δφ2はΔTに比例することから、呼気流速V1、吸気流速V2が求まり、この流速V1、V2に呼気・吸気流路の断面積を乗じることで、呼気流量(Qo)と吸気流量(Qi)とを求めることができる。
図4に示す超音波流量計は、図3に示す超音波流量計に比べると、位相比較器207の入力として呼気または吸気中を伝播してきた2個の受信波を使用していることから、呼気流量ゼロまたは吸気流量ゼロ相当の基準波を作らなくてよく、流体の状態の変動に対して安定な動作が期待できる。
【0024】
図5および図6は、上記酸素消費量計を構成する、呼気・吸気両用流量計21として、渦流量計を使用した場合の、該渦流量計を示すもので、図5(a)は渦流量計の平断面図、図5(b)は渦流量計の正面図、図6は渦流量計の概略構成を示すブロック図である。
図5において、符号301は呼気・吸気流路、符号304は渦発生体を示し、この渦発生体304は上下流で対称な矩形柱状に形成されている。また、渦周波数は呼気、吸気に対応した下流域に設けられたセンサ305、センサ306によって検出される。発生渦周波数fと流速Vとの関係は(23)式で示される。
f=St・V/d……(23)
ここで、Stはストローハル数で、渦発生体の寸法と形状によって決定される定数である。また、dは渦発生体304の幅である。よってfを計測することにより流速Vが求まる。
渦は正逆の循環流となって、下流に流れ去る。よって、下流域において、循環流の交番変化を圧力センサ、熱式センサで検出できる。すなわち、図5において、吸気の流れ302に対して発生する渦周波数はセンサ306で、また、呼気の流れ303に対して発生する渦周波数は305のセンサで検出する。
【0025】
図6は信号処理を示したものである。ここでは、マイコンによる流量演算を行うため、まず、センサ305,306で検出された循環流の交番変化を、流量計変換器307,308で渦周波数に変換し、該渦周波数をF/V、A/D変換器309,310によって、アナログ電圧に変換したうえで、このアナログ電圧をデジタル信号に変換し、さらに、これらデジタル信号をマルチプレクサ311によって流量演算回路312に入力して、該流量演算回路312で上記(23)式を演算して、呼気および吸気のそれぞれの流速Vを求める。そして、これら流速Vに呼気・吸気流路の断面積を乗じることで、呼気流量(Qo)と吸気流量(Qi)とを求めることができる。
【0026】
【発明の効果】
以上説明したように、本発明の酸素消費量計によれば、吸気流量と呼気流量と呼気中の二酸化炭素濃度とを測定し、これらの値によって、血液中に取り込まれる酸素等を計測するので、酸素濃度を測定する必要がなくなり、酸素センサを必要としないので、長期の安定性を確保することができる。
また、酸素センサがないことから、酸素センサの交換が不要となり、メインテナンス性が向上する。
さらに、応答速度の遅い酸素センサがなくなることから、酸素消費量計の応答速度が格段に速くなる。
【図面の簡単な説明】
【図1】従来の酸素消費量計の一例を示すブロック図である。
【図2】本発明の酸素消費量計の一例を示すもので、該酸素消費量計のブロック図である。
【図3】本発明の酸素消費量計を構成する超音波流量計の一例を示すもので、該超音波流量計の概略構成を示すブロック図である。
【図4】本発明の酸素消費量計を構成する超音波流量計の他の例を示すもので、該超音波流量計の概略構成を示すブロック図である。
【図5】本発明の酸素消費量計を構成する渦流量計の一例を示すもので、(a)は渦流量計の平断面図、(b)は渦流量計の正面図である。
【図6】同、渦流量計の概略構成を示すブロック図である。
【符号の説明】
2,301 呼気・吸気流路
5 二酸化炭素濃度検出部
51 二酸化炭素センサ
7 演算器
21 呼気・吸気両用流量計(流量計)
102,202 超音波送信器
103,203,204 超音波受信器
305,306 センサ

Claims (9)

  1. 吸気流量と呼気流量と呼気中の二酸化炭素濃度とを測定し、これらの値によって、血液中に取り込まれる酸素等を計測することを特徴とする酸素消費量計。
  2. 請求項1記載の酸素消費量計において、吸気流量と呼気流量を計測する流量計が、超音波流量計であることを特徴とする酸素消費量計。
  3. 請求項1記載の酸素消費量計において、吸気流量と呼気流量を計測する流量計が、渦流量計であることを特徴とする酸素消費量計。
  4. 請求項2記載の酸素消費量計において、前記超音波流量計の呼吸気の流路の一部をU字に構成し、その端部に1組の超音波送受信器を対峙させ、呼気状態および吸気状態におけるそれぞれの超音波伝播時間の変化を検出し、これらの値によって、呼気流量と吸気流量とを求めることを特徴とする酸素消費量計。
  5. 請求項2記載の酸素消費量計において、前記超音波流量計が、1個の送信器と2個の受信器を備え、前記送信機が前記呼吸気の流路の側部に配置され、かつ、前記2個の受信器が、呼吸気の流路を挟んで前記送信器に対して対称な位置に配置されており、前記一方の受信器までの超音波伝播時間と、他方の受信器までの超音波伝播時間との差を検出し、この値によって呼気流量と吸気流量とを求めることを特徴とする酸素消費量計。
  6. 請求項4記載の酸素消費量計において、前記超音波流量計では、超音波として連続波を使用し、超音波伝播時間の変化は受信波と基準波との位相変位で検出し、基準波からの進みまたは遅れから吸気、呼気を判定することを特徴とする酸素消費量計。
  7. 請求項5記載の酸素消費量計において、前記超音波流量計では、超音波として連続波を使用し、超音波伝播時間差は2個の受信波間の位相差の正負から、吸気、呼気を判定することを特徴とする酸素消費量計。
  8. 請求項3記載の酸素消費量計において、前記渦流量計において使用する渦発生体は、吸気と呼気の流れに対して対称形状を有する矩形柱であることを特徴とする酸素消費量計。
  9. 請求項3記載の酸素消費量計において、前記渦流量計の渦周波数の検出手段として2個のセンサを渦発生体の下流域に配置し、呼気流量、吸気流量を各々のセンサで検出することを特徴とする酸素消費量計。
JP13864598A 1998-05-20 1998-05-20 酸素消費量計 Expired - Lifetime JP4004639B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13864598A JP4004639B2 (ja) 1998-05-20 1998-05-20 酸素消費量計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13864598A JP4004639B2 (ja) 1998-05-20 1998-05-20 酸素消費量計

Publications (2)

Publication Number Publication Date
JPH11318860A JPH11318860A (ja) 1999-11-24
JP4004639B2 true JP4004639B2 (ja) 2007-11-07

Family

ID=15226849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13864598A Expired - Lifetime JP4004639B2 (ja) 1998-05-20 1998-05-20 酸素消費量計

Country Status (1)

Country Link
JP (1) JP4004639B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060178592A1 (en) * 2005-02-07 2006-08-10 Aperson Biosystems Corp. System and method for controlling the flow of exhaled breath during analysis
CN113558659B (zh) * 2021-07-30 2023-07-04 重庆安酷科技有限公司 一种高精度超声波肺功能检测仪及其检测方法

Also Published As

Publication number Publication date
JPH11318860A (ja) 1999-11-24

Similar Documents

Publication Publication Date Title
US5038773A (en) Flow meter system
US6572561B2 (en) Respiratory calorimeter
CN101340941B (zh) 用于估计呼气末肺容量的方法和装置
FI78231B (fi) Maetanordning foer metaboliska storheter anslutbar till en respirator.
US20200359935A1 (en) Oxygen Consumption and Energy Expenditure Monitoring
US4917108A (en) Oxygen consumption meter
CN102114290B (zh) 呼吸机的检测方法、设备及系统
Noguchi et al. Breath-by-breath VCO2 and VO2 required compensation for transport delay and dynamic response
US20080119753A1 (en) Premature infant side-stream respiratory gas monitoring sensor
US10960157B2 (en) Oxygen therapy monitoring device and method
US20070186929A1 (en) Method and System to Determine Nasal Resistance to Airflow
JP2002136595A (ja) 呼吸器流量計
CN104970795A (zh) 用于测量和分析多次呼吸氮气洗出过程的装置
US8352206B2 (en) Method for the signal linearization of a gas sensor output signal
Yeh et al. Turbine flowmeter vs. Fleisch pneumotachometer: a comparative study for exercise testing
Jaffe et al. Continuous monitoring of respiratory flow and CO2
JPH1133119A (ja) 呼吸回路
US11963757B2 (en) Side-stream respiratory gas monitoring system
JP4004639B2 (ja) 酸素消費量計
EP1764036A1 (en) Method for the determination of the time-delay between a main-stream ultrasonic flow sensor and a side-stream gas analyzer
JPH05329132A (ja) ブレスバイブレス代謝測定装置
US6406435B1 (en) Method and apparatus for the non-invasive determination of cardiac output
EP2720005B1 (en) Arrangement for a pressure measurement of a breathing gas flowing along a flow channel
Merth et al. Water-sealed spirometer for measurements in newborns and infants
Jaffe Gas flow measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term